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1 Introduction

Testing for spatial autocorrelation in the context of the linear regression model (e.g., Cliff and Ord,

1981; Anselin, 1988; Cressie, 1993) is now recognized as a crucial step in much empirical work in

economics, geography and regional science. This paper analyzes exact power properties of tests used

for this purpose. We mainly focus on the case of regression models with errors following a first-order

simultaneous autoregressive (SAR(1)) process, but we also consider models containing a spatially

lagged dependent variable among the regressors. The former models are often referred to as spatial

error models, the latter as spatial lag models. For empirical applications of such models in economics,

see, for instance, Case (1991), Pinske and Slade (1998), Bell and Bockstael (2000).

So far, power properties of tests for residual spatial autocorrelation have received much less at-

tention than the power properties of tests for residual serial autocorrelation, and have mainly been

studied by Monte Carlo simulation (see Florax and de Graaff, 2004, and references therein). Very few

attempts have been made to derive exact properties of such tests, notably King (1981) and Krämer

(2005). The former paper establishes that the most popular test for residual spatial autocorrelation,

the Cliff-Ord test, is locally best invariant in the case of a Gaussian spatial error model. The latter

paper identifies a possible problem with tests of autocorrelation in the context of a Gaussian spatial

error model with symmetric weights matrix, generalizing results available for tests of serial autocorre-

lation (see Krämer, 1985; Zeisel, 1989). In particular, Krämer (2005) considers tests whose associated

test statistics can be expressed as ratios of quadratic forms in the regression errors, and shows that

there are cases when the power vanishes as the residual autocorrelation increases.

The present paper aims to extend the results in Krämer (2005). We show that the vanishing

limiting power problem is not confined to a particular class of tests. The problem arises because a

SAR(1) model tends, as the autocorrelation parameter goes to the right boundary of the parameter

space, to a family of (improper) distributions supported on a 1-dimensional subspace of the sample

space. The limiting power disappears whenever the intersection between such a subspace and the

critical region has zero one-dimensional Lebesgue measure. In the context of a spatial error model, it

is natural to focus on invariant tests (e.g., Lehmann and Romano, 2005). We formulate conditions for

the limiting power of any given invariant test to be 0, 1, or in (0, 1). Such conditions require neither

Gaussianity nor symmetry of the weights matrix. Allowing for nonsymmetric weights matrices is

important, especially because in applications weights matrices are often row-standardized. It turns

out that when the weights matrix is row-standardized and the regression contains an intercept, the

limiting power of any invariant test for residual spatial autocorrelation is in (0, 1). On the contrary,

when the weights matrix is not row-standardized, the limiting power of an invariant test is generally

either 0 or 1. An explanation of why some economic phenomena are better described by means of a

non-row-standardized weights matrix is contained in Kelejian and Prucha (2007).

Krämer’s results and our extensions are particularly relevant for empirical applications where a

dependent variable is highly spatially autocorrelated, and the autocorrelation cannot be explained by

conditioning on observable factors. For example, this may occur in studies of the term structure of

interest rates, where pricing errors are likely to be strongly autocorrelated according to their distance

in terms of maturity (e.g., Kennedy, 1994; Goldstein, 2000). In this context, Huse (2006) estimates

a spatial error model and finds a very large value of the autocorrelation parameter. Similarly, Gall

et al. (2004) uses a spatial autoregression to account for the autocorrelation in the maturity space

of forward interest rates, and discusses explicitly the case when the autocorrelation parameter tends
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to the right boundary of the parameter space. Two examples of economic applications where non-

observable factors may induce high residual autocorrelation in the geographic space are hedonic market

models for dwelling selling prices (see Militino et al. 2004), and the analysis of returns for a set of

firms within an industry.1

To complement the limiting power analysis, we discuss some conditions that are sufficient for

unbiasedness of invariant tests for residual spatial autocorrelation and for monotonicity of their power

function. Although such conditions are not necessary, they provide insights into the role played by the

regressors and the spatial structure in determining the power of the tests, and they help to understand

the causes of undesirable properties of the tests.

The rest of the paper is organized as follows. Section 2 presents the theoretical framework. Our

main results are in Section 3. In that section, we first consider in some detail the limiting power of tests

for spatial autocorrelation in a spatial error model. Then, we discuss how the results change in the

case of some other spatial models, including a spatial lag model and a spatial moving average model.

The special case of pure SAR(1) processes is considered separately. To assess the practical relevance

of the limiting power analysis, Section 3 also reports results from a small numerical study. Section

4 analyzes the conditions for unbiasedness of the tests and monotonicity of their power functions.

Section 5 concludes. The Appendices contain some technical material and all proofs.

2 Framework

This section presents the set-up in which our results will be derived. Section 2.1 defines the testing

problem we are concerned with, and Section 2.2 introduces invariant tests for that problem.

2.1 The Testing Problem

Consider a fixed and finite set of n observational units, such as the regions of a country, and let

y = (y1, ..., yn)
0, where yi denotes the random variable observed at the i-th unit. The ordering of the

units is arbitrary. We assume that y follows a linear regression model.

y =Xβ + u, E(u) = 0, var(u) = σ2Σ(ρ), (1)

where X is an n × k matrix of rank k < n, β is a k × 1 vector of unknown parameters, σ2 > 0 is

an unknown parameter, and ρ is an unknown parameter belonging to some connected open subset Ψ

of the set of values of ρ such that Σ(ρ) is positive definite. The matrix X contains only exogenous

variables; either it is nonstochastic, or all the analysis is interpreted as conditional on X. As for the

distribution of the error term u, we only assume that the density of u is positive everywhere on Rn,

is larger at 0 than anywhere else, and is continuous in both y and the parameters σ2 and ρ.

In the context of model (1), we are interested in testing

H0 : ρ = 0 vs. Ha : ρ > 0. (2)

1 In some noneconomic fields, such as image analysis and agriculture, it is well established that simultaneous or

conditional autoregressions often lead to a very large value of the autocorrelation parameter (e.g., Besag and Kooperberg,

1995; Bhattacharyya et al., 1997). When data are observed over a regular lattice, this is usually interpreted as an

indication of a type of nonstationarity similar to that due to near unit roots in time series. Extensions of this concept

of nonstationarity have been attempted also for the case of irregular lattices (e.g., Fingleton, 1999).
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Here and throughout, ρ > 0 is to be understood as ρ ∈ R+ ∩ Ψ =: Ψ+, that is, we leave it implicit
that ρ must belong to the parameter space of the model. The choice of a one-sided alternative rather

than a two-sided one is dictated by the fact that the former is empirically more relevant for many

specifications of Σ(ρ).

Throughout the paper we will be mainly concerned with the covariance structure Σ(ρ) implied by

a first-order simultaneous autoregressive (SAR(1)) process (e.g., Whittle, 1954; Cliff and Ord, 1981;

Anselin, 1988; Cressie, 1993). Such a process is specified on the basis of a fixed n×n (spatial) weights

matrix W , chosen to reflect a priori information on relations among the n observations. Typically,

for each i, j = 1, ..., n, (W )ij = 0 if i and j are not neighbors according to some metric deemed to be

relevant for the phenomenon under analysis, whereas (W )ij is set to some nonzero number, possibly

reflecting the degree of interaction, otherwise. For instance, when the observational units are the

regions of a country, one may set (W )ij = 1 if two distinct regions i and j share a common boundary,

(W )ij = 0 otherwise. In this paper we assume that a weights matrix (i) has zero entries along its

main diagonal, (ii) is entrywise nonnegative, (iii) is irreducible. Details concerning such assumptions

are in Appendix A.

A SAR(1) process for the error vector u is specified by

u = ρWu+ ε, var(ε) = σ2V , (3)

where ε is a vector of innovations, and V is a fixed n×n symmetric and positive definite matrix. The

extension to the case when V depends on unknown parameters, will be discussed in Section 3.5.1. Let

I, or In, denote the n × n identity matrix. For testing problem (2) there is no loss of generality in

assuming that Σ(0) = I (if Σ(0) 6= I, just premultiply y by Σ−1/2(0)). Hence, we can take V = I.

Provided that ρ is different from the reciprocal of the nonzero real eigenvalues ofW , equation (3)

implies

Σ(ρ) =
£
(I − ρW 0)(I − ρW )

¤−1
. (4)

For a SAR(1) processes, we take Ψ+ = (0, λ−1max), where λmax is the largest positive eigenvalue ofW .

While the condition ρ < λ−1max is not necessary for positive definiteness of (4), it guarantees connected-

ness of Ψ+. In addition, the alternative hypothesis ρ ∈ (0, λ−1max) represents positive autocorrelation,2
a much more common phenomenon in practice than negative spatial autocorrelation

The regression model (1) with disturbances following process (3) is often referred to as a spatial

error model. There are two important alternatives to a spatial error model: the so-called spatial lag

model, and the regression model with disturbances following a first-order conditional autoregressive

(CAR(1)) process. In a spatial lag model, the spatial autocorrelation is introduced by including a

spatial lagWy amongst the regressors. The problem of testing for this type of spatial autocorrelation

is different from the testing problem described above, and will be considered separately in Section

3.5.2. A CAR(1) process is a Gaussian model with

Σ(ρ) = (I − ρW )−1L, (5)

where L is a fixed n × n diagonal matrix such that L−1W is symmetric (see Besag, 1974). Recall

that there is no loss of generality in setting Σ(0) = I, which, in (5), corresponds to L = I. Thus,W

2This can be easily seen writing (I − ρW )−1 = ρrW r , for |ρ| < λ−1max. The expansion shows that, when

ρ ∈ (0, λ−1max), cov(yi, yj) > 0, for any i, j = 1, ..., n, and that, when ρ ∈ (−λ−1max, 0), the covariances may be positive or
negative, but not all of them are positive in any left neighborhood of λ−1max.
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can be assumed to be symmetric in CAR(1) models (because it must be symmetric when L = I in

(5)). In SAR(1) models, on the contrary, we do need to allow for nonsymmetric W ’s.

For the sake of simplicity, the results in this paper will be stated only for SAR(1) processes and

not for CAR(1) processes. Nevertheless, from the proofs it is straightforward to check that the results

that hold for a SAR(1) process with a symmetric W (corresponding to Σ(ρ) = (I − ρW )−2) also

hold for a process with Σ(ρ) = (I−ρW )−1. Under Gaussianity, the latter process can be interpreted

as a CAR(1) process; without Gaussianity, it can be interpreted as a general autocorrelation process

(see, e.g., Anderson, 1948; Kadiyala, 1970; Kariya, 1980; King, 1980).

2.2 The Tests

For the testing problem defined above, it is natural to focus on invariant tests. These are now

informally introduced; details on the theory of invariant tests are available in standard references such

as Lehmann and Romano (2005). Often a testing problem does not change if any transformation in a

certain group is applied to the sample space. In this case, according to the “principle of invariance”,

the test itself should be invariant under the same group of transformations, that is, it should be based

on a test statistic that is constant on each orbit of that group. A necessary and sufficient condition

for this type of invariance is that the test statistic is a function of a maximal invariant under that

group.

Testing problem (2) is invariant with respect to the group of transformations y → γy+Xδ, with

γ ∈ R\{0} and δ ∈ Rk (sometimes the smaller group with γ > 0 is considered; see Appendix B). By

an invariant test for testing problem (2) we mean a test that is invariant under that group. Let C

be an (n− k) × n matrix such that CC0 = In−k and C
0C =MX := In −X(X 0X)−1X 0, and let

k·k denote the Euclidean norm. Fix, without any loss of generality, an arbitrary ı̄ = 1, ..., n. Then, a

maximal invariant under the above group is v := sgn(yı̄)Cy/ kCyk, where sgn(yı̄) denotes the sign of

yı̄. In some cases, it is possible to derive a closed-form expression for the density of v. For example, if

the distribution of u is elliptically symmetric, then it can be shown that the density of v, with respect

to the normalized Haar measure on the hemisphere
©
s ∈ Rn−k : ksk = 1, sı̄ ≥ 0

ª
, is

f(v; ρ) = 2
¯̄
CΣ(ρ)C0

¯̄− 1

2

h
v0
¡
CΣ(ρ)C0

¢−1
v
i−n−k

2

(6)

(see Kariya, 1980, equation (3.7)).

