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Abstract

This paper examines how some factors affect the greenhouse effect of fifteen
countries in European Union with fixed and random effects, while we also investigate
the case of the Arch effects presentation. Finally we estimate a neural network model
to examine how all the factors affect the greenhouse effect and we compare the

forecasting performance with that of fixed or random panel data estimation.

Keywords fixed and random effects, ARCH panel effects, panel unit root,
cointegration, vector autoregressive models, vector error correction, principal

components, neural networks

Introduction

Greenhouse effect is the increase in the temperature that Earth faces and
experiences, because certain gases in the atmosphere trap the energy from the sun.
These gases are called greenhouse gases, which absorb infrared radiation emitted by
the earth’s surface, by the atmosphere itself due to the same gases, and by clouds. So
the greenhouse gases trap heat within the surface-troposphere system and this is
called the natural greenhouse (Ledley et al., 1999). Without these gases the heat
would escape back to the space and the average temperature of the Earth would be
colder. The most important gas is the water vapor (H>O) and then the carbon dioxide
(CO,) , which has a long lifetime in the atmosphere and then is ozone (O). Other

important gases are the methane (CH4) and nitrous oxide (N,O) (Ledley et al.,



1999). So one benefit of the greenhouse effect is that keeps Earth warm for human to
live. But if the greenhouse effect become stronger , then it could increase the average
temperature significant and make the Earth much warmer, while with an even little
warming may be caused significant problems in the plants, animals and human. But
besides the natural greenhouse gases there are the anthropogenic gases as such as the
chlorofluorocarbons CFC-11 (CCI5F) and CFC-12 (CCIL,F;) and hydrofluorocarbons
(HFCs) (Hansen et al., 1998), which are equivalent and theirs affection can be
estimated using CO,_ Another important greenhouse gas is ammonia NH; which is an
air pollutant contributing to the acidification and nitrogen eutrophication of the
ecosystems, while its emissions are mainly caused by livestock manure (Pipatti, 1998)

Over the last century, according to statistical analysis and reports, the global
temperature has increased by 0.3°-0.7°C. This warming has alternatively been linked
to an increase in anthropogenic greenhouse gas CO; output (IPCC, 1996), but also
and other gases , which thee most important are the nitrous oxide and the methane.
Also others factor the growing urban heat island effect as the North American and
European urban centres have grown in size (Karl et al., 1991) and natural processes as
the changes in the solar radiation (Carslaw et al., 2002). Also a number of studies
have determined that nitrous oxide (N,O) fluxes into the atmosphere are high in
croplands on which N fertilization and irrigation rates are also high (Goodroad and
Keeney, 1984) and it’s a very important factor to the greenhouse effect.

For the time-series analysis researchers used in the past decades the
autoregressive moving average model (Karl et al., 1991) and regression models (
Vincent, 1998) to evaluate climate change and inhomogeneites within climate data

and records. Instead Prokoph and Patterson (2004) use wavelet analysis which



present inhomogeneities in time series as the sum of temporal changes in the
amplitude and phase of records over a wide sine-wave bandwidth.

In this paper we use a panel data analysis for fifteen countries of the European
Union , which are Austria, Belgium, Denmark, Finland, France, Germany, Greece,
Ireland, Italy, Luxemburg, Netherlands, Portugal, Spain, Sweden and United
Kingdom. We use only the fifteen countries and not the 27, which are now , because
in the period we examine only the above fifteen countries are members of the
European Union, because of the data availability , but also because of the legal and
the constitutional frames of the European Union. The period we examine is 1990 to
2004, the data are annually and we leave the year 2005 for forecasting. Then we
compare the forecasting performance of traditional panel regression analysis with that

of neural network modeling.

Methodology

Our dependent variable is the greenhouse effects records and the independent
variables are the inflation rate, the economic sentiment indictor and the industrial
production. We prefer to take the logarithms of the above variables. For the first
model we examine with the Hausman test if there we have fixed or random effects.
One hypothesis we can make is that we expect to have fixed effects as we take the
whole population and not a sample because the period we examine is 2000-2004 so
only fifteen countries belonged to European Union. Furthermore even if we accept the
hypothesis that we have fixed effects we will estimate the model with one-way and
two-way fixed. For the random effects we estimate only the one-way because we have

unbalanced data.



We would like to consider In our analysis and economic variables to examine
if they affect the greenhouse. Gross domestic product or environmental taxes are

some variables among others. We propose the sixteen factors in table 1.

Table 1. Greenhouse effects factors

1. Sulphur oxides 9. Emission of tropospheric ozone precursors
2. Nitrogen oxides 10. Sulphur hexafluoride
3. Carbon monoxide 11. Ammonia
4. Methane 12. Environmental taxes
5. Nitrous oxide 13. Gross domestic product
6. Carbon dioxide 14. Taxes on production
7. Sum of air emissions of primary 15. Capital formation
PM10
8. Emission of acidifying pollutants 16. Consumption

The next step is to apply a factor analysis to decide how many factors we can
take and to find the by loadings. The methodology of the factor analysis application
can be made with principal components or with maximum likelihood. The main point
is that whatever method we apply we will obtain the same conclusions. Before we
apply factor analysis we will estimate the greenhouse effects with Carbon dioxide,
Nitrous oxide and Methane as factors, because these seems to contribute major in the
greenhouse effect. Then we will estimate on the factors generated by principal

components. Finally we will estimate a neural network model for all factors.

a. One-Way Fixed Effects

The one-way fixed model is defined as (Baltagi, 2001)
Yie :a+ﬂjxjit +é&; (1)

g, =M tUu, (2)



, Where

x are independent of u

- are unobservable individuals-specific effects, correlated with x-variables,
and E(ufx;) # 0

- Dy are replaced with time dummies or time trend and part of the x-variable

- u; are random error term assumed to be [IDN (0,02u )

-y and u; are independent among themselves and of x-variables.

b. Two-Way Fixed Effects

The two-way fixed effects error component model (Baltagi, 2001) is defined as
Yit :a+ﬁjxjit +é&, (3)
&y = M; +D, +u, 4)

, Where

x are independent of ¢

- W are unobservable individuals-specific effects, correlated with x-variables,
and E(p[xj;) # 0

- Dy are unobservable time-specific effects, correlated with X-variables,
E(D¢ [xij0) # 0

- uy are random error term assumed to be IIDN (0,(32u )

- W, D and uj are independent among themselves and of x-variables.

Fixed effects are also known as least square dummy variables (LSDV).

¢. One-Way Random Effects
The one-way random effects with GLS estimation (Baltagi, 2001) and is defined
as:
Yo =a+px, +e, (5)
g, =M, +u, (6)

, Where

- x are independent of u



- u; IIDN (0,02H ) , homoscedastic and uncorrelated with x-variables, and
E(wifxije) # 0

- Dy are replaced with time dummies or time trend and part of the x-variable

- uy are random error term assumed to be IIDN (0,67, ) and homoscedastic

- pj and u; are independent among themselves and of x-variables.

Then we apply the Hausman’s test for random or fixed effects and it is (Greene,

2003)
;:bWHN_IbGLS (7)

and Var(; )= Var(lb oLs) ~ Var(,& way ) (8)

, where WHN denotes within so it means fixed effects and GLS denotes the random
effects. We test the hypothesis

Ho: E(uifxij) # 0 against Hy: E(uilxij) = 0 , which means that under the null
hypothesis within is most efficient and under the H; GLS is the proper estimation, so
we have random effects. We must notice that within is consistent under both the two

hypotheses.
d. ARCH Effects

The final model we estimate is the panel data with GARCH effects. Mazodier
and Trognon (1978) suggest that the group-specific component u; might be
heteroscedastic. To solve the problem we know that pooled OLS are consistent, so

we can use the residuals for the specific groups and we have:

A2 A2 ]
O &tUu i=

©)

And the residuals from the dummy variable model are purged of the individual

specific effect, u; so we have:

A2  Isdv Isdv
e . e.

O & = Y
T (10)

Isd , ..
, where ¢ =y + xxb"” - 0;. So combining all terms we have



y ols ols y Isdv  Isdv

"2 ln ei ei ei i
Uu—;;[( . )—( p )N an

We examine also for GARCH effects and if actually there are GARCH effects
we estimate two models the GARCH (1,1) and the Nelson’s EGARCH model.

