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ABSTRACT:   Applied econometric work takes a  superficial approach to causality. 

Understanding economic affairs, making good policy decisions, and progress in the 

economic discipline depend on our ability to infer causal relations from data. We review 

the dominant approaches to causality in econometrics, and suggest why they fail to give 

good results. We feel the problem cannot be solved by traditional tools, and requires 

some out-of-the-box thinking. Potentially promising approaches to solutions are 

discussed. 

 

 

1. Introduction 

 

 The Cowles Commission had a clear approach to causality in econometric 

models. Causal chains were to be specified in advance of modeling, on the basis of 

theoretical considerations. The econometrician specified the exogenous and endogenous 

variables, and put in zero restrictions when theory indicated no role for a particular 

variable in a structural equation. This approach did not succeed for several reasons. 

General equilibrium suggests that everything causes everything else, and so theory does 

not provide an adequate guide to model specification. Thus, zero restrictions and 

exogeneity assumptions were made on pragmatic grounds. However, substantial conflicts 

and differences of opinions arose on these issues, which could not be resolved either 

empirically or theoretically. Large forecast errors in econometric models following the oil 

crisis in the 70’s also cast a cloud of suspicion on these conventional methodologies. 

Keuzenkamp (2000) provides a history, further references, and a critical evaluation of a 

number of new methodologies which have since been developed. Our focus will be on 

the use of regression models to establish causal relationships.  

 

Most current econometric texts either make no mention of causality, or else 

contain a brief and superficial discussion. Establishing causality is often a central concern 

in many papers in applied econometrics. Differentiating between causes and effects of 

growth, poverty reduction, inflation, etc. is of crucial importance to crafting suitable 

policy and developing an understanding of the world we live in. Due to lack of 

appropriate training, many published articles display very poor understanding of the 

evidence required to support causal claims.  Freedman (2005) discusses numerous articles 

which use regression analysis, and shows how causality claims central to these articles 

reduce to claims based on observed correlations in non-experimental data. Even though 

the ideas that ‘correlation does not prove causation’ and that ‘Granger-Causality is not 

equivalent to causality’ are well-known and oft-repeated, authors nonetheless continue to 

rely on these tools to establish and validate causality claims. Freedman (1991) has argued 

                                                 
1 I am deeply indebted to David Freedman for comments on earlier versions, which saved me from many 

errors of commission and omission, as well as for encouragement and pointing me in the right directions. 
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that discovering causal relations requires more hard work than mere statistical analysis. 

We will argue that these problems are compounded in econometric analysis. It is essential 

to learn about causal chains. Economic theory gives us some, imperfect, guidance on this 

matter. Where the causal chains are clear, regressions are useful in assessing the 

quantitative strength of the causal effect. A discovery of surprising or unexpected 

correlations can lead us to interesting hypotheses about causal mechanisms. While 

regressions can be useful tools as part of exploratory causal analysis, they are not 

adequate for confirmation of causal mechanisms, for reasons to be discussed. 

Establishing causality will usually requiring going outside the range of conventional 

econometric techniques. Regression analysis may point the way, and may serve as part of 

the evidence for a causal mechanism, but establishing causality will require more broadly 

based evidence from different types of sources, and more attention to the structure of the 

real world mechanisms which generate the data.  

  

2. Caricature of a Typical Econometric Argument. 

 

The figure below plots the variables for all countries for which World Bank 

provides information on both variables in 1990. The graph shows the strong positive 

relation between Life Expectancy (LE) and Log of number of newspapers published per 

1000 people (LN). The regression of LE on LN has R
2
 = 0.81: 

LE = 45.0 + 5.48 LN + ε,   
                      (1.2)   (0.3)       (5.2) (Standard Errors are given in parentheses) 

LN is highly significant. The picture itself shows a clear and strong relationship, and the 

formal statistics does not really add much to the information displayed in the plot. The 

issue is: how to interpret this relationship. 
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Suppose someone were to argue that the significant t-statistic on LN proves that 

reading newspapers leads to longer lives, and argues that developing countries should 

focus on publishing more newspapers as a means for improving life expectancies. Surely, 

such an argument would be greeted with laughter. If this argument was published in a 

journal, we would be concerned about the sloppy standards of refereeing and editorship. 

Nonetheless, arguments equivalent in logical structure to this one are routinely published 

in respectable journals. For example, on the basis of essentially equivalent data (actually, 

weaker data) Lynn and VanHanen (2002) argue at book length that IQ causes GNP 

growth. Volken (2003) has written a rebuttal using careful and detailed statistical analysis  

– the seriousness with which such arguments are taken is another indication of 

fundamental problems with our understanding of causation.  In “Why we learn nothing 

from regressing economic growth on government policies,” Rodrik (2005) has pointed 

out why causal claims regarding effects of policy on the basis of cross country 

regressions are not supported by the correlations, and cited several papers making such 

invalid claims. 

 

Some argue that cases like this arise only because LN proxies for other important 

variables. This means that including the relevant variables will eliminate the significance 

of others. We tried this by including all health relevant variables for which data was 

available in sufficient quantities in the World Bank data base. This led to the following 

regression, with R
2
 = 0.74: 

LE = 57.2 + 6.0 LN – 0.7 LHB + 0.08 ImpSan – 0.04 ImpWat + 4.8 LPhys + ε 
         (8.9)   (2.7)        (2.8)           (0.06)             (0.16)                 (2.6)           (3.8) 

Here, LHB and LPhys are logs of Hospital Beds and Physicians per 1000 population 

respectively, while ImpSan and ImpWat measure improvements in sanitation and water 

supply. LN remains the only variable which is significant at 95% level. Interestingly, its 

coefficient also remains stable despite the addition of several variables. All variables 

other than LN are insignificant. We will later provide additional arguments why this 

strategy of variable addition is likely to fail as a tool for discovering causal relations. 