Besides the principle of invariance, there are at least two other reasons why, for our testing problem,

it is appropriate to restrict attention to invariant tests. First, the distribution of any invariant test

statistic for our testing problem is free of nuisance parameters. This is clearly seen by exploiting the

standard result that the distribution of the maximal invariant depends only on the parameter maximal

invariant, which, in our case, is ρ. The absence of nuisance parameters means that invariant tests

are similar, and that the power function of any invariant test does not depend on β or σ2. Second,

expression (6) turns out to be proportional to the Gaussian marginal likelihood of ρ (see Kalbfleisch

and Sprott, 1970). Thus, at least under Gaussianity, using an invariant test for our testing problem

is equivalent to drawing inference from the marginal rather than the full likelihood of the data. The

marginal likelihood has often been found to provide a better basis for inference about ρ than the full

likelihood of model (1), especially when k is large with respect to n; see, e.g., Tunnicliffe Wilson (1989)

and Rahman and King (1997).
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In general, despite the elimination of the nuisance parameters achieved by the imposition of invari-

ance, no uniformly most powerful invariant (UMPI) test exists for testing problem (2), not even under

Gaussianity (see, e.g., King and Hillier, 1985).3 Some examples of invariant tests for testing problem

(2) are now presented. Throughout the paper, the critical value and the size of a test are denoted by c

and α, respectively. To avoid trivial cases and unless otherwise specified, α is assumed to be in (0, 1).

Note that, in view of the similarity of invariant tests, if the distribution of u is fully specified (up to

σ2 and ρ), then the critical value c corresponding to a given size can be obtained accurately by Monte

Carlo or other numerical methods.4 Often, however, critical values are derived from the asymptotic

distribution of the test statistic. Asymptotic critical values may generate size distortions, but, on the

other hand, are generally obtained from standard distributions and may result in a test that is more

robust to different distributions of u.

Let û be the vector of OLS residuals. Simple tests for our testing problem are those that reject

H0 when

û0Qû

û0û
> c, (7)

for some fixed matrix Q. In particular, when Q equals a spatial weights matrix W , we obtain the

Cliff-Ord test (see Cliff and Ord, 1981; Kelejian and Prucha, 2001). In some circumstances, a test

based on (7) has optimality properties. In particular, it is locally best invariant (LBI) if u has an

elliptically symmetric distribution, and Q = dΣ(ρ)/dρ|ρ=0, for some differentiable Σ(ρ) (King and

Hillier, 1985; Kariya, 1988). It follows that, under the assumption of elliptical symmetry, the Cliff-

Ord test is LBI when Σ(ρ) is that of a SAR(1) (or CAR(1)) process (see King, 1981).5 When the

regression contains only an intercept, the Cliff-Ord test reduces to the Moran test (Moran, 1950).

Other important invariant tests are the likelihood ratio (LR) test (based on the full density of the

data) and its “restricted” version based on the density of v.6 We will also consider the tests that, for

a fixed ρ̄ > 0 (with, of course, ρ̄ ∈ Ψ+), reject H0 when

v0
¡
CΣ(ρ̄)C0

¢−1
v < c. (8)

If u has an elliptically symmetric distribution, a test based on (8) is point optimal invariant (POI),

i.e., it is the most powerful invariant test against the specific alternative hypothesis ρ = ρ̄ > 0 (see

King, 1988). POI tests define the power envelope of invariant tests. More precisely, denoting by πρ̄(ρ)

the power of the POI critical region, the power envelope of size-α invariant tests is the function that

associates the value πρ(ρ) to each ρ ≥ 0.
Before we continue, some notation is in order. For a q×q matrixQ, we denote by col(Q) its column

space. If Q is symmetric, we denote by λ1(Q), ..., λq(Q) its eigenvalues, labeled in nondecreasing

order of magnitude; by mi(Q) the multiplicity of λi(Q), for i = 1, ..., q; by f1(Q), ...,fq(Q) a set of

orthonormal (with respect to the Euclidean norm) eigenvectors ofQ, with the eigenvector f i(Q) being

3One interesting exception is a CAR(1) model satisfying Condition B of Section 4; see King (1988), p. 187.
4For example, suppose that the distribution of u is elliptically symmetric. Then, according to (6), under H0 v is

uniformly distributed on an emisphere. It follows that in the presence of any test statistic that can be expressed as

a quadratic form in v (as, for instance, in (7) and (8) below), critical values can be obtain by resorting to one of the

many numerical approximations available for the distribution of a quadratic form in a vector uniformly distributed on

a sphere.
5Similarly, in the case of an AR(1) model, a test based on the serial correlation coefficient for û is LBI and the

Durbin-Watson test is approximately LBI; e.g., Kariya (1988).
6For a proof that an LR test based on the full likelihood of y is invariant, see, e.g., Cox and Hinkley (1974), p. 173.

The restricted LR test is invariant by definition.
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pertinent to the eigenvalue λi(Q); by Ei(Q) the eigenspace associated to λi(Q), for i = 1, ..., q. Note

that, when W is symmetric, λn(W ) = λmax. When W is nonsymmetric, λmax is still well-defined,

because W has always a (real) positive eigenvalue by Theorem A.2. All matrices considered in this

paper are real.

3 Limiting Power

In this section we extend the results in Krämer (2005) on the power of tests for residual spatial

autocorrelation. Krämer’s results are briefly summarized in Section 3.1, whereas our main results

are presented in Section 3.2. In Section 3.3 we report results from numerical experiments aimed at

assessing the practical relevance of our analysis. In Section 3.4 we discuss the particular case of pure

SAR(1) processes. Finally, in Section 3.5 we consider some models that are generalizations of, or

alternatives to, a spatial error model.

3.1 Previous Results (Krämer, 2005)

Krämer (2005) considers distinguishing ρ = 0 from ρ > 0 in a spatial error model, under Gaussianity

and when W is symmetric. This is a particular case of the testing problem described in Section 2.1.

Krämer focuses on test statistics that can be expressed as ratios of quadratic forms in regression errors.

More specifically, he considers tests that reject when u0Q1u/u
0Q2u > c, for some n × n matrices

Q1 and Q2 that in general depend on X and W . For example, the Cliff-Ord test and a POI test

(8) belong to this class of tests (the former is obtained when Q1 =MXWMX and Q2 =MX , the

latter when Q1 = −C 0
¡
CΣ(ρ̄)C0

¢−1
C and Q2 =MX).

Henceforth, by “limiting power” of a test for autocorrelation in the context of a spatial autore-

gression we mean the limit of the power function as ρ → λ−1max (from the left). We denote by fmax

a particular eigenvector of W pertaining to λmax (the precise definition is in Appendix A). Let

ξ := f 0max (Q1 − cQ2)fmax. Theorems 1 and 2 in Krämer (2005) state that the limiting power of the

above tests is 0 if ξ < 0, 1 if ξ > 0, and, generally, in (0, 1) if ξ = 0. The third case is unlikely to

occur, because of the assumption that W is symmetric. Let us consider, for example, the Cliff-Ord

test. Then, ξ = 0 if and only if either fmax ∈ col(X) or c = f 0maxMXWMXfmax/f
0
maxMXfmax.

For fixed X and W , the latter condition is hugely restrictive, since it requires the critical value c

to be equal to a single specific value. The condition fmax ∈ col(X) is also restrictive: when W is

symmetric there is generally no reason why X should be such that fmax ∈ col(X).7
In Section 3.2.2 we shall prove the non-trivial fact that Krämer’s conditions can be extended to

models with nonsymmetric W . In many applications, the weights matrices of SAR(1) models are

nonsymmetric; for instance, a row-standardized (so that all its row-sums are equal to 1) matrix is

generally nonsymmetric. Note that the condition fmax ∈ col(X) is satisfied whenever W is row-

standardized and an intercept is included in the regression.

7One exception is a symmetric k-nearest neighbors weights matrix. A k-nearest-neighbors weights matrix is a (0, 1)

matrix specified by taking the same number, k, of neighbors for each unit. In this case, fmax is a vector of identical

entries, and hence it belongs to col(X) whenever the regression contains an intercept.
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3.2 Main Results

3.2.1 The General Case

Before investigating the case of a spatial error model, it is convenient to consider our testing problem

in the context of the general model (1). Let us start from a simple observation. When ρ ∈ Ψ+, Σ(ρ)
is positive definite and hence y has positive density over the whole sample space Rn. Thus, for any

ρ ∈ Ψ+, any critical region for testing ρ = 0 has probability content (i.e., power) strictly between 0

and 1.

For simplicity, we assume that Ψ+ has a finite right boundary, to be denoted by a.8 The power of

a test for ρ = 0 as ρ→ a requires more attention. Clearly, the limiting power as ρ→ a depends on the

limiting behavior of the density of y, but we will see below that important information can be obtained

just by looking at the limiting behavior of Σ(ρ). There are three possibilities: (i) Σ(a) exists and is

positive definite; (ii) Σ(a) exists and is singular; (iii) Σ−1(a) exists and is singular. By the argument

in the previous paragraph, it is clear that in case (i) the limiting power of any critical region must be

in (0, 1). Case (ii) applies, for instance, to moving average models, and will be briefly dealt with in

Section 3.5.4. Here, we focus on case (iii) and, in particular, on the case rank(Σ−1(a)) = n−1, which,
as we will see below, is the relevant one for spatial and stationary time series autoregressive models.

For the extension to the more general case when rank(Σ−1(a)) < n, see Remark 3.2 below. We denote

by int(S), bd(S) and cl(S), the interior, the boundary, and the closure of a set S, respectively. By

an invariant critical region we simply mean the subset of the sample space Rn where an invariant test

rejects the null hypothesis.

Theorem 3.1 Consider an invariant critical region Φ for testing ρ = 0 against ρ > 0 in model (1).

Assume that Σ(ρ) is positive definite as ρ→ a, and that rank(Σ−1(a)) = n− 1. The limiting power
of Φ as ρ→ a is:

— 1 if f1(Σ
−1(a)) ∈ int(Φ);

— in (0, 1) if f1(Σ
−1(a)) ∈ bd(Φ);

— 0 if f1(Σ
−1(a)) /∈ cl(Φ).

Theorem 3.1 asserts that, to some extent, the limiting power of an invariant test is determined by

the position of f1(Σ
−1(a)) relative to the critical region. The result is quite general, in that it holds

for any Σ(ρ) satisfying the stated conditions, any X, and any invariant test.

The reason why the limiting power may disappear in the context of model (1) is best understood

geometrically. If Σ−1(a) has reduced rank, then, as ρ→ a, the model is not supported on the whole

sample space Rn, but only on a subspace thereof (more precisely, the limiting model is a degenerate

distribution on a translation of the nullspace of Σ−1(a); see the proof of the theorem for details). As a

consequence, any critical region that does not (almost surely) intersect such a subspace has vanishing

probability content, and hence vanishing power, as ρ→ a. On the contrary, a critical region has full

limiting power if it contains (almost surely) that subspace.

Let us now concentrate on the case when the limiting power is in (0, 1). This happens when

f1(Σ
−1(a)) falls in the boundary of Φ. Such a condition may seem very restrictive. In fact, the

8The results to follow can be trivially extended to study the limit of the power as ρ → ∞ when Ψ+ = (0,∞),
provided that we intepret Σ(a) as limρ→∞Σ(ρ).
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boundary of an invariant critical region always contains col(X),9 and therefore the condition is satisfied

whenever f1(Σ
−1(a)) ∈ col(X). This occurs, in particular, in models such that f1(Σ−1(a)) is a vector

with identical entries, and such that an intercept is included among the regressors. For example,

f1(Σ
−1(a)) is a vector with identical entries in the case of a covariance stationary AR(1) processes

(see Krämer, 1985, and below), or in the case of a SAR(1) process with row-standardized W (see

Section 3.2.2). Theorem 3.1 says that in such models the limiting power of any invariant critical

region cannot be either 0 or 1, as long as an intercept is included in the regression.

