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Abstract

The classical Taylor rules usually do not yield the same estimation error when
working in a monthly or a quarterly framework. This brings us to the conclusion
that there must be something that monthly Taylor rules can capture and that the
quarterly one cannot: we postulate that it simply boils down to the fact that the
target rate’s changes are irregularly spaced in time. So as to tackle this issue, we
propose to split the target rate chronicle between changes in the target and the
associated durations, that is the time spending between two changes in the target
rate. In this framework, we propose to consider that changes in rate can be regarded
as a real monetary policy decision, whereas the duration period between two changes
can be related to a ”wait and see” position or some fine tuning problematic. To show
that both these features of monetary policy do not react to the same fundamentals,
we propose an econometric understanding of the Fed’s reaction function using a new
model derived from financial econometrics that has been proposed by Engle and
Russell (2005). We propose to model the changes in target rates with a classical
ordered probit and the durations with an autoregressive conditional duration model.
We extracted the Fed anticipations regarding inflation and activity using some factor
based method, and used these factors as explanatory variables for the changes in
rates and the related durations. We show that the target rate level, the scale of
the change in target rate and the associated duration do not necessarily react to
the same factors and if they do, the impact can be different. This empirical result
supports the idea that durations and scale of the change in target rate deserve equal
attention when modeling a Central Bank reaction function.

Keywords: Taylor rule, duration models, probit models, Central Bank expec-
tations, factor based methods.
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1 Introduction

Most of the empirical work dedicated to Taylor rules tends to ignore the key fact
that the changes in target rate are both irregularly spaced and of various scales.
However, some empirical literature dedicated to Taylor rules came up with some
important results. For example, as presented in Fischer and Zurlinden (2004), the
duration between two changes in rate provides information on the way a central
bank conducts its monetary policy. The scale of the changes are also bound to
convey information about - among others - the development of inflation within the
economy. In this respect, the split of the target rate chronicle between durations
and scales naturally allows anyone to discuss the shape of a Central Bank reaction
function in a much more empirically grounded framework, regarding the sole mo-
ment of an effective change in the target rate as a monetary policy decision. The
moments the Central Bank produces no move - that is the duration periods - can
hardly be considered the same way. By modeling the joint distribution of the scale
and durations using a model resembling of Engle and Russell (2005)’s, we show
that they scarcely respond to the same macroeconomic fundamentals, supporting
the idea that they both deserve equal attention when modeling a reaction function.

Since the seminal paper of Taylor (1993), the specification of rules - and particu-
larly interest target rules - appears as a powerful approach to understand the way a
central bank anchors inflation expectations. Supported by optimal target rate rules
theory (see e.g. the impressive contribution of Woodford (2003) and the literature
cited within), Taylor rules received an increasing attention over the past ten years.
See for example Clarida et al. (1998, 2000) and the review of literature presented in
Clarida et al. (1999).

Nonetheless, this empirical approach cannot handle yet some of the key facts of
the Central Banks’ behavior. Goodfriend (1990) proposes a rather comprehensive
and surprisingly up-to-date summary of the stylized facts of monetary policy for
the Federal Reserve Board. We choose to investigate three of these facts, to which
we will had one more later. First, the Federal funds target is usually not adjusted
immediately in response to new economic information, but until enough information
has been collected. Secondly, changes in the target rate are made of jumps of 25 to
75 basis points, making of it a discrete process. Third, these changes are irregularly
spaced in time. A fourth assessment emerged over the past ten years: the datasets
at hand of the central bankers usually exceed those considered in the classical Tay-
lor rules. In order to account for the Central Banks’ behavior, it is necessary to
find a way to incorporate the information contained in the large databases used by
monetary policy makers. We investigate these four points using the Federal Reserve
Board as an example.

For now, the first three considerations mentioned above led to the analysis of the
central bank target rate as a discrete process, which thus entitles the estimation
of models in the spirit of the classical multinomial probit or logit models (see e.g.
Carstensen (2005) for an application to the European Central Bank). But most of
these contributions focuses on the level of the target rate and provides little intu-
itions about the scale of the changes’ factors. Then, the autoregressive component
of the duration between two changes in the target rate has drawn attention (see
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e.g. Fischer (2000); Fischer and Zurlinden (2004)), driving people to assess that the
Central Banks’ interventions are self exciting. Unfortunately, using a duration time
basis instead of a calendar time one makes it difficult to relate the durations to a
data set that is naturally built on the latter type of time. To deal with this point,
Hamilton and Jorda (2000) proposed to use an autoregressive conditional hazard
model (joint with a probit model for the scale of the changes in the target rate) that
makes the information incorporation easier. Their model seems to be well grounded
from a prediction point of view. Nevertheless, we argue here that jumping to a
duration time basis can help understand and tell what really brings about a larger
change in the target rate or a longer duration period. At least, the articles cited
above supports the idea of a strong need for models that are able to deal with the
stylized facts cited earlier.

We propose here to show that simple Taylor-like rules fail to capture the fact that
interest rate targeting is a double- or a triple-edge weapon: first, the rates’ level
convey information to the economic agents about the expected upcoming inflation
and economic activity; second, the duration between two changes is an instrument
on its own, linked to the idea of interest smoothing (see e.g. Woodford (1999)): the
pace at which the central bank raises the rate can differ in response to the nature
of the shocks affecting the economy; third, the scale of the change in rates works
with the duration associated to smooth or sharpen the reached level. The under-
standing of these features underlines the fact that monetary policy - just as the rest
of economic policy - is also a matter of fine tuning. With reference to the opening
citation of Clarida et al. (1999), the rate level may depend on science, but the two
remainders are the result of the monetary policy’s dark art.

In this framework, we also propose to deal with the fourth critique mentioned above:
in front of the growing dataset at hand for monetary policy decisions, recent develop-
ments in factor-based methods propose to sum up this huge amount of information
into a few factors, often using principal component method to compute them. See
e.g. Stock and Watson (1999) and the application of these methods to monetary
policy in Bernanke and Boivin (2001). Such methods makes it possible to use a
dataset as large as the one used by central bankers. We propose here to use another
of these factor based methods that offers the advantage of relating the exogenous
variables and the endogenous one when computing the factors: the partial least
squares method.

Finally, we propose a framework that makes it possible to deal with the four fea-
tures of monetary policy mentioned above: the discreteness of the process of the
target rate, the importance of duration between two decisions, the accumulation of
information necessary to motivate a decision of the Central Bankers and the im-
portance of the huge data set at hand of Central Bankers. By reversing a Taylor
relationship between anticipations and target rates, we derive a few leading factors
that we call central bank expectations. Then, we use these factors and the shocks
they are made of to explain the changes in rate and the durations of the Fed’s
monetary policy from July 1989 until November 2005. We compute the conditional
joint distribution of the changes in target rate and of the durations associated in a
framework close to that of Engle and Russell (2005), using the factors extracted as
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exogenous variables. We find that the factors that influences both these features are
not necessarily the same, and when they are, the influence can be different. This is
the main contribution of this paper: level, scale and durations are three features to
consider carefully when trying to understand monetary policy.