 

Typical authors and textbooks remain confused about these issues despite the fact 

that several authors have clearly differentiated between correlation and causation. 

Problems arising from confusing the two have been explicated in many papers ranging 

from the deep and sophisticated theoretical exposition of Engle et. al. (1984) to the lucid 

textbook clarity of Freedman et. al. (2007), and the practical and empirical Rodrik 

(2005). Freedman (2005) discusses the very first paper on multiple regression by Yule, 

published in 1899. Yule regressed percent change in Pauperism on Percent change in 

Outrelief ratio (outside vs inside the poorhouse—the policy debate was on the “new poor 

law” which made in-relief mandatory). The unit of analysis was the “union,” a clump of 

about 25 parishes. These were the bodies that administered relief.  Multiple regression 

was used to control for several possible confounders.Yule came to the conclusion that 

increases in in-relief provisions lead to increases in the number who declare themselves 

poor. However, in a footnote, Yule writes that “strictly speaking, for ‘due to’ read 

associated with.”  If this footnote is taken seriously, then the paper says nothing of 

relevance to the real world, and the policy conclusion drawn is meaningless. Countless 

instances of similar strategies can be pointed out in currently published papers. The text 
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of the analysis makes the usual academic disclaimers and points out difficulties with data, 

and non-equivalence of Granger causality and our common understanding of causality. 

All these caveats are forgotten in the conclusions section which makes causal claims on 

the basis of regressions and policy recommendations on the basis of these causality 

claims.    

 

The point of this discussion is that there are certain aspects of observational data 

which simply cannot be assessed or analysed by any econometric technique, whether 

crude or sophisticated. This is even at the simple level of assessing whether a correlation 

is genuine or spurious. Causal mechanisms require an even deeper knowledge of 

structure than simple correlations. Acquiring and analyzing evidence for causality will 

often require more ‘shoe leather,’ as in Freedman (1991). Recently, Banerjee, Duflo and 

others have systematically resorted to large scale randomized experiments for a number 

of microeconomic propositions, with good results. Similarly, behavioral and experimental 

economists have started generating and gathering data on actual behavior in controlled 

situations. These are promising developments since both utilize experimental data, which 

is vastly superior to observational data in helping to reveal causal mechanisms. 

3. Empirical Failure of Regression Models 

 

Starting from the inauspicious beginning by Yule
2
, more than a hundred years of 

regressions have failed to yield a single demonstrable and solid successful discovery of a 

causal relationship. Magnus (1999) writes about econometric tests of economic theories 

that “we invited readers to name a published paper that … significantly changed the way 

economists think about some economic proposition.” Total lack of response to this 

challenge suggests that it is time to step back and rethink strategy. In a talk on the 100
th

 

anniversary of the first published regression by Yule, Freedman (1997, p.113) writes: 

“For nearly a century, investigators in the social sciences have used regression models to 

deduce cause-and-effect relationships from patterns of association. … . In my view, this 

enterprise has not been successful.”  For nearly every posited causal mechanism in 

economic theory,  there are econometric papers on both sides of the issue. A widely 

believed causal claim is that growth of the money stock causes inflation. However, in a 

careful study based on the most recent methodological advances, Hendry and Ericsson 

(1991)  dispute this claim of Friedman and argue that the causality runs in the other 

direction. The core of the rejoinder by Friedman is simply that complex econometric 

analyses often fail in the real world; in support of this he cites personal experience rather 

than analytical or theoretical arguments. The consumption function introduced by Keynes 

is at the heart of macroeconomics, and has been intensively studied. Despite its central 

importance and extensive research, there is a bewildering variety of variables with claims 

to be causes of consumption, all supported by econometric analysis. Furthermore, the 

best available models routinely fail; Thomas (1993, p 284) writes that “Perhaps the most 

worrying aspect of empirical work on aggregate consumption is the regularity with which 

                                                 
2 It seems likely that Yule reached the wrong conclusion. Migrations of the poor from nearby parishes to 

those providing better relief would account for the same effect. Given the deliberately harsh and degrading 

conditions of the poorhouses, it seems unlikely that significant numbers chose to declare themselves as 

paupers if they could afford not to do so.  
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apparently established equations break down when faced with new data. This has 

happened repeatedly in the UK since the 1970s. … the reader may be forgiven for 

wondering whether econometricians will ever reach the stage where even in the short run 

their consumption equations survive confrontation with new data.”  

 

Why is there lack of clarity about an issue of such fundamental importance, which 

is central to our tasks as econometricians and economists? Hoover (2006) discusses the 

history of a tension and paradox originating with Hume which continues to this day in 

economic practice. One the one hand, Hume recognizes the central importance of 

causality to the conduct of economic policy. On the other hand, Hume notes that only 

timing and correlations can be observed, and genuine causal relations are unobservable. 

This tension is reflected in econometrics in the frequency with which causation is 

discussed in the policy recommendations and implications section, and correlations and 

timings equated to causality in the econometric analysis.  