The case of a regression model with AR(1) disturbances represents an important application of

Theorem 3.1. More specifically, consider the error process ui = ρui−1 + εi, for i = 1, ..., n, with

the initial condition u0 chosen so that the process is covariance stationary (i.e., E(u0) = 0 and

var(u0) = σ2(1−ρ2)−1). Suppose that we are interested in the power of tests for ρ = 0 as ρ approaches
the unit root. Previous contributions in this context have focused on the power of the Durbin-Watson

and some related tests under Gaussianity; see, e.g., Krämer (1985), Zeisel (1989) and Bartels (1992).

Since, as it is easily shown, the above AR(1) process yields rank(Σ−1(1)) = n − 1, Theorem 3.1

applies, and shows that the results in those papers can be extended to any invariant test for residual

serial correlation, and to non-Gaussian distributions. Note that the assumption on u0 plays a crucial

role here. In general, for an u0 other than the one leading to covariance stationarity (e.g., a fixed u0),

Σ−1(1) is nonsingular, and hence the limiting power as ρ → 1 is in (0, 1), by the observation at the

beginning of this section.

Remark 3.2 Theorem 3.1 can be generalized to the case when 0 < rank(Σ−1(a)) < n. Inspection of

the proof of the theorem reveals that the formulation of the conditions for the limiting power to be

0, 1, or in (0, 1) would be more complicated in that case. For instance, the condition for a vanishing

power should be replaced by the condition that E1(Σ
−1(a)) ∩ cl(Φ) has rank(Σ−1(a))-dimensional

Lebesgue measure zero.

Remark 3.3 Theorem 3.1 can be extended to non-invariant critical regions. Again, this would involve

a more complicated formulation, because, contrary to an invariant critical region, a non-invariant one

may contain only a subset of the limiting support of model (1). In particular, the lack of invariance

with respect to transformations y → y+Xδ, δ ∈ Rk, would imply that the conditions in the theorem
depend on the unknown parameter β.

3.2.2 Spatial Error Model

In the case of the covariance structure Σ(ρ) =
£
(I − ρW 0)(I − ρW )

¤−1
of a SAR(1) process, the

right boundary a of Ψ+ is λ−1max. We now restrict our attention to the limiting power, as ρ→ λ−1max, of

invariant tests in a spatial error model (defined by equations (1) and (3)).

For a SAR(1) process, Σ−1(λ−1max) has rank n − 1 for any W , by Lemma D.4. It follows that

Theorem 3.1 applies to any spatial error model, leading to the following corollary.

Corollary 3.4 In a spatial error model, the limiting power of an invariant critical region Φ for testing

ρ = 0 against ρ > 0 is:

9A critical region Φ is invariant if y ∈ Φ implies γy +Xδ ∈ Φ, for any γ ∈ R\{0} and any δ ∈ Rk. Thus, if Φ is

invariant, then col(X) ∈ bd(Φ) (i.e., any n-ball centered at some point y ∈ col(X) contains at least one point in Φ and

at least one point not in Φ), since otherwise α would be either 0 or 1.
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— 1 if fmax ∈ int(Φ);

— in (0, 1) if fmax ∈ bd(Φ);

— 0 if fmax /∈ cl(Φ).

There are three main differences between Corollary 3.4 and the results summarized in Section 3.1.

Firstly, Corollary 3.4 holds for the whole class of invariant tests, which is much larger than the class

of tests that can be expressed as ratios of quadratic forms in the regression errors. In particular,

Corollary 3.4 holds regardless of the analytical form of the invariant test statistic, and therefore, it

also holds for invariant tests whose test statistics are analytically complicated, or–as it is the case

for an LR test–unavailable in closed form. It should be noted that Corollary 3.4 implies that the

zero limiting power phenomenon cannot be attributed to the form of a specific test (contrary to what

is argued, for instance, in Krämer 2005, p. 490). Instead, the phenomenon is due to the fact that a

SAR(1) model tends, as ρ → λ−1max, to be supported on a subspace of the sample space, namely the

1-dimensional space spanned by fmax; see the proof and the discussion of Theorem 3.1 for details.

Secondly, Corollary 3.4 is not restricted to Gaussian models. Thirdly, it does not require symmetry of

W . This is important, because in SAR(1) modelsW is very often row-standardized, which generally

entails asymmetry. For a row-standardized W , fmax is a vector with identical entries. Recall from

Section 3.2.1 that, whenever a critical region Φ is invariant, col(X) ⊂ bd(Φ). Thus, when W is row-

standardized and the regression contains an intercept, Corollary 3.4 establishes that the limiting power

of any invariant test is in (0, 1). Conversely, whenW is not (a scalar multiple of) a row-standardized

matrix, the limiting power of an invariant test is generally either 0 or 1, because it is unlikely that

fmax falls in col(X) or more generally in bd(Φ).
10

In view of the above observations, one might be tempted to regard row-standardization ofW as a

simple device to avoid the zero limiting power problem. Such a temptation should be resisted. Instead,

as recently emphasized by Kelejian and Prucha (2007), the decision as to whether or not to row-

standardize W should be based on theoretical considerations concerning the particular phenomenon

under analysis. It should also be noted that, even if the limiting power cannot be exactly zero when

W is row-standardized and the regression contains an intercept, it can still be very low.11

The practical usefulness of the conditions stated in Corollary 3.4 stems from the fact that such

conditions are generally simple to check. Let us consider the invariant critical region Φ that rejects

ρ = 0 for large values of some univariate statistic T (y), i.e.,12

Φ = {y ∈ Rn : T (y) > c} . (9)

The boundary of such a critical region consists of not only {y ∈ Rn : T (y) = c} but also, as pointed

out in Section 3.2.1, col(X). While it is very unlikely that fmax falls in the former set (in general,

there is only one value of c in a continuum of points such that T (fmax) = c), we have already pointed

out above that in some important cases fmax ∈ col(X). Theorem 3.1 then says that the limiting

power of the critical region (9) is: 1 if T (fmax) > c; 0 if T (fmax) < c; in (0, 1) if T (fmax) = c or

fmax ∈ col(X). Such conditions are simple to check as long as fmax is known or can be computed
10Here it is irrelevant whether W refers to a model before or after normalization to Σ(0) = I imposed in Section

2.1, because the condition fmax ∈ col(X) is invariant under any invertible linear transformation of y, when y follows
a spatial error model.
11Analyzing the circumstances in which power is low but positive goes beyond the scope of this paper.
12Here and throughout, we do not distinguish notationally between a random variable and its realizations.
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efficiently. Consider, for example, the Cliff-Ord test. For the Σ(ρ) implied by a SAR(1) process,

its limiting power is 1, 0, or in (0, 1) depending on whether f 0max (MXWMX − cMX)fmax is,

respectively, positive, negative, or 0.13

So far we have focused on a fixed test for spatial autocorrelation. Corollary 3.4 has also con-

sequences for the power envelope πρ(ρ) of invariant tests. Indeed, since it asserts that any critical

region that includes fmax in its interior must have full limiting power, Corollary 3.4 implies that, un-

der the condition fmax /∈ col(X), πρ(ρ) approaches 1 as ρ→ λ−1max.
14 Conversely, under the condition

fmax ∈ col(X), the corollary implies that the limit of πρ(ρ) as ρ→ λ−1max must be strictly between α

and 1. This leads us to the conclusion that the null hypothesis ρ = 0 can be distinguished from the

limiting alternative ρ→ λ−1max with zero type II error probability if and only if fmax /∈ col(X).

Remark 3.5 In the context of a spatial error model, consideration of the extreme case ρ → λ−1max
corresponds, in general, to studying power when it is most needed, i.e., when the efficiency of the

OLS estimator of β, relative to (some feasible version of) the GLS estimator, is low. Indeed, for most

combinations of X and W and according to most measures of efficiency, the relative efficiency of

the OLS estimator is decreasing in ρ (see, e.g., Cordy and Griffith, 1993). There are exceptions: for

instance, the measure of efficiency used in Krämer and Donninger (1987) may be increasing in ρ in

some circumstances, but see Dielman and Pfaffenberger (1989) for problems with that measure.

Remark 3.6 Corollary 3.4 admits an interpretation in terms of the Cliff-Ord statistic û0Wû/û0û.

Besides being used to test for spatial autocorrelation, the Cliff-Ord statistic is often regarded as an

index of autocorrelation. When W is symmetric, û0Wû/û0û achieves a maximum at û = fmax, by

Lemma D.1. Thus, Corollary 3.4 asserts that, for fixedX and fixed symmetricW , an invariant critical

region has full limiting power only if it contains the points in the sample space that maximize the Cliff-

Ord statistic. Indeed, according to the interpretation of the Cliff-Ord statistic as an autocorrelation

coefficient, it certainly makes sense to reject ρ = 0 when a large value of û0Wû/û0û is observed. The

situation is, however, less intuitive whenW is nonsymmetric. In that case, û0Wû/û0û is maximized

by the eigenvectors of W +W 0 associated to the largest eigenvalue of W +W 0. Observe that fmax

does not need to be one of such eigenvectors. Hence, for a SAR(1) models with nonsymmetric W ,

Corollary 3.4 implies that an invariant critical region may have vanishing limiting power even if it

contains the values of y that maximize the Cliff-Ord statistic. We shall come back to the role played

by the symmetry of W in Section 3.4.

3.3 Numerical Examples

In this section we report results from a small Monte Carlo experiment aimed at illustrating how the

matrices X and W affect the exact power of tests for residual spatial autocorrelation. In particular,

our objective is to show how sensitive the power can be to X, when ρ is large but not necessarily very

close to λ−1max. For brevity, we restrict our attention to the Cliff-Ord test and to Gaussian models.

Related numerical investigations are contained in Krämer (2005).

13Since the Cliff-Ord test statistic can be expressed as a ratio of quadratic forms in regression errors, such conditions

reduce, in the case of a Gaussian SAR(1) model with symmetric W , to the condition stated in Krämer (2005).
14A practical recommendation, thus, is to always check that the conclusion of a single test is robust over different

tests.
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We consider 106 replications of the n×2matrixX = (ι : z), where ι := (1, ..., 1)0 and z ∼ N(0, I).15
The weights matrices are derived from the maps of the n = 17 counties in Nevada and the n = 23

counties in Wyoming; see Figure 1. We consider both a binary W , specified according to the queen

criterion (i.e., (W )ij = 1 if two distinct counties i and j share a common boundary or a common

point, (W )ij = 0 otherwise), and its row-standardized version. The average number of neighbors

of a county is 4.35 in Nevada, 4.52 in Wyoming, whereas the sparseness of W (as measured by the

percentage of zero entries) is 74.40 for Nevada and 80.34 for Wyoming. We shall see that, despite

their similarities, these two spatial configurations are very different from the point of view of testing

for autocorrelation.

Figure 1 about here

In order to show how sensitive the power of the Cliff-Ord, denoted by πCO(ρ), is to X, in Table

1 we display its the percentage frequency distribution. The size is set to 0.05, and the power is

computed by the Imhof method (Imhof, 1961). We report values for ρ = 0.9λ−1max and ρ = 0.95λ−1max.

To give an indication of how close such points are to λ−1max, the third column of Table 1 gives the

average correlation between pairs of neighboring counties (there are 37 such pairs in Nevada and 54

in Wyoming; averages over non-neighbors, not reported, are much lower).16 It appears from Table 1

that in the case of Nevada πCO(ρ) depends to a very large extent on X, even for values of ρ that are

not in a very small neighborhood of λ−1max. The dependence is less pronounced in the case of Wyoming.

Table 1 about here

Before carrying on with our numerical example, it is convenient to introduce a general measure

of the difficulty of testing for spatial autocorrelation, as ρ → λ−1max. Consider some invariant test.

By Corollary 3.4, whether or not its limiting power vanishes depends on α, because whether or not

fmax ∈ cl(Φ) depends on the size of Φ. In particular, the limiting power of a test may vanish for some
fixed size, but be positive for some larger size. In the following definition, by exact test we mean a

test whose critical value is selected from the exact null distribution of the test statistic.