This paper is organized as follows: in Section 2, we propose some motivations
for this paper along with a method to extract the factors hidden behind Central
Bank behavior. In Section 3, we modelize the target rate, separating the durations
and the changes in rate periods, using a probit specification and a duration model
specification. Section 4 analyses the results obtained with both the probit and the
duration models and draw some important conclusion from these empirical results.
Section 5 concludes. In appendices, we propose the detail of the dataset we used.

2 Some motivations and methods for Taylor

rules

2.1 Motivations

Clarida et al. (2000) propose a smoothing version of the famous Taylor rule for a
given Central Bank’s target rate of the form1:

rt = (1 − ρ)γ + (1 − ρ)α (E[πt+h|Ft] − π̄) + (1 − ρ)β (E[yt+j |Ft]) + ρrt−1 + ǫt (1)

where rt is the Central Bank effective target rate at time t, {α, β, γ, ρ} some con-
stant parameter and E[πt+h|Ft] and E[yt+j |Ft] are respectively the Central Bank
expectation at time t of some inflation index π for a future date t+ h and of some
real activity indicator y for a future date t + j. Note that π̄ can either be the
inflation official target by the Central Bank or some average inflation on a certain
scope of calendar dates. ǫt is a white noise disturbance with mean 0 and variance
σ2. Ft denotes the filtration derived from the whole existing information at time t.

As a starting point, we reestimated Clarida et al. (2000)’s reaction function using
two kinds of instrumental variables: on the base of the large dataset detailed in the
appendices, we extracted the first two orthogonal factors using principal component
analysis on the one hand and partial least square algorithm (in a fashion that will be
detailed later) on the other hand. Both these methods are described with precision
in Aguiar-Conraria (2003) and in the references within. We used these orthogonal
factors as instrumental variables to estimate the following version of the reaction
function proposed in equation (1):

rt = γ + απt + βyt + ρǫt−1 + ǫt (2)

Some obvious calculations and rearrangements permit to show that the reaction
functions proposed in equation (1) and (2) are identical, when assuming that the
Central Bankers’ expectations regarding macroeconomic variable are some kind of
sticky, i.e. one can write E[πt+h−1|Ft−1] = ξ1E[πt+h|Ft] and E[yt+j−1|Ft−1] =

1For the purpose of the demonstration, we slightly modified their original equation. Nevertheless, the
main features remain globally unchanged.
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ξ2E[yt+h|Ft] for some {ξ1, ξ2} close to one. When these expectations are constant
over the time (which is a limiting case of stickiness), we have exactly:

rt = γ + απt + βyt + ρ(rt − γ − απt − βyt) + ǫt (3)

⇔rt = (1 − ρ)γ + (1 − ρ)απt + (1 − ρ)βyt + ρrt−1 + ǫt (4)

This latter model presents the advantage to nest the CGG model as a special case,
in this limiting case. The second advantage of this approach is an econometric one:
when estimating Taylor rules, one often get autocorrelated errors, which threatens
the estimation results. In our specification, we got rid of his threat by incorporating
the autocorrelation within the model. The estimation of this model using PCA ans
PLS instrumental variables is presented in table 2.1. At a first glance, the quarterly
and the monthly estimations do not yield the same estimates and root mean square
error (RMSE). This instability may be explained by the convergence pace of the es-
timates (given that we have the same starting date for the same dataset, the number
of observations in the quarterly database is equal to third of the monthly one’s).
To investigate this point, we simply ran the estimations of the monthly model for
periods with a length equal to the one of the quarterly database. We present the
evolution of the RMSE for this sliding width in the figure 1.
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Figure 1: Evolution of the RMSE for a constant number of observations (dotted line) vs.
the quarterly model RMSE

Obviously, the RMSE remains unstable, and in the PCA case can even jump above
the quarterly RMSE. Considering the fact that we kept the same number of observa-
tion as for the quarterly case, those divergence cannot be imputed to the convergence
pace of the estimates. Our point is the following: a possible explanation for this
phenomenon is linked to the structure of the data. We argue that the classical
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PCA PLS

Quaterly Monthly Quaterly Monthly

α 1.35 1.18 3.37 3.32
Standard Deviation 0.17 0.12 0.13 0.07

β 0.67 0.68 -0.28 -0.29
Standard Deviation 0.08 0.04 0.04 0.02

γ -0.92 -0.43 -4.24 -4.11
Standard Deviation 0.63 0.42 0.42 0.22

ρ 0.89 0.84 0.60 0.84
Standard Deviation 0.05 0.04 0.08 0.03

R2 0.87 0.87 0.96 0.97
RMSE 0.87 0.88 0.52 0.39

Table 1: Estimates for the equation (2).

Taylor rule approach leads to a misleading idea: the periods with no change in the
target rate may not have the same fundamentals as the ones when the Fed decide
to change raise or lower its target. To say things in a different manner, the deter-
minants of the target rate level may differ from the one of the change in target rate
scale and the duration associated.

In the following, we propose a methodology allowing to provide an empirical proof
of this hypotheses.

2.1.1 Extracting the Central Bank expectations

In this Section, we propose a simple method to derive the unobserved factors that
drive monetary policy using the PLS algorithm. Let us first start with the following
motivation: relying on the assumption that there are only two variables that are
driving monetary policy may be useful from a theoretical point of view, but from an
empirical one, it will not hold. As noted in Bernanke and Boivin (2001), monetary
policy makers have at disposal huge data sets of macroeconomic series that help
to build a representative picture of the current macroeconomic context. To give
an understanding of central bankers’ behavior, using a data-set as close as possible
from theirs does not seem to be a misleading hypothesis.

Let Ft be the filtration at time t, derived from Ωt the dataset available at that time;
Ωt is a matrix M(t, p) whose p columns are made of the different series observed
by the Central Bank (in fact by any economic agent) until time t. Then, we have
Ft = σ (Ωt). We can now write a forward looking Taylor rule for rt such as, ∀t ∈ Z

and for a fixed h ∈ N:

rt = f (E[πt+h, yt+h|Ft]) + ǫt, (5)

where (ǫt)t is a white noise, i.e. an exogenous disturbance. The processes (yt)t and
(πt)t have very little chance to be independent: thus, we cannot distinguish each
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of the anticipations. We make the assumption that f is linear and a more classical
specification of the Taylor rule is, ∀t ∈ Z:

rt = α0 + β1E[πt+h, xt+h|Ft] + ǫt, (6)

where α0 and β1 ∈ R. In the remaining of the paper, we regard E[πt+h, xt+h|Ft] as
the anticipations of the Central Bankers: these are in fact the anticipations of the
variables of interest for the Fed, conditionally upon the past filtration Ft.

Based on these assumptions, we are now able to reverse the relation (6), in order
to extract the anticipations hidden behind the Fed’s instrument: the Fed fund rate
target. To do so, we made the following hypothesis on the chosen form of the Cen-
tral Bank’s anticipations: the anticipations of the Central Bank (i.e. the factors
that drive monetary policy, and thus the target rate rt) are linear combinations of
the elements of the data set (Ωt) at their disposal.