 

An additional factor in the cavalier treatment of causality in econometrics is 

identified by  Blaug (1998): “Economics as taught in graduate schools has become 

increasingly preoccupied with formal technique to the exclusion of studying real-world 

problems and issues.” Inertia and momentum of existing methodologies which have 

acquired respectability, and mechanisms in place for promotions and publication are 

certainly to blame. For example, Hey (1997) summed up his experience of ten years of 

editorship of the Economic Journal by noting the overwhelming predominance of formal 

mathematical models of economic problems:  “Many of the submissions do not appear to 

be written in order to further economic knowledge. … few economists ask themselves 

what are the crucial economic problems facing society. If they did so, they might well 

produce more relevant material.” Articles focused on econometric techniques alone, with 

data and real-world applications serving merely as framework and window dressing for 

demonstration of mathematics and/or clever new statistical techniques are easier to write, 

more easily publishable, and more prestigious, then marshalling of evidence from a 

variety of clues pieced together via less formal arguments often required for genuine 

causal analysis. Discussing several cases of successful discovery of causal relations, 

Freedman (2008) has emphasized the role of qualitative and informal insights in the 

process.   

 

  Discovering causal laws is difficult, and involves substantial effort. It is 

nonetheless possible, and numerous successes are documented by Freedman et. al. 

(2007), including the effectiveness of Salk’s polio vaccine. The relation between smoking 

and cancer is famous for having been established purely on a statistical basis. To 

illustrate the subtle and complex issues which must be resolved to distinguish between 

correlation and causation, note that the suggestion that a genetic factor might dispose one 

towards both smoking and cancer was disproven by looking at cancer rates among 

identical twins with discordant smoking habits.  Along with numerous successes, failures 

and errors in discovering causality are also common. Freedman et. al. (2007) discuss 

many cases in which observational studies led to wrong conclusions, sometimes with 

disastrous consequences. In the next section, we argue that while statisticians can 
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sometimes arrive at the truth, special features of econometric methodology make this 

outcome unlikely for econometricians.   

 

4. Strategies of Surrender. 

  

Hume pointed out that only correlations and timing are observable, while 

causality is inherently unobservable. This has led some to argue that we can get by 

without assessing causal relations. We illustrate why this does not seem correct by a 

simple example. Barro (1997) discovered that education affects development with about a 

10 year lag, while other variables he considered were not significant. This implies that the 

single most significant component of a development strategy is investment on education. 

While this position has substantial intuitive appeal, we wish to consider whether the 

statistical evidence supports a causal link between education and development. The 

evidence is logically equivalent to the evidence supporting the link between newspapers 

and longevity. To decide on whether or not we should invest heavily in education as a 

means to promote development, it is crucial to distinguish between correlation and 

causation.   If we consider this to be mere correlation and fail to invest in education, we 

could be guilty of losing a tremendous opportunity for improving lives of large numbers 

of people. Mistaking a correlation for a causal relation would lead to the opposite 

mistake, akin to investing heavily in newspaper production as a means for prolonging 

life. We cannot afford to be agnostic about the difference between correlations and 

causation. 

 

In wake of disenchantment with econometrics following widespread forecast 

failures in the 70’s, schools of thought which place even greater emphasis on theory and 

even less on data have emerged. The real business cycle (RBC) school of thought in 

macroeconomics uses data to “calibrate” theoretical models – that is numerical 

magnitudes not specified in the theory are measured by using elementary descriptive 

statistics of the data; see Faust and Whiteman (1997). The question of using data to assess 

theory and revise postulated causal mechanisms does not arise in this approach.   

 

The Lucas critique suggested that failure of macroeconomic models results from 

insufficient attention to theory. To remedy this, one should use the data to estimate 

unobservables which economic theory posits (termed ‘deep parameters’), instead of 

directly estimating relationships among observables.  Like the Cowles Commission 

approach, all of these strategies give up on the possibility of learning about causal 

mechanisms from the data. To a lesser extent, they also give up on the possibility of 

learning about the structure, functional forms, and nature of stochastic relations among 

the variables from the data. To be fair, gross conflicts between observations and 

theoretical predictions can take place, and have led to revisions of theory, and even of 

causal chains. Similarly, modifications of functional forms and of specifications for 

errors can and do take place routinely in course of estimation of regression models. 

However, all of these activities fall outside the purview of econometric theory (and are 

done in the basement, out of sight of the high priests who condemn such activities, in the 

metaphor of Leamer, 1983).  

 6



 

With a few exceptions to be discussed later, econometric theory does not formally 

allow for learning from data about many crucial aspects of the real world. If we had 

excellent economic theory, which provided a reliable guide to causal and structural 

mechanisms, then we could live with this situation. Unfortunately, we have compelling 

reasons to believe otherwise. Current macroeconomic textbooks discuss the diverse 

opinions of numerous schools of thought; see for example Seven Schools of 

Macroeconomic Thought by Phelps (1991). Papers presented at the AEA Session in 1997 

entitled “Is There a Core of Macroeconomics That We Should All Believe?” (see Bolch, 

1998) highlighted the conflicts over nearly all fundamental macroeconomic propositions.  

In face of such severe conflicts among theorists, it is clear that theory does not provide a 

reliable guide. In such a situation, it is necessary to devise some mechanisms to allow us 

to learn about the world from data. 

 

The substantial and persistent conflicts among theorists have led another school of 

thought, headed by Sims (1980), to the opposite extreme. This school recommends fitting 

a general VAR model to time series data, which treats all variables together as nameless 

pieces of data, and gives no role to theory. In my view, differentiating causality from 

correlation requires some knowledge of structure, and hence the real world quantities 

measured by the variables under study. A purely statistical analysis cannot discover 

causal effects and hence amounts to a strategy of surrender. Nonetheless, such analysis 

can discover patterns of correlation among the data as well as timing. By far the currently 

most popular approach to causality in econometrics is Granger Causality, which 

substitutes timing and correlations for causality. Since such an approach has the potential 

for learning about causality from the data, we defer a discussion to the next section. 

