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Abstract

We present an endogenous timing game of action commitment in which players can

steal from each other parts of a homogeneous and perfectly divisible pie (market). We

show how the incentives to preempt or to follow the rivals radically change with the

number of players involved in the game. In the course of the analysis we also introduce,

discuss and apply the concept of pu-dominance, a generalization of the risk-dominance

criterion to games with more than two players.
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1 Introduction

Ann owns part of a pie. Bob owns the remaining part, so there is no free pie. Both Ann and

Bob want more; actually they both want as much pie as possible. The problem is exacerbated

by the fact that trading or bargaining mechanisms are illegal, not enforceable, or simply not

in the interest of the parts. Indeed, the only way Ann and Bob can try to meet their

objective is by �stealing� part of the other�s pie. This may seem to be the description of a

highly speci�c environment but it actually �ts many situations. For example, certain species

of animals (humans included) steal from each other food or territory.1 Similarly, although

�I thank Pascal Courty, Dorothea Kubler, Vilen Lipatov, Marco Mariotti and Karl Schlag for useful
comments as well as ICER (Turin) for kind hospitality and �nancial support. All errors are mine. E-mail:
andrea.gallice@brick.carloalberto.org

1 In biology such a behavior is called intraspeci�c kleptoparasitism (see for instance Yates and Broom,
2007).
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in a less physical way, �rms compete to steal from each other customers and political parties

struggle to conquer the opponents� voters. There is another feature which is common to

these examples, namely the existence of a positive relationship between the amount of the

pie that a player can steal and the player�s strength, as measured by his current holding

of the pie. Therefore, a predator with a larger territory can better feed himself such as to

be more �t when facing a rival; a �rm with a larger market share is likely to have higher

revenues and so it can launch more expensive advertising campaigns; a party or a candidate

with many supporters is able to raise more funds.

To capture a stylized version of situations of this kind we introduce what we call the

Stealing Game. The Stealing Game is a timing game in which a few agents can steal from

each other parts of a homogeneous and perfectly divisible pie. Agents must decide when and

who to rob with the goal to �nish the game being the player that holds the largest share.2

The key assumption of the game is that the larger the share a player holds, the larger the

portion that he can steal.

We model the Stealing Game as an endogenous timing game of action commitment

that follows the structure introduced by Hamilton and Slutsky (1990). The rules are as

follows. The game spans over two periods and each player has only one chance to move

and must decide when to use it. Within each period, choices are simultaneous but players

who decide to move in t = 2 are fully informed about the identity and the actions of those

who moved in t = 1. Such a structure provides a simple but fruitful framework to study

the issue of endogenous timing and the value of action commitment. For instance, it has

been successfully applied in a series of papers that study the robustness of commitment

equilibria (Hurkens and Van Damme, 1996) and the endogenous emergence of a Stackelberg

leader in the presence of cost asymmetries (Hurkens and Van Damme, 1999) and of price

competition (Hurkens and Van Damme, 2004) in duopolies. With respect to these papers,

our game presents two main di¤erences. First, we allow the game to be played by more

than two agents. In particular, we analytically study the cases with two, three and four

players. Second, the applications of our game do not solely belong to the realm of industrial

organization.

Our main goal is to solve for the optimal timing strategies of the agents. We want to

2Referring again to the previous examples, the end of the game can be the mating season for what
concerns animals or the election date for what concerns political parties or candidates.
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�nd out when the best moment for a player to behave aggressively and steal part of the

pie owned by the rivals will be. Such a decision is a¤ected by the existence of an intuitive

trade-o¤ between preempting or postponing one�s move. A player who moves in t = 1

eliminates the possibility of being preempted but he is then forced to passively su¤er the

potential retaliation of those who waited. On the other hand, a player who waits until the

second period can play the best response but faces the risk of being preempted and robbed

in t = 1. And because of the rules of the game, when a player is robbed his market share

goes down and so does the amount he can steal in the second period.

Focusing on the existence of strict Nash equilibria in pure strategies, we show that this

trade-o¤ has di¤erent solutions depending on the number of agents involved in the game.

No player postpones his move when the Stealing Game is played among two or four agents.