According to Bollerslev (1986) the GARCH (1,1) is:

q P
o’ =a,+ Zaiuzm + Z,[)’IO'ZH
i=l =1 (12)

The EGARCH model , which was proposed by Nelson (1990), is defined as:

log(c,”)=a+log (o, >)+y Y L5 lu |2
Vo, o .’ T

t-1 (13)

e. Neural networks panel model

The inputs are the sixteen factors we propose as we use two more inputs. One is
variable ‘time’, where denotes the time period which is 1990-2005 and then we use
variable ‘mark’, which denotes the countries, e.g. 1 denotes Belgium, 2 denotes
Denmark and so on. The estimating period is the training set and the forecasting
period is the validation set. Training set is referred to period 1990-2004 and validation
set is referred on 2005, which is the year we would like to forecast the greenhouse
effects for the fifteen countries of the European Union.

In the weight layers 1 to 4 we use as the back rule the quick propagation

method with decay and step set up on 0.01, as in the weight layer 5 we use



Levenberg-Marquardt method and noise level equal with 0.4. In the first two function
layers we use tanh sigmoid function as the transfer functions and as the back rule we
use quick propagation and decay and step set up in the same levels with that of weight
layers. In the thirds function layer we use linear function and Levenberg-Marquardt

method.

Figure 1 . Neural networks modeling
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In the forecasting part of the paper we apply also feed-forward neural
networks FNN model to VEqQCM with no restrictions and with restrictions. FNN can

be represented as:

f(x)=a,+ Zq:wj(zﬁ(.) (aj + i wl.jxl.)
J=1 =1 (14)

, where f(x) is the output, x; for i=1,2,3...p is the input patterns, a; for j=1,2,3....q is

the bias, w;; for i=1,2,3...p and j=1,2,3....q 1s the weight connection between layers, p

is the number of the input nodes, q is the umber of the hidden nodes and ¢, is the

transfer function of the hidden layer. A general feed forward multilayer neural

networks illustration is resented in figure 2.

Figure 2. Feed-forward multilayer network architecture with t layers of units

Il

)
]
]
5 —)
1
o
0
? —
N; AU N1 N2 N,



Factor analysis results

In this part we apply factor analysis with principal components extraction. In
table 2 in we present the results of the factor analysis with principal components. We
used the Varimax rotation to improve the extractions of factors. Only two components

have been extracted , as their eigenvalues are greater than unit.

Table 2 .Total Variance Explained

Component Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
Total % of Cumulative Total % of Cumulative Total % of Cumulative
Variance % Variance % Variance %

1 13.217 82.603 82.603 13.217 82.603 82.603 7.447 46.544 46.544
2 1.295 8.091 90.694 1.295 8.091 90.694 7.064 44.150 90.694
3 .823 5.146 95.841

4 381 2.383 98.224

5 .099 617 98.840

6 .080 .500 99.340

7 .041 258 99.598

8 .022 135 99.733

9 .015 .096 99.829

10 .013 .081 99.910

11 .007 .041 99.951

12 .006 .037 99.988

13 .002 .010 99.997

14 .000 .003 100.000

15 1.662E-5 .000 100.000

16 2.281E-11 1.425E-10 100.000

Extraction Method: Principal Component Analysis.

In table 3 we present the component matrix , which tells us how much each
manifest variable loads onto each of the four latent variables before rotation. We set
up in SPSS to suppress loadings less than 0.40 when running the analysis, therefore

the blanks are actually small loadings. In table 4 we present the rotated components
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matrix, which gives the same information, as table 3, but after rotation. This is the
table that tells us which variables map onto which factors most significantly and in
size order. From this matrix we can see that factor one includes fifteen variables, and
the second factor includes fourteen. So we propose to take the gross domestic product
and the emissions of acidifying pollutants as the factors who contribute at most in the

greenhouse effect.

Table 3 . Component Matrix

Variables Component
1 2

Sulphur oxides 746 .530
Nitrogen oxides 950
Carbon monoxide 918
Methane 958
Nitrous oxide 961
Carbon dioxide 969
pml0 949
Emission of acidifying pollutants 772
Emission of tropospheric ozone precursors 925
Sulphur hexafluoride 962

Ammonia 750 -404
Environmental taxes 940
Gross domestic product 908
Taxes on production 934
Capital formation 936
Consumption 915
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Table 4. Rotated Component Matrix

Variables Component
1 2

Sulphur oxides .529 .820

Nitrogen oxides 472 .833

Carbon monoxide .584 174

Methane .659 .700

Nitrous oxide 798 570

Carbon dioxide 817 521

pml0 721

Emissions of acidifying pollutants 433 .883

Emissions of tropospheric ozone precursors 516 .850
Sulphur hexafluoride .820

Ammonia .665 .665
Environmental taxes 877

Gross domestic product 903 410

Taxes on production .885 431

Capital formation 872 415

Consumption .529 .820

Panel unit root test

As we decided which variables we will obtain in our analysis , we apply a panel unit
root test for each variable. We test for the dependent variable, the greenhouse effect,
and then for the repressors carbon dioxide , methane, nitrous oxide, ammonia,
sulphurhexa fluoride, gross domestic product and emissions of acidifying pollutants.
We provide different formulation of the augmented dickey fuller tests, beside Phillips-
Perron, as Levin , Lin and Chu (2002) , Im and Pesaran (2003) and Breitung (2000).
Levin and Lin test consider the following model

Vi =PV tz,y+u, (14) fori=1,2... ,Nand t=1,2,...... ,T

We test the hypothesis Hy: p=1, that there is a unit root test against the alternative

hypothesis Hi: p<l, that all individual series in the panel are stationary.
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The coefficient p in Levin and Lin test requires to be homogenous across i, so
Im ,Pesaran and Shin propose a test model, where allow for a heterogeneous

coefficient of y,,,. They propose a testing procedure based on the averaging

individual unit root test statistics (Baltagi, 2001). The model is:

o
Vi =PV + D B0y, +2 v +u,  (15)

Jj=1
,and we test exactly the same hypotheses as in the case of Levin and Lin test. In the

Breitung test we consider the following model:
Yi = H, +:Bz‘,tt+git (16)

, where the unobserved error term ¢, follows

Ey = PiXi tuy (17)
Table S.a. Panel unit root test for greenhouse effects in Table 5.b. Panel unit root test for greenhouse
levels effects in second differences
Method Statistics Prob. Cross- Obs Method Statistics Prob. Cross- Obs
sections sections

Null: Unit Null: Unit root

Levin, Lin & Chu t -0.83084 0.2030 15 210 Levin, Lin & Chu t -1.05067 0.1467 15 180

Breitung t-stat -0.55618 0.2890 15 195 Breitung t-stat -2.72198 0.0032 15 165

Im, Pesaran and Shin 0.20720 0.5821 15 210 Im, Pesaran and -5.65101 0.0000 15 180

W-stat Shin W-stat

ADF - Fisher Chi- 27.1510 0.6153 15 210 ADF - Fisher Chi- 88.4548 0.0000 15 180

square square

PP - Fisher Chi-square 33.3625 0.3070 15 225 PP - Fisher Chi- 255.446 0.0000 15 195

square
Table 6.a Panel unit root test for carbon dioxide in levels Table 6.b Panel unit root test for carbon dioxide in first
differences
Method Statistic Prob. Cross- Obs Method Statistic Prob. Cross- Obs
sections sections

Null: Unit root Null: Unit root
Levin, Lin & Chu t* -1.70386 0.0442 15 210 Levin, Lin & Chu t -1.03082 0.1513 15 195
Breitung t-stat -0.37935 0.3522 15 195 Breitung t-stat -1.61699 0.0529 15 180
Im, Pesaran and Shin W- -0.19370 0.4232 15 210 Im, Pesaran and Shin W- -2.21450 0.0134 15 195
stat stat
ADF - Fisher Chi-square 29.4978 0.4916 15 210 ADF - Fisher Chi-square 47.4128 0.0227 15 195
PP - Fisher Chi-square 39.9800 0.1053 15 225 PP - Fisher Chi-square 150.995 0.0000 15 210

13



Table 7.a Panel unit root test for methane in levels Table 7.b Panel unit root test for methane in first

differences

Method Statistic Prob. Cross- Obs Method Statistic Prob. Cross- Obs
sections sections