Definition 3.7 For an exact invariant test of ρ = 0 against ρ > 0 in a SAR(1) model, α∗ is the

infimum of the set of values of α ∈ (0, 1] such that the limiting power does not vanish.

For fixed X,W , and Φ such that fmax /∈ bd(Φ), α∗ is a measure of the distinguishability between
the null hypothesis ρ = 0 and the limiting alternative ρ→ λ−1max.

17 A large α∗ indicates that a large

critical region is necessary to avoid the zero limiting power problem. We stress that α∗ depends on

W , on the invariant test under consideration, and on X (through col(X), because of the invariance

property of the tests). A simple way of computing α∗ is provided by Lemma D.2.

15Because of its invariance property, the power of the Cliff-Ord test depends on X only through col(X). Thus, it

would be natural to draw X from N(O, In ⊗ Ik), as this would imply that col(X) is uniformly distributed on the

Grassmann manifold Gk,n (see James, 1954). In our simulations, we have modified such a distribution to take into

account the fact that, in practice, an intercept is always included in the regression.
16As ρ → λ−1max, corr(yi, yj) → 1, for any i, j and W . This follows easily from observing that: (i) a SAR(1) model

tends, as ρ → λ−1max, to be concentrated on a 1-dimensional subspace of the sample space (see Section 3.2.2); (ii)

corr(yi, yj) > 0 when ρ > 0.
17By Corollary 3.4, when fmax ∈ bd(Φ), α∗ is always zero and hence uninformative. In order to study power when

fmax ∈ bd(Φ), one could define α∗ as the infimum of the set of values such that the limiting power is greater than some

positive value, but this is not pursued in the present paper.
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We can now go back to our numerical example. Recall that col(X) is contained in the boundary

of any invariant critical region. It follows, by Corollary 3.4, that in our experiment the limiting power

is either 0 or 1 when W is binary (as, in that case, fmax /∈ col(X) almost surely), whereas it is
in (0, 1) when W is row-standardized (as, in that case, fmax is a scalar multiple of ι, and hence is

in col(X)). Thus, in order to study the zero limiting power phenomenon, we restrict attention to

the binary specification of W . In columns 2-4 of Table 2 we display some statistics regarding the

realizations of α∗ over the 106 replications of X. Observe that α∗ depends to a very large extent on

col(X). In the case of Nevada, on average it is necessary to use a critical region of size α ≥ 0.082 in
order to achieve a nonzero limiting power. For one particular value of X, α∗ was as large as 0.994,

meaning that, in the presence of such an X, the critical region of the Cliff-Ord test has vanishing

limiting power unless its size is at least 0.994. Column 5 of Table 2 contains the observed relative

frequency of the zero limiting power problem. It is also useful to look at the impact of a zero limiting

power on the performance of the Cliff-Ord test at values of ρ that are large but not too close to λ−1max.

As above, we consider the values 0.9λ−1max and 0.95λ
−1
max. As a measure of performance, we take the

shortcoming, defined as the difference between the power envelope πρ(ρ) and the power πCO(ρ) of

the Cliff-Ord test (see, e.g., Lehmann and Romano, 2005, p. 337). The last four columns of Table

2 display the average of the shortcoming over the replications of X yielding a zero limiting power

(columns 6 and 8), and the average over the replications yielding a full limiting power (columns 7 and

9). Observe that, on average, anX yielding a zero limiting power causes shortcomings at ρ = 0.9λ−1max
and ρ = 0.95λ−1max that are significantly larger than the corresponding shortcomings associated to an

X yielding a full limiting power. This suggests that the impact of the zero limiting power problem is

not localized only in a very small neighborhood of λ−1max.

Table 2 about here

It is clear from Tables 1 and 2 that the numerical results regarding Nevada and Wyoming are

extremely different. In particular, the zero limiting power frequency is very large in the case of

Nevada, and very small in the case of Wyoming. On repeating our simulations for different weights

matrices and different tests, we have found that the zero limiting power frequency is generally very

sensitive not only to W , but also to α, k, the choice of a test, and the distribution of X. For most

matricesW likely to be used in applications and for most distributions of X, the zero limiting power

frequency is generally small when n− k is large. From a practical perspective, this suggests that the

zero limiting power problem is mainly a small sample problem. It should be noticed, however, that for

anyW the probability of a zero limiting power is positive as long asX is unrestricted, regardless of n,

and that it is possible to construct matricesW such that, for some distributions of X, the probability

of a zero limiting power is large even when n−k is large. Examples of such matrices are the adjacency
matrix of a star graph (i.e., a graph with one vertex having n − 1 neighbors, and all other vertices
having 1 neighbor) or a very dense matrix. When W is defined on a regular grid, one can study how

the zero limiting power frequency depends on n explicitly (cf. Table 1 of Krämer, 2005).

To summarize, the main conclusion of our numerical study is that, in some cases, the probability

that the limiting power of the Cliff-Ord test vanishes may well be non-negligible. This obviously

induces a large dependence of the power of the Cliff-Ord test on X as ρ → λ−1max, but the numerical

results indicate that both the power and the shortcoming may still depend to a large extent on X

for values of ρ in a rather large neighborhood of λ−1max. As mentioned in Remark 3.5, this is cause of

concern, because such values may induce a large inefficiency of the ordinary least squares estimator
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of β.

3.4 Pure SAR(1) Model

We have seen above that tests for autocorrelation in the context of a regression model with SAR(1)

disturbances do not necessarily achieve full power as ρ → λ−1max. This is so even when the tests have

some finite sample optimality properties, as in the case of LBI and POI tests. It is natural to wonder

whether such a phenomenon should be completely ascribed to the presence of regressors. To investigate

this issue, we now consider pure SAR(1) processes, that is, SAR(1) processes with E(y) = 0. The

extension to models with known mean is trivial, by taking y to be a demeaned variable.

Recall from Section 3.2.2 that, for an invariant critical region Φ of the form (9), bd(Φ) = col(X)∪
{y ∈ Rn : T (y) = c}. In the case of a pure model, col(X) = ∅. Thus, it is very unlikely that
fmax ∈ bd(Φ), as this would require the critical value c to be precisely equal to T (fmax). Neglecting
this possibility, the limiting power of Φ can only be 0 or 1, by Corollary 3.4. One might hope that, at

least when Φ is LBI or POI, the limiting power is 1 for any size α. This is not the case, as shown by

the following proposition.

Proposition 3.8 Consider testing ρ = 0 against ρ > 0 in a pure SAR(1) model. The limiting power

of the Cliff-Ord test or of a test (8) is 1 irrespective of α if and only if fmax is an eigenvector of W
0.

The tests considered in Proposition 3.8 are obtained from (7) and (8) whenX = O, and thus reject

when y0Wy/y0y > c and y0(I − ρ̄W 0)(I − ρ̄W )y/y0y < c. Recall that such tests are, respectively,

LBI and POI when the distribution of y is elliptically symmetric.

The condition in Proposition 3.8 is always satisfied when W is symmetric. Hence, for a pure

SAR(1) model with symmetricW , the Cliff-Ord test and a test (8) always achieve full limiting power,

regardless of their size. Conversely, when W is nonsymmetric, the condition in Proposition 3.8 is

generally not met; for details see Appendix C, where, in particular, it is shown that it is never met

wheneverW is a nonsymmetric matrix obtained by row-standardization of a symmetric matrix. Thus,

in a pure SAR(1) model with nonsymmetricW , there generally are values of α such that the limiting

power of the Cliff-Ord test or of a test (8) vanishes. A simple example follows.

Example 3.9 A random variable is observed at n units placed along a line and, in the context of a

pure Gaussian SAR(1) process, it is to be tested whether ρ = 0 or ρ > 0. Suppose that it is believed

that there is only first-order interaction, and that the interaction amongst first-order neighbors is

stronger in one direction than in the other. Accordingly,W is taken so that (W )ij , for i, j = 1, ..., n,

is equal to some fixed positive scalar w 6= 1 if i− j = 1, to 1 if j− i = 1, and to 0 otherwise. In Figure

2, we plot the power function of the Cliff-Ord test, and the envelope πρ(ρ) for n = 6, w = 10 and

α = 0.01. The power has been computed numerically, via the Imhof method, and is plotted against

ρλmax, which ranges between 0 and 1.

Figure 2 about here

Although it is based on an artificial W , Figure 2 shows that the performance of a test for spa-

tial autocorrelation may be extremely disappointing even in models that are not contaminated by

regressors. It is of some interest to investigate which matrices W are particularly problematic from

the point of the limiting power of tests of autocorrelation in pure SAR(1) models. The measure α∗

introduced in Definition 3.7 can be used to this purpose, as we discuss next.
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Example 3.10 Consider the testing problem in Example 3.9. The measure α∗ is, as one would

expect, decreasing in n and increasing in |w − 1| (this can be shown by using the Imhof method or
other accurate numerical approximations to the null distribution of the statistic y0Wy/y0y). For

the particular case of Figure 1, α∗ is about 0.056, i.e., any critical region of size less than 0.056 has

vanishing limiting power. To give another example, if n = 30 and w = 50, then α∗ is about 0.063.

Interestingly, if one “closes the line” (by setting (W )1n = w and (W )n1 = 1), then W becomes

a scalar multiple of a doubly stochastic matrix, and consequently α∗ = 0 by the combination of

Proposition 3.8 and Lemma C.1.

A numerical analysis not reported here suggests that the message delivered by Example 3.10 is

very general. Namely, for a fixed n, large values of α∗ are typically associated to weights matricesW

such that (W )ij/(W )ji is large for at least one pair (i, j). When W is the row-standardized version

of a (0, 1) matrix (i.e., a matrix containing only zeros and ones), (W )ij/(W )ji cannot be larger than

the ratio, say r, of the largest to the smallest row-sum of the (0, 1) matrix, for any i, j = 1, ..., n.

This implies that the asymmetry introduced by the popular practice of row-standardizing a (0, 1)

symmetric matrix does not yield large values of α∗ in pure SAR(1) models. The largest possible value

of r over all n×n (0, 1) symmetric matrices is n−1, achieved by the adjacency matrix of a star graph.
Even in the case of a star graph, the value of α∗ associated to the corresponding row-standardized

W is very small, and decreasing in n; for the Cliff-Ord test, α∗ < 0.01 whenever n > 6; that is, the

limiting power of the Cliff-Ord test test is 1 as long as n > 6 and α > 0.01.

We have thus found that, although asymmetry of W may cause the limiting power of POI and

LBI tests to disappear when X = O, this typically occurs only for very small values of α or n if the

asymmetry of W is due to row-standardization of a (0, 1) matrix. As we have seen in Section 3.2.2,

the situation is very different when conditioning on regressors. In that case, the limiting power of POI

and LBI may vanish even for large α or large n, regardless of W .

3.5 Other Spatial Models

In this section we discuss how the analysis in Section 3.2 can be extended to study the limiting power

of tests for autocorrelation in some more general models, and in some different spatial models.

3.5.1 Nuisance Parameters in the Innovation Variance Matrix

In applications, it is often useful to allow the innovation variance matrix σ2V in (3) to depend

on a vector of parameters θ. A particular case is when V (θ) is diagonal, so that θ controls the

heteroskedasticity of the innovations ε.18

For the problem of testing ρ = 0 in a spatial error model, θ is a nuisance parameter that cannot be

eliminated by invariance. Consequently, invariant tests are not similar, and their whole power function

depends on θ. This is not a problem for the validity of Theorem 3.1. Indeed, it is straightforward

to check that Theorem 3.1 continues to hold, provided that Σ(ρ) is replaced by Σ(ρ,θ) := (I −
ρW )−1V (θ)(I − ρW 0)−1. The problem is that, in general, f1(Σ

−1(λ−1max,θ)) depends on θ, and

18Recall from Section 2.1 that the heteroskedasticity induced by a fixed V 6= I can be eliminated by normalizing

to V = I, and hence does not pose any problem from the point of view of applying the results in Section 3.2. Small

(1993) considers the limiting power of the Durbin-Watson test when the innovation variance matrix of an AR(1) model

is nonspherical but fixed.
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hence the conditions stated by the theorem cannot be checked. It should also be noted that, when V

depends on θ, Corollary 3.4 does not obtain.