On the ground of this statement, we propose here to use one of the factor-based
method developed since the seminal work of Stock and Watson (1999). Most of
these methods are related to principal component analysis, and robust properties
of these models have been obtained (see e.g. Forni et al. (2000)). Nevertheless, as
explained in Aguiar-Conraria (2003), the principal components methods are con-
structed without taking into consideration any relationship between the regressors
and the dependent variable. The Partial Least Squares (PLS) seems to provide
a linear method that settles the latter problem. For references and a clear devel-
opment of the method, we refer to Aguiar-Conraria (2003). The algorithm of the
method is developed in the appendices, along with the detailed data set that we
used. The figure 2 provides a plot for each of the underlying factors. The idea here
is to find a proper way to compute a few factors relating Ωt and rt, that are linear
combinations of the elements of Ωt. By construction, the factors are orthogonal,
allowing the simple use of OLS. Note that the data set may include current as well
as lagged values of the data at hand.

What is more, the use of these methods seems to reduce the data vintage problem
that arose over the past years: macroeconomic data are often subject to revisions:
using initial as well as revised data seems to lead people to ”mix apple and or-
anges”, as asserted in Kishor and Koenig (2005). The previous paper by Bernanke
and Boivin (2001) concludes with the fact that data revision is not that much a
problem when handling with huge data sets and factor-based methods, which is
what we are about to do here.
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Figure 2: Each of these plots present the evolution of the first four factors extracted from the dataset using the PLS algorithm
(dotted line), jointly with the evolution of the Central Bank target rate (plain line). Both the factors and the target rate where
scaled for the graphics in order to make them comparable.
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In this respect, the Central Bank’s expectations can be rewritten using {f1,t, f2,t, ..., fj,t}
the j factors extracted from the data set. Then, from equation (6), we get:

rt = α0 +
∑j

i=1 αifi,t + ǫt (7)

What we are actually looking for is a proper model for the changes in the target
rate and the durations associated. The proposed model is grounded on the Taylor
rule proposed in equation (7) : once we propose a model for the target rate level,
it is easy to infer a model for the changes in the target rate. With the computed
factors, one can derive a model for ∆rt = rt − rt−1, i.e. the scale of the current
change in the Fed’s target rate. If the former change occurred at time tj and the
current at time tk, we can then rewrite the model proposed in the equation (7) this
way:

rtk − rtj =
∑j

i=1 αi
(

fi,tk − fi,tj
)

+ ǫtk − ǫtj . (8)

If the white noise (ǫt)t has a Gaussian distribution function, then the random vari-
able (ǫtk − ǫtj ) is still Gaussian. Thus, the model we propose assumes that the
changes in the target rate are led by the changes in the level of the factors. What
is more, these variations of the factors can be rewritten as a sum of the changes for
each time interval, for i = 1, ..., j:

(

fi,tk − fi,tj
)

=
(

fi,tk − fi,tk−1

)

+
(

fi,tk−1
− fi,tk−2

)

+ . . .+
(

fi,tj+1 − fi,tj
)

(9)

= ∆fi,tk + ∆fi,tk−1
+ . . .+ ∆fi,tj+1 (10)

with ∆fi,tk = fi,tk − fi,tk−1
. The changes in each of the factors on a duration time

basis can be interpreted as a sum of shocks, namely the {∆fi,tk} as shown in equa-
tion (10). From an economic point of view, this fact tends to provide empirical
evidence of one of the stylized facts underlined in Goodfriend (1990): each change
in the Fed’s target rate is the result of an accumulation of shocks in the variables
that drive monetary policy. Monetary policy makers seem to wait until the accu-
mulation of shocks is sufficient to justify their decision of changing the target rate2.
This way of writing the variations of the shocks provides a fertile way to explain
both the changes in target rate moment and the duration between two decisions.
In the next section, we derive a model for estimating the joint probability distrib-
ution function of the target changes and the durations, using a model close to the
one developed in Engle and Russell (2005) and relating the scale changes and the
durations associated to the estimated factors.

Before skipping to this model, some economic thoughts must be put forward here.
The fact that we use a change in time, moving from a calendar time to a decision
time is something deeper than what it actually seems. In the framework that we
propose, we only consider as decision the realization of an effective change in the
monetary policy. The no-change points are often linked to a ”wait and see” strategy.
To our mind, the fact that the Fed fund rate remains unchanged has two possible
meanings: first, it can mean that the governors are waiting for the effects of their

2Here is the quote taken from Goodfriend (1990): ”The federal funds target has not been adjusted at
irregular intervals to new information. Rather, the target has been adjusted at irregular intervals only
after sufficient information has been accumulated to trigger a target change.”
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previous change in target rate to come out: the behavior adjustment of the eco-
nomic agent can take time to show; Secondly, it can also mean that the economic
context cannot be easily understood and that the governors prefer to postpone their
decision to change the target rate level.

This latter hypothesis can be related to the literature dedicated to the analysis of
monetary policy facing uncertainty. This uncertainty is difficult to modelize: it can
arise from different facts. For example, the temporary breaking of the well-known
relationships between economic indicators can bring about a policy puzzle: central
bankers should wait and see how things are going before taking regretful decisions.
Another example of these problems related to economic uncertainty is the following:
the volatility of the most watched indicators can be a serious problem. Some strong
movement in these leading indicators can be spurious information about the future
of the economy, because of the importance of the noisy part of the signal conveyed
during high volatility periods.

These points are not handled in this paper: we assume the expectations of central
bankers are given, and our main task is to relate these factors to joint probability
distribution function of changes in rate and durations associated. Once again, we
extracted some factors whose variations are able to explain the scale of the changes
in the target rate. We will use the same factors to try to explain the durations
between two changes, in order to show that they do not react to same economic
fundamentals.

In the next part, we present a model for the joint process of the changes in target
rate and the durations, based on the extracted factors presented above.

3 A model explaining the changes in the tar-

get rate and the durations

The aim of this section is to provide a background to modelize the Fed target rate,
separating the durations and the changes-in-rate periods. We will use the factors
computed as presented above. Let ∆rk be the kth change in target rate; let τk
be the duration associated with the kth change in rate. As proposed earlier, let
Fk be the filtration derived from Ωk, the dataset at hand at time k. Thus, when
Central Bankers have at their disposal a dataset made of p different series, we
have: Fk = σ (Ωj,s,∀s ≤ k,∀j = 1, ..., p). The purpose of the proposed method is to
compute the joint distribution f(∆rk, τk|Fk), i.e. of the duration and the change in
rate process, according to the filtration Fk. Note that we do not use anymore t to
indicate the time, but k to underline the fact that we jumped from a calendar time
to a duration time. Without any loss of generality and in the spirit of Engle (2000),
it is easy to show that the following equation holds, using simple Bayes’s rule:

f(∆rk, τk|Fk) = g(∆rk|τk,Fk)q(τk|Fk), (11)

where g(.) denotes the probability density function associated with the rates changes
(∆rk)k and q(.) the probability density of the duration process (τk)k, both condi-
tionally upon the filtration. This conditional model provides a fertile framework for
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the understanding of the Fed monetary policy over the past decades.