 

5. Methods for Discovering Causality. 

 

Theory does not provide adequate guidance, and we cannot afford to be ignorant, 

so we must use observations and data to learn about causal mechanisms. Aldrich (1989) 

has argued that progress of science is directly related to discovery of causal mechanisms.  

Hoover (2006) has reviewed all extant approaches to causality currently in use in 

economics and econometrics, and also provided a useful categorization and classification. 

Below we follow an alternative scheme, and classify approaches according to the 

evidence used to justify causal inference. This leads to four types of approaches, 

discussed separately below. 

 

Conformity to Theoretical Specifications: We have discussed different types of 

approaches based on a priori specifications of causal schemes. Here a model which fits 

the data and conforms to the a priori specification is taken as evidence of support for the 

a priori causal specifications. Because of the diverse and flexible classes of models 

available to the econometrician, it is very easy to produce models which fit the data, even 

for very bad theories. This is discussed in greater detail in the next section. The literature 

is full of conflicting theories all of which are able to provide evidence of conformity. This 
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is why such methods have failed to uncover any causal mechanisms or resolve any 

theoretical controversies.  

 

Stability and Robustness to Specifications: It is sometimes suggested that ‘robustness’ 

is the key to causal relationships (for example Leamer (1983) as well as several other 

authors). If a variable stands out as significant in a lot of different specifications, then this 

signals a causal relationship. In small data sets, robustness may come about purely by 

accident. For example, an economic theory suggests that annual changes in consumption 

are purely random – the consumer plans his lifetime consumption based on his evaluation 

of his lifetime income. Random shocks to his income can cause random changes in his 

plans, but these are not predictable from past data; see Thomas (1991, p.274-278).  

Letting DCHN and DAUS be the annual change in consumption in China and Australia 

respectively, a regression yields the following results: 

 

DCHN = 1.39E+10    + 7.11 DAUS + ε    (R2
 = 0.30)  

    (2.65E+10)   (1.97)        (6.5E+10) 

 

This regression uses WDI Online data on Final consumption expenditure (constant LCU) 

for China (CHN) and Australia (AUS) from 1970 to 2003, and suggests that changes in 

Australian consumption significantly affects the Chinese, rejecting the economic theory. 

Remarkably, the coefficient remains numerically stable and statistically significant even 

after we add many additional countries to this same regression. We regress DCHN on the 

consumption of the countries listed below (three letter codes as per WDI tables). The 

estimated coefficients and associated t-Statistics are listed in the table below; only 

Australia (AUS) is significant, and the coefficient is stable (close to what it is in the 

above regession without the other countries). 

 

  Coefficients Standard Error t Stat 

Intercept 5.87E+10 6.60E+10 0.89

DZA -2.90 2.81 -1.03

ARG -0.43 1.61 -0.27

AUS 8.44 3.12 2.71

AUT -0.59 10.13 -0.06

BGD 0.30 0.38 0.79

BEL -7.42 9.96 -0.75

BEN 0.95 0.58 1.65

BOL -21.50 54.31 -0.40

BFA 0.30 0.42 0.72

CMR -0.01 0.06 -0.11

CAN -1.23 2.29 -0.54

TCD -0.46 0.36 -1.27

CHL 0.00 0.01 0.09

COL -0.02 0.02 -1.17

ZAR -1.82 1.34 -1.36

CIV 0.08 0.08 0.97
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Backed by some plausible sounding theory such as imitation of Australian consumer 

behavior by the Chinese, and impressive statistical names like “Extreme Bounds 

Analysis,” we should be able to convince the unsuspecting victim that the robust and 

reliable relationship cannot be due to chance. The ease with which this and similar 

examples can be produced show that we cannot trust purely statistical analyses on 

observational data sets. Hendry (2000) given many other examples based on the idea that 

‘integrated’ series lead to spurious regressions. Our example above uses differenced 

series and shows that spurious regressions are not just confined to integrated series. 

 

Timing of Correlations: Granger causality is the most popular explicit approach to 

eliciting causal mechanisms from the data. This relies on evidence about timing of 

correlations. Asghar (2007) has shown that Granger causality is very sensitive to minor 

and apparently insignificant details of the testing procedure. Causal chains can reverse 

directions for small changes in specifications, time period of data, variable transforms, 

tests used for model selection and lag length selection, etc. Since econometricians 

routinely experiment with such changes, this accounts for the large numbers of 

conflicting claims about Granger causality which can be found in the literature. A simple 

reason why timing evidence cannot be trusted can be given as follows. Suppose that there 

is an underlying variable M which measures structural changes associated with 

modernization, which reflect in several dimensions in the economy. This variable is not 

directly observed nor easily measurable. Suppose that M leads to increases in LN 

(Newspapers per 1000) in the short run and increases in LE (life expectancy) in the long 

run. Then the data will show a correlation between LN and LE at a later date. This 

correlation will also be robust to addition of other variables, because it is based on real 

structure. Nonetheless, it cannot be relied upon to reveal causation. Nor can we expect 

that multiple regression techniques, or sophisticated treatments via instrumental 

variables, will reveal the problem. Deeper and more sophisticated arguments by Hoover 

(2001) show why we cannot rely on Granger causality to learn about causal mechanisms 

in the context of macroeconomic models. 