At the opposite end, when N = 3, the game displays di¤erent Pareto equivalent equilibria.

In some of them all the players are active in t = 1. In the remaining ones, all the players

wait and make their move in t = 2. We re�ne these equilibria by introducing the concept

of pu-dominance. This is a criterion for equilibrium selection which generalizes the concept

of risk-dominance (Harsanyi and Selten, 1988) to games with more than two players. As

such, it is closely related to the concept of p-dominance (Morris et al., 1995; Kajii and

Morris, 1997). An equilibrium is pu-dominant with pu = (p1; :::; pN ) if, for each player

i 2 N , his equilibrium action is the unique best response to the conjecture that assigns

probability at least pi on each opponent playing his component of the equilibrium pro�le

and lets each of them uniformly randomize, with the remaining total probability of (1� pi),
on the other available actions. In case of multiple equilibria, the pu-dominance criterion

selects the equilibrium which is pu-dominant for the smallest pu, according to standard

vector algebra. The idea is that this is the less risky equilibrium, i.e., the equilibrium upon

which players� expectations should coordinate. When applied to the Stealing Game with 3

players, the pu-dominance criterion selects the equilibria in which all the players postpone

their move to t = 2.

The Stealing Game belongs therefore to di¤erent categories of timing games commonly

studied in economics. The cases with two or four players belong to the class of preemption

games. These are games in which it is better to anticipate the rivals; famous examples are

the already mentioned Stackelberg quantity game (Von Stackelberg, 1934) and the centipede

game (Rosenthal, 1981). The case with three players is instead more similar to a war of
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attrition (Maynard Smith, 1974), a strategic situation in which preempting the others hurts.

Here lies the peculiarity of the Stealing Game. In fact, a general characteristic of timing

games is that optimal timing strategies depend on the payo¤ structure and not on the

number of participants.3 The Stealing Game provides instead an example of a game in

which, for a given payo¤ structure, optimal timing strategies change as a function of the

number of players.

The remainder of the paper is organized as follows. Section 2 introduces the Stealing

Game and frames it as an endogenous timing game of action commitment. Subsections are

then devoted to the analysis of the game for the cases with two players, three players and

four players. In studying the three players� game, we also introduce and discuss the concept

of pu-dominance. Section 3 concludes.

2 The Stealing Game

The Stealing Game is a game in which a �nite number of agents compete for the possession

of a perfectly divisible resource whose size is constant and normalized to 1. We indicate

with �ti 2 [0; 1] the share of the resource that agent i 2 N holds at time t. Time is discrete,

�0i =
1
N
for any i (symmetric initial condition) and

P
i �

t
i = 1 holds at any t. The goal

of the players is to be the largest shareholder at the end of the game. The only way in

which a player can increase his holdings is by stealing part of the resource from someone

else. We make four assumptions about this �stealing�: 1) each player can steal only once

over the entire game; 2) each player can steal from a single opponent of his choice; 3) the

amount yt that a player can steal at time t is proportional to his holdings according to

the relation yt = ��t�1i with � 2
�
0; 1

N�1

�
;4 and 4) the stealing is monetarily costless.

Assumption 1 makes the Stealing Game a timing game because players have to decide when

to be active. Assumption 2 adds some strategic considerations as players must also decide

who to rob. Assumption 3 captures the mechanism presented in the introduction, i.e., the

fact that the larger a player, the more he can steal. As will become clear, nothing would

change if yt 2
�
0; ��t�1i

�
because ŷt = ��t�1i would anyway emerge as a dominant strategy.

3More recent literature about timing games has focused in generalizing former results (Bulow and Klem-
perer, 1999), in providing a uni�ed framework to study preemption games and wars of attrition (Park and
Smith, 2006) or in testing experimentally some of the theoretical results (Brunnermeier and Morgan, 2006).

4The upper bound of the interval for the parameter � ensures that every player always gets the amount
he wants to steal, i.e., there cannot be cases of excess demand.
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Assumption 4 simpli�es the analysis and allows a fortiori results.