We need to specify a model for the changes in rate and a model for the duration
process. The latter is directly inspired from Engle and Russell (1994): Fischer
(2000) and Fischer and Zurlinden (2004) put forward the fact that the duration
process presents a strong autoregressive component and thus led us to the use of an
Autoregressive Conditional Duration Model as it was first developed in the article
of Engle and Russell (1994). Note that this model is taken from Econometrics of
Finance and applied here to an economic problem. It seems to be quite natural
to modelize the change in target process (∆rk)k using an ordered probit model: in
such a framework, we will show that it is easy to recover specification à la Taylor
for the latent process of the model from equation (8). The combination of both the
ACD and the ordered probit model can be seen as a special case of the ACD-ACM
model developed in Engle and Russell (2005).

The remaining of this section is organized as follow : first, we present the simple
use of a probit model for the changes in rate. Then, we discuss how to use duration
model, and how to introduce the exogenous variables - that is the factors - within
this model.

3.1 The Probit Specification

Engle and Russell (2005) propose to characterize the dynamic of the price change
through a Markov chain, using dynamic conditional transition matrices. We propose
here to use one of the special cases of the ACM model proposed in Engle and Russell
(2005), that is an ordered probit model, in the spirit of Hausman et al. (1992). This
type of econometric model is widely used for the analysis of transaction data, and
the reader can have an insight into the use of such models in Gerhard (2001). We
apply these methods to the econometrics of monetary policy in the following manner.

Let Ωk be the set of exogenous variables at disposal at time k. Let Gk be the
filtration derived from (Ωk, τk), that is Gk = σ(Ωs, τs,∀s ≤ k). The essence of the
ordered probit analysis is the assumption that the observed rate changes ∆rk are
related to the random variable (r∗k)k, which is unobserved. Hausman et al. (1992)
propose a nice presentation of these models, along with numerous references. From
section 2, we specify the latent variable using equation (8):

∆r∗k =
∑u

i=1 αi∆fi,k + ∆ǫk (12)

where ∆r∗k = r∗k − r∗k−1, ∆fi,k = fi,k − fi,k−1 and ∆ǫk = ǫk − ǫk−1 is a Gaussian
random variable mean 0 and variance σ2. We rewrite equation (12) the following
way:

∆r∗k = α∆f ′k + ∆ǫk, (13)

where α is an M(1 × u) matrix containing the coefficients corresponding to the αi
in the equation (12); ∆fk is an M(1×u) matrix containing the series of each of the
changes in the factors for time k, on a duration time basis. Time k is the moment
of the target rate change and time k − 1 is the date of the former one. We also
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need to characterize the thresholds this latent variable has to cross for the observed
variable to go through an actual change. This can be represented in the following
manner:

∆rk =



















s1 if ∆r∗k ∈ A1

s2 if ∆r∗k ∈ A2
...
sm if ∆r∗k ∈ Am

, (14)

where the sets Aj form a partition of the state space S∗ of ∆r∗k, i.e. S∗ = ∪mj=1Aj .
In this approach we have:

sj = {−1,−0.75,−0.5,−0.25, 0.25, 0.5, 0.75, 1}. (15)

Equation (14) can be rewritten using real thresholds denoted (νi)i∈[1,m] instead of
a simple partition of S∗:

∆rk =



























s1 if ∆r∗k ≤ ν1

s2 if ν1 ≤ ∆r∗k ≤ ν2
...
sm−1 if νm−2 ≤ ∆r∗k ≤ νm−1

sm if νm−1 ≤ ∆r∗k

. (16)

From equation (3), it can be easily seen that for m states, the estimation only
requires the inference of m − 1 thresholds. Knowing that (∆ǫtk)tk is a centered
Gaussian process with variance σ2, we can write the probability that ∆rk = si
conditionally upon the corresponding filtration using the probit assumption:

P (∆rk = si|Gk) = Φ

(

ν1 − α∆f ′k
σ

)

if i = 1 (17)

= Φ

(

νi − α∆f ′k
σ

)

− Φ

(

νi−1 − α∆f ′k
σ

)

if 1 < i < m (18)

= 1 − Φ

(

νm−1 − α∆f ′k
σ

)

if i = m, (19)

where Φ denotes the standard Gaussian cumulative distribution function. Knowing
this, it is straightforward to obtain the log-likelihood function associated to (∆rk)
required for the estimation of the parameters:

logL =
K

∑

k=1

[

1∆rk=s1 log

(

Φ

(

ν1 − α∆f ′k
σ

))

(20)

+

m−1
∑

i=2

1∆rk=si
log

(

Φ

(

νi − α∆f ′k
σ

)

− Φ

(

νi−1 − α∆f ′k
σ

))

(21)

+ 1∆rk=smlog

(

1 − Φ

(

νm−1 − α∆f ′k
σ

))]

, (22)

where K is the actual number of changes in target rate, that is the total number of
observations we have at hand, on a duration time basis. One can obtain maximum
likelihood estimates by numerically maximizing the latter expression with respect to
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the unknown parameters. Note that we chose to ignore the fact that the distribution
of ∆rk is taken conditionally upon the current duration. We skipped the τk during
the presentation of the probit model in order to make the presentation clearer.
In the part dedicated to the estimation of the parameters, the latent variable is
augmented by the current duration in the following manner:

∆r∗k = α∆f ′k + βτk + ∆ǫk (23)

where β ∈ R and using the same assumption we made for equation (13) about ∆ǫk.
The next section deals with the task of specifying a model for the duration process.

3.2 The duration model specification

Bauwens and Giot (1998) provide a detailed presentation of duration models spec-
ifications for ACD models. The usual specification for the observed duration τk is
the following:

τk = Ψkǫk, (24)

where (ǫk)k is a white noise process defined on R
+
∗
, with E[ǫk] = µ and Ψk a process

defined below. Thus, using the previous notations, we have E[τk|Gk−1] = µΨk. It
is worth mentioning that µ is not a parameter to estimate, but a function of the
parameters of the distribution function of the ǫk. Note that one can normalize the
random variable ǫk by dividing them by their expectation: then we obtain a new
sequence of noises with mean equal to 1. From now on, we use the same framework
as Engle and Russell (1995). The equations (24)-(27) specify the autoregressive
model called ACD(1,1) for the duration process (τk)k, defined conditionally on the
filtration:

Ψk = ω0 + ω1τk−1 + ω2Ψk−1, (25)

with ω0 > 0, ω1 > 0, ω2 > 0 (26)

and ω1 + ω2 < 1 (27)

where τk−1 is the last duration observed and Ψk−1 the last expectation of the du-
ration process computed. To ensure the positivity of the conditional durations, we
impose the restrictions specified in equation (26). To ensure the existence of the
conditional mean of duration, we also have to assume the condition presented in
equation (27) (see Engle and Russell (1995)).

As proposed in Engle and Russell (1995), a tractable extension of their model is
obtained adding some exogenous variables, denoted here ∆fi,k. Then, the model
becomes:

τk = Ψkǫk, (28)

Ψk = ω0 + ω1τk−1 + ω2Ψk−1 + α∆fk. (29)

We will discuss the implications for the estimation procedure of adding these ex-
ogenous variables in the section dedicated to the empirical results.

