Munich Personal RePEc Archive

Average tree solutions for graph games

Baron, Richard and Béal, Sylvain and Remila, Eric and Solal, Philippe (2008): Average tree solutions for graph games.

[img]
Preview
PDF
MPRA_paper_10189.pdf

Download (198Kb) | Preview

Abstract

In this paper we consider cooperative graph games being TU-games in which players cooperate if they are connected in the communication graph. We focus our attention to the average tree solutions introduced by Herings, van der Laan and Talman [6] and Herings, van der Laan, Talman and Yang [7]. Each average tree solution is defined with re- spect to a set, say T , of admissible rooted spanning trees. Each average tree solution is characterized by efficiency, linearity and an axiom of T - hierarchy on the class of all graph games with a fixed communication graph. We also establish that the set of admissible rooted spanning trees introduced by Herings, van der Laan, Talman and Yang [7] is the largest set of rooted spanning trees such that the corresponding aver- age tree solution is a Harsanyi solution. One the other hand, we show that this set of rooted spanning trees cannot be constructed by a dis- tributed algorithm. Finally, we propose a larger set of spanning trees which coincides with the set of all rooted spanning trees in clique-free graphs and that can be computed by a distributed algorithm.

UB_LMU-Logo
MPRA is a RePEc service hosted by
the Munich University Library in Germany.