Theorem 3.1, however, may still provide useful information. This occurs whenever one is able to

identify a set Θ such that one or more of the conditions in the theorem are satisfied for all θ ∈ Θ.
Suppose, for example, that for given W , X and Φ, one finds that f1(Σ

−1(λ−1max,θ)) ∈ int(Φ) for
all θ ∈ Θ. Then, Theorem 3.1 guarantees that the limiting power of Φ is 1 as long as θ ∈ Θ.
Identification of a set Θ may involve computational difficulties that will not be discussed here.

3.5.2 Spatial Lag Model

An alternative to a spatial error model is the so-called spatial lag model

y = ρWy +Xβ + ε, E(ε) = 0, var(ε) = σ2I. (10)

Model (10) is also known as mixed regressive, spatial autoregressive model, and is widely used both

in the applied and the theoretical spatial econometric literature; see, e.g., Ord (1975), Anselin (1988)

and Lee (2002). In (10) we have taken var(ε) = σ2I, which can be done without any loss of gener-

ality as long as σ−2var(ε) is fixed; for the case when var(ε) depends on extra parameters, the same

considerations as in Section 3.5.1 apply.

Similarly to the case of a spatial error model, in the context of model (10) we are concerned with

testing ρ = 0 against ρ ∈ Ψ+ = (0, λ−1max). For any ρ ∈ Ψ+, the two models imply the same variance
matrix, but different expectations for y (E(y) equals Xβ in a spatial error model, (I − ρW )−1Xβ

in a spatial lag model). As a consequence, the problem of testing for a spatially lagged dependent

variable is quite different from that of testing for residual spatial autocorrelation. In particular, the

former testing problem is not invariant under the transformations y → y + Xδ, δ ∈ Rk. Thus,
when testing ρ = 0 in model (10), there is no reason to focus on tests that are invariant under those

transformations. The analog of Corollary 3.4 for a spatial lag model is the following result.

Proposition 3.11 Consider testing ρ = 0 against ρ > 0 in model (10) by means of a critical region

Υ that is invariant under y → γy, γ ∈ R\{0}. The limiting power as ρ→ λ−1max is:

— 1 if fmax ∈ int(Υ);

— in (0, 1) if fmax ∈ bd(Υ);

— 0 if fmax /∈ cl(Υ).

Contrary to Corollary 3.4, Proposition 3.11 does not require invariance with respect to the trans-

formations y → y +Xδ, δ ∈ Rk. In Section 3.2.1 we have seen that any critical region Φ that is
invariant under such transformations has limiting power is in (0, 1) whenever W is row-standardized

and the regression contains an intercept. This was due to the fact that fmax ∈ col(X) ⊂ bd(Φ). In
contrast, for a critical region Υ that is not invariant under the transformations y → y +Xδ, col(X)

is generally not a subset of bd(Υ). Proposition 3.11 then implies that the limiting power of a critical

region Υ for testing ρ = 0 against ρ > 0 in model (10) is typically either 0 or 1, even when W is

row-standardized and the regression contains an intercept.
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3.5.3 Spatial Autoregressive Model with Autoregressive Disturbances

The tests for residual spatial autocorrelation or for spatial lag dependence considered so far can be

generalized to tests in model

y = ψWy +Xβ + u,

u = ρWu+ ε, E(ε) = 0, var(ε) = σ2V (θ) (11)

(e.g., Anselin, 1988; Case, 1991). That is, one may be interested in testing ρ = 0 allowing for ψ 6= 0

(as, for instance, in Kelejian and Prucha, 2001), or in testing ψ = 0 allowing for ρ 6= 0.

Model (11) implies that var(y) tends to a singular matrix as ρ → λ−1max or ψ → λ−1max . Thus, the

main argument of Section 3.2.1 continues to apply, both when testing ρ = 0 and when testing ψ = 0:

as ρ→ λ−1max (resp. ψ → λ−1max), model (11) tends to be supported on a subspace of the sample space,

and hence any critical region for ρ = 0 against ρ > 0 (resp. ψ = 0 against ψ > 0) that intersects such

a subspace only on a set of measure zero will have vanishing limiting power. However, large values of

ψ or ρ are less likely to occur in model (11) than in spatial error or spatial lag models.

3.5.4 Spatial MA(1) Model

A spatial first-order moving average (SMA(1)) process for the regression errors u is (e.g., Anselin,

1988)

u = ε+ ρWε, E(ε) = 0, var(ε) = σ2I.

Let us assume that W admits at least one (real) negative eigenvalue,19 and let λmin denote the

smallest negative eigenvalue ofW . The largest interval of values of ρ containing the origin such that

the model is invertible, i.e. I + ρW is invertible, is (−λ−1max,−λ−1min). The results in Section 3.2 can
be extended to show that, in the context of a SMA(1) model, the limiting power of a test for ρ = 0

does not necessarily achieve full power as ρ→ −λ−1min.
For our purposes, the main difference from the case of a SAR(1) process is that, for a SMA(1)

process, Σ(ρ), rather than Σ−1(ρ), is well-defined and singular at ρ = a (with a = λ−1max for a SAR(1)

process, a = −λ−1min for a SMA(1) process). Now, a model with singular Σ(a) tends, as ρ→ a, to be

supported on the subspace of Rn orthogonal to the nullspace ofΣ(a).20 Let us denote such a subspace

by Λ, and its dimension by dim(Λ). Then, any critical region for ρ = 0 has vanishing limiting power if

its intersection with Λ has dim(Λ)-dimensional Lebesgue measure zero. For a SMA(1) process, Λ is the

orthogonal complement of the eigenspace ofW associated to λmin, and hence dim(Λ) = n−mmin(W ),

where mmin(W ) denotes the geometric multiplicity of λmin. Recall that the limiting support of a

SAR(1) model is 1-dimensional. On the other hand the limiting support Λ of a SMA(1) model has

generally higher dimension, because n−mmin(W ) > 1, except for very special cases. Since a critical

region has vanishing limiting power when it does not intersect (almost surely) the limiting support,

it can be argued that the zero limiting power problem is more relevant for a SAR(1) process than for

a SMA(1) process.

19Such an assumption is satisfied in virtually all weights matrices used in applications. In particular, it is certainly

satisfied when W is symmetric or, more generally, similar to a symmetric matrix. In the latter case, which occurs for

instance when W is row-standardized, all eigenvalues of W are real, and consequently one of them must be negative,

because tr(W ) = 0 by assumption and λmax > 0 by Theorem A.2.
20This can be shown by straightforward extension of the proof of Theorem 3.1. Another example of an econometric

model such that Σ(ρ) tends to be singular as ρ→ a is a fractionally integrated white noise, with ρ being the differencing

parameter and a = 1/2 (see Kleiber and Krämer, 2005)
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4 Unbiasedness and Monotonicity

So far, we have analyzed power properties of tests for problem (2) as ρ approaches the right extreme

of Ψ+. In this section, we turn to global power properties of the tests, i.e., properties that hold for

any ρ ∈ Ψ+. One crucial property is unbiasedness. A stronger property is that the power function of
the test is monotonic in ρ. We already know that tests for our testing problem may not satisfy such

properties, because a zero limiting power implies both biasedness and nonmonotonicity. Below, we

study conditions that guarantee unbiasedness and monotonicity. The conditions are not necessary, but,

as we shall see, (i) are important to understand the structure of the testing problem under analysis; (ii)

in the case of spatial autoregressions, admit a simple interpretation. To achieve analytical tractability,

we assume Gaussianity, and we focus on LBI and POI tests.

Before focusing on the case of a spatial error model, we study the unbiasedness of LBI and POI tests

for a general Σ(ρ) in regression model (1). LBI or POI tests for problem (2) are certainly unbiased

if X and Σ(ρ) are such that a UMPI test exists.21 As we have already pointed out in Section 2.2,

this is a very restrictive condition. We now formulate two conditions that guarantee unbiasedness

of LBI and POI tests, even when a UMPI test does not exist. Following Horn and Johnson (1985),

a commuting family of matrices is a finite or infinite set of matrices that are pairwise commutative

(under standard multiplication).

Condition A The matrices Σ(ρ), for ρ > 0, form a commuting family.

Condition B For a fixed eρ > 0, col(X) is spanned by k linearly independent eigenvectors of Σ(eρ).

For a fixed covariance structure Σ(ρ), Condition A may or may not be satisfied. The restriction

implied by Condition A in the particular case of a SAR(1) model is clarified in Lemma 4.2 below.

A well-known property of commuting symmetric matrices is that they share the same eigenvectors.

Thus, when Condition A holds, Condition B does not depend on eρ. Condition B, in any of its many
equivalent formulations, has often been used in the theoretical analysis of regression models with non-

spherical errors, since Anderson (1948). In applications, Condition B is unlikely to be satisfied exactly,

but, in some circumstances, it may be satisfied approximately; see Durbin (1970) for the case of serial

correlation, and the end of this section for the case of spatial autoregressions. There is some evidence

in the literature that the power properties of tests for ρ = 0 when Condition B holds approximately

are similar to the power properties when Condition B holds exactly; e.g., Tillman (1975), p. 971. It

is worth remarking that Condition B is trivially satisfied by pure models (k = 0).

We denote by col⊥(X) the orthogonal complement of col(X). We are now in a position to prove

the following result.

Proposition 4.1 Consider testing ρ = 0 against ρ > 0 in model (1). Assume that u has a Gaussian

distribution, and that Conditions A and B hold. Then, LBI and POI tests are unbiased. The unbi-

asedness is strict except when col⊥(X) is contained in one of the eigenspaces of Σ(ρ), in which case

the power is α for any ρ > 0.

Although they guarantee unbiasedness of the tests considered in Proposition 4.1, Conditions A

and B are not sufficient for the monotonicity in ρ of the power functions of those tests (not even when

21 If a UMPI test exists, then the power function of POI and LBI tests is the envelope πρ(ρ). But, as long as

Σ(ρ1) = Σ(ρ2) implies ρ1 = ρ2, we have πρ(ρ) > α for any ρ > 0, by Theorem 1 in Kadiyala (1970), or, more directly,

by Corollary 3.2.1 in Lehmann and Romano (2005).
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X = O). This is simply because, starting from a Σ(ρ) satisfying Condition A, a reparametrization

ρ → f(ρ) may destroy the monotonicity of the power function without causing Condition A to fail.

Monotonicity of the power function is a much stronger property than unbiasedness, and may or may

not be desirable depending on the specification of Σ(ρ). In general, it is desirable whenever ρ is

interpreted as an autocorrelation parameter, as in a SAR(1) model. Next, we discuss the impact of

Conditions A and B on the monotonicity of the power function of tests for autocorrelation in a spatial

error model. Such a discussion is relevant also outside a formal hypothesis testing setting, because

nonmonotonicity of the power function makes it difficult to interpret the underlying test statistic–

the Cliff-Ord statistic, say–as an index of spatial autocorrelation. Indeed, one would expect that the

probability of an index of autocorrelation being greater than some constant (i.e. the power of the

associated test) is nondecreasing in ρ over the interval (0, λ−1max) (as all correlations between pairs of

variables yi and yj).

For a SAR(1) process, Condition A boils down to a condition onW . A matrix is said to be normal

if it commutes with its transpose (e.g., Horn and Johnson, 1985, p. 100).

Lemma 4.2 For a SAR(1) process, Condition A is satisfied if and only ifW is normal. In particular,

Condition A is not satisfied if W is a nonsymmetric matrix obtained by row-standardization of a

symmetric matrix.

The requirement of matrix normality is very restrictive also for more general nonsymmetric weights

matrices, whereas is trivially satisfied when W is symmetric. Thus, from a practical point of view,

the class of SAR(1) processes satisfying Condition A is essentially equivalent to the class of SAR(1)

processes with symmetricW . For this reason, we now focus on the case of a symmetric W .

Proposition 4.3 Consider testing ρ = 0 against ρ > 0 in a Gaussian spatial error model with

symmetric W . Assume that Condition B holds (for one value, and hence all values, eρ > 0). Then,

the power functions of the LBI and POI tests are increasing in ρ. They are strictly increasing except

when col⊥(X) is contained in one of the eigenspaces of W , in which case the power is α for any

ρ > 0.

Proposition 4.3 can be related to the analysis in Section 3. Of course, monotonicity of the power

function implies that the limiting power cannot be smaller than α. In fact, the following stronger

result can be proved.

Proposition 4.4 Consider testing ρ = 0 against ρ > 0 in a spatial error model with symmetric W

by means of the Cliff-Ord test or a test (8). Assume that Condition B holds (for one value, and hence

all values eρ > 0), and that the critical value c is not equal to T (fmax), where T (y) is the test statistic.
Then, the limiting power is: in (α, 1) if fmax ∈ col(X) and col⊥(X) is not contained in any of the
eigenspaces of W ; 1 if fmax /∈ col(X); α otherwise.

Observe that Proposition 4.4 does not require Gaussianity, so that the Cliff-Ord test or a test (8)

are not necessarily LBI and POI. Under the conditions stated in the proposition, for the Cliff-Ord

test and tests (8) to have full limiting power it is sufficient that fmax /∈ col(X). It is worth pointing
out that Proposition 4.4, as Propositions 4.1 and 4.3, holds for any α. Extensions of these three

propositions to a spatial lag model are possible, along the same lines as in Section 3.5.2.
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We conclude this section by describing cases when Condition B holds in applications of spatial

autoregressions, exactly or at least approximately. The CAR(1) model specified by equations (1)

and (5) satisfies Condition B exactly when the mean is assumed to be unknown but constant across

observations, andW is the row-standardized version of a symmetric matrix.22 If other regressors are

included alongside the intercept, it is unlikely that Condition B is satisfied, unless W is symmetric

and the number of eigenspaces of W (and hence of Σ(ρ) = (I − ρW )−2) is small relative to n. This

typically occurs whenW is invariant under a large group of permutations of its index set (see Biggs,

1993). For example, a weights matrixW with constant off-diagonal entries and zero diagonal entries

has only two eigenspaces: the line spanned by ι and the hyperplane orthogonal to it (weights matrices

of this type have been considered, for instance, in Kelejian and Prucha, 2002, and Baltagi, 2006).

Hence, for a suchW , Condition B is satisfied if the entries of each regressor other than the intercept

sum to zero. Interestingly, if an intercept is included in the regression, then col⊥(X) is a subset of

one eigenspace of W , and thus the power functions considered in Proposition 4.3 are flat.23

Turning to the circumstances when Condition B can be expected to hold at least approximately,

let us consider, for simplicity, a spatial error model with symmetric W , and with only one regressor,

denoted by x = (x1, ..., xn)
0. Call j a neighbor of i if (W )ij > 0, and let x̄i :=

P
j 6=i(W )ijxj . For

a given W , the ratio xi/x̄i may be regarded as a measure of “similarity” between unit i and its

neighbors (as far as x is concerned). Now, in SAR(1) models with symmetric W the eigenvectors

of Σ(ρ) are the same as those of W , so Condition B is met if and only x is an eigenvector of W ,

i.e., Wx = λx, for some scalar λ. Since the i-th row of the equation Wx = λx is x̄i = λxi, for

i = 1, ..., n, it follows that Condition B is equivalent to the condition that xi/x̄i does not depend on i.

This suggests that Condition B is approximately met, and hence the power of LBI and POI tests has

desirable properties, when x is such that the degree of similarity between i and its neighbors does not

vary substantially with i.24 On the contrary, Condition B is far from being satisfied when different

clusters of neighbors have very different degrees of similarity.

5 Conclusion

This paper has investigated some exact properties of tests for spatial autocorrelation in the context of

a linear regression model. We have mainly focused on the case when the disturbances follow a spatial

autoregressive process, in which case it is natural to restrict attention to invariant tests. We have

studied the limiting power of the tests as the autocorrelation parameter goes to the right boundary

of the parameter space, and we have discussed conditions for unbiasedness and monotonicity of the

power function of the tests. The results call for caution in interpreting the outcome of tests for spatial

autocorrelation. In some circumstances, it may prove very difficult to detect spatial autocorrelation

by means of a certain test when the autocorrelation is in fact large. Our results are also relevant

22To see this, write W = D−1A, where A is a symmetric weights matrix and D is the diagonal matrix with

(D)ii =
n
j=1(A)ij , i = 1, ..., n. On setting L = D−1 and normalizing to Σ(0) = I, the mean of the model becomes

proportional to D
1

2 ι, and the variance matrix becomes σ2Σ(ρ) = σ2(I − ρD−
1

2AD−
1

2 )−1. Since ι is an eigenvector

of D−1A, it follows that D
1

2 ι is an eigenvector of D−
1

2AD−
1

2 and hence of Σ(ρ), which implies that Condition B is

satisfied.
23Kadiyala (1970) contains a similar result, Theorem 5, for the Durbin-Watson test.
24 It should be noted that the fact that xi/x̄i is not very sensitive to i does not imply that x is highly autocorrelated. To

see this, suppose, for simplicity, that E(x) = 0, so that the Cliff-Ord statistic associated to x is x0Wx/x0x. Then, under

Condition B, x = fj(W ) and x0Wx/x0x = λj(W ), for some j = 1, ..., n. Note that λ1(W ) ≤ x0Wx/x0x ≤ λn(W ),

so whether x is highly autocorrelated or not (according to the Cliff-Ord statistic) depends on j.
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outside a formal hypothesis testing framework, because nonmonotonicity of the power function implies

that the underlying test statistic, the Cliff-Ord statistic say, cannot be properly interpreted as an

autocorrelation index.

For a fixed weights matrix and a fixed test, it is possible to characterize the matrices X such that

the limiting power vanishes. This will be the object of a separate paper. Another possible extension

of our results would be to allow for misspecification of W (cf. Kelejian and Prucha, 2001, p. 225).

For instance, it would be of interest to study the power properties of a Cliff-Ord test based on some

W , when the data generating process is a spatial autoregression based on a different weights matrix.

Appendix A The Weights Matrices

This appendix discusses the conditions that we have imposed on the weights matricesW . In Section

2.1, we have assumed that (i) (W )ii = 0, for i = 1, ..., n; (ii) (W )ij ≥ 0, for i, j = 1, ..., n; (iii) W is

an irreducible matrix. Condition (i) is assumed for SAR(1) models only for convenience, whereas it

is required for the validity of CAR(1) models (see, e.g., Besag, 1974). Condition (ii) is not required

by the definition of the models, but is virtually always satisfied in empirical applications. Moving to

condition (iii), let us first define an irreducible matrix (e.g., Gantmacher, 1974, Ch. 13).

Definition A.1 A square matrix Q is said to be reducible if there exists a permutation matrix P

such that P 0QP can be written in the form
R T

O S
, where R and S are square matrices; otherwise,

Q is said to be irreducible.

Irreducibility of W is a natural assumption in a spatial context, because it is equivalent to the

condition that the graph with adjacency matrix W (that is, the graph with n vertices and an edge

from vertex i to vertex j if and only (W )ij 6= 0) has a path from any vertex i to any vertex j (see,

e.g., Cvetkovíc et al., 1980, p. 18). The weights matricesW used in spatial autoregressions typically

satisfy this property. In some cases, reducible block diagonal weights matrices with irreducible blocks

are used; e.g., Case (1991). Extensions to cover such matrices are straightforward, but not pursued

in the present paper for the sake of simplicity. More generally, our analysis can be easily extended

to cover the class of weights matrices such that their spectral radius is an eigenvalue with algebraic

multiplicity one; by Theorem A.2 below, such a class is larger than the class of matrices satisfying

conditions (ii) and (iii). Observe that condition (iii) implies that (non-circular) AR(1) models are

not in our class of SAR(1) processes: since time dependence is specified unilaterally, the matrix W

necessary to write an AR(1) process as in equation (3) would be triangular and hence reducible.

Assumptions (ii) and (iii) have the advantage of making the following result available (e.g., Horn

and Johnson, 1985, Theorem 8.4.4).

Theorem A.2 (Perron-Frobenius Theorem) An entrywise nonnegative and irreducible square

matrix always has a positive eigenvalue that has algebraic multiplicity one, is associated to an en-

trywise positive eigenvector, and is non-smaller than the moduli of all other eigenvalues.

In Section 2.1, λmax has been defined as the largest positive eigenvalue ofW . By Theorem A.2, it

would have been equivalent to define it as the spectral radius ofW . In addition, Theorem A.2 implies

that (a) λmax has algebraic (and hence geometric) multiplicity 1; (b) there exists a unique entrywise

positive and normalized (according to the Euclidean norm) eigenvector, denoted by fmax, associated
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to λmax. It is worth pointing out that the value ρ = λ−1max can be interpreted as the analog of a unit

root in an AR(1) model (e.g., Fingleton, 1999; Paulauskas, 2006).

Appendix B Definition of Invariant Tests

Let FX be the group of transformations y → γy +Xδ, for γ ∈ R\{0} and δ ∈ Rk, and let F+X
be the smaller group obtained when γ > 0. In the present paper, invariant tests are defined with

respect to FX , as, for instance, in Berenblut and Webb (1973), because this simplifies the statement

of our results. Some authors (e.g., King, 1988) define invariance of tests for autocorrelation in linear

regression with respect to F+X . The distinction between invariance under FX and invariance under

F+X is not substantive, because tests that are invariant under F+X but not under FX are never used in

practice. Under F+X , a maximal invariant is Cy/ kCyk, and invariant critical regions are defined on

the unit (n− k)-sphere (rather than on a hemisphere, as in Section 2.2). The class of critical regions

that are invariant under FX is equivalent to the class of critical regions that are invariant under F+X

and are centrally symmetric (i.e., they contain a vector t ∈ Rn if and only if they contain −t).

Appendix C The Condition in Proposition 3.8

In this appendix we discuss the necessary and sufficient condition in Proposition 3.8. The condition

is that fmax is an eigenvector of W
0, or, equivalently, that λmax is perfectly well-conditioned (see,

e.g., Golub and Van Loan, 1996, p. 323). The requirement that an eigenvalue is perfectly well-

conditioned is trivially satisfied in the case of a symmetric matrix, but is well-known to be very

restrictive otherwise. Observe that, for any given choice of the neighborhood structure of a set of

observational units (i.e., any choice of the ordered pairs (i, j) such that (W )ij = 0), it is always

possible to take the nonzero elements of W in such a way that λmax is perfectly well-conditioned.

(Start from a nonsymmetric matrix W , and apply the similarity transformation P−1WP , where P

is a diagonal matrix with (P )ii = [(fmax)i/(lmax)i]
1/2, and lmax denotes the left eigenvector of W

associated to λmax. Clearly, the left and the right eigenvector of P
−1WP associated to λmax are

identical, and hence λmax is perfectly well-conditioned.) In general, however, the choice of weights

yielding a perfectly well-conditioned λmax does not correspond to any relevant notion of distance

amongst the observational units. The restrictiveness of the condition that fmax is an eigenvector

of W 0 is very transparent in the case of a row-stochastic W , as emphasized by the following two

propositions. A matrix is said to be row-stochastic if all its row-sums are 1, doubly stochastic if both

itself and its transpose are row-stochastic.

Lemma C.1 Assume that W is row-stochastic. Then, fmax is an eigenvector of W
0 if and only if

W is doubly stochastic.

Proof. If W is row-stochastic, fmax has identical entries. Hence, when W is row-stochastic, fmax

is an eigenvector ofW 0 if and only if the columns ofW , as its rows, sum to 1, that is, if and onlyW

is doubly stochastic.

Clearly, the requirement that a (nonsymmetric) weights matrix is doubly stochastic is very re-

strictive (this can formally be deduced from Birkhoff’s theorem on doubly stochastic matrices, which

states that any such matrix must be a convex combination of permutation matrices; e.g., Horn and
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Johnson, 1985). We remark that the doubly stochastic weights matrices used in Pace and LeSage

(2002) are not relevant here, because they are symmetric.