For what concerns the timing structure, we model the Stealing Game as a two-stages

game of action commitment with endogenous timing (Hamilton and Slutsky, 1990). The

rules are as follows:

Period 1 : players simultaneously choose to act or to wait until the second period. If a player

decides to act then he steals the amount y1 = ��0i from an opponent of his choice.

Period 2 : players who did not act in t = 1 are fully informed about the actions taken by

all the opponents. Then each one of them simultaneously moves and steals the amount

y2 = ��1i from an opponent of his choice.

Payo¤s: the player that at the end of t = 2 holds the largest share of the resource gets

ui = 1. The others get uj = 0. If there is more than a market leader then the prize is

equally shared among the winners.

During the course of the analysis, we will often refer to the game in its normal form

de�ned as G = (N;Ai; ui) with ui(ai; a�i) for any i 2 N and (ai; a�i) 2 A = �j2NAj .
A player�s action space is given by Ai =

��
N1
�i

	
[
�
N2
�i

		
such that jAij = 2(N � 1) for

any i 2 N . Using a formulation that is similar to the one introduced in Van Damme and
Hurkens (1996), ai = x

1 2 N1
�i indicates the action �steal the amount ��

0
i from opponent x

in t = 1 and wait in t = 2� while ai = x
2 2 N2

�i indicates the action �wait in t = 1 then in

t = 2 play the unique best-response if the opponents moved; otherwise steal the amount ��1i

from opponent x�. We are interested in an equilibrium analysis and, as a consequence, we

do not consider those strategies that tell player i to wait in t = 1 and then do not prescribe

him to play in t = 2 the unique best response. Strategies of this kind are strictly dominated;

they cannot be part of any subgame perfect equilibrium and they will not even appear in

the normal form game G. Notice also that if the best response is not unique because, for

instance, player i is indi¤erent between robbing j or k, then action ai = j2 2 N2
�i still

prescribes player i to rob j. We do not consider mixed strategies.

Payo¤s take the following form:

ui(ai; a�i) =

8
>>><

>>>:

1
X

j

�
1f�2j=�2ig

� if �2i��
2

j for any j 6=i

0 otherwise
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where �1i = �
0
i + y

1
i �

P

j:xj=i

y1j and �
2
i = �

1
i + y

2
i �

P

j:xj=i

y2j with �
0
i =

1
N
for any i. In other

words, at any t 2 f1; 2g a player�s holdings are the result of three components: the share
he had in the previous period plus the amount of the resource he steals from an opponent

minus the amount he is stolen from the other players. In what follows, we analytically study

the Stealing Game for the cases with two, three and four players.

2.1 The game with two players

The analysis of the Stealing Game is trivial when N = 2. In fact each player has only one

opponent that he can possibly rob such that he must only decide when to be active. More

precisely, G is a 2x2 game where, for any i and j 6= i, Ai =
�
j1; j2

	
, ui(j

1; i1) = ui(j
2; i2) =

1
2 , ui(j

1; i2) = 1 and ui(j
2; i1) = 0. Players share the prize if they simultaneously rob each

other while a player that successfully preempts the opponent results as the unique winner.

To see why this is so, consider the pro�le (j1; i2). At t = 1 we have �1i =
1
2 (1 + �) and

�1j =
1
2 (1 � �). Therefore, in t = 2, player j can only steal the amount �

�
1
2 (1� �)

�
such

that �nal shares are �2i =
1
2 (1 + �

2) and �2j =
1
2 (1� �2). Given that �2i > �2j we have that

ui(j
1; i2) = 1 and uj(j

1; i2) = 0.

Proposition 1 With N = 2 the pro�le â =
�
j1
�
i
is the unique equilibrium of the Stealing

game.

Proof. Given that ui(j
1; i1) > ui(j

2; i1) and ui(j
1; i2) > ui(j

2; i2) it follows that, for both

players, action ai = j
1 strictly dominates the alternative action ai = j

2.

2.2 The game with three players

The Stealing Game among 3 players is characterized by the existence of numerous Nash

equilibria. The analysis of the game in normal form (see the appendix) shows that these

are actually 16 but only 4 of them are strict as well as subgame perfect. We restrict our

attention to these 4 equilibria: the two �circles� (i.e., A robs B, B robs C, C robs A and A

robs C, C robs B, B robs A) with all the three players being active in t = 1 and the two

�circles� with all the three players postponing their move to t = 2.