To be able to estimate the parameters by maximum likelihood method, one must
impose a specification for the distribution function of the noise process (ǫk)k. In
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the literature authors proposed that (ǫk)k follows an exponential, a Weibull, a Burr
or a generalized Gamma noise probability distribution function. However, we must
remain cautious here: as put forward by Meitz and Teräsvirta (2004), if the true
distribution of the errors is of the last three distributions, then the estimates will
be consistent. However, if not, one will have to deal with Quasi Maximum Likeli-
hood estimates, and each distribution cited before but the exponential one will not
produce consistent estimates: these distributions do not belong to the linear expo-
nential family. Here, we only need to produce consistent estimates, regardless of the
true distribution of the errors. Thus, we assume that the (ǫk)k is an exponential
white noise process.

The model chosen for the duration process (τk)k is therefore the following:















τk = Ψkǫk
Ψk = ω0 + ω1τk−1 + ω2Ψk−1 + α∆fk
ω1, ω2 ≥ 0 and ω0 > 0
ω1 + ω2 < 1

, (30)

where (ǫk)k is an exponential disturbance, with expectation equal to λ. Here we
assume that λ = 1, so E[τk|Gk−1] = Ψk, with Ψk ∈ Gk−1. Then, we derive the
associated log-likelihood of the model:















L(τ,Ψ) =
∑K

k=1 lk = −
∑K

k=1 log(Ψk) + τk
Ψk

Ψk = ω0 + ω1τk−1 + ω2Ψk−1 + α∆fk
ω1, ω2 ≥ 0 and ω0 > 0
ω1 + ω2 < 1

. (31)

We provide estimates by numerically maximizing the log-likelihood function pre-
sented in equation (31).

4 Empirical Results

We detail here the dataset we used, along with the results of the estimations.

We used a large data set of macroeconomic variables extracted from Bloomberg’s
database: it includes 176 series of data. To build the factors, we chose to use the
current value of each variable, along with its first to third lagged values. The reason
why we made this choice was that it enabled us to work in a framework close to the
quarterly database commonly used in the literature tackling those issues (see e.g.
Taylor (1993) and Clarida et al. (1998)). We exclusively used monthly data because
it is in line with the huge number of figures available on this monthly basis. What
is more, Central Bank decisions are often made on a monthly basis.

We designed the data base we used so as to mimic as close as possible Stock and
Watson (1999)’s. Knowing that some of the series present a non stationary behavior,
we had to differentiate some of them. Note that we often used a twelve-month
difference to obtain stationary and informative series. One major argument to do
so is that many series are known among central bankers to be watched using these
twelve-month differences. A good example of such a series is the Consumer Price
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Index (CPI ). Let CPIt be the level of the CPI index reached at time t. Then the
12-month difference is the following:

CPIt − CPIt−12

CPIt−12
× 100. (32)

What is more, many of these series taken in first difference are really close to white
noise: in this respect, it does not seem to provide any useful information for our
purpose. We present in the appendix the list of variables that we used to compute
the factors fi,t, i = 1, ..., j, along with the differences we chose for each of the series.

As explained in Section 2, we computed the factors using the PLS algorithm. No
well-known criterion exists to decide on the number of factors that should be used in
the proposed framework. We decided to keep four of them for the following reasons:
classical Taylor rules - that is models for the target rate level - are commonly known
to dwell on two factors. We are trying to seek for two additional effects: a scale
of the change in target rate effect and a duration effect. In this respect, we chose
to maintain four of these factors. Note that there may be more underlying factors
that may provide information for both durations and changes in target rate. Never-
theless, our point here is only to show that some factors that are usually neglected
must be taken into account from now on.

Finally we have at disposal 91 observations of changes in target rate along with the
duration associated and the changes in factor on a duration time basis. This is the
dataset that is about to be used in the estimations.

4.1 Dealing with correlation

Even if the factors - taken in level - are instantaneously uncorrelated, the changes
in the factors can be correlated. This can be shown very easily as follows:

corr(∆fi,t,∆fj,t) = corr(fi,t − fi,t−1, fj,t − fj,t−1) (33)

= corr(fi,t, fj,t−1) − corr(fi,t−1, fj,t) (34)

which is not necessarily equal to 0. This problem is amplified by the change in
time, skipping from ∆fi,t to ∆fi,k, using the former notations. Before starting the
estimation procedures, we have to examine the correlation matrix of the changes in
factors, using a duration time basis. The estimated matrix is the following:

























1.00 -0.60 -0.43 -0.03
- (-7.10) (-4.46) (-0.24)

-0.60 1.00 0.16 -0.52
(-7.10) - (1.58) (-5.73)
-0.43 0.16 1.00 0.21

(-4.46) (1.58) - (2.09)
-0.03 -0.52 0.21 1.00

(-0.24) (-5.73) (2.09) -

























Most of the coefficients of the correlation matrix are significative at the 5% risk level
(the t-stat is given below each figure between brackets). This correlation problem
can at least brings about unstable estimates, depending on the numbers of ∆fi,k
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introduced in the proposed models. This simply means that we will have to be
extremely careful when examining the estimation results. But this correlation will
not necessarily jeopardize our results: given that we are working on a duration time
basis, there is no evidence that this correlation is not spurious. Our point of view is
that our framework makes the meaning of those correlations unclear. In this respect,
we will produce alternative estimates of our models, using a corrected data set, based
on this correlation. To do so, we will simply use for factor 2 to 4 the residuals of the
linear regression of each of these three factors on the preceeding ones. For example,
we used as ∆f2,k the residuals of the following regression equation estimated by
OLS: ∆f2,k = γf1,k + νt, with the classical assumptions used when dealing with
ordinary least square. By doing so, we obtain orthogonal exogeneous variables that
should be harmless for the estimation procedure. By comparing the first results with
those obtained with these new factors, we will be able to maintain some vigilance
upon the effect of this correlation problem. The correlation matrix of the corrected
factors is the following:





















1 -1.65E-16 2.44E-17 6.93E-17
(0.00) (0.00) (0.00) (0.00)

-1.65E-16 1 5.30E-17 3.673317e-17
(0.00) (0.00) (0.00) (0.00)

2.44E-17 5.30E-17 1 -2.08E-17
(0.00) (0.00) (0.00) (0.00)

6.93E-17 3.67E-17 -2.08E-17 1





















Note that from now on, we will call these orthogonal factors corrected factors. The
rest of this section is organized as follows: first, we present the result of the esti-
mation of the probit model proposed in the former section. Then, we comment the
results of the estimation of the duration model proposed earlier.

4.2 Estimation of the probit models

The estimated model proposed in Section 3 is the following:

∆rk∗ = α1∆f1,k + α2∆f2,k + α3∆f3,k + α4∆f4,k + βτk + ∆ǫk (35)

where rk∗ is the unobserved latent process as defined in Section 3; ∆fi,k is the
change in the ith factor on a duration time basis; τk is duration observed at time k
and ∆ǫk a Gaussian noise of mean 0 and variance σ2. For this model, we provide
five different estimations: four of them only include one of the four factors as an
explanatory variable at a time; the last one includes the four factors at the same
time. We used a similar approach with the corrected factors. Table 2 provides the
estimation for the model using the uncorrected factors and the table 3 provides the
estimation of the model using the corrected factors. For each table, t-stats are given
between brackets below each estimated parameters.

Only two factors seem to have a clear influence on the changes in target rate process:
factors 1 and 4, as both corrected and uncorrected factors clearly show.
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Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5

α1 0.0081 - - - 0.01895
(4.44) (6.38)

α2 - -0.0050 - - 0.0254
(-1.59) (4.38)

α3 - - -0.0043 - 0.0140
(-0.39) ( 1.05)

α4 - - - 0.0430 0.1386
(2.30) (4.79)

β -0.0221 -0.0091 0.0141 0.0097 0.0271
(-0.65) (-0.26) ( 0.42) (0.29) (0.70)

Residual deviance 341.353 358.923 361.3073 356.1339 311.7363
AIC 371.353 388.923 391.3073 386.1339 347.7363

Table 2: Estimates of the first probit model

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5

α1 0.0081 - - - 0.0091
(4.44) (4.79)

α2 - 0.0052 - - 0.0067
(1.36) (1.70)

α3 - - 0.0222 - 0.0275
( 1.74) ( 2.10)

α4 - - - 0.1224 0.1386
(4.40) (4.79)

β -0.0221 0.0270 0.0001 0.0553 0.0271
(-0.65) ( 0.78) ( 0.00) (1.60) (0.70)

Residual deviance 341.353 359.6135 358.42 341.6864 311.7363
AIC 371.353 389.6135 388.42 371.6864 347.7363

Table 3: Estimates of the probit model with corrected factors

The last result for this first model is linked to the inclusion of the duration in
the conditional probability to observe a change in target rate. The results are
unanimous: there is no linear link of the duration level on the scale of the change.
This is surprising and central for our analysis: as asserted in the first section, it may
mean that both duration and scale of the change are independent instruments of the
monetary policy of the Fed. This seems to reinforce the founding principle of our
work: both the scales of the changes in target rate and the durations between two
decisions are central bank instruments, and deserve in this respect all the attention
of traditional instruments.

4.3 Estimation of the duration models

We detail first the estimation procedure, and then the results of the estimation of
the duration model proposed in Section 3. Here again, we computed our estimations
both with corrected and uncorrected factors.

The estimation procedure of the ACD models are far less known than the one of
the probit models. Two elements have to be discussed here: first, the constraint of
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positivity of the conditional mean of the duration process; secondly, the estimation
of the Fisher information matrix, in the case of maximum likelihood method and
quasi maximum likelihood method.

The duration process is a made of positive values. The estimation of such a process
requires that we check the positivity of the conditional duration at each step of the
maximisation procedure. As explained in the section 2, when no exogenous variables
are added, this requires:

ω0

1 − ω1 − ω2
> 0 (36)

which naturally requires: ω0 > 0 and 0 < ω1 + ω2 < 1. Adding exogenous vari-
ables such as the changes in factors that can be negative requires to closely watch
the positivity of the conditional duration process estimated. We perform the es-
timation using Metropolis Hastings algorithm: at each step of the maximization
process of the log-likelihood, we add the constraint of having a positive estimated
process. What is more, the use of such MCMC estimation method makes it possible
to find the global maximum, regardless of the existence of local maxima. We found
that the introduction of the changes in the factors on a duration time basis makes
the classical estimation procedures (such as Fisher scoring) unstable. The use of
this MCMC method ensures the significativeness of the results, without proving
the strict concavity of the log-likelihood with the ACD augmented with exogenous
variables.

Once the estimates are computed, the Fisher information matrix must be obtained.
Engle and Russell (1995) propose to compute it directly. Knowing that E[ τk

ψk
] = 1,

it is easy to see that:

I(θ) =
1

K

K
∑

k=1

[

1

ψ2
k

∂ψk

∂θ

∂ψk

∂θ′

]

, (37)

where θ = (ω0, ω1, ω2, αi, i = {1, 2, ..., u}). One has to note that this estimation of
the Fisher information matrix is asymptotically the same as the BHHH one (see
Berndt et al. (1974)), which is the one used when performing quasi-maximum like-
lihood estimation. Nevertheless, we performed our estimations of the variance of
the estimates using both these methods and found similar results. Given that we
only have a hundred observations at hand (on a duration time basis), we preferred
to use the first method, computing the Fisher information matrix as proposed in
equation (37).

Now we comment the results obtained and we conclude.

4.3.1 Results of the estimation of the duration model

The estimated duration model is the following:
{

τk = ψkǫk
ψk = ω0 + ω1τk−1 + ω2ψk−1 + α1∆f1,k + α2∆f2,k + α3∆f3,k + α4∆f4,k

(38)

where Ψk is the expected duration at time k as computed by the model, ∆fi,k is the
change in the ith factor on a duration time basis and ∆ǫk an exponential random
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variable with mean equal to 1.

Following the previous method developed for the probit model, we computed several
estimations including, first, only one of the exogenous variables at a time and then
the whole variables at the same time. This enables us to ensure the results obtained.
We provide the results of our estimations for the duration model using uncorrected
factors in table 4 and corrected factors in table 5. For each table, t-stats are given
between brackets below each estimated parameters.

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6

ω0 1.0270 1.1313 1.2169 1.0297 1.1749 0.9332
(1.98) (2.05) (2.35) (2.15) (1.89) (2.23)

ω1 0.4357 0.4517 0.3510 0.4323 0.3273 1.5986
(3.34) (3.26) (2.38) (2.93) (2.94) (5.04)

ω2 0.1957 0.1378 0.1977 0.1974 0.2529 0.0586
(2.41) (2.68) (2.52) (2.31) (2.64) (2.06)

α1 - 0.3052 - - - 0.0218
(3.07) (0.51)

α2 - - -0.3094 - - -0.5410
(-2.95) (-2.46)

α3 - - - 0.0315 - 0.1035
(0.83) (1.61)

α4 - - - - 0.1674 -0.3805
(2.76) (-3.15)

Residual deviance 1.08 1.04 1.00 1.08 1.04 0.93
Log-likelihood -183.6878 -182.5036 -180.9156 -183.6683 -183.0971 -179.6989

Table 4: Estimates of the duration model with uncorrected factors

Eq. 1 Eq. 2 Eq. 3 Eq. 4 Eq. 5 Eq. 6

ω0 1.0270 1.1313 1.9872 1.0565 0.6538 0.9127
(1.98) (2.05) (2.21) (2.63) (3.08) (3.44)

ω1 0.4357 0.4517 0.0007 0.4270 0.7236 0.6062
(3.34) (3.26) (2.04) (2.91) (2.95) (4.75)

ω2 0.1957 0.1378 0.2559 0.1920 0.1387 0.1590
(2.41) (2.68) (2.41) (2.13) (2.76) (2.21)

α1 - 0.3052 - - - 0.3090
(3.07) (2.99)

α2 - - -0.3548 - - -0.2351
(-3.15) (-3.10)

α3 - - - 0.0681 - 0.0447
(0.54) (0.44)

α4 - - - - -0.3909 -0.384
(-2.83) (-3.03)

Residual deviance 1.08 1.04 1.02 1.07 1.00 0.93
Log-likelihood -183.6878 -182.5036 -180.9519 -183.5982 -182.3291 -179.7086

Table 5: Estimates of the duration model with corrected factors

Several points are worth being commented upon. As asserted in Fischer and Zurlin-
den (2004), there is evidence that the American Central Bankers’ interventions are
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self-exciting. In each of our estimations, we found that the parameters of the au-
toregressive process are significative: this means that when the current duration is
short (long), the next one will be also of a short (long) kind. Those results give
some ground to the use of an ACD model to modelize the duration process.

The analysis of the estimation of the exogenous variables are of great interest. First,
when the probit model only found two significant variables (factors 1 and 4), the
ACD model led to three factors: 1, 2 and 4. The sign of the estimates conveys an
important message for the analysis of monetary policy. Unlike with factors 2 and
4, a positive shock in factor 1 is supposed to lead to a greater duration. On the
contrary, a negative shock of this factor 1 seems to make the Central Bank react
quicker. A positive shock in factors 2 and 4 will lead to a shorter duration between
two decisions to change the level of the target rate.

4.4 Results summary

The comparison of the results obtained with both the probit and ACD models en-
ables us to formulate some stylized facts for the Fed’s reaction function. An increase
of factor 1 seems to bring about a sharp raise of the target rate, linked to a longer
duration. Secondly, an increase of factor 2 is linked to a shorter duration but it
does not seem to have any effect on the scale. Finally, an increase of factor 4 may
bring about a rate increase and a shorter duration. These results are summed up
in the following table:

Factor 1 Factor 2 Factor 3 Factor 4
Result of a positive shock on the scale positive - - positive

Result of a positive shock on the duration positive negative - negative

Finally, the latter table seems to give shape to our work: distinguishing the scale
and the duration of the target rate process seems to be a fertile way to understand
monetary policy. Each economic shock can have a different effect on the reaction
function of Central Bankers. The factors that move duration and scale processes
can be different, and, what is more, do not necessary correspond to the ones that
drives the target rate level. In the case where they are the same, the effect of these
factors on each of these processes can be different. To our mind, this fact is of
particular importance for anyone that would want to understand or to predict the
future of monetary policy.

5 Conclusion

The main findings of this paper can be summarized as follow. The factors affecting
the movement of the target rate, the scale of the changes in target rate and the
associated durations are not necessary the same. This could help understand the
interrogation raised by the instability of the estimation on a monthly and quarterly
basis asserted at the beginning of this paper. This instability seems to be linked to
the fact that when estimating a classical Taylor rule, we are trying to account for
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three possibly independent processes with a single model, based on a single equa-
tion. So, trying to give shape to the joint probability distribution function of the
duration process and the change in target rate process seems to be a fertile way to
understand monetary policy.

As emphasized in the introduction part, Clarida et al. (1999)’s article starts from a
quote of Alan S. Blinder, Princeton’s professor of Economics and vice chairman of
the Board of Governors of the Federal Reserve System from 1994 to 1996. The ex-
perience he drew from both these positions was pondered in the following sentence:
”Having looked at monetary policy from both sides now, I can testify that central
banking in practice is as much art and science. Nonetheless, while practicing this
dark art, I have always found the science quite useful”. Using theory as guidelines
is essential; anyway, empirical work can help find and accommodate new features
of the reality.
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6 Appendices

6.1 Presentation of the data set

We present hereafter the data set we used to compute the factors. The data were
transformed as follow: 1 is for no change in the data; 2 is for a first order difference;
3 is for the difference between the current value and its value 12 monthes before.
We also define the type of the data: i is for index type data, mom is for month-
over-month data and yoy for year-over-year data.

Series Bloomberg ticker Type Transformation

Personal Income

1 Total Personal income yoy PITLYOY Index yoy 1
2 Total Personal income mom PITLCHNG Index mom 1
3 Disposable Income PIDSDI Index i 3
4 Personal outlays PIDSSO Index i 3
5 Personal saving PIDSS Index i 1
6 Disposable Per Capita PIDSDPC Index i 3
7 Saving rates PIDSDPS Index i 1
8 Interest paid PIDSINT Index i 2
9 Disposable chained PIDSDCWT Index i 3
10 Per Capita chained PIDSDPCW Index i 3
11 Total compensation PIWGTOTL Index i 3
12 Wages and salaries PIWGWAGE Index i 3
13 Wages private PIWGPRIV Index i 3
14 Wages government PIWGGOVT Index i 3
15 Other labor income PIOCOLI Index i 3
16 Proprietors PIOCPROP Index i 3
17 Farm PIOCFRM Index i 1
18 Non-farm PIOCNFRM Index i 3
19 Rental PIOCRENT Index i 1
20 Personal dividend PIOCDIV Index i 3
21 Personal interest PIOCINT Index i 3
22 Transfer PIOCTRAN Index i 3
23 Transfer payment for old age PIOCTRHL Index i 3
24 Government unemployment PIOCUNEM Index i 1
25 Private debt % income .PRDBT%GD Index i 1

Personal Expenditure

26 Personal exp. Total current dollar mom PCE CRCH Index mom 1
27 Personal exp. Total current dollar yoy PCE YOY$ Index yoy 1
28 Expenditure durable PCE DRBL Index i 3
29 Expenditure non-durable PCE NDRB Index i 3
30 Expenditure services PCE SRV Index i 3
31 Expenditure chained mom PCE CHNC Index mom 1
32 Chained type mom PCE DEFM Index mom 1
33 Chained type yoy PCE DEFY Index yoy 1
34 Chained type annual percentage change PCE DEFA Index i 1
35 Chained type durable PCE DRBD Index i 3
36 Chained type non-durable PCE NDRD Index i 3
37 Chained type Service PCE SRVD Index i 3
38 Chained type core mom PCE CMOM Index mom 1
39 Chained type core yoy PCE CYOY Index yoy 1

Table 6: Presentation of the data set
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Series Bloomberg ticker Type Transformation

Employment statistics

40 Unemployment total sa USURTOT Index i 1
41 Unemployment number sa USUETOT Index i 1
42 Unemployment both sa USURBTHS Index i 1
43 Civilian non labor sa USNLTOT Index i 3
44 Payroll non farm sa USNATOTL Index i 2
45 Payroll farm sa USAGTOT Index i 2
46 Employment net change sa USEMNCHG Index mom 1
47 Full time USEMFULL Index i 3
48 Part time economic USEMPTER Index i 3
49 Part time slack USEMPTSW Index i 3
50 Part time noneconomic USEMPTNE Index i 3
51 Part time self-employed USNASELF Index i 3
52 Ratio employment/population sa USERTOT Index i 1
53 Participation sa PRUSTOT Index i 2
54 Civilian labor force sa USLFTOT Index i 2
55 Civilian non institutionnal population USCPTOT Index i 2
56 Duration of unemployment USDUMEAN Index i 1
57 Job leavers USJLJOBL Index i 1
58 Job leavers % of work force USJLLVR% Index i 1
59 Non Farm Payroll Net change sa NFP TCH Index mom 1
60 Non Farm Payroll yoy level change NFP TYCH Index yoy 1
61 Non Farm Payroll private sa NFP P Index i 2
62 Non Farm Payroll good produce sa NFP GP Index i 2
63 Non Farm Payroll construction sa USECTOT Index i 2
64 Non Farm Payroll manufacturing sa USMMMANU Index i 2
65 Non Farm Payroll durable goods sa USEDTOT Index i 2
66 Non Farm Payroll non durable goods sa USENTOT Index i 2
67 Non Farm Payroll service sa NFP SP Index i 2
68 Non Farm Payroll commerce total sa USRTTOT Index i 2
69 Non Farm Payroll transport sa USETTOT Index i 2
70 Non Farm Payroll utilities sa NFP UTLS Index i 2
71 Non Farm Payroll information sa USEITOTS Index i 2
72 Non Farm Payroll finance sa USEFTOT Index i 2
73 Non Farm Payroll services sa USESTOT Index i 2
74 Non Farm Payroll education and health sa USEETOTS Index i 2
75 Non Farm Payroll leisure sa USEHTOTS Index i 2
76 Non Farm Payroll other services sa USEOTOTS Index i 2
77 Non Farm Payroll government sa USEGTOT Index i 2
78 Average weekly hours private sa USWHTOT Index i 1
79 Average weekly hours good producing sa USWHGPSA Index i 1
80 Average weekly hours mining sa USWHMINS Index i 1
81 Average weekly hours manufacturing sa USWHMANS Index i 1
82 Average weekly hours overtime sa USWHMNOS Index i 1
83 Average weekly hours service providing sa USWHSPS Index i 1
84 Average weekly hours durable goods sa USWDTOT Index i 1
85 Average weekly hours non durable goods sa USWNTOT Index i 1
86 Aggregage weekly hours USAWTOT Index i 1
87 Average hourly earnings mom USHETOT% Index mom 1
88 Average hourly earnings yoy USHEYOY Index yoy 1
89 Average hourly earnings good producing USHEGPSA Index i 3
90 Average hourly earnings non durable goods USHENDRB Index i 3
91 Average hourly earnings total sa USWETOTA Index i 3
92 Claims INJCJC Index i 3
93 conf board job plentiful CONCJOBP Index i 1
94 conf board job not plentiful CONCJOBN Index i 1
95 conf board job hard to get CONCJOBH Index i 1

Retail sales

96 Total domestic cars SAARDCAR Index i 3
97 Manufacturing and trade total MTSL Index i 3
98 Wholesale total MWSLTOT Index i 3
99 Wholesale durable goods MWSLDRBL Index i 3
100 Wholesale non durable goods MWSLNDRB Index i 3
101 Advance retail sales yoy RSTAYOY Index yoy 1

Housing

102 New home sales median NHSLAVSL Index i 3
103 New home sales house for sales NHSLNFS Index i 3
104 Total starts new home residential NHSPSTOT Index i 3
105 Housing starts North east NHSPSNE Index i 3
106 Housing starts Mid West NHSPSMW Index i 3
107 Housing starts South NHSPSSO Index i 3
108 Authorized starts North east NHSPANE Index i 3
109 Authorized starts Mid West NHSPAMW Index i 3
110 Authorized starts South NHSPASO Index i 3
111 Authorized starts West NHSPAWE Index i 3
112 Existing houses sales EHSLSL Index i 3
113 Total starts autorized NHSPATOT Index i 3
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Series Bloomberg ticker Type Transformation

US confidence

114 University of Michigan Sentiment CONSSENT Index i 1
115 University of Michigan expectation CONSEXP Index i 1
116 University of Michigan current CONSCURR Index i 1
117 Conference board confidence CONCCONF Index i 1
118 Conference board situation CONCPSIT Index i 1
119 Conference board expectations CONCEXP Index i 1
120 Leading indicator yoy LEI YOY Index yoy 1
121 Leading indicator mom LEI CHNG Index mom 1

Financial variables

122 US Treasury bonds and notes FRNTUSBN Index i 1
123 Debt and credit yearly change CCOSYOY Index yoy 1
124 S&P 500 SPX Index i 3
125 NYSE NYA Index i 3
126 Stock Prices LEI STKP Index i 3

Industrial production

127 Industrial production IP Index i 3
128 Industrial production consumer goods IPTLCG Index i 3
129 Industrial production durable consumer goods ICGDDCGS Index i 3
130 Industrial production non durable consumer goods IPNDTOTL Index i 3
131 Industrial production manufacturing IPMG Index i 3
132 Industrial production business equipment IPEQBUS Index i 3
133 Industrial production materials IPTLMATS Index i 3
134 Industrial production durable good materials IGMDDRBL Index i 3
135 Industrial production non durable good materials IGMNNOND Index i 3
136 Industrial production business equipment IPEQBUS Index i 3
137 Industrial production High Tech IPXHTOTL Index i 3
138 Industrial production Automobile IPXVTOTL Index i 3
139 Industrial production Mining IPMUMNG Index i 3
140 Industrial production utilities IPMUUTIL Index i 3
141 Capacity utilisation rate total industry CPTICHNG Index i 1
142 Capacity utilisation rate manufacturing total CPMFTOT Index i 1
143 Capacity utilisation rate durable manufacturing CPDMTOT Index i 1
144 Capacity utilisation rate High Tech IPSACXTT Index i 1
145 Capacity utilisation rate mining CPMN Index i 1
146 Capacity utilisation rate utilities CUTLTOT Index i 1
147 Purchasing managers’ index NAPMPMI Index i 1

Price indexes

148 NAPM Price indexes NAPMPRIC Index i 1
149 CPI Services CPSSTOT Index i 3
150 Consumer price index total CPI INDX Index i 3
151 Consumer price index less food and energy CPUPXYOY Index i 3
152 Consumer price commodity CPCATOT Index i 3
153 Consumer price index commodity food CPCACXFB Index i 3
154 Consumer price durable goods CPCADUR Index i 3
155 Consumer price food and beverage CPSFTOT Index i 3
156 Consumer price housing CPSHTOT Index i 3
157 Consumer price transportation CPSTTOT Index i 3
158 Consumer price medical care CPUMTOT Index i 3
159 Producer price finished goods PPI INDX Index i 3
160 Producer price crude materials PPICTOTL Index i 3
161 Producer price intermediate materials PPIITOTL Index i 3
162 Producer price energy PPCMENER Index i 3

Interest rates and money

163 Money supply M1 M1 Index i 3
164 Money supply M2 M2 Index i 3
165 Money supply M3 M3 Index i 3
166 PhiliFed Index OUTFGAF Index i 1

Orders and unfilled orders

167 NAPM New orders index NAPMNEWO Index i 1
168 New orders total TMNOTOT Index i 3
169 New orders durable goods DGNOTOT Index i 3
170 New orders non durable goods NDGNTOT Index i 3
171 Unfilled orders total TMUOTOT Index i 3

Inventories

171 Manufacturing and trade inventories MTIB Index i 3
172 NAPM inventory index NAPMINV Index i 1
173 Sales/inventories Index business MGT2TB Index i 3
174 Sales/inventories Index manufacturing MGT2MA Index i 3
175 Sales/inventories Index retail MGT2RE Index i 3

Governement spending

176 Budget % GDP FDDSGDP Index i 1
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