 

Patterns of Correlations: No causal relation between X and Y implies stochastic 

independence and zero correlation. Similarly, all causal patterns between a collection of 

variables have implications for patterns of correlations which can exist between these 

variables. Pearl and associates have worked out methods to infer causal chains from the 

observed patterns of correlation in the data. A handful of papers have applied such 

methods in econometrics. See Hoover (2006) for further details and references. There are 

no recorded successes in econometrics for these methods. Some reasons for pessimism 

are given in Freedman (2004). 

 

Natural Experiments: Using knowledge of history outside the purely statistical, one can 

isolate episodes and events where changes are clearly not caused by variables under 

study. This ability to isolate an uncaused event leads to the possibility of studying causes 

by examining relations which remain stable through periods of change. This possibility 

has been exploited by a few researchers ( for example, Angrist and Krueger (2001), 

Hoover (2001), and Asghar (2007) ) to asses causality in various econometric models. 

Hendry’s methodology employs a variant of this technique, and is discussed in section 7 
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below. This approach appears promising as it inputs additional genuine causal 

information outside the purely statistical ones into the procedure of econometric 

inference. Statisticians have been successful in using natural experiments to isolate cause 

and effect from observational data.  The temptation to overfit, using complex models and 

equally complex error processes, tends to make it difficult for econometricians to learn 

from the data. If this tendency could be regulated, this approach should prove fruitful. 

6. The Understudied Problem of Overfitting. 

 

 The extensive variety of models available to the econometrician as vehicles to 

expressing a theory in concrete forms leads to overfitting data in many ways, and 

overfitting leads to lack of validity for regression models. It is well known that changing 

the initial regression model in response to any aspect of the fit leads to lack of validity of 

the diagnostic statistics for the second model fitted. For example, if we select the best 

among 20 regressions, one of these will be significant at 95% level when all of the 

regression are invalid. Jensen (2000) writes that 

“However, this "dark side" of data mining is still largely unknown to some 

practitioners, and problems such as overfitting and overestimation of 

accuracy still arise in knowledge discoveryapplications with surprising 

regularity. In addition, the statistical effects of search can be quite subtle, 

and they can trip up even experienced researchers and practitioners.”  

Despite the fact that model selection almost always takes place in practice and is known 

to affect the validity of regression statistics of the final model presented, it is nearly 

universally ignored in applications. Contributions of a few authors (e.g. Ashley, 1999) 

who have attempted to provide methods for adjusting statistics to account for the search 

process, following the seminal work of Leamer (1983), have been ignored in the 

literature. 

 

If one has a sufficiently rich class of models to provide a perfect fit to any data set, then 

this class will almost certainly overfit the data, and therefore be almost useless for 

discovery of real world structures. Our contention is that the toolbox of the conometrician 

is too rich for comfort.  The full data set for Final Consumption in constant LCU (local 

currency units) for Argentina, taken from WDI online,  is pictured in the graph below. 

 

Suppose we wish to forecast the value of consumption for 2008. We could just 

use the last 5 years of data, which would give almost a perfect fit to a linear model. If we 

want an even more optimistic forecast, a quadratic function could be fitted to the last 10 

points of data. If the quadratic appears strained, a second order ARMA model will 

provide similar results while hiding the ‘cooking’ of the data from a naïve audience.  If 

the error process displays any irregularities, we could go to ARMA, ARCH, GARCH, or 

other types of complex error structures. If pessimistic forecasts is called for, restricting 

the data to start from 1991 will generate them. We can always find some event, such as 

change of monetary regimes, to justify introduction of a structural change, and hence 

discarding of previous data. This does not begin to exhaust the bag of tricks at our 

disposal. For example, we can take logs, differences, or make other suitable transforms of 

any or all variables before or during the modeling process. Faustman and White (1997) 
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statement about the LSE approach that  “one brings to the project a set of tools that 

virtually guarantees that one can find a model satisfying the test criteria on any dataset,” 

is a valid critique of all econometric approaches to modeling. While we can make some 

intuitive judegment about the relative validity of the different approaches to forecasting 

described above, it is disturbing that we have no formal or theoretical criteria to guide us 

regarding this matter. 

 

Consumption in Argentina 
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To put the problem in sharper focus, consider the issue of how we could prove correlation  

between two series which are known a priori to be independent. Since (Granger) causality 

is just correlation with lags, these techniques can also be applied to prove causality 

between independent series. Here is a list of ways, all of which are used routinely by 

econometricians: 

 

1. Select the series from among a large set. We found the strong correlation 

between Chinese and Australian consumption by looking at all the 

correlations in the data set. 

2. Adjust the time period to suit. As in the data set above, by discarding different 

segments of the time series, we can change results to suit our tastes. Asghar 

(2007) gives several examples of cases where Granger causality shifts 

depending on the time period chosen. Since outliers have strong effects on 

Least Squares estimates, omitting or including a few observations can have a 

dramtic effect on standard estimates and results. 

3. Use data transformations, nonlinear models, complex error processes, and 

“designer” variables . 
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Many instances of the third method (which is actually a collection of methods) can be 

found in the literature. For example, Baba et. al. (1992) succeed in finding a stable 

money demand equation for M1 in USA upto 1980’s. This time period contains several 

structural changes labeled “missing money” of the 70’s and the “great velocity decline” 

of the 80’s which had frustrated previous attempts. Faust and Whiteman (1997) write 

that:  

 

Finding such a  stable  equation and  a  corresponding economic rationalization  

is  a  heroic  achievement.  The  question  is whether  the  achievement  is  testa-  

ment to the ability of  the method to uncover important economic regularities.  

The  alternative,  of  course,  is  that  the  equation  is  testament  to  the  ability  

of talented  and  imaginative  practitioners  to  generate  a  relation  that  passes  

stability  tests,  regardless of the data. 

 

They go on to discuss how subsequent failures of the model suggest that the second 

alternative holds and cast suspicion on the “designer” variables introduced to achieve 

good fit. The best practitioners can and do overfit, and our statistics fail to give us a clue 

on when this happens; this is a problem that needs serious consideration and further 

study.   

 

6. Lessons from Hendry’s Methodology. 

 

 Leamer (1983) remarked on the fact that the High Priests of econometrics who 

preach that models must be specified a priori undergo a remarkable transformation when 

they enter the computer lab in the basement. In less colorful language, it is virtually 

impossible to adhere to the maxim that regression models cannot be changed in response 

to the data. In economics, models are a dime a dozen while data is precious, so even if the 

first model fits well, exploration of fit of other models is carried out (and should be 

carried out) on the same data set. However, none of our statistics for validating and 

assessing regression models can cope with the issue of data-based model selection and 

change; see Jensen (2000) for a discussion and further references. Even if the selection is 

based on a glance at the data (as in the regression fits to Argentinian consumption data 

above), this disturbs the validity of the regression statistics which are based on the 

assumption that the model is “true” independent of the data, and before any observations 

are made. Leamer (1983) called this assumption the “Axiom of Correct Specification.” 

He discussed how this is obviously false, since  many econometeric models 

simultaneously claim to be the unique true model for the data. At the same time, it is 

fundamental to econometric inference, since all conventional statistics are based directly 

on this assumption and invalid when it fails. 

 

 Hendry’s (2000) methodology is the only one which explicitly takes the 

econometricians search for models into account. It has led to a number of deep insights 

into the process of systematic model search and its consequences, which have yet to be 

fully assimilated by the profession. The fact is the actual methodology utilized by 
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econometricans (including Hendry and his followers; see Darnell and Evans (1990)) is 

much wilder and less subject to rules and regulation than the picture presented by 

Hendry. Even this tame picture overturns numerous suppositions built into the language 

used by econometricians to describe our work. We describe a few issues which arise as 

an almost immediate consequence of viewing models as suitable reductions of the data 

generating process (DGP).  For our present purposes, it suffices to consider the DGP as 

the unique true underlying stochastic process which generates the observed data. 

 

 Suppose that the variables (Xt,Yt,Zt) have a trivariate normal distribution and are 

i.i.d. across time for t=1,2,…,T.  Then the conditional distribution of X given (Y,Z) will 

be stable across time, and an econometrician who posits that X is determined by Y and Z 

will receive a perfect confirmation for his theory.  However, the conditional distribution 

of Y given (X,Z) is also perfectly stable and the theory that X determines Y will also be 

confirmed by the data. In this situation, there is a large number of a priori theories, all of 

which will be correct, true, and perfectly compatible with the data. Any two of the 

variables may be taken as a cause for the third. Also, any variable can be taken as a cause 

for any other, with the third variable being a concomitant variable. The third variable Z 

can also be taken out of the picture by considering the marginal distribution of the first 

two (X,Y). This is also a perfectly valid reduction of the DGP, and yields a true bivariate 

model.   

  

 This existence of several true models is an embarrassment and does not 

correspond to the picture that econometricians have of the modeling process. In the above 

framework, (1) Y = a X + r, and (2) Y = b X + c Z + s are both valid reductions of the 

DGP. It does not make sense to think of the first model as misspecified (as per standard 

econometric terminology), and to think that estimates of “a”  are biased because of the 

missing variable Z. This shows how difficult it would be to arrive at causal relations 

simply on the basis that the data conform to an a priori specification. Hendry proposes to 

solve the problem of multiple true models by using the concept of “variance 

encompassing”  -- the second  model is to be preferred because its residual will have 

smaller variance. In practical situations, the choice between (1) and (2) cannot be made 

on theoretical grounds. Missing observations, or noisy data for Z would lead to (1) being 

a preferred model. In forecasting situations, if Z cannot be accurately forecast, while X 

can be, (1) could be the preferred forecasting model.  

 

 Calculating the effects of interventions requires knowledge of causal mechanisms. 

In a smoothly functioning world with (X,Y,Z) as described above, causal mechanisms 

could not be discovered by observations. All possible causal relationships would 

consistent with the observations. Much as in the concept of natural experiments, Hendry 

proposes to use structural changes to find out about causal relations in this setup. If X is 

determined by Y, without reference to Z, then Y can be taken as the cause of X. If the 

marginal distribution of Z remains stable, the regression of Y and X and X on Y will both 

be stable relationships. If there is structural change and the distribution of Z shifts, then 

the distribution of X given Y will remains stable, while that of Y given X will shift and 

display instability. From this, we should be able to see that Y causes X and not the other 

way around. The fundamental idea appears sound – among a set of correlations, artificial 

 13



ones will break down, and structural ones will persist through shakeups. Can the idea be 

implemented, and lead to revelations of structural relationships? Only a few researchers 

have used this approach, and we do not have enough evidence or experience to judge this 

as yet. For example, Hendry and Ericsson (1991) used this approach to argue that 

causation runs from prices to money, reversing the standard analysis. Subsequent failure 

of predictive validity of their 1991 model casts some doubt on their results, however. 

 

 Another major insight that results from taking model choice explicitly into 

account, and doing it in the systematic manner suggested by Hendry, is the realization 

that both models and residuals are simultaneously constructed by the econometrician. If 

valid models are required to have i.i.d. residuals, for example, then the modeling process 

will continue until residuals possessing such properties are obtained. The realization has 

led Hendry to change terminology for tests of residuals to “indices of conformity.” 