6



Proposition 2 With N = 3 the Stealing game has four strict equilibria:

- the two pro�les â =
�
j1
�
i
with j1 2 N1

�i and such that ui =
1
3 for any i;

- the two pro�les â =
�
j2
�
i
with j2 2 N2

�i and such that ui =
1
3 for any i.

Proof. We check for pro�table deviations over the two dimensions of the action space. First,

consider the situation in which, from any of the four pro�les â = (jt)i, player i robs k instead

of j: this would imply that j is not robbed by anyone such that �2j =
1
3 (1 + �) >

1
3 = �

2
i

which implies ui = 0. Then, consider possible deviations over the timing dimension. Start

from â =
�
j1
�
i
and let player i postpone his move to t = 2 such that �1i =

1
3 (1 � �) and

�2i =
1
3 (1� �2). It follows that ui = 0 as the condition

P
i �

2
i = 1 implies that there exists

an agent j such that �2j > �
2
i . Then consider â =

�
j2
�
i
. If player i deviates to ai = j

1 then

�1i =
1
3 (1+�); in t = 2 player k 6= i; j will then best respond by robbing i such that �2k > �2i

and therefore ui = 0.

With respect to the case with N = 2, the interesting feature of the three players� game

is that now there exist equilibria in which all the players postpone their move. The reason

is that the possibility of best responding in t = 2, even though potentially risky, is now

worthwhile. To understand how the trade-o¤ works in this case, consider the hypothetical

situation in which player A commits to be active in t = 1 while B and C wait. Player A can

rob either B or C. Assume aA = B
1 such that �1A =

1
3 (1 + �), �

1
B =

1
3 (1� �) and �1C = 1

3 .

In t = 2 player B is indi¤erent about who to rob as he has been weakened by the stealing of

A and cannot catch up with his initial share: �2B =
1
3 (1� �2) such that uB = 0 no matter

if aB = A
2 or aB = C

2. Player C is instead sure to win the game as he can e¤ectively best

respond to what happened in t = 1 by robbing A. In fact, even assuming aB = C
2, we would

have �2A =
1
3 , �

2
B =

1
3 (1��2) and �2C = 1

3 (1+�
2) such that uA = uB = 0 and uC = 1. The

outcomes of agents C and B exemplify the advantages/disadvantages of postponing one�s

move.

2.2.1 The concept of pu-dominance

In order to discriminate among the four strict equilibria of the Stealing Game whenN = 3 we

introduce the concept of pu-dominance. pu-dominance is a generalization of risk-dominance

(Harsanyi and Selten, 1988) to games with more than two players. It is inspired by, and

closely related to, the concept of p-dominance (Morris et al., 1995, Kajii and Morris, 1997).
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Indeed all these three criteria tackle the issue of equilibrium selection sharing the same

intuition: if agents do not know which equilibrium will arise, they will compute the risk

involved in playing each of these equilibria and they will coordinate expectations on the less

risky one. We start by formally de�ning pu-dominance and then we will relate this concept

to risk-dominance and p-dominance.

As a preliminary step, we de�ne the vector pu =
�
p1u; :::; p

N
u

�
that, given N agents and

K alternative events E = fe1; :::; eKg, indicates a collection of N probabilities distributions

such that each agent i 2 N believes a certain event e� 2 E will occur with probability

piu while each of the remaining events ek 6= e� will occur with probability
(1�piu)
K�1 . Using a

similar notation, an equilibrium (âi; â�i) is said to be pu-dominant for pu =
�
p1u; :::; p

N
u

�

if, for any player i 2 N and any j 2 N�i, action âi is the unique best response to any
probability distribution � 2 �(A�i) that assigns at least probability piu to the event of j
playing his equilibrium action âj and lets j uniformly randomize on his alternative actions

with the remaining probability. In other words, pu-dominance mimics the process according

to which an agent evaluates the likelihood of an equilibrium by focusing on the probability

of the actions that sustain it while assuming a simplifying uniform distribution for what

concerns the alternative actions. As such, the concept of pu-dominance can be rationalized

and justi�ed on the basis of behavioral arguments like salience, limited cognitive abilities

and bounded rationality of the players.