Null: Unit root Null: Unit root

Levin, Lin & Chu t -1.35634 0.0875 15 210 LeV.m’ Lin & Chut 358735 0.0002 15 195
Breitung t-stat 536278 1.0000 15 195 Breitung t-stat -1:42593 0.0769 15 180
Im, Pesaran and 312577 0.9991 15 210 Isrﬁmp\e,f,agf; and (18368200331 15 195
Shin W-stat . .
ADF - Fisher Chi- 11.4289 0.9991 15 210 fqg:ré Fisher Chi- 47.2606 0.0235 15 195
square -Fi 1-
PP - Fisher Chi- 23.0050 08151 15 295 PP - Fisher Chi 136.440 0.0000 15 210
square
square
Table 8.a Panel unit root test for nitrous oxide in levels Table 8.b Panel unit root test for nitrous
oxide in first differences
Method Statistic Prob. Cross- Obs —
sections Method Statistic Prob. Cross- Obs
sections
Null: Unit root Null: Unit root
Levin, Lin & Chu t -0.48306 0.3145 15 210 Levin, Lin & Chu t -2.50646 0.0061 15 195
Breitung t-stat 1.13876 0.8726 15 195 Breitung t-stat -1.86310 0.0312 15 180
Im, Pesaran and 0.79217 0.7859 15 210 Im, Pesaran and Shin -2.65212 0.0040 15 195
Shin W-stat W-stat _ .
ADF - Fisher Chi- 27.4645 0.5988 15 210 ADF - Fisher Chi- 53.2606 0.0056 15 195
square square
PP - Fisher Chi- 27.1189 0.6170 15 225 PP - Fisher Chi-square 100.159 0.0000 15 210
square
Table 9.a Panel unit root test for ammonia in levels Table 9.b Panel unit root test for ammonia in
first differences
Method Statistic Prob. Cross- Obs Method Statistic Prob. Cross- Obs
sections sections
Null: Unit root Null: Unit root
Levin, Lin & Chut 008182 04674 15 210 Levin, Lin & Chut ~ -444265  0.0000 15 195
Breitung t-stat 0.28176 0.6109 15 195 Breitung t-stat 216428 00152 15 180
{;vn’sf;”mn and Shin 0.013200.5053 15 210 Im, Pesaran and Shin ~ -2.83762  0.0023 15 195
- . . W-stat
‘;qlzfré Fisher Chi- 319515 03698 15 210 ADF - Fisher Chi- 563142 0.0025 15 195
. . square
PP - Fisher Chi-square - 64.8330  0.0002 15 225 PP - Fisher Chi-square  127.011  0.0000 15 210
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Table 10.a Panel unit root test for sulphurhexa fluoride in

Table 10.b Panel unit root test for sulphurhexa

levels
fluoride in second differences
Method Statistic Prob. Cross- Obs Method Statistic Prob. Cross- Obs
sections sections
. Null: Unit root
Null: Unit root o
. . Levin, Lin & Chu t -1.90134 0.0286 12 144
Levin, Lin & Chu t -1.00127 0.1583 12 168 .
. Breitung t-stat -0.28528 0.3877 12 132
Breitung t-stat 0.23009 0.5910 12 156
. Im, Pesaran and Shin W- -3.08411 0.0010 12 144
Im, Pesaran and Shin -0.33725 0.3680 12 168 stat
W-stat , ADF - Fisher Chi-square 51.0477 0.0010 12 144
ADF - Fisher Chi- 26.4745 0.3295 12 168
square PP - Fisher Chi-square 160.088 0.0000 12 156
PP - Fisher Chi-square 25.5217 0.3779 12 180
Table 11.a Panel unit root test for gross domestic product in Table 11.b Panel unit root test for gross domestic
levels
product in first differences
Method Statistic Prob. Cross- Obs Method Statistics Prob. Cross- Obs
sections sections
Null: Unit root
Levin, Lin & Chu't -5.25154 0.0000 15 189 Null: Unit root
Breitung t-stat 0.43739 0.6691 15 174 Levin, Lin & Chu t -8.73295  0.0000 15 174
Breitung t-stat -3.95042 0.0000 15 159
Im, Pesaran and Shin -1.14198 0.1267 15 189
W-stat .
ADF - Fisher Chi- 50.6293 0.0107 15 189 IITl, Pesaran and Shin W-stat -2.25377 0.0121 15 174
square ADF - Fisher Chi-square 59.7269 0.0010 15 174
PP - Fisher Chi-square 54.7437 0.0038 15 204 PP - Fisher Chi-square 69.4068 0.0001 15 189
Table 12a Panel unit root test for emissions of acidifying Table 12.b Panel unit root test for emissions of
pollutants in levels acidifying pollutants in first differences
Method Statistic Prob. Cross- Obs Method Statistics Prob. Cross- Obs
sections sections
Null: Unit root Null: Unit root
Levin, Lin & Chu t -0.78828 0.2153 15 210 Levin, Lin & Chu t* 4.06591 0.0000 15 195
Breitung t-stat -0.43519 0.3317 15 195 Breitung t-stat -1.09579 0.1366 15 180
Im, Pesaran and Shin W- 0.54054 0.7056 15 210 .
stat IItn,t Pesaran and Shin W- -2.85065 0.0022 15 195
ADEF - Fisher Chi-square  29.0032 05174 15 210 ADE - Fisher Chi-square 57.4951 0.0018 15 195
PP - Fisher Chi-square 63.9455  0.0003 15 225 PP - Fisher Chi-square 156.040 0.0000 15 210

15




From tables 5-12 we conclude that neither time series are stationary in levels, so they
aren’t 1(0), but are stationary in their first differences so they are I(1), except
greenhouse effects and sulphurhexa fluoride , which are stationary in the second

differences, so they are 1(2). We

Panel cointegration tests and Vector Error-Equilibrium Correction model

(VEqQCM)

In this part of the paper we apply a cointegration panel test with Johansen
methodology. We apply VAR-VECM model because in the previous part we found
that SEPI is not stationary according to Im ,Pesaran and Shin test and Breitung test.
So we estimate VECM model and also we apply forecasting for 2005 in next part of
the paper. The basic steps to apply Johansen methodology are:

1. We specify and estimate a VAR(p) model based on the information criteria of
Akaike and Schwarz, where the model with the minimum values of these
criteria is preferred.

2. We apply likelihood ratio tests for the rank of IT to specify and determine the
number of the co-integrating vectors.

3. We impose normalization and indentifying restrictions wherever this is
necessary and possible.

4. Then we estimate the VEqQCM by maximum likelihood.

Suppose we have the VAR(p) model.
yo=A4y +4y .+t 4,y, ,+Bx, +u, (18)

Then we can rewrite the above VAR model as:

16



p-1
Ay, =TIy, + ZF, y,_, +Bx, +u, (19)

1=1

, where H:SAI —I and T, =—iAj

=1 Jj=i+l
The best VAR(p) model according to the information criteria is VAR(5). We examine
two tests (Johansen,1995) to determine the number of co-integrating vectors. The first

is the Johansen trace statistic. We test the null hypothesis

Ho(r): r =17 against the alternative hypothesis H;(r): r>1

The trace statistic is define as

LRyace(ro) = =T iln(l—;l,) (20)

i=ro+l1
The second LR statistic is known as the maximum eigenvalue statistic and is defined

as:

LRmaxcigen(0) = =T D_In(1= 24, +1) (21)

i=rg+l
, and we test the null hypothesis
Ho( 1o ): r =10 against the alternative hypothesis H;( 1o ): ro > ro+1
In the beginning we suppose that first difference data have linear trends and the co-

integrating equations have only intercepts. So we test the equation

HAyt—l +th = a(ﬂ'yt—l +p0) (22)

We take the SEPI in the first differences as we concluded above that is not stationary.
From table 13 we conclude that there are four cointegration equations with the LR

trace statistic and three with the LR eigen maximum statistic at the 0=0.05. In table 13

17



we present the VECM estimation with four cointegration equations for the period

1990-2004, while we leave year 2005 for forecasting.