Lemma C.2 If W is obtained by row-standardization of a symmetric matrix and is nonsymmetric,

then fmax is not an eigenvector of W
0.

Proof. Assume thatW is nonsymmetric and can be written as D−1A, where A is some symmetric

and nonnegative matrix and D 6= I is the diagonal matrix with (D)ii =
Pn

j=1(A)ij , i = 1, ..., n (D

is invertible because W , and hence A, is irreducible). By Lemma C.1, to prove that fmax is not an

eigenvector of W 0, it is sufficient to show that D−1A cannot be doubly stochastic. Suppose that

D−1A is doubly stochastic. Then, (D−1A)0ι = ι. Premultiplying byD−1, we obtainD−1AD−1ι =

D−1ι, which implies that D−1ι is an eigenvector of D−1A associated to the eigenvalue 1. But, ι

is another eigenvector of D−1A associated to the eigenvalue 1. Observe that the eigenvalue 1 has

algebraic multiplicity one by Theorem A.2, because it is the largest positive eigenvalue of D−1A (e.g.,

Gantmacher 1974, p. 83). Since D−1ι and ι are linearly independent, it is impossible that they are

both eigenvectors of D−1A associated to 1, completing the proof.

In view of Proposition 3.8, Lemma C.2 establishes that whenever the weights matrix of a SAR(1)

model is obtained by row-standardization of a symmetric matrix and is nonsymmetric, there are

always values of α such that the limiting power of the Cliff-Ord test or of a test (8) vanishes, even if

the model is not contaminated by regressors.

Appendix D Proofs for Section 3

First, we state four auxiliary lemmata. The first one is a standard result from matrix algebra (see,

e.g., Horn and Johnson, 1985).

Lemma D.1 (Rayleigh-Ritz Theorem) For a q × q symmetric matrix Q, λ1(Q)x
0x ≤ x0Qx ≤

λq(Q)x
0x, for all x ∈ Rq. The equalities on the left and on the right are attained if and only if x is

an eigenvector of Q associated to, respectively, λ1(Q) and λq(Q).

Lemma D.2 Consider a model G(Xβ, σ2[(I − ρW 0)(I − ρW )]−1), where G(μ,Γ) denotes some

multivariate distribution with mean μ and variance matrix Γ. When an invariant critical region for

testing ρ = 0 against ρ > 0 is in form (9), and is such that fmax is not contained in its boundary,

α∗ = Pr(T (z) > T (fmax);z ∼ G(0, I)). (12)

Proof. Consider an invariant critical region Φ in form (9), and assume that fmax /∈ bd(Φ). According
to Corollary 3.4, the limiting power of Φ is 1 if T (fmax) > c. Thus, by Definition 3.7, α∗ = Pr(T (y) >

T (fmax);y ∼ G(Xβ, σ2I)). Such an expression simplifies to (12), due to the invariance of Φ with

respect to the transformations y → γy +Xδ, with γ ∈ R\{0} and δ ∈ Rk.

Lemma D.3 Consider a test that, in the context of a spatial error model with symmetric W , rejects

ρ = 0 for small values of a statistic v0Bv, where B is an (n− k)× (n− k) known symmetric matrix

that does not depend on α, and v is as defined in Section 2.2. Provided that fmax /∈ bd(Φ), α∗ = 0 if
and only if Cfmax ∈ E1(B), and α

∗ = 1 if and only if Cfmax ∈ En−k(B).
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Proof. By Lemma D.2, we have that, when Cfmax 6= 0, α
∗ = 0 if and only if Cfmax/ kCfmaxk =

argmax
v0v=1

{v0Bv}, and α∗ = 1 if and only if Cfmax/ kCfmaxk = argmin
v0v=1

{v0Bv}. The proposition

follows by Lemma D.1.

Lemma D.4 For any weights matrix W , rank((I − λ−1maxW
0)(I − λ−1maxW )) = n− 1.

Proof. The result follows from observing that, by Theorem A.2, rank(I − λ−1maxW
0) = n − 1, and

that rank(Q0Q) = rank(Q) for any matrix Q (e.g. Horn and Johnson, 1985, p. 13).

Next, we prove all results in Section 3.

Proof of Theorem 3.1. For any 0 < ρ ≤ a, let ε := Σ−1/2(ρ)u, where Σ1/2(ρ) is the (unique)

square root of Σ(ρ), and let g(ε) denote the density of ε. Rewrite model (1) as y =Xβ+Σ1/2(ρ)ε.

By the change of variables theorem, the density of y is

f(y) =
¯̄
¯det(Σ−1/2(ρ))

¯̄
¯ g(Σ−1/2(ρ)(y −Xβ)). (13)

Expression (13) is useful to establish the limiting behavior of f(y) as ρ → a. Observe that the term¯̄
¯det(Σ−1/2(ρ))

¯̄
¯ vanishes as ρ → a, because rank(Σ−1(a)) = n − 1. Next, recall that in Section 2.1

we have assumed that the density of u is larger at 0 than anywhere else. Hence, as ρ → a, the

term g(Σ−1/2(ρ)(y − Xβ)) is maximized at the points y such that Σ−1/2(a)(y − Xβ) = 0, or,

equivalently, y −Xβ ∈ N (Σ−1/2(a)), where N (Q) denotes the nullspace of a matrix Q. Note that
N (Σ−1/2(ρ)) = N (Σ−1(a)) = E1(Σ

−1(a)). Combining the above observations, we obtain that, as

ρ→ a, f(y) tends to a degenerate density supported on the set Λ := {y ∈ Rn : y−Xβ ∈ E1(Σ
−1(a))},

i.e., on the translation byXβ of the subspace E1(Σ
−1(a)). Now, the limiting power of a critical region

for testing ρ = 0 is the probability content of that region under f(y), as ρ → a. Thus, the limit of

the power function depends on the position of the critical region in Rn relative to Λ. In particular, if

int(Φ) \E1(Σ
−1(a)) has measure zero, then the limiting power must be 1; if E1(Σ

−1(a)) ∩ cl(Φ) has
measure zero, then the limiting power must vanish. Such conditions can be simplified, because, by the

invariance of Φ with respect to the transformations y → γy +Xδ, γ ∈ R\{0}, δ ∈ Rk, we can focus
on an arbitrary point in E1(Σ

−1(a)). The first and the third case in the statement of the theorem are

obtained by taking any of the two points identified by f1(Σ
−1(a)). To complete the proof, we only

need to establish what happens when f1(Σ
−1(a)) ∈ bd(Φ). In that case, the limiting power depends

on how the distribution of y tends to the degenerate distribution on Λ, which in turn depends on n,

X and W . For a given triplet n, X and W , the power approaches, as ρ → a, some value in (0, 1);

the extremes 0 and 1 are excluded because, by assumption, 0 < α < 1 and the density of u, and hence

that of y, is continuous in ρ.

Proof of Corollary 3.4. For a SAR(1) process, f1(Σ
−1(λ−1max)) = fmax becauseΣ

−1(λ−1max)fmax =

(I−λ−1maxW 0)(I−λ−1maxW )fmax = (1−λ−1maxλmax)(I−λ−1maxW 0)fmax = 0. In addition,Σ(ρ) is positive

definite as ρ→ λ−1max, and rank(Σ
−1(λ−1max)) = n− 1 by Lemma D.4. The corollary then follows from

Theorem 3.1.

Proof of Proposition 3.8. Observe that if fmax is an eigenvector ofW
0, then it must be associated

to λmax. To see this, call ϕ the eigenvalue of W 0 associated to fmax. Then W
0fmax = ϕfmax,

and hence f 0maxW
0fmax = ϕ. But, since Wfmax = λmaxfmax, it also holds that f

0
maxWfmax =

f 0maxW
0fmax = λmax. Thus ϕ = λmax. Let now Γ (ρ) := [(I − ρW 0)(I − ρW )]−1. When X = O,
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the Cliff-Ord test and test (8) reject for small values of, respectively, v0(−W )v and v0Γ−1(ρ̄)v. By

Lemma D.3 with B = Γ−1(ρ̄), in order to prove that the limiting power of test (8) is 1 for any α,

we need to show thatW 0fmax = λmaxfmax is necessary and sufficient for fmax ∈ En(Γ (ρ̄)). Clearly,

if this holds for any ρ̄ > 0, it holds for ρ̄ → 0 too, establishing also the part of the proposition

regarding the Cliff-Ord test. Starting from the necessity, we show that if fmax ∈ En(Γ (ρ̄)), then

fmax is an eigenvector of W
0 (the corresponding eigenvalue being λmax by the above argument). If

Γ (ρ̄)fmax = λn(Γ (ρ̄))fmax, then Γ
−1(ρ̄)fmax = λ−1n (Γ (ρ̄))fmax. From the latter equation we have

(1− ρ̄λmax)(I − ρW 0)fmax = λ−1n (Γ (ρ̄))fmax, which requires fmax to be an eigenvector of I − ρW 0

and hence of W 0. Turning to the sufficiency, note that if W 0fmax = λmaxfmax, then fmax is an

eigenvector of Γ (ρ̄), for any ρ̄ > 0. Also, observe that Γ (ρ̄) is entrywise positive, for any ρ̄ > 0

(see, e.g., Gantmacher 1974, p. 69). Since an entrywise positive matrix is nonnegative irreducible, it

follows, by Theorem A.2, that any vector in En(Γ (ρ̄)) is entrywise positive (or entrywise negative),

for any ρ̄ > 0. But fmax is also entrywise positive, by Theorem A.2 applied toW . Hence, fmax must

be in En(Γ (ρ̄)), for any ρ̄ > 0, because otherwise, by the symmetry of Γ (ρ̄), it should be orthogonal

to an entrywise positive vector, which is impossible. This completes the proof of the proposition.

Proof of Proposition 3.11. By straightforward modification of the argument in the proof of

Theorem 3.1, model (10) tends, as ρ → λ−1max, to be supported on the subspace E1(Σ
−1(λ−1max)), the

only difference with respect to the case of model (1) being that no translation by Xβ is necessary.

Thus, for model (10), Theorem 3.1 does not require invariance of Φ with respect to y → y +Xδ,

δ ∈ Rk. The proof is completed as in Corollary 3.4, because the variance matrix of model (10) is the
same as that of a spatial error model.

Appendix E Proofs for Section 4

We need the following four auxiliary lemmata. For the first one, see, e.g., Horn and Johnson (1985).

Lemma E.1 (Poincaré Separation Theorem) Let Q be an n × n symmetric matrix, and C an

(n− k)× n matrix such that CC0 = In−k. Then, λl(Q) ≤ λl(CQC
0) ≤ λk+l(Q), for l = 1, ..., n− k.

Lemma E.2 Let R(ρ̄) := I −X(X 0Σ−1(ρ̄)X)−1X 0Σ−1(ρ̄), for any 0 < ρ̄ < λ−1max. Then,

v0
¡
CΣ(ρ̄)C0

¢−1
v =

y0Σ−1(ρ̄)R(ρ̄)y
y0MXy

.

Proof. Immediate from Lemma 2 of King (1980).

Lemma E.3 Let 0 ≤ a1 ≤ a2 ≤ ... ≤ ar, b1 ≥ b2 ≥ ... ≥ br ≥ 0 and pi > 0, i = 1, ..., r. Then
Pr

i=1 piai
Pr

i=1 pibi ≥
Pr

i=1 pi
Pr

i=1 piaibi, with equality if and only if all ai or all bi are equal.

Proof. The lemma is a particular case of Tchebychef’s inequality (e.g., Hardy et al., 1952, Theorem

43).

Lemma E.4 Consider, in the context of a spatial error model, testing ρ = 0 against ρ > 0 by means

of the Cliff-Ord test or of a test (8). Provided that fmax /∈ col(X), α∗ = 0 if En−k(CΣ(ρ)C
0) does

not depend on ρ for ρ > 0.
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Proof. In this proof all limits are taken as ρ → λ−1max, and Σ(ρ) denotes the variance matrix of

a SAR(1) model. Consider the spectral decomposition Σ(ρ) =
Pn

i=1 λi(Σ(ρ))f i(Σ(ρ))f
0
i(Σ(ρ)).