De�nition 1 Action pro�le (â1; :::; âN ) is a pu-dominant equilibrium with pu =
�
p1u; :::; p

N
u

�

if for all i 2 N , ai 6= âi and all � 2 �(A�i) with � (âj) � piu and � (aj) =
(1��(âj))
jAj j�1

for all

aj 6= âj and j 2 N�i,

X

a�i2A�i

� (a�i)ui (âi; a�i) �
X

a�i2A�i

� (a�i)ui (ai; a�i) .

Some standard concepts of game theory can be formulated in terms of pu-dominance.

For instance, an equilibrium in dominant strategies is a pu-dominant equilibrium with pu =

(0; :::; 0) while every Nash equilibrium is a pu-dominant equilibrium with pu = (1; :::; 1).

Notice also that if the pro�le (â1; :::; âN ) is a pu-dominant equilibrium then it is also a

p0u-dominant equilibrium for any p0u � pu (using the standard vector ordering). What
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characterizes an equilibrium is the smallest pu for which the equilibrium is pu-dominant.

This vector, which we indicate with p�u, reports the minimum level of the beliefs � (âj) for

which the equilibrium action under scrutiny dominates the alternatives. As such, p�u provides

a measure of the riskiness of playing a certain equilibrium action as well as a tool to identify

the equilibrium upon which players� expectations should coordinate. In particular, in the

same spirit of what is suggested by Morris et al. (1995) for what concerns p-dominance,

the pu-dominance criterion selects the equilibrium characterized by the smallest p�u. Notice

that such an equilibrium may not exist as there may easily be situations in which it is not

possible to unambiguously order the p�u vectors associated with the various equilibria. More

precisely, in any generic game, the pu-dominance criterion selects at most one equilibrium

while it selects exactly one equilibrium in symmetric games.

We now relate pu-dominance with risk-dominance (Harsanyi and Selten, 1988) and p-

dominance (Morris et al., 1995; Kajii and Morris, 1997). In 2x2 coordination games an

equilibrium (âi; âj) is risk-dominant if it is the equilibrium characterized by the highest

product of the deviation losses. The following lemma shows that such a requirement is

implied by the condition that identi�es (âi; âj) as the pu-dominant equilibrium.

Lemma 1 In any 2x2 coordination game, if the pu-dominance criterion selects an equilib-

rium then this is the risk-dominant equilibrium.

Proof. Consider the coordination game

T B

T a; e b; f

B c; g d; h

with a > c, d > b, e > f and h > g.

The equilibrium (T; T ) is pu-dominant with p
�
u =

�
d�b

a�c+d�b ;
h�g

e�f+h�g

�
while (B;B) is pu-

dominant with p�u =
�

a�c
a�c+d�b ;

e�f
e�f+h�g

�
. Therefore, (T; T ) emerges as the pu-dominant

equilibrium if d�b
a�c+d�b <

a�c
a�c+d�b and

h�g
e�f+h�g <

e�f
e�f+h�g , i.e., if a�c > d�b and e�f >

h�g. But if these two conditions are valid then the condition (a� c) (e� f) > (d� b) (h� g)
also holds, i.e., (T; T ) is the risk-dominant equilibrium because it is characterized by the

highest product of the deviation losses. The proof is analogous if (B;B) emerges as the

pu-dominant equilibrium.
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As de�ned in Morris et al. (1995) for the two player case and extended by Kajii and

Morris (1997) for what concerns the N > 2 case, an equilibrium (âi; â�i) is p-dominant with

p = (p1; :::; pN ) if, for any agent i, action âi is the unique best response to any probability

distribution � 2 �(A�i) such that � (âj) � pi for any j 6= i. In other words, action âi is

p-dominant if it maximizes player i�s expected payo¤ whenever i thinks that each one of the

other players will play with probability not smaller than pi his component of the equilibrium

pro�le. The di¤erence with respect to pu-dominance is that p-dominance does not require

the remaining probability (1� pi) to follow any particular distribution over the alternative
actions aj 6= âj .