Table 12. Johansen panel cointegration test

Hypothesized Trace 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.**
None * 0.750493 286.8114 159.5297 0.0000
At most 1 * 0.573458 181.3030 125.6154 0.0000
At most 2 * 0.449190 116.5475 95.75366 0.0009
At most 3 * 0.352061 71.22375 69.81889 0.0385
At most 4 0.260331 38.24294 47.85613 0.2915
At most 5 0.162710 15.32494 29.79707 0.7586
At most 6 0.022432 1.828525 15.49471 0.9969
At most 7 0.001371 0.104302 3.841466 0.7467

Hypothesized Max-Eigen 0.05
No. of CE(s) Eigenvalue Statistic Critical Value Prob.**
None * 0.750493 105.5084 52.36261 0.0000
Atmost 1 * 0.573458 64.75546 46.23142 0.0002
At most 2 * 0.449190 45.32380 40.07757 0.0117
At most 3 0.352061 32.98081 33.87687 0.0637
At most 4 0.260331 22.91800 27.58434 0.1770
At most 5 0.162710 13.49642 21.13162 0.4077
At most 6 0.022432 1.724223 14.26460 0.9957
At most 7 0.001371 0.104302 3.841466 0.7467

So from table 14 we see, for the second cointegrating equation, that almost 1.50 % of
disequilibrium “corrected” each month by changes in greenhouse effects, while for
ACID, NHj CO;,, GDP, CH4, N,O and SF¢ are 42.07 %, 9.98 % , 7.85% ,2.78%,
30.10%, 18.99% and 81.65% respectively.

Next we estimate the impulse response functions (IRF). An impulse response
function traces out the response of a variable of interest to an exogenous shock. We

consider the following representation at time t+h
9. Vg © c 9. Mg ™ .
{ymh } _ {ul }—F 11(0) 12 N R + 11(h) 12 " L] &
Yoren Hy 0, 0, Earen 6, 0, ] (23)
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Table 14. VEqQCM estimation

Cointegrating Eq: CointEql CointEq2 CointEq3 CointEq4
DDGREENHOUSE(-1) 1.000000 0.000000 0.000000 0.000000
DACID(-1) 0.000000 1.000000 0.000000 0.000000
DNH; (-1) 0.000000 0.000000 1.000000 0.000000
DCO; (-1) 0.000000 0.000000 0.000000 1.000000
DGDP(-1) 0.288427 0.170336 0.266009 0.347285
(0.21455) (0.97876) (0.43313) (0.22111)
[ 1.34435] [ 0.17403] [0.61415] [ 1.57061]
DCH, (-1) -0.104747 -0.928566 -0.972662 0.067342
(0.28065) (1.28030) (0.56657) (0.28924)
[-0.37323] [-0.72527] [-1.71675] [ 0.23283]
DNO (-1) 0.278733 4.778955 2.428552 -0.007253
(0.31065) (1.41717) (0.62714) (0.32016)
[ 0.89726] [3.37219] [ 3.87241] [-0.02265]
DSFy(-1) -0.237529 -0.743107 -0.430307 -0.219252
(0.04560) (0.20803) (0.09206) (0.04700)
[-5.20880] [-3.57207] [-4.67415] [-4.66521]
C 0.020044 -0.075037 -0.007939 0.027335
Error Correction: D(DDGREENHO D(DACID) D(DNH3) D(DCO,) D(DGDP) D(DCHs,) D(DN,0) D(DSFy)
USE)
CointEql -0.265904 1.484395 3.097776 -3.292534 1.507627 -4.483077 0.714958 4.970274
(0.36072) (2.04930) (1.35812) (2.33916) (1.89864) (1.27407) (4.25752) (16.8212)
[-0.73715] [ 0.72434] [2.28092] [-1.40757] [ 0.79406] [-3.51870] [0.16793] [ 0.29548]




Table 14. VEqQCM estimation (cont.)

CointEq2

CointEq3

CointEq4

D(DDGREENHOUSE (-1))

D(DDGREENHOUSE (-2))

D(DDGREENHOUSE (-3))

D(DDGREENHOUSE (-4))

D(DDGREENHOUSE (-5))

D(DACID (-1))

-0.015511
(0.02605)
[-0.59549]

0.076932
(0.04632)
[ 1.66095]

0.245710
(0.26862)
[0.91471]

-0.603012
(0.39442)
[-1.52887]

-0.319491
(0.35600)
[-0.89744]

0416911
(0.28429)
[-1.46651]

-0.015483
(0.25110)
[-0.06166]

-0.001492
(0.02085)
[-0.07153]

-0.021685
(0.02657)
[-0.81605]

-0.420737
(0.14798)
[-2.84329]

0.672473
(0.26314)
[ 2.55557]

-1.588238
(1.52608)
[-1.04073]

-0.468685
(2.24075)
[-0.20916]

-0.393170
(2.02251)
[-0.19440]

-0.983631
(1.61509)
[-0.60903]

-0.211070
(1.42657)
[-0.14796]

-0.151809
(0.11848)
[-1.28131]

-0.859448
(0.15096)
[-5.69309]

-0.099818
(0.09807)
[-1.01785]

-0.528211
(0.17439)
[-3.02891]

2077189
(1.01137)
[-2.05383]

-2.032598
(1.48500)
[-1.36875]

-1.523406
(1.34037)
[-1.13656]

-0.598221
(1.07036)
[-0.55890]

-0.100222
(0.94542)
[-0.10601]

0.215649
(0.07852)
[ 2.74645]

-0.039447
(0.10005)
[-0.39428]

0.078520
(0.16891)
[ 0.46487]

0.619044
(0.30036)
[ 2.06101]

1.815228
(1.74193)
[ 1.04208]

3.964928
(2.55769)
[ 1.55020]

3.113372
(2.30858)
[ 1.34861]

2.442283
(1.84353)
[ 1.32479]

1.750061
(1.62834)
[ 1.07475]

-0.262848
(0.13524)
[-1.94360]

-0.187157
(0.17232)
[-1.08612]

0.027842
(0.13710)
[ 0.20308]

-0.168655
(0.24379)
[-0.69179]

-1.347122
(1.41388)
[-0.95278]

2.553242
(2.07601)
[-1.22988]

-1.088833
(1.87382)
[-0.58108]

-0.099011
(1.49634)
[-0.06617]

0.652060
(1.32169)
[ 0.49335]

0.159407
(0.10977)
[ 1.45220]

-0.187966
(0.13986)
[-1.34391]

0.301270
(0.09200)
[ 3.27475]

0.013914
(0.16360)
[ 0.08505]

3.389698
(0.94878)
[ 3.57269]

3.664778
(1.39310)
[ 2.63067]

2.852269
(1.25742)
[ 2.26835]

3.098838
(1.00412)
[ 3.08614]

1.844213
(0.88691)
[ 2.07937]

-0.004313
(0.07366)
[-0.05856]

-0.268288
(0.09386)
[-2.85852]

-0.189981
(0.30743)
[-0.61797]

-0.314845
(0.54669)
[-0.57591]

0.056579
(3.17050)
[0.01785]

-1.035292
(4.65526)
[-0.22239]

0.885286
(4.20186)
[ 0.21069]

0.568181
(3.35542)
[ 0.16933]

-0.448287
(2.96376)
[-0.15126]

0.085531
(0.24615)
[ 0.34748]

-0.027184
(0.31363)
[-0.08667]

-0.816536
(1.21462)
[-0.67226]

0.622370
(2.15993)
[ 0.28814]

1.727090
(12.5265)
[ 0.13788]

-0.942183
(18.3927)
[-0.05123]

-8.329635
(16.6013)
[-0.50175]

-4.981831
(13.2570)
[-0.37579]

4.081565
(11.7096)
[ 0.34857]

-0.965377
(0.97251)
[-0.99266]

1.392531
(1.23915)
[ 1.12378]
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Table 14. VEqCM estimation (cont.)

D(DACID (-2))

D(DACID (-3))

D(DACID (-4))

D(DACID (-5))

D(DNH; (-1))

D(DNH; (-2))

D(DNH; (-3))

D(DNH; (-4))

D(DNH; (-5))

-0.043203
(0.03488)
[-1.23865]

-0.045833
(0.03228)
[-1.42002]

-0.027740
(0.02741)
[-1.01195]

-0.024852
(0.02483)
[-1.00109]

-0.022740
(0.03944)
[-0.57663]

-0.039690
(0.03769)
[-1.05302]

-0.031854
(0.03593)
[-0.88646]

0.003668
(0.03004)
[0.12211]

-0.003319
(0.02547)
[-0.13030]

-0.579928
(0.19815)
[-2.92666]

0371239
(0.18337)
[-2.02457]

-0.252016
(0.15573)
[-1.61825]

0.330894
(0.14104)
[ 2.34617]

-0.462333
(0.22405)
[-2.06356]

0263524
(0.21413)
[-1.23066]

-0.248836
(0.20414)
[-1.21892]

-0.331285
(0.17065)
[-1.94134]

-0.100166
(0.14471)
[-0.69218]

-0.249273
(0.13132)
[-1.89819]

-0.254097
(0.12152)
[-2.09096]

-0.174107
(0.10321)
[-1.68695]

0.054935
(0.09347)
[ 0.58775]

-0.463658
(0.14848)
[-3.12267]

-0.220243
(0.14191)
[-1.55198]

-0.291295
(0.13529)
[-2.15310]

-0.139023
(0.11309)
[-1.22928]

0.051302
(0.09590)
[ 0.53494]

-0.214894
(0.22618)
[-0.95010]

0.076576
(0.20930)
[ 0.36586]

0.035692
(0.17776)
[ 0.20079]

0.250962
(0.16098)
[ 1.55892]

-0.573613
(0.25574)
[-2.24299]

-0.101949
(0.24442)
[-0.41711]

-0.210581
(0.23302)
[-0.90371]

-0.376480
(0.19478)
[-1.93280]

0.072897
(0.16518)
[ 0.44132]

-0.012452
(0.18359)
[-0.06783]

0.110684
(0.16989)
[ 0.65152]

-0.009719
(0.14428)
[-0.06736]

0.013768
(0.13067)
[ 0.10537]

0.331481
(0.20757)
[ 1.59692]

0.248562
(0.19839)
[ 1.25290]

0.228167
(0.18914)
[ 1.20637]

0.030073
(0.15810)
[ 0.19021]

0.171112
(0.13407)
[ 1.27628]

0273917
(0.12319)
[-2.22345]

0214123
(0.11400)
[-1.87825]

0.006150
(0.09682)
[ 0.06351]

0.026601
(0.08768)
[ 0.30338]

0.037512
(0.13929)
[ 0.26930]

0.139546
(0.13313)
[ 1.04821]

0.090009
(0.12692)
[ 0.70919]

-0.005829
(0.10609)
[-0.05494]

-0.105750
(0.08997)
[-1.17542]

-0.049961
(0.41167)
[-0.12136]

0.243480
(0.38095)
[ 0.63913]

0.219566
(0.32354)
[ 0.67863]

0.198705
(0.29301)
[ 0.67816]

0.225673
(0.46547)
[ 0.48483]

-0.076489
(0.44487)
[-0.17194]

-0.335431
(0.42412)
[-0.79089]

-0.330357
(0.35453)
[-0.93182]

-0.197002
(0.30064)
[-0.65527]

1.005151
(1.62650)
[0.61798]

1.237898
(1.50512)
[ 0.82246]

-0.043291
(1.27830)
[-0.03387]

0.506897
(1.15766)
[ 0.43787]

-0.040360
(1.83903)
[-0.02195]

1.762616
(1.75765)
[ 1.00282]

0.648968
(1.67566)
[ 0.38729]

0.425392
(1.40072)
[ 0.30369]

0.887683
(1.18782)
[ 0.74732]

21



Table 14. VEqCM estimation (cont.)

D(DCO; (-1))

D(DCO; (-2))

D(DCO; (-3))

D(DCO; (-4))

D(DCO; (-5))

D(DGDP (-1))

D(DGDP (-2))

D(DGDP (-3))

D(DGDP (-4))

0.575599
(0.27248)
[ 2.11244]

0.466480
(0.30539)
[ 1.52750]

0.245638
(0.28176)
[0.87181]

0.323495
(0.23245)
[ 1.39167]

0.005174
(0.20943)
[ 0.02470]

-0.064311
(0.02468)
[-2.60593]

-0.057940
(0.02141)
[-2.70621]

-0.052860
(0.02258)
[-2.34123]

-0.027388
(0.01646)
[-1.66405]

1.787664
(1.54801)
[ 1.15482]

0.872626
(1.73496)
[ 0.50297]

0.581614
(1.60071)
[ 0.36335]

0.669858
(1.32060)
[ 0.50724]

-0.343820
(1.18982)
[-0.28897]

0.155501
(0.14020)
[ 1.10910]

-0.068637
(0.12163)
[-0.56429]

-0.105962
(0.12827)
[-0.82609]

-0.126086
(0.09350)
[-1.34844]

2.368828
(1.02590)
[ 2.30902]

1.786567
(1.14980)
[ 1.55380]

1.287601
(1.06083)
[1.21377]

0.569824
(0.87519)
[ 0.65108]

0.226589
(0.78853)
[ 0.28736]

-0.241720
(0.09292)
[-2.60146]

-0.167606
(0.08061)
[-2.07923]

-0.202216
(0.08501)
[-2.37879]

-0.211521
(0.06197)
[-3.41339]

-2.479356
(1.76696)
[-1.40317]

-3.054249
(1.98036)
[-1.54227]

-2.685658
(1.82712)
[-1.46989]

-2.531208
(1.50739)
[-1.67920]

-1.941177
(1.35812)
[-1.42932]

0.093618
(0.16004)
[ 0.58498]

0.171804
(0.13884)
[ 1.23745]

0.126819
(0.14641)
[ 0.86618]

-0.048660
(0.10673)
[-0.45592]

1.467338
(1.43420)
[ 1.02311]

2.069575
(1.60741)
[ 1.28752]

0.803371
(1.48302)
[0.54171]

0.291319
(1.22351)
[ 0.23810]

0327713
(1.10235)
[-0.29729]

-0.697810
(0.12990)
[-5.37203]

-0.532355
(0.11269)
[-4.72402]

-0.340134
(0.11884)
[-2.86213]

0.137772
(0.08663)
[-1.59035]

-3.360485
(0.96241)
[-3.49173]

2.660684
(1.07864)
[-2.46669]

2211726
(0.99518)
[-2.22245]

2.647559
(0.82103)
[-3.22468]

-1.580488
(0.73973)
[-2.13659]

0.002213
(0.08717)
[ 0.02539]

0.014294
(0.07562)
[ 0.18902]

-0.137335
(0.07975)
[-1.72214]

-0.124116
(0.05813)
[-2.13504]

0.286298
(3.21606)
[ 0.08902]

0.570504
(3.60446)
[ 0.15828]

-1.289966
(3.32554)
[-0.38790]

-0.844088
(2.74361)
[-0.30766]

0.064047
(2.47191)
[ 0.02591]

-0.027726
(0.29128)
[-0.09519]

-0.190167
(0.25270)
[-0.75254]

-0.213602
(0.26649)
[-0.80155]

-0.108005
(0.19426)
[-0.55598]

0.042976
(12.7064)
[ 0.00338]

-2.942638
(14.2410)
[-0.20663]

3.470738
(13.1390)
[ 0.26416]

3.449027
(10.8398)
[0.31818]

-3.753199
(9.76638)
[-0.38430]

2277619
(1.15084)
[-1.97910]

-0.464496
(0.99840)
[-0.46524]

-0.818445
(1.05287)
[-0.77735]

-0.266309
(0.76751)
[-0.34698]
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Table 14. VEqQCM estimation (cont.)