By Lemma D.4, limλn(Σ(ρ)) = +∞ and −∞ < limλi(Σ(ρ)) < +∞, for i = 1, ..., n − 1. Thus,
limλ−1n (Σ(ρ))CΣ(ρ)C0 = C

£
limfn(Σ(ρ))f

0
n(Σ(ρ))

¤
C0. Observe that limfn(Σ(ρ)) = fmax, be-

cause, as we have established in the proof of Corollary 3.4, f1(Σ
−1(λ−1max)) = fmax. So,

limλ−1n (Σ(ρ))CΣ(ρ)C0 = Cfmaxf
0
maxC

0.

Let us assume that fmax /∈ col(X). Then, rank(Cfmaxf 0maxC0) = 1. The nonzero eigenvalue of

Cfmaxf
0
maxC

0 is λ̄ := f 0maxMXfmax and is associated to the eigenvector Cfmax, because

(Cfmaxf
0
maxC

0)Cfmax = Cfmaxf
0
maxMXfmax = λ̄Cfmax.

Since the eigenvalues of a matrix are continuous in the matrix entries, we also have that Cfmax span

the 1-dimensional eigenspace of limCΣ(ρ)C 0 associated to the eigenvalue lim[λn(Σ(ρ))λ̄] = +∞,
where the positive sign follows from the fact that λ̄ > 0, by Lemma E.1. So far, we have thus

established that if fmax /∈ col(X), then limEn−k(CΣ(ρ)C
0) is 1-dimensional and contains Cfmax.

Now, if En−k(CΣ(ρ)C
0) does not depend on ρ for ρ > 0, it must be spanned by Cfmax for any ρ > 0.

Lemma D.3 with B = (CΣ(ρ̄)C 0)−1 then implies that, for a test (8), α∗ = 0. Since this property

holds for any ρ̄ > 0, it also holds for the Cliff-Ord test, completing the proof.

Two particular cases that are easily seen to satisfy the condition in Lemma E.4 are: (i) W

symmetric and X = O; (ii) W symmetric and fmax ⊥ col(X). We can now prove all results in

Section 4.

Proof of Proposition 4.1. Under Gaussianity, a POI critical region is defined by (8). By Lemma

E.2, for any size α, its power can be written as

πρ̄(ρ) = Pr

µ
y0Σ−1(ρ̄)R(ρ̄)y

y0MXy
< c; y ∼ N(Xβ, σ2Σ(ρ))

¶
. (14)

Since the the critical region is invariant, (14) simplifies to

πρ̄(ρ) = Pr

µ
y0Σ−1(ρ̄)R(ρ̄)y

y0MXy
< c; y ∼ N(0,Σ(ρ))

¶
.

Under Conditions A and B, R(ρ̄) =MX and Σ(ρ̄)X = XQ, for any ρ̄ > 0 and for some invertible

matrix Q. It follows that, under the two conditions, the matrices Σ−1(ρ̄) andMX commute for any

ρ̄ > 0. Hence,

πρ̄(ρ) = Pr

µ
z0Σ(ρ)Σ−1(ρ̄)MXz

z0Σ(ρ)MXz
< c; z ∼ N(0, I)

¶
.

Under Conditions A and B, the matrixMX has a zero eigenvalue with eigenspace spanned by the k

eigenvectors of Σ(ρ) that are in col(X), and an eigenvalue equal to 1 with eigenspace spanned by the

remaining eigenvectors of Σ(ρ). Let H denote the set of indexes i of the n− k eigenvalues λi(Σ(ρ))

associated to a set of linearly independent eigenvectors of Σ(ρ) that are not in col(X). Note that,

when Condition A holds, H does not depend on ρ. Under Conditions A and B, the power of a POI

critical region can therefore be expressed as

πρ̄(ρ) = Pr

ÃP
i∈H λi(Σ(ρ))λ

−1
i (Σ(ρ̄))z2iP

i∈H λi(Σ(ρ))z2i
< c

!
, (15)
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and its size as

α = Pr

µ
z0Σ−1(ρ̄)MXz

z0MXz
< c

¶
= Pr

ÃP
i∈H λ−1i (Σ(ρ̄))z2iP

i∈H z2i
< c

!
. (16)

Now, by Lemma E.3 with ai = λi(Σ(ρ)), bi = λ−1i (Σ((ρ̄)), and pi = z2i , for i ∈ H, we have

X

i∈H
λi(Σ(ρ))z

2
i

X

i∈H
λ−1i (Σ(ρ̄))z2i ≥

X

i∈H
z2i
X

i∈H
λi(Σ(ρ))λ

−1
i (Σ(ρ̄))z2i , (17)

for any z ∈ Rn. Rearranging the terms of the above inequality, we obtain that, for any ρ̄ > 0, any

ρ > 0 and any α, the statistic appearing in expression (15) is stochastically larger (e.g., Lehmann

and Romano, 2005, p. 70) than that appearing in expression (16). We have thus established that

πρ̄(ρ) ≥ α. The latter inequality is strict, except when (17) holds with equality, which, by Lemma

E.3, occurs if and only if all the λi(Σ(ρ)), i ∈ H, are the same. But, by the definition of H plus

the fact that the fi(Σ(ρ)), i = 1, ..., n, are mutually orthogonal, the condition that all the λi(Σ(ρ)),

i ∈ H, are the same is equivalent to the condition that col⊥(X) ⊆ Ei(Σ(ρ)), for some i = 1, ..., n.

This completes the proof of the part of the proposition relative to POI tests. But, if the proposition

holds for any POI test, i.e. for any ρ̄ > 0, then it must also hold for the LBI test (i.e., test (7) with

Q = dΣ(ρ)/dρ|ρ=0), since the latter test is the limiting case of a POI test as ρ̄→ 0.

Proof of Lemma 4.2. Clearly, two invertible matrices commute if and only if their inverses

commute. Thus, Condition A requires that Σ−1(ρ1) and Σ
−1(ρ2) commute for any ρ1, ρ2 > 0. For a

SAR(1) model, Σ−1(ρ) = I− ρ(W 0+W )+ ρ2W 0W , and hence Condition A is verified if and only if

WW 0 =W 0W , i.e., W is normal. To complete the proof, it remains to show that a nonsymmetric

W that is obtained by row-standardization of a symmetric matrix cannot be normal. This follows

from Lemma C.2, because if W were normal, then fmax should be an eigenvector of W
0 associated

to λmax.

Proof of Proposition 4.3. Assume that W is symmetric, and let, for notational convenience,

τ i(ρ) := 1 − ρλi(W ), i = 1, ..., n. When 0 ≤ ρ < λmax, we have λi(Σ(ρ)) = τ−2i (ρ), i = 1, ..., n.

Inserting such expressions in equation (15), we obtain that the power function of the POI test is

nondecreasing in ρ if and only if the statistic

tρ̄(ρ) :=

(
X

i∈H

1

τ2i (ρ)
z2i

)−1X

i∈H

τ2i (ρ̄)

τ2i (ρ)
z2i (18)

is nonincreasing in ρ for any vector z ∈ Rn. The condition dtρ̄(ρ)/dρ ≤ 0 gives
X

i∈H

1

τ2i (ρ)
z2i
X

i∈H

2λi(W )τ2i (ρ̄)

τ3i (ρ)
z2i −

X

i∈H

τ2i (ρ̄)

τ2i (ρ)
z2i
X

i∈H

2λi(W )

τ3i (ρ)
z2i ≤ 0,

which can be rewritten as

2
X

i,j∈H
aijz

2
i z
2
j ≤ 0, (19)

with

aij := λj(W )
τ2j(ρ̄)− τ2i (ρ̄)

τ2i (ρ)τ
3
j (ρ)

.

26



Note that, for each i, j ∈ H such that i 6= j,

aij + aji =

∙
λj(W )

τ j(ρ)
− λi(W )

τ i(ρ)

¸
τ2j (ρ̄)− τ2i (ρ̄)

τ2i (ρ)τ
2
j(ρ)

= [λj(W )− λi(W )]
τ2j (ρ̄)− τ2i (ρ̄)

τ3i (ρ)τ
3
j(ρ)

≤ 0,

with equality if and only if λi(W ) = λj(W ), because τ i(ρ) and τ j(ρ) are positive, and τ
2
j(ρ̄)−τ2i (ρ̄) =

[1− ρ̄λj(W )]2− [1− ρ̄λi(W )]2 is positive, negative or zero, if λj(W )−λi(W ) is, respectively, negative,

positive or zero. Since, in addition, aii = 0, for each i ∈ H, it follows that (19) holds, with equality

if and only if all the λi(Σ(ρ)), i ∈ H, are the same. This is the same condition that leads to equality

in (17), so the proof can be completed in exactly the same way as the proof of Proposition 4.1.

Proof of Proposition 4.4. Assume that W is symmetric, so that the variance matrix of a

SAR(1) model is Γ (ρ) := (I − ρW )−2 (having taken σ2 = 1, without loss of generality). Since

the f i(W ), i = 1, ..., n, are orthogonal, it follows that, under Condition B, if f i(W ) /∈ col(X),
then f i(W ) ∈ col⊥(X), for any i = 1, ..., n. Thus, when f i(W ) /∈ col(X), i = 1, ..., n, we have

CΓ(ρ)C 0Cf i(W ) = CΓ(ρ)MXf i(W ) = CΓ(ρ)f i(W ) = λi(Γ(ρ))Cf i(W ). That is, Cf i(W ),

i ∈ H, withH as defined in the proof of Proposition 4.1, are n−k orthogonal eigenvectors of CΓ(ρ)C0.

This implies, in particular, that En−k(CΓ(ρ)C
0) does not depend on ρ. Then, the proposition follows

by Corollary 3.4, Lemma E.4 and Proposition 4.3.
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Figure 1: Maps of the 17 counties in Nevada (left) and the 23 counties in Wyoming (right).

Figure 2: The power function of the Cliff-Ord test (solid line) and the envelope πρ(ρ) (dashed line) for the

pure SAR(1) model described in Example 3.9.



Table 1: Average correlation between neighbors (minimum and maximum correlation in parentheses) and

percentage frequency distribution of the power πCO(ρ) of the Cliff-Ord test, in model y = Xβ + u, where

u is a Gaussian SAR(1) process and X contains an intercept and a standard normal variate. The power is

computed by the Imhof method over 106 replications of X, with α = 0.05.

av. neigh. πCO(ρ)

ρλmax correlation 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

Nevada

binary W
0.90 0.85

(0.70−0.93)
0.11 0.25 28.42 71.05 0.17 · ·

0.95 0.95
(0.87−0.98)

0.29 5.75 36.29 53.43 4.11 0.13 ·

row-st W
0.90 0.88

(0.81−0.93)
· · 0.02 0.16 41.47 58.35 ·

0.95 0.96
(0.93−0.98)

· · 0.01 0.05 1.56 98.38 ·

Wyoming

binary W
0.90 0.80

(0.60−0.92)
· · · 0.02 0.69 99.29 ·

0.95 0.92
(0.77−0.98)

· · · 0.02 0.10 1.76 98.12

row-st W
0.90 0.85

(0.76−0.92)
· · · · · 0.50 99.50

0.95 0.95
(0.90−0.97)

· · · · · · 100

Table 2: Minimum, maximum, average α∗ (standard deviation of α∗ in parentheses), frequency of zero

limiting power, and average shortcoming of the Cliff-Ord test, for a binary W .

average shortcoming average shortcoming

at ρλmax = 0.90 at ρλmax = 0.95

minα∗ maxα∗ average α∗ frequency πCO(ρ)→ 0 πCO(ρ)→ 1 πCO(ρ)→ 0 πCO(ρ)→ 1

Nevada 2.8 · 10−4 0.994 0.082
(0.061)

0.77 0.20 0.16 0.32 0.24

Wyoming 8.6 · 10−7 0.430 5.6 · 10−4
(2.8·10−3)

5.2·10−4 0.15 0.03 0.26 0.02