Lemma 2 Any pu-dominant equilibrium is a p-dominant equilibrium with p = pu.

Proof. A p-dominant equilibrium with p = pu =
�
p1u; :::; p

N
u

�
is such that, for any i and any

j, any equilibrium action is a best response to the conjecture according to which � (âj) � piu
while the remaining probability can follow any distribution on any aj 6= âj . Therefore, this
conjecture comprises the case such that � (âj) � piu and � (aj) =

(1��(âj))
jAj j�1

for any aj 6= âj ,
which is the distribution that de�nes pu-dominance.

The concept of pu-dominance is thus less general than p-dominance. Still it has the

advantage of being much more easily computable, especially in games that have many players

or actions and in which payo¤s do not present much variability.

2.2.2 Equilibrium selection in the 3-players Stealing Game

We apply the pu-dominance criterion to re�ne the strict equilibria of the Stealing Game with

N = 3 (see Proposition 2). Note that all four of these equilibria are Pareto equivalent such

that there is no con�ict between payo¤ realization and risk considerations. As a consequence,

players should indeed coordinate on the less risky equilibrium, and pu-dominance is an

appropriate criterion for identifying this equilibrium.

In what follows, we call the 3 players A, B and C and we refer to the game in normal form

as it appears in the appendix. Given any strict equilibrium (âA; âB ; âC), we compute for

each player Epu(ai), i.e., the expected payo¤ of each action ai 2 Ai under the conjecture that
each opponent plays action âj with probability pu and each of his alternative actions with
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probability 1�pu
3 . Then, by imposing the conditions Epu(âi) > Epu(ai) for any ai 6= âi, we

�nd the components of the vector p�u for which the equilibrium (âA; âB ; âC) is pu-dominant.

Finally we will select the equilibrium characterized by the smallest p�u.

For instance, starting from the equilibrium
�
B1; C1; A1

�
and focusing without loss of

generality on player A, we have the following: Epu(B
1) = � 5

9p
2
u +

7
9pu +

1
9 , Epu(C

1) =

� 11
27p

2
u+

4
27pu+

7
27 and Epu(B

2) = Epu(C
2) = � 17

27p
2
u+

7
27pu+

10
27 . Therefore, the equilibrium

action B1 dominates action C1 for any pu � 0:25 and actions B2 and C2 for any pu �
3
2

p
7� 7

2
�= 0:47. Given that similar relations also hold for players B and C, the equilibrium

�
B1; C1; A1

�
is pu-dominant with p

�
u =

�
3
2

p
7� 7

2 ;
3
2

p
7� 7

2 ;
3
2

p
7� 7

2

�
. Not surprisingly,

analogous computations show that also the other preempting equilibrium
�
C1; A1; B1

�
is pu-

dominant for the same p�u. Now consider one of the postponing equilibria, say
�
B2; C2; A2

�
.

Focusing again on player A, we have that Epu(B
1) = � 11

27p
2
u +

4
27pu +

7
27 , Epu(C

1) =

1
27p

2
u� 11

27pu+
10
27 , Epu(B

2) = � 1
3p
2
u+

1
3pu+

1
3 and Epu(C

2) = � 17
27p

2
u+

7
27pu+

10
27 such that

the equilibrium action B2 dominates B1 for any pu � 0, C1 for any pu � 1� 3
10

p
10 �= 0:05

and C2 for any pu = 0:25. Therefore, the equilibrium
�
B2; C2; A2

�
is pu-dominant with

p�u = (0:25; 0:25; 0:25). The same p
�
u characterizes the equilibrium

�
C2; A2; B2

�
.

Proposition 3 The equilibria in which all the players postpone their move, i.e., â =
�
j2
�
i

with j2 2 N2
�i and such that ui =

1
3 for any i, are the pu-dominant equilibria of the Stealing

Game with N = 3.