D(DGDP (-5))

D(DCH, (-1))

D(DCH; (-2))

D(DCH, (-3))

D(DCH; (-4))

D(DCH, (-5))

D(DNO (-1))

D(DNO (-2))

D(DNO (-3))

-0.014164
(0.01392)
[-1.01766]

0.106677
(0.06963)
[ 1.53211]

0.135923
(0.08443)
[ 1.60981]

0.187999
(0.08844)
[ 2.12576]

0.122264
(0.07912)
[ 1.54538]

0.046432
(0.05481)
[ 0.84719]

0.072633
(0.06196)
[ 1.17230]

0.050009
(0.05886)
[ 0.84957]

0.033101
(0.04695)
[ 0.70506]

-0.173856
(0.07907)
[-2.19868]

0.605692
(0.39557)
[ 1.53120]

1.110853
(0.47969)
[ 2.31579]

0.924760
(0.50244)
[ 1.84055]

0.580608
(0.44947)
[ 1.29176]

-0.156232
(0.31137)
[-0.50175]

-0.045251
(0.35200)
[-0.12856]

-0.306276
(0.33442)
[-0.91585]

-0.072751
(0.26672)
[-0.27276]

-0.114104
(0.05240)
[-2.17739]

-0.178160
(0.26215)
[-0.67961]

0.473378
(0.31790)
[ 1.48908]

0.767911
(0.33298)
[ 2.30620]

0.574452
(0.29788)
[ 1.92849]

0.093947
(0.20635)
[ 0.45527]

0.836520
(0.23328)
[ 3.58597]

0.532390
(0.22163)
[ 2.40218]

0.488444
(0.17676)
[ 2.76332]

-0.073912
(0.09026)
[-0.81890]

-0.069239
(0.45152)
[-0.15335]

0.591989
(0.54753)
[ 1.08119]

0.664198
(0.57350)
[ 1.15814]

0.149229
(0.51305)
[ 0.29087]

-0.005642
(0.35541)
[-0.01587]

-0.982559
(0.40178)
[-2.44550]

-1.107626
(0.38172)
[-2.90167]

-0.658439
(0.30444)
[-2.16277]

-0.014270
(0.07326)
[-0.19479]

0.263606
(0.36648)
[ 0.71928]

0.707649
(0.44442)
[ 1.59230]

0.838217
(0.46550)
[ 1.80069]

0.608769
(0.41643)
[ 1.46189]

0.256587
(0.28848)
[ 0.88944]

-0.190747
(0.32612)
[-0.58490]

0.071776
(0.30983)
[ 0.23166]

-0.060510
(0.24711)
[-0.24487]

-0.084195
(0.04916)
[-1.71265]

-1.301596
(0.24593)
[-5.29259]

-0.862986
(0.29823)
[-2.89373]

-0.516960
(0.31237)
[-1.65496]

-0.426174
(0.27944)
[-1.52509]

-0.156866
(0.19358)
[-0.81033]

-0.420169
(0.21884)
[-1.91999]

-0.284954
(0.20791)
[-1.37055]

-0.208277
(0.16582)
[-1.25604]

-0.157969
(0.16428)
[-0.96160]

0.099540
(0.82181)
[0.12112]

0.856919
(0.99657)
[ 0.85987]

0.684979
(1.04383)
[ 0.65621]

0.554473
(0.93380)
[ 0.59378]

0.619116
(0.64689)
[ 0.95706]

0.604230
(0.73129)
[ 0.82626]

0.560174
(0.69477)
[ 0.80627]

0.392773
(0.55412)
[ 0.70883]

-0.052135
(0.64905)
[-0.08032]

-2.654090
(3.24691)
[-0.81742]

-0.447965
(3.93739)
[-0.11377]

1.220886
(4.12412)
[ 0.29604]

-1.241876
(3.68938)
[-0.33661]

0.144896
(2.55582)
[ 0.05669]

0.497739
(2.88927)
[0.17227]

-0.476383
(2.74500)
[-0.17355]

0.811323
(2.18928)
[ 0.37059]
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Table 14. VEqQCM estimation (cont.)

D(DN;O (-4))

D(DNO (-5))

D(DSFj (-1))

D(DSFs (-2))

D(DSFj (-3))

D(DSFs (-4))

D(DSFs (-5))

R-squared
Adj. R-squared

Sum sq. resids

0.037597
(0.03601)
[ 1.04415]

-0.002942
(0.02891)
[-0.10177]

0.012262
(0.00609)
[ 2.01348]

0.012265
(0.00534)
[ 2.29590]

0.012732
(0.00450)
[ 2.82963]

0.005328
(0.00451)
[ 1.18201]

0.003894
(0.00345)
[ 1.12874]

-0.001376
(0.00126)
[-1.09069]

0.996974
0.992678
0.000645

0.107130
(0.20456)
[ 0.52370]

-0.097686
(0.16425)
[-0.59475]

-0.001189
(0.03460)
[-0.03436]

0.020281
(0.03035)
[ 0.66826]

0.039811
(0.02556)
[ 1.55739]

0.020876
(0.02561)
[ 0.81523]

0.021073
(0.01960)
[ 1.07519]

-0.015625
(0.00717)
[-2.18042]

0.909147
0.780193
0.020829

0.402841
(0.13557)
[ 2.97146]

0.160382
(0.10885)
[ 1.47342]

-0.026300
(0.02293)
[-1.14703]

0.003037
(0.02011)
[ 0.15098]

0.015075
(0.01694)
[ 0.88987]

-0.021653
(0.01697)
[-1.27594]

0.002327
(0.01299)
[0.17911]

-0.009720
(0.00475)
[-2.04673]

0.859934
0.661131
0.009148

-0.445989
(0.23350)
[-1.91003]

-0.379390
(0.18748)
[-2.02366]

-0.043717
(0.03949)
[-1.10702]

-0.002209
(0.03464)
[-0.06377]

-0.013763
(0.02918)
[-0.47169]

-0.033134
(0.02923)
[-1.13358]

0.032530
(0.02237)
[ 1.45406]

0.000767
(0.00818)
[ 0.09379]

0.873326
0.693531
0.027138

0.061635
(0.18952)
[0.32521]

-0.132111
(0.15217)
[-0.86818]

0.025636
(0.03205)
[ 0.79978]

0.028169
(0.02812)
[ 1.00182]

0.003549
(0.02368)
[ 0.14985]

0.009431
(0.02372)
[ 0.39753]

0.026482
(0.01816)
[ 1.45836]

-0.003681
(0.00664)
[-0.55445]

0.838760
0.609904
0.017879

-0.196167
(0.12718)
[-1.54244]

-0.063973
(0.10211)
[-0.62649]

-0.054040
(0.02151)
[-2.51234]

-0.043267
(0.01887)
[-2.29312]

-0.020784
(0.01589)
[-1.30780]

-0.020041
(0.01592)
[-1.25884]

-0.003727
(0.01219)
[-0.30583]

0.008303
(0.00446)
[ 1.86360]

0.821372
0.567835
0.008051

0.441350
(0.42499)
[ 1.03849]

0.275793
(0.34123)
[ 0.80824]

-0.043426
(0.07188)
[-0.60417]

-0.046729
(0.06305)
[-0.74113]

0.011110
(0.05311)
[ 0.20920]

0.032547
(0.05320)
[0.61178]

0.022622
(0.04072)
[ 0.55557]

-0.012675
(0.01489)
[-0.85138]

0.600121
0.032550
0.089902

0.064449
(1.67912)
[ 0.03838]

-0.626640
(1.34817)
[-0.46481]

0.119141
(0.28399)
[ 0.41953]

0.149079
(0.24911)
[ 0.59845]

-0.264847
(0.20982)
[-1.26224]

-0.212082
(0.21019)
[-1.00900]

0.051961
(0.16088)
[ 0.32298]

0.028224
(0.05882)
[ 0.47983]

0.781039
0.470255
1.403369
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Table 14. VEqCM estimation (cont.)

S.E. equation 0.004563 0.025921 0.017179 0.029588 0.024015 0.016115 0.053852 0.212767
F-statistic 232.0906 7.050203 4.325552 4.857332 3.665007 3.239654 1.057349 2.513127
Log likelihood 335.8659 203.8420 235.1080 193.7877 209.6455 239.9633 148.2717 43.85127
Akaike AIC -7.654367 -4.180052 -5.002843 -3.915465 -4.332777 -5.130613 -2.717677 0.030230
Schwarz SC -6.274327 -2.800013 -3.622803 -2.535425 -2.952738 -3.750574 -1.337637 1.410269
Mean dependent 0.001124 -0.003170 0.002115 -0.001769 0.000555 0.000532 0.000167 0.004737
S.D. dependent 0.053321 0.055288 0.029510 0.053446 0.038451 0.024514 0.054751 0.292329
Determinant resid covariance (dof adj.) 7.50E-27
Determinant resid covariance 5.74E-30
Log likelihood 1695.798
Akaike information criterion -34.31048
Schwarz criterion -22.28880
The dynamic multipliers are:
ayl_Hh:g () 3)/1_,+h:9 Q) ayZ_Hh:g ) ayZ_Hh:g ) (24)
11 s 12 b 21 H 22
&y €y &y, €y
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Figure 3. Impulse response of the eight variables
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In figure 3 we provide the impulse responses of the eight variables. Introducing positive shocks to
AACID, ANH; ACO2 and ASF6 , we observe that there is positive response from greenhouse
effects. The situation is the opposite for AGDP , while the situation for ACH4 and AN,O is

The situation is the same for AACID , expect from that positive shocks to AN,O lead to
negative response for AACID. Once again the situation for ANH; and ACO,; is similar with that of
AACID. For AGDP , introducing positive shocks to all variables , except ACO; , we see that there
is positive response from AGDP , while response to ACO, is negative.

In the case of ACH4, when we have positive shocks to AACID, ANH3; AGDP and ASFg, the
response from is ACHy positive , while positive shocks to AGREENHOUSE, ACO; and AN,O lead
to negative response from ACHy |

Introducing now positive shocks to all variables except greenhouse , we observe that the
response from AN,O is positive, while the response to positive shocks to greenhouse is negative .
Finally for DSF¢ positive shocks to all variables expect from AN,O , lead to positive response from
DSFg, while the situation for AN,O

The next step is to examine for weak exogeneity. We consider the VEqCM model.

p-1

Ayt = aﬂ'ytfl +z¢1Ayt—1 + Axt +gt (25)

=1

And we divide process y,, for example, into ( y,,, y,,) with dimension m; and m, and X into
>,z
z — |: 1112 :|
221 222

The parameters can be decomposed as

So VEqCM(p) can be rewritten as
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Ay,, a, 4, &,
[Ayzj L‘j - +Z{¢2JA {ijr +sz (26)

Finally the conditional model for y;, given y,, is:

Ayy, = 0Ay,, +(a; —wa,) 'y, +Z(¢11 P A, + (A4, —0d,)x, + &, — we,, (27)

1=1

And the marginal model of y; is:

=a,f'y,, + Z¢21Ayt 1+ Ayx, &y, (28) ,where ©~ N

1=1
The test of weak exogeneity of y,; for the parameters (a;, ) determines whether a,=0, which means
that there is no information about  in the marginal model or that variables y,, do not react in the
disequilibrium. We test the hypothesis B=0 for only the first cointegrating equation, as for the

others there isn’t convergence.

Table 15. Hypothesis for weak exogeneity

Hypoth. B(I,1)=0 B(1,2)=0 B(1,3)=0 B(1,4)=0 B(1,5=0 B(1,6)=0 B(1,7)=0 B(1,8)=0 B(1,5)=B(1,6)=

B(1,8)=0
X2(1) 35250 19270 15662  37.585  0.0771 3.0586 27.719 0.1917 4.4725
Prob.  0.0000  0.00001 0.00007  0.0000  0.7811 0.0803 0.0000 0.6614 0.2147

Three variables out of eight are weak exogenous. These are AGDP, ADCH4 and DSF¢. So we test
also the hypothesis B(1,5)=B(1,6)=B(1,8)=0 and we accept the null hypothesis. So in other part of
the paper we present the forecasting values generated by the VEqQCM with no restrictions , but also
by the VEqQCM with imposed restrictions and we compare the models with the one-way random

effects , according to RMSE and MAE measures.
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Results
The first model we examine is

Ingreenhouse = by + b;CO, + b,CHy4 + bsN,O + bsNH; + bsSFs  (29)
In table 16 we estimate the greenhouse effect as the dependent variable and as factors and
independent variables we take carbon dioxide (CO;), methane (CHy4) ,nitrous oxide (N,O) ,
ammonia (NH3) and sulphurhexa fluoride (SFs). We must mention that variables are expressed in
logarithms. From table 15 we see that the best estimation, as referred to the statistically significance
of the variables, is ARCH (1) effects model. In the other models all the coefficients, including the
constant, are statistically significant except the coefficient of SF¢ But in the panel ARCH effect
model all coefficient are significant, as the coefficients of the variance equation are. Also because
we have ARCH(1) then we conclude that there is heteroscedasticity, so the other panel models, as
the fixed and random effects models are not significant. Also we must mention that we examined
GARCH (1,1), which GARCH (1) coefficient was found to be statistically insignificant. We’ve
been led to the same conclusion with the other GARCH’s models estimation, as GJR, EGARCH
and others. Coefficients have the expecting sign, as the greatest contribution in the greenhouse
effect has the CO,, then CH4 and N,O and then follows with much lower contribution NH3 and SFs
according to the ARCH estimation . The situation is quite similar but with N,O have greater
contribution than CHs We will see also the contribution of all sixteen factors with the neural
networks models.

From table 17 we see that p<a for a=0.05 and a=0.01, so we reject the null hypothesis,
which means that we have random effects. So according to the Hausman test we prefer one-way
random effect model. But even we chose the random effects , based on Hausman test , we conclude
that there are ARCH effects, as we mentioned above as the ARCH (1) coefficient is statistically

significant.
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Table 16 . Estimation results with the four proposed models for equation (4)

One-way' Two-way' One-way' ARCH(1)*
Fixed Effects Fixed Effects Random Effects effects
Constant 2.14 2.32 1.78 1.74
(12.638)* (13.14)* (23.037)* (141.66)*
Co, 0.76 0.734 0.776 0.765
(96.145)* (63.78)* (142.33)* (537.41)*
CH, 0.067 0.079 0.078 0.138
(8.813)* (9.337)* (11.171)* (92.92)*
N,O 0.119 0.129 0.116 0.086
(12.298)* (12.074)* (12.855)* (43.08)*
0.0272 0.0337 0.0267 0.0061
NH;
(3.087)* (3.73)* (3.683)* (4.52)*
SF 0.000245 0.000551 4.37e-05 0.0044
6
(0.196) (0.415) (0.037) (11.46)*
Variance Equation
6.78e-06
constant
(3.14)*
ARCH(1) 1.064
(5.24)*
R? adjusted 0.9995 0.9995 0.9967
Log-Likelihood 650.23
8 .. 171,120.3 90,175.24 11,527.89
-statistic
7.70e+06

Wald chi-square

1.t-statistics in parentheses, 2. z-statistics in parentheses, *statistically significant in 0=0.05

The second model is that was conducted by factor analysis and it is

Ingreenhouse = by + bIngdp + bylnacid (30)

The results are presented in table 18 and we conclude that there are positive relationships
between greenhouse effect and the independent variables. So if the gross domestic product is
increasing then greenhouse effect is increasing too.

results and we see that p<a for 0=0.05 and a=0.01, so we reject the null hypothesis, so once again

we have random effects.
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Table 17. Hausman test for fixed and random effects and equation (4)

Coefficients (b) fixed (B) (b-B) Difference sqrt(diag(V_b-V_B))
CO, 7630119 7766637 -.0136517 .0055354
CH,4 .0673658 .0781665 -.0108007 .0022909
N,O 1195187 1164685 .0030501 .0023017
NH; 0272464  .0267069 .0005395 .004561
SFs 0002447 .0000435 .0002012 .0003
p =0.0000

chi-square (5) = 50.78

From the neural networks results we found that there is a positive relationship between
factors and the greenhouse effect expect variables emissions of acidifying pollutants and
tropospheric ozone precursors, environmental taxes, taxes on production, capital formation and
consumption. So countries with high capital formation and consumption, as the developed countries
contribute less to the greenhouse effect, as countries with high environmental taxes and also taxes
on the production. This is possible as the high capital formation is not necessary harmful to the
environment , as this formation depends on the kind and also the measures , which these countries
obtain. It is well know that usually developed countries obtain more drastic measures against the
pollution as developing countries are not, because developing countries do what is necessary to
reach the economic and social level that of developed countries. But the sign of the acidifying
pollutants emissions is not the expected as we waiting to find a positive relationship between acid
and greenhouse effects. This can be explained that acidifying pollutants have significantly reduced
and decreased in Europe (Pipatti, 1998) Tropospheric ozone O’ is produced as a result of

photochemical processes, through reactions involving ozone precursors. These amounts are
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Table 18 . Estimation results with the four proposed models for equation (5)

One-way' Two-way' One-way' GARCH(1,1)* EGARCH?’
Fixed Effects Fixed Random Effects effects effects
Effects
Constant 12.173 13.211 9.439 8.074 8.290
(16.817)* (19.037)* (24.890)* (168.01)* (74.24)*
InGDP 0.267 0.040 0.375 0.532 0.521
(8.648)* (0.973)* (20.291)* (55.16)* (24.52)*
InACID 0.332 0.509 0.465 0.403 0.398
(8.912)* (12.022)* (21.844)* (46.90)* (20.03)*
Variance Equation
0.000721 -3.681
constant
(2.09)* (-20.70)*
ARCH(1) 1112
(5.81)*
GARCH(1) -0.0246
(-2.62)*
EARCH(1) “0.115
(-0.42)
EGARCH(1) 1.282
(5.17)
R adjusted 0.9973 0.9981 0.728
Log-Likelihood 144.7134 96.160
.. 4,734.803 3036.741 289.282
F-statistic
100,194.37 13,358.44

Wald chi-square

Table 19. Hausman test for fixed and random effects and equation (5)

Coefficients (b) (B) (b-B) sqrt(diag(V_b-V_B))
fixed Difference
InGDP 2661098 3776402 -.1115305 0240997
InACID 3319776 4670172 -.1350395 .030103
p =0.0000

chi-square (2) =20.11
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increasing with the air pollution and the human-made sources, as the biomass burning, insudtry and
transport. Tropospheric ozone can affect the atmospheric lifetimes of some greenhouse gases. The
break down of tropospheric ozone in sunlight leads to the production of hydroxyl radicals, these
help to mop up some other greenhouse gases, and so lessen their global warming potential. One
possible reason for the negative relationship between tropospheric ozone and greenhouse effect is
that there is the possibility of reducing the air pollution generated by human-made sources in
Europe, as filters in industry and in the transport , alternative sources of energy “friendly” to the

environment, decreasing in the biomass burning.

Forecasting

In table 20 we present the forecasting values of greenhouse effects for the fifteen countries
of European Union in period 2005 with one-way random effects for equations (4) and (5) and with
neural networks model obtaining all variables. The forecasting performance is very good for both
models , even if MAE and RMSE for neural networks are only 8.58 and 12.25 respectively lower
than the one way random effects GLS estimation counterparts. Also the missing forecasting values
for Greece, Luxemburg and Portugal in columns (3) and (5) are due to in unavailability of data for
one or some variables in the period we would like to estimate. But neural networks model is better
because in the estimation process we obtain all the variables and we can examine how and much all
the variables affect on the greenhouse effect.

Table 21 presents the forecasting values generated by VEqQCM and VEqCM with imposed
restrictions for the greenhouse effects in second differences for year 2005. Also we present the
forecasting values by feed-forward neural networks for VEQCM and VEqCM with imposed

restrictions.
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As input data we have the forecasting values by VEqQCM with no restrictions and as output
variable we have the actual values of greenhouse effects in second differences. The same procedure
we follow for the VEqQCM with restrictions forecasting values , which we set up as the input
variable, and the actual values of greenhouse effects as output. We decided to apply a feed-forward
multilayer neural network model with 15 hidden layers, 1000 number of epochs. The train function
is gradient descent with momentum and adaptive learning rate backpropagation, while the learning
rate is set up at 0.5 and the momentum rate is set up at 0.6. The tranferr function to hidden layers is
the hyperbolic tangent sigmoid and the transfer function to output layer is the linear. The

MATLAB code , which is very simple, is:

Figure 4. MATLAB code for feed-forward multilayer neural network model training and simulation
net=newff(minmax(input),[ 10 1],{'tansig' 'purelin'},'traingdx");
net.trainParam.epochs = 1000;

net.trainParam.lr=0.5; % learning rate

net.trainParam.mc=0.6; % momentum

net=train (net,input,output);

Y=sim(net,input);

We observe that forecasting performance with neural networks on forecasting values
generated by VEqQCM with restrictions are much better than that of simple VEqQCM with both
restrictions and no-restrictions, as is better than neural networks on VEqQCM with no restrictions, a,

as it was the expected result.
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Table 20 . Forecasting results with one-way random effects for equation (4) and (5) and neural networks

Actual values of Forecasting with One-way Forecasting with One-way Forecasting with Neural

Countries Greenhouse effects Random Effects Equation (4) Random Effects Equation (5) Networks obtaining all
factors

Belgium 18.773 18.764 18.807 18.762

Denmark 17.967 17.960 18.074 18.972

Germany 20.728 20.718 20.674 20.715

Ireland 18.068 18.096 18.123 18.080

Greece 18.712 NA 18.776 NA

Spain 19.904 19.895 19.820 19.890

France 20.134 20.136 20.150 20.136

Italy 20.174 20.162 20.045 20.170

Luxemburg 16.402 NA 16.312 NA

Netherlands 19.170 19.185 19.207 19.190

Austria 18.350 18.335 18.318 18.341

Portugal 18.286 NA 18.221 NA

Finland 18.050 18.043 18.098 18.062

Sweden 18.018 18.012 18.089 18.014

United Kingdom 20.300 20.299 20.301 20.299

MAE 0.0099 0.0555 0.00905

RMSE 0.0120 0.0666 0.01053
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Table 21 . Forecasting results with VEQCM and VEqCM with restrictions

Actual values of Forecasting with VEqQCM for Forecasting with VEQCM and Forecasting with VEQCM and  Forecasting with VEqQCM
Countries Greenhouse Greenhouse effects in second restrictions for Greenhouse effects Neural VEqCM for and Neural VEqCM for
effects
. differences in second differences Greenhouse effects in second Greenhouse effects in
in second
differences differences second differences
Belgium 0.0009 0.0037 0.0059 0.0063 -0.0030
0.0835 0.0197 0.0260 0.0393 0.0641
Denmark
0.0024 0.0331 0.0222 0.0018 0.0131
Germany
-0.0007 -0.0099 -0.0023 0.0192 -0.0057
Ireland
-0.0016 -0.0048 0.0152 0.0091 -0.0126
Greece
. -0.0380 -0.0230 -0.0171 -0.0388 -0.0104
Spain
-0.0006 0.0191 0.0328 0.0394 0.0029
France
Ttaly -0.0068 -0.0308 -0.0255 -0.0074 -0.0045
-0.1388 -0.0476 -0.0467 0.1386 -0.1389
Luxemburg
Netherlands -0.0065 0.0101 0.0091 -0.0109 0.0003
. 0.0177 -0.0132 -0.0194 0.0155 -0.0104
Austria
-0.0239 -0.0440 0.0400 -0.0239 -0.0246
Portugal
. 0.0486 -0.0078 -7.0419¢-05 0.0160 0.0522
Finland
0.0147 0.0222 0.0231 0.0163 0.0253
Sweden
United Kingdom 0.0020 0.0002 0.0125 -0.0053 0.0047
MAE 0.0261 0.0268 0.0114 0.0091
RMSE 0.0360 0.0354 0.0186 0.0126
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Conclusion

We examined the effects of some factors on greenhouse effects of the fifteen countries of
European Union. We took factors , which concern not only gases, but also we took and economic
variables, as the gross domestic production, consumption and others. Then we applied principal
components analysis to decide which variables to obtain in our estimation. We saw that we
preferred one-way random effects than the fixed, according to Hausman test. From the other side
we estimated a panel model with ARCH effects and we show that there is heteroscedasticity, and
specifically we preferred the ARCH(1) model. So it’s not sufficient to estimate only panel data
with fixed and random effects , because the possibility of heteroscedasticity presence is strong.
Then we estimated a panel vector error-equilibrium correction model with restrictions and with not.
We estimated also a panel neural network model obtaining all factors and we discussed the
advantage of neural networks , that we can obtain all variables, against traditional statistics and
econometric estimations, where we forced to reduce all variables to obtain the proper estimation.
Finally we applied forecasting for one-way fixed effects, neural network model we propose in
figure 1, VEqQCM with restrictions and with not, as with feed-forward multilayer network. We saw
that forecasting performance is much more better with neural networks in both neural models, than

traditional econometric methods.
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