Furthermore,  the large collection of tools at our disposal virtually guarantees that we can 

find a model with satisfactory indices of conformity for any dataset, regardless of 

whether the  underlying process satisfies the criteria (as noted by Hendry (1993, p. 24)). 

This problem of overfitting plagues all areas of econometrics, and prevents the realization 

of the potential of a number of promising approaches, some of which have been 

mentioned earlier. 

 

6. Strategies for Success. 

 

 In the process of translating a theory into implications about data, so many 

auxiliary assumptions are made that all contact with reality is lost. Any conflict can be 

resolved by adjusting the auxiliary assumptions. For example, suppose we want to learn 

if production process satisfy diminishing, constant, or increasing returns to scale. The 

issue is of substantial significance from the point of view of theory. In carrying out the 

test, we assume a particular form of a production function, a particular way in which 

stochastic errors enter, and particular ways to aggregate and measure factors of 

production. The result of the test has no credibility, because we do not know what we are 

rejecting or accepting: the theory, or the auxiliary assumptions, or the ingenuity of the 

econometrician. This is why Keuzenkamps (2000) quotes Spanos’ that ‘no economic 

theory was ever abandoned because it was rejected by some empirical econometric test.’  

 

 Leamer (1978) has described the practice of econometricians as being a 

“specification search”  -- we look for a regression model which conforms to the theory 

and also to the data. He thinks that this may be a fruitful task as an exploratory device, 

but taking this explicitly into account would substantially improve methodology. He has 

described the different types of devices which could be used to produce models which 

validate and confirm one’s favorite econometric theory. First, one has to choose a set of 

observations which measures a theoretical concept or category. For example, Rodriguez 

and Rodrik (2001) discuss how there is substantial flexibility in the choice of an index to 

measure the loose concept of “openness to trade.” The choice of authors they cite appears 

to be guided by the need to produce a significant variable, which supports the theory that 

free trade promotes growth. Very often the chosen measure can be given several different 

 14



interpretations, many of which would be contradict the theory under study. In addition, 

one can choose the data set, by specifying the time period, the countries to be studied, etc. 

These choices may be justified by asserting that the theory is more likely to hold over this 

period and those countries, but is more often done in an opportunistic manner. Examples 

where slight changes in time period, choice of data set, functional forms, choices of lag 

length, modified measures for key variables, etc. significantly affect the final result of the 

analysis abound in the literature – indeed, nearly every analysis is of this type. 

Exploratory analysis of this analysis may have merit in producing interesting hypotheses, 

as Leamer argues, but cannot be used to provide evidence for causality.   

 

As discussed earlier, I am not aware of a single instance where a causal mechanism was 

discovered by regression. In contrast, there are several stories of successful discovery of 

causal mechanisms in other areas; see Freedman (2008). Based on these success stories, I 

would like to offer some suggestions which may help improve the situation in the future. 

 

6.1 Seek Confrontations with the Data. 

 

Current methodology seeks accommodation of the data, with calibration being an 

extreme example. Instead, we should follow positivist prescriptions: the power of a 

theory should be judged in terms of what observable phenomena it rules out. Theories 

should be valued for sharp predictions about observations which can be refuted. Good 

theories will be those which survive confrontations with data. Economics is capable of 

generating powerful theories with strong predictions about what may or may not be 

observed in the real world. Consider for example, the “efficient markets” hypothesis, 

which says that all profit opportunities are exploited. This means that studying past data 

on Yen-Dollar exchange rates cannot lead one to find a pattern useful for future 

predictions of this rate. In particular, the correlations between the percentage changes 

should be zero. The graph of daily percentage change shows the (lack) of pattern 

predicted by economic theory. Regressions of the percentage change on lagged values 

confirm that there is no information in the past values on current exchange rate. The 

relation between theory and data is not mediated by a model of uncertain pedigree.  

 

Monthly Percent Change in Yen-Dollar Exhange Rates 
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The idea that stock prices reflect the present discounted values of future returns can 

similarly be directly tested – and rejected. The stock prices are too volatile relative to the 

present discounted values of returns. This anomaly has led to deep examination of other 

possible explanations for determination of stock prices, and many advances in theories.  

 

A clear rejection of static Keynesian consumption functions has led to substantial 

improvements in our understanding of the macro consumption function. Similarly, if 

consumers make consumption plans on the basis of their projections of lifetime income, 

then consumption paths should smooth out income fluctuations. Examination of relative 

volatility of consumption and income streams has led to greater understanding of the 

nature of the consumption function. In general, conflicts between theory and data have 

led to more sophisticated theory and data analysis in econometrics. 

 

Anomalies which could not be explained by dominant theories have often played a key 

role in successful discoveries of causal structure, as documented in Freedman (2008). 

Instead of looking for auxiliary assumptions, functional forms, etc. to fit theories to data, 

we should actively seek ways of formulating theories so that they can directly confront 

data, and be capable of refutation by suitable observations. Such an empiricist 

methodology has a much better chance of discovering real causal chains. 

 

6.2 Look for Alternative Explanations  

 

A satisfactory fit between the data and any given theory is often the goal of econometric 

analysis. Examination of success stories for discovery of causal relations shows how 
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important it is to go beyond this step. Having found a good fit, it is necessary to look for 

alternative explanations for the same data. If satisfactory alternative explanations cannot 

be found, this strengthens the case for our current theory which does fit well. When there 

are other alternative explanations which fit equally well, then we must do “differential 

diagnosis”: look for ways to differentiate between competing explanations. There are 

numerous cases of how this was done cited in the literature. For example, the idea that 

there is a genetic predisposition to cancer which also induces smoking was disproven by 

the study of identical twins with different smoking habits. Active search for competing 

explanations and ways to differentiate between them has been an important element of 

successful discovery of causal mechanisms. The idea of “encompassing” which is one of 

the cornerstones of the Hendry methodology does capture an aspect of this, but this needs 

to be done more regularly and more widely than is current econometric practice. 

 

6.3 Qualitative and Informal Supporting Evidence 

 

This is one of the areas of greatest weakness, where more out of the box thinking is 

requires. The role of hunches, informal reasoning, anomalies, and qualitative evidence in 

discovery of causal mechanisms is well documented – see Freedman (2008). More effort 

to find qualitative implications of hypotheses under consideration, and informal 

evaluations of these implications should prove rewarding. An interesting illustration of 

this is provided in Andrabi et. a. (2007), who study education in Pakistan. Initial findings 

that parents send fewer girls to schools suggest discriminatory behavior. However, closer 

investigation shows that the “distance to school” is a key factor for the schooling decision 

for girls (and not so much for boys). Other data shows that parents invest heavily in 

schooling for children whom they consider bright, without discriminating between girls 

and boys. These hypotheses emerge only after expending “shoe leather,” – the authors 

went to the villages, and walked with the children to their schools. On the ground 

investigations often reveal a reality at variance with general purpose a priori theories. 

Another important instance of this is furnished by Banerjee and Duflo (2004) who 

discuss how to reconcile empirical evidence with the an aggregate production function 

and find it cannot be done. 

 

In addition to using more shoe leather, investigating implications of hypotheses in 

different domains both qualitatively and quantitatively, econometricians need to do more 

informal and exploratory data analysis. History and inertia plays a large role in 

determining the shape of current practice. Econometric and statistical methods were 

developed in a pre-computer era, where many types of analyses were not possible. In 

particular graphical and exploratory data analysis of the type currently routine is not part 

of the standard training of econometricians. Making boxplots, graphs of different sorts, 

and in general doing informal data analyses would add a lot of value, and provide more 

convincing demonstrations than sophisticated econometric analyses in many situtions.  

 

6.4 Randomized and Behavioral Experiments 
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In general, randomization has been a powerful tool in disentangling causal chains. For 

obvious reasons, it has not been used much in economics. Nonetheless, it has been used 

successfully on a number of occasions in the past, and is becoming increasingly 

important. Burtless (1995), Greenberg and Shroder (2004), and many others provide 

strong evidence on the value of randomized experiments in providing evidence on 

genuine causal mechanisms. The Abdul Latif Jameel Poverty Action Lab, started in 2003 

by Professors Banerjee,  Duflo, and  Mullainathan of MIT uses randomized experiments 

as basis for evaluating the effectiveness of poverty programs. Heckman, Lalonde and 

Smith (1999) discuss econometric evaluations of experiments in labor markets which 

provide important evidence regarding the effects of policies.  

 

Direct experimentation and data gathering unconstrained by theory and complex models 

has often led to substantial gains in understanding. Experiments by behavioral economists 

have led to many new insights and theoretical developments; see for example, 

Kahnemann (2003), and Barberis and Thaler (2003). Experimental evidence suggests that 

people increase efforts in response to wage increases, in conflict with neoclassical 

economic theory; see Falk and Fehr (2003). Andrabi et. al. (2007) provide observational 

evidence which shows that fourfold increase in teachers wages does not lead to improved 

educational outcomes in rural schools in Pakistan. The point I am trying to make here is 

that because causality is not directly observable, establishing causality requires piecing 

together evidence from different sources, and out of the box reasoning. Experimental and 

qualitative evidence provides strong supporting evidence, but no single piece of evidence 

may be conclusive. 

 

 

7. Conclusions 

 

 Contrary to our preconceptions, there seems to be no mechanism in place which 

guides research in econometrics towards the truth. Despite over a hundred years of 

experience, there seems no perceptible progress in validity of regression models being 

published, nor is there any gain in insights into the mechanisms of the real world which is 

based on regression models. This corresponds to the Kuhnian insight that progress in 

physical sciences proceeds via revolutions. Transitions between incommensurable 

paradigms makes it difficult to formulate and evaluate the concept of gradual progress 

towards truth. This is equally valid for social sciences, though I believe the underlying 

mechanisms are substantially different.  

 My view is that the incentive structures for research, publications and career 

advancement in academics are largely responsible for this unsatisfactory state of affairs. I 

chose a theoretical econometrics topic for my Ph.D. because it was made clear to me that 

elegant mathematics was preferable to getting your hands dirty with real data. It was 

many years after graduate school that I ran my first real regression with real data, as 

opposed to toy regressions with fake data. Even with real data, my concern was 

establishing the value of certain statistical techniques rather than solving real problems. 

The fragmentation of knowledge is so strong that I was not aware of how important 

development of new estimators and tests is within econometrics, nor of how valuable 
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econometric theory is (or is not) to practitioners. Nor did I have any sense of how 

economic theory and practice influences real world policy decisions, and how these 

influence the lives of human beings living on the planet. Very few have a holistic view of 

the scholastic endeavor in which we are all engaged. As a result, a massive amount of 

brainpower is brought to bear on problems which are completely trivial when viewed in 

the perspective of problems which currently threaten the future of mankind. At the same 

time, very little thought and effort goes into solving complex multidisciplinary problems 

of genuine importance. More efforts towards a holistic approach will prove rewarding. 

Encouraging authors to assess the relevance of their research towards solving genuine 

problems, and engaging more with the real world would go a long way towards discovery 

of genuine causal mechanisms. 
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