Proof. The equilibria â =
�
j1
�
i
with j1 2 N1

�i and such that ui =
1
3 for any i are pu-

dominant with p�u =
�
3
2

p
7� 7

2 ;
3
2

p
7� 7

2 ;
3
2

p
7� 7

2

�
. The equilibria â =

�
j2
�
i
with j2 2 N2

�i

and such that ui =
1
3 for any i are pu-dominant with p

�
u = (0:25; 0:25; 0:25). Given that

0:25 < 3
2

p
7 � 7

2 , the two equilibria in which all the players postpone their move are the

equilibria selected by the pu-dominance criterion.

In other words, despite the possibility to be preempted, it is less risky to wait until

t = 2 rather than move in t = 1. To have an intuition for this result, consider the case

in which player i 2 fA;B;Cg �nds himself in the situation of being the only player who
moved in t = 1. The payo¤ matrices in the appendix show that, if this occurs, player i has

no chance to win the game. At the opposite end, if i happens to be the only agent who

postpones his move then there is still a positive probability, associated with the event of
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the two other players robbing each other in t = 1, that i wins the game. To sum up, in

the three player Stealing game, no player wants to break the initial symmetric situation.

This result is reminiscent of the analysis of so-called truels (gun duels among three players)

which shows that, under certain conditions, the best strategy that a player can adopt is to

postpone his shot or even to shoot in the air rather than against an opponent (see Kilgour,

1972 and Kilgour and Brams, 1997).

2.3 The game with four players

With 4 players the Stealing Game�s unique strict equilibria are given by the action pro�les

in which all the players use their attack in t = 1 and share the prize. There are no equilibria

in which players postpone their moves.

Proposition 4 With N = 4 the nine pro�les â =
�
j1
�
i
with j1 2 N1

�i and such that ui =
1
4

for any i are the unique strict equilibria of the game.

Proof. Consider any of the pro�les â =
�
j1
�
i
. If player i robs a di¤erent opponent in t = 1

then ui = 0 as there exists a player j 6= i with �2j = 1
4 (1 + �) >

1
4 = �

2
i . Similarly if player

i postpones his attack to t = 2 then �2i =
1
4 (1 � �2) such that ui = 0 because there exists

a j 6= i such that �2j > �2i . Now consider pro�les of the kind a =
�
j2
�
i
with j2 2 N2

�i and

such that ui =
1
4 for any i and assume that player i deviates and robs agent j in t = 1. In

the subgame that takes place in t = 2 (see below) the two players k 6= i; j will attack each
other such that ui = 1. Player i�s deviation is pro�table and there are no strict equilibria

in which all the players postpone their move.

In order to better understand why there cannot be �postponing� equilibria, start, without

loss of generality, from the following candidate pro�le: all the players wait in t = 1 and then

in t = 2 player A robs B, B robs C, C robs D and D robs A such that �2i = ui =
1
4 for any

i. Now let agent A deviate and rob an opponent (say B) in the �rst period. In t = 2 player

B cannot catch up with his initial share and uB = 0 no matter what happens. Player B

is then indi¤erent as to who to rob such that his action cannot be predicted by the other

players. In addition, having been weakened, B can only steal a smaller amount of the good

and his action cannot in�uence who will be the largest shareholder. Focusing on the players

12



who still have a chance to win the game (agents C and D), we can thus avoid to model

B�s move. Moreover, for both C and D to rob B is a dominated action. Therefore, we

can simplify the subgame that follows A�s deviation by considering only the undominated

actions of C and D (payo¤s appear in the order uA; uB ; uC ; uD).

t = 1 aA = B
1

D

t = 2 C

A2 C2

A2 0; 0; 12 ;
1
2 0; 0; 0; 1

D2 0; 0; 1; 0 1; 0; 0; 0

The subgame that takes place at t = 2 has three Nash equilibria. Still, given that for

both players C and D to rob A is a weakly dominated strategy, the equilibrium in which

C and D attack each other clearly emerges as the unique admissible, perfect (Selten, 1975),

proper (Myerson, 1978) and pu-dominant equilibrium. In this equilibrium player A wins

the game, his deviation is pro�table and the pro�les in which all the players postpone their

move cannot be equilibria of the Stealing Game with four players. The di¤erence with the

three players� case can be easily explained. In the three players� game there is only one agent

who can take advantage of the situation in which a unique player is active in t = 1. With

four players two are the agents who can exploit such a situation and a free riding problem

arises. In the above example in fact players C and D steal from each other in the hope that

the other robs A.

3 Summary and Discussion

The paper introduced what we called the Stealing Game. This is a game in which players

must decide when to steal from each other parts of a homogeneous good, the amount that a

player can steal is proportional to his actual holdings and the goal is to �nish the game being

the agent who owns the largest share. As such, we claimed that the Stealing Game captures

a stylized version of strategic interactions that often occur in biology, business and politics.

We framed the game as a two-period endogenous timing game of action commitment and

we focused on solving for the optimal timing strategies of the players. In particular, we

investigated how the choice to preempt or to follow the rivals changes in response to the
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number of players involved in the game. The main result is that agents always want to

move in the �rst period when the game is played by two or four players while, in the three

players� case, players prefer to postpone their move to the second period. This result has

some obvious limitations (it would not hold under di¤erent payo¤s structures or stealing

technologies) but it nevertheless generalizes in some respects. For instance, it remains valid

in the case in which there are more than just two periods where players can move. In

particular agents will always move as soon as possible in the two and four players� game

while they will wait until the �nal period in the situation with three players. And if a �nal

period does not exist, or the players are not aware of it, then no agent involved in the three

players game will be willing to behave aggressively and break the initial symmetric situation.

Notice that we assumed no kind of monetary cost associated with the decision to rob an

opponent. Therefore the above result holds a fortiori in the more realistic situation in which

such a cost exists. Interpreting the amount of stealing as a speci�c form of competition,

interactions among three agents may thus display a less competitive behavior with respect

to duopolies. More in general, the Stealing Game provides an example of a timing game

in which, for a given payo¤ structure, optimal timing strategies change according to the

number of participants. This is an interesting aspect of timing games that has been so far

neglected and that possibly requires further and more general research.
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4 Appendix

The Stealing Game with N = 3 in normal form. Player A chooses the matrix, player B

chooses the row, player C chooses the column. For any player i 2 fA;B;Cg and j 6= i,

action j1 indicates �steal the amount ��0i from opponent j in t = 1 and wait in t = 2� while

j2 indicates the strategy �wait in t = 1 then in t = 2 play the unique best-response if the

opponents moved; otherwise steal the amount ��1i from opponent j�. In each cell payo¤s

appear in the order uA; uB ; uC .

A = B1 A = C1

C C

B

A1 B1 A2 B2

A1 0; 0; 1 0; 0; 1 0; 0; 1 0; 0; 1

C1 1
3 ;

1
3 ;

1
3 1; 0; 0 1; 0; 0 1; 0; 0

A2 0; 0; 1 0; 0; 1 0; 0; 1 0; 0; 1

C2 0; 0; 1 1; 0; 0 0; 0; 1 0; 0; 1

B

A1 B1 A2 B2

A1 0; 1; 0 1
3 ;

1
3 ;

1
3 0; 1; 0 0; 1; 0

C1 0; 1; 0 1; 0; 0 0; 1; 0 1; 0; 0

A2 0; 1; 0 1; 0; 0 0; 1; 0 0; 1; 0

C2 0; 1; 0 1; 0; 0 0; 1; 0 0; 1; 0

A = B2 A = C2

C C

B

A1 B1 A2 B2

A1 0; 0; 1 0; 0; 1 0; 0; 1 0; 0; 1

C1 0; 1; 0 1; 0; 0 1; 0; 0 1; 0; 0

A2 0; 1; 0 1; 0; 0 0; 0; 1 0; 0; 1

C2 0; 1; 0 1; 0; 0 1
3 ;

1
3 ;

1
3 1; 0; 0

B

A1 B1 A2 B2

A1 0; 1; 0 0; 0; 1 0; 0; 1 0; 0; 1

C1 0; 1; 0 1; 0; 0 1; 0; 0 1; 0; 0

A2 0; 1; 0 1; 0; 0 0; 1; 0 1
3 ;

1
3 ;

1
3

C2 0; 1; 0 1; 0; 0 0; 1; 0 1; 0; 0
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