Chernobai, Anna and Burnecki, Krzysztof and Rachev, Svetlozar and Trueck, Stefan and Weron, Rafal (2005): Modelling catastrophe claims with lefttruncated severity distributions (extended version).

PDF
MPRA_paper_10423.pdf Download (395kB)  Preview 
Abstract
In this paper, we present a procedure for consistent estimation of the severity and frequency distributions based on incomplete insurance data and demonstrate that ignoring the thresholds leads to a serious underestimation of the ruin probabilities. The event frequency is modelled with a nonhomogeneous Poisson process with a sinusoidal intensity rate function. The choice of an adequate loss distribution is conducted via the insample goodnessoffit procedures and forecasting, using classical and robust methodologies.
This is an extended version of the article: Chernobai et al. (2006) Modelling catastrophe claims with lefttruncated severity distributions, Computational Statistics 21(34): 537555.
Item Type:  MPRA Paper 

Original Title:  Modelling catastrophe claims with lefttruncated severity distributions (extended version) 
Language:  English 
Keywords:  Natural Catastrophe, Property Insurance, Loss Distribution, Truncated Data, Ruin Probability 
Subjects:  C  Mathematical and Quantitative Methods > C1  Econometric and Statistical Methods and Methodology: General > C13  Estimation: General G  Financial Economics > G2  Financial Institutions and Services > G22  Insurance; Insurance Companies C  Mathematical and Quantitative Methods > C2  Single Equation Models; Single Variables > C24  Truncated and Censored Models; Switching Regression Models C  Mathematical and Quantitative Methods > C1  Econometric and Statistical Methods and Methodology: General > C15  Statistical Simulation Methods: General 
Item ID:  10423 
Depositing User:  Rafal Weron 
Date Deposited:  13. Sep 2008 00:40 
Last Modified:  16. Feb 2013 01:10 
References:  Bee, M. (2005), On maximum likelihood estimation of operational loss distributions, Technical Report 3, University of Trento. Bierbrauer, M., Trueck, S. & Weron, R. (2004), ‘Modeling electricity prices with regime switching models’, Lecture Notes in Computer Science 3039, 859–867. Burnecki, K., Haerdle, W. & Weron, R. (2004), An introduction to simulation of risk processes, in J. Teugels & B. Sundt, eds, ‘Encyclopedia of Actuarial Science’, Wiley, Chichester. Burnecki, K., Kukla, G. & Weron, R. (2000), ‘Property insurance loss distributions’, Physica A 287, 269–278. Burnecki, K., Misiorek, A. & Weron, R. (2005), Loss distributions, in P. Cizek, W. Haerdle & R. Weron, eds, ‘Statistical Tools for Finance and Insurance’, Springer, Berlin. Burnecki, K. & Weron, R. (2005), Modeling of the risk process, in P. Cizek, W. Haerdle & R. Weron, eds, ‘Statistical Tools for Finance and Insurance’, Springer, Berlin. Chernobai, A., Menn, C., Trueck, S. & Rachev, S. (2005a), ‘A note on the estimation of the frequency and severity distribution of operational losses’, Mathematical Scientist 30(2). Chernobai, A., Rachev, S. & Fabozzi, F. (2005b), Composite goodnessoffit tests for lefttruncated loss samples, Technical report, University of California Santa Barbara. Chernobai, A., Trueck, S., Menn, C. & Rachev, S. (2005c), Estimation of operational ValueatRisk with minimum collection thresholds, Technical report, University of California Santa Barbara. Dempster, A., Laird, N. & Rubin, D. (1977), ‘Maximum likelihood from incomplete data via the em algorithm’, Journal of the Royal Statistical Society, Series B (Methodological) 39(1), 1–38. Embrechts, P., Klueppelberg, C. & Mikosch, T. (1997), Modeling Extremal Events for Insurance and Finance, SpringerVerlag, Berlin. Figueiredo, M. A. T. & Nowak, R. D. (2003), ‘An em algorithm for waveletbased image restoration’, IEEE Transactions on Image Processing 12(8), 906–916. Grandell, J. (1991), Aspects of Risk Theory, SpringerVerlag, New York. Hampel, F. R., Ronchetti, E. M., Rousseeuw, R. J. & Stahel, W. A. (1986), Robust Statistics: The Approach Based on Influence Functions, Wiley & Sons. Huber, P. J. (2004), Robust Statistics, John Wiley & Sons, Hoboken. Klugman, S. A., Panjer, H. H. & Willmot, G. E. (1998), Loss Models: From Data to Decisions, Wiley, New York. Knez, P. J. & Ready, M. J. (1997), ‘On the robustness of size and booktomarket in crosssectional regressions’, Journal of Finance 52, 1355–1382. Kremer, E. (1998), Largest claims reinsurance premiums for the Weibull model, in ‘Blaetter der Deutschen Gesellschaft fur Versicherungsmathematik’, pp. 279–284. Madan, D. B. & Unal, H. (2004), Riskneutralizing statistical distributions: with an application to pricing reinsurance contracts on FDIC losses, Technical Report 200401, FDIC, Center for Financial Research. Martin, R. D. & Simin, T. T. (2003), ‘Outlier resistant estimates of beta’, Financial Analysts Journal 59, 56–69. McLachlan, G. & Krishnan, T. (1997), The EM Algorithm and Extensions, Wiley Series in Probability and Statistics, John Wiley & Sons. Meng, X.L. & van Dyk, D. (1997), ‘The em algorithm  an old folksong sung to a fast new tune’, Journal of the Royal Statistical Society, Series B (Methodological) 59(3), 511–567. Mittnik, S. & Rachev, S. T. (1993a), ‘Modelling asset returns with alternative stable distributions’, Econometric Reviews 12, 261–330. Mittnik, S. & Rachev, S. T. (1993b), ‘Reply to comments on modelling asset returns with alternative stable distributions and some extensions’, Econometric Reviews 12, 347–389. Panjer, H. & Willmot, G. (1992), Insurance Risk Models, Society of Actuaries, Schaumburg. Patrik, G. (1981), Estimating casualty insurance loss amount distributions, in ‘Proceedings of the Casualty Actuarial Society’, Vol. 67, pp. 57–109. Rousseeuw, P. J. & Leroy, A. M. (2003), Robust Regression and Outlier Detection, John Wiley & Sons, Hoboken. SwissRe (2004), ‘Sigma preliminary report’. 
URI:  http://mpra.ub.unimuenchen.de/id/eprint/10423 