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Abstract

The objective of this work is to try to define and calculate the optimal
growth path, in the presence of exogenous technical change, without resorting
to the discounted-sum criterion. The solution suggested is to consider an op-
timality criterion expressing an Allais-anonymous intergenerational consensus.
The partial characterization of consensual optimality was made possible thanks
to the decomposition of the dual of the space of sub-geometric sequences of
reason p. The main finding is a relation between the marginal rate of substi-
tution between bequest and heritage, and the growth rate, relation which is
a necessary condition for consensual optimality. The necessary study of the
Pareto-optimality of the consensual optimum is the subject of a forthcoming
paper "Allais-anonymity as an alternative to the discounted-sum criterion in
the calculus of optimal growth II: Pareto optimality and some economic inter-
pretations".

JEL classification: D90; C61; D71;D63; O41; O30.

Keywords: Intergenerational anonymity; Intergenerational equity; Optimal
growth; Technical change; Time-preference; Discounted-sum criterion; Consen-
sual criterion; OG economy.
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1 Introduction

The question of the modeling of the intertemporal choice, or more particu-
larly that of the intergenerational choice, is significant for the normative prob-
lem of the definition of optimal growth. The obvious reason is that any the-
ory on economic dynamics depends on this modeling. Since [Koopmans 1960,
Koopmans-Diamond-Williamson 1964, Diamond 1965], the social choice theory
tries to propose an axiomatization of the intergenerational choice which makes
it possible indeed to model it. There is a rather rich series of work which
studies compatibility between the various desirable properties of the intergen-
erational choice ([Fleurbaey-Michel 2003, Lauwers 2000] offer useful syntheses
starting from different approaches). Anonymity, which is, roughly speaking,
insensitivity to permutations on the generations, is one of these properties.
Although certain questions related to this property, such as for example the

question of the degree of anonymity to require ([Lauwers 1998, Fleurbaey-Michel 2003,
Mitra-Basu 2005]), or that of the incompatibility with the sensitivity to short-
run changes (which can be regarded as the main topic of the line of research
initiated by [Koopmans 1960] and continued, among others, by [Diamond 1965],
[Svensson 1980], [Chichilnisky 1996], [Lauwers 1998], [Mihara 1999], [Basu-Mitra 2003],
[Fleurbaey-Michel 2003], [Sakai 2003b], [Bossert-Sprumont-Suzumura 2004]
[Blackorby-Bossert-Donaldson 2005], [Hara-Shinotsuka-Suzumura-Xu 2005]

and [Asheim-Mitra-Tungodden 2006]), are still open questions, the objective
of this work is to try to define and calculate the optimal growth path on the
basis of an anonymous intergenerational consensus.
The reason of this orientation is the conviction that the traditional criterion

of the exponential discounted-sum of utility levels, based on time-preference
assumptions, presents even more disadvantages than anonymity and thus, it
should be avoided. Section 2 presents a summary discussion of the problems
related to anonymity and the discounted-sum, although a thorough analysis of
these problems, which should include a comparison of intergenerational choice
axioms, exceeds the range of this work, restricted to presenting an optimality
criterion then to calculating and commenting on the optimal path thus obtained.
In growth theory, one can distinguish three major approaches to model in-

tergenerational choice.
The traditional approach is that of the exponential discounted-sum.
[Frederick-Loewenstein-O’Donoghue 2002] offers an overall picture of research

on this approach and close methods. A question arises then: which discount rate
to choose?[Bayer-Cansier 1998, Guesnerie 2004, Gollier 2002, Gollier 2004].
The second approach is the recursive approach. Generally, this approach is

used to be freed from the assumption of time-additively separable preferences.
That makes it possible to consider a discount rate depending on the level of
instantaneous consumption (or utility) and to thus solve the Ramsey problem
which is that the assumption of time-additively separable preferences leads to
the conclusion that in the long run, the most patient agent will own all the
wealth ([Boyd 1990, Farmer-Lahiri 2005, Le Van-Vailakis 2005]).
The recent contribution [Asheim-Mitra-Tungodden 2006] shows that this ap-
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proach extends beyond the discounted-sum to include representable intergener-
ational preferences checking conditions of intergenerational equity.
The third approach, and the one of interest here, consists in maximizing the

criterion
Ψ0 = lim

n
Un

where Un is the utility level of the n-th generation. Since [Samuelson 1958], this
approach is often used by macroeconomists when working in an OG context. It
is also called: the maximization of the utility of the representative agent (for
example: [Groth 2003, Heidjra-van der Poeg 2002, Mankiw 2001]) or the green
golden rule [Beltratti-Chichilnisky-Heal 1994, Heal 2001].
Why being interested more particularly in the third approach? The rea-

son is that it seems to me that it is the most intuitive criterion satisfying
anonymity. Indeed, it is obvious that the discounted-sum approach does not
satisfy anonymity. As for the recursive approach as extended by
[Asheim-Mitra-Tungodden 2006], it can give place to various criteria accord-

ing to the axioms used. It is probable that one could also characterize Ψ0 in this
manner. That would be certainly advantageous within the framework of a com-
parative analysis of optimality criteria. But although such a work is essential,
it clearly exceeds the object of this paper.
The definition of anonymity that I use here (see section 7), is different from

other versions met in the literature, although they both imply that the criterion
is insensitive to finite permutations. I chose label "Allais-anonymity", since the
concept was suggested by a passage from [Allais 1947] (quoted in section 2). In
fact, I chose the definition which appeared to me easiest to handle in the context
of the assumptions of the present paper and sufficiently expressing the idea of an
equal importance of the generations to the eyes of the criterion, without seeking
to compare between the various definitions which one finds in the literature. As
said above, that is not in the range of this paper.
I show that criterion Ψ0 is closely related to any Allais-anonymous criterion.

The property of Allais-anonymity presupposes that the criterion is differentiable
using the supmetric (continuity and differentiability are considered in the sup-
metric throughout the paper). This is in conformity with [Lauwers 1998] who
proves that criterion Ψ0, or rather its linear extension to nonsteady states ,
which corresponds to medial limits, are the only continuous linear criteria sat-
isfying anonymity (in the sense of [Lauwers 1998]).
The followed method is to consider a social welfare function Ψ checking

Allais-anonymity and to show that the differential of Ψ is a generalization of
criterion Ψ0 to sequences not necessarily bounded and convergent. Then, one
quite simply characterizes the optimum by the nullity of the differential of Ψ
with respect to state variables k1, k2...(see section 3).
This formalization can be regarded as complementary to the various ap-

proaches of intertemporal modeling quoted above, to the extent that these
approaches are applied to the intra-life intertemporal choice and the present
approach to the intergenerational choice. It is an extension of [Mabrouk 2005]
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to economies with exogenous technical change. Let’s announce that, compared
to [Mabrouk 2005], I replaced the word "egalitarianism" by "Allais-anonymity".
Admittedly, for certain simple models, it is possible to calculate the optimum

(with respect to criterion Ψ0) in the case of a stationary state or stationary
growth by maximizing by a direct calculation the utility of the representative
agent, like in [Samuelson 1958]. However, on the one hand that shows that
the stationary state dominates the other stationary states but there remains
possible that it is dominated by a nonstationary state. In addition, as soon as
the model is more elaborate, direct calculation is not possible any more. It is
the case for example if one adopts the continuous-time neoclassical OG model
with exogenous neutral technical change (see example 1).
In this case, it is necessary to consider a numerical resolution. The theoret-

ical framework that I propose here makes it possible to determine a first order
condition on the sequence (Un) called bequest-rule, condition which adapts well
to numerical calculation.
On the technical level, the first order condition characterizing the maximizer

of the intergenerational optimality criterion is obtained thanks to the decompo-
sition of the dual of lp∞, the space of sub-geometric sequences of reason p (see
section 4). [Le Van-Saglam 2004] have already applied a similar decomposition
(concerning the dual of l∞) for the determination of the Lagrange multipliers
associated with optimization of models similar to that of the present work :
OG economy with infinite horizon. [Chichilnisky 1996] and [Lauwers 1998] used
a similar theorem of decomposition, applicable to measures on N (Yosida and
Hewitt theorem).
It remains to be announced that, in accordance with the well-known in-

compatibility between continuous anonymity and the weak Pareto property1

([Fleurbaey-Michel 2003]), the welfare relation induced by Ψ is not paretian.
Hence, it is not sure that any solution of the first order condition is Pareto
optimal (section 2). In this case (non Pareto-optimality), it would be difficult
to qualify this solution as an optimal growth path. It is thus necessary to study
Pareto optimality separately. This is why the calculation of the optimum will
be done in two stages: the present paper, limited to optimality according to the
criterion Ψ, called consensual optimality (for reasons explained in section 2),
and then the Pareto-optimality which, to respect a correct size for the present
paper, will be treated in a forthcoming article : "Allais-anonymity as an al-
ternative to the discounted-sum criterion in the calculus of optimal growth II:
Pareto optimality and some economic interpretations" (indicated from now on
by the abbreviation: Allais-anonymity II).
The paper is organized as follows. Section 2 discusses anonymity. Section 3

presents the model and defines the optimal growth path. Section 4 presents the
formal properties of mathematical spaces as well as the decomposition lemma.
Section 5 presents the assumptions on the sequence of utility functions (Ui).

1A relation E defined on the set of real sequences satisfies the weak Pareto property iff
(uj ≺ vj∀j) =⇒ (uj) C (vj) where C is the asymetric part of E.
The relation satisfies the strong Pareto property, or is paretian, iff

(uj ≤ vj∀j and ∃i : uj ≺ vj) =⇒ (uj) C (vj)
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Section 6 establishes the differentiability of the sequence (Ui) under the assump-
tions of section 5. Sections 4,5 and 6 relate to the techniques of calculation. The
reader who wishes to avoid these questions can thus pass directly to the sec-
tion 7 which lays down the first-order condition characterizing the consensual
optimum (the bequest-rule). Lastly, section 8 gives all the formal proofs.

2 Anonymity and the consensual criterion

2.1 The shortcomings of the discounted-sum criterion

The time-preference assumption consists in always preferring to consume the
same good today rather than tomorrow, all other things being equal. This
assumption may be acceptable on an individual level. But it is much less when
one transposes it on an intergenerational level. To support this claim, I give the
following quotations:
[Sidgwick 1907] p.414 , quoted by [Bossert-Sprumont-Suzumura 2004] p.1:

"the time at which a man exists cannot affect the value of his hap-
piness from a universal point of view"

[Arrow 1995] p.12, quoting the adversaries of "pure time preference" or "so-
cial time preference", what includes intergenerational time preference:

"But the presence of pure time-preference, denoted by ρ, has been
very controversial. The English economists, in particular, have tended
to be very scornful of pure time preference. Pigou (1932, p.25)
stated rather politely that pure time preference "implies...our tele-
scopic faculty is defective". Ramsey and Harrod were more morally
assertive. Ramsey (1928, p261): "[I]t is assumed that we do not dis-
count later enjoyments in comparison with earlier ones, a practice
which is ethically indefensible and arises merely from the weakness
of the imagination". Harrod (1948, p40): "[P]ure time preference
[is] a polite expression of rapacity and the conquest of reason by
passion". Koopmans, who has in fact given the basic argument for
discounting, nevertheless holds "an ethical preference for neutrality
as between the welfare of different generations" (1965, p239). Robert
Solow (1974, p40): "In solemn conclave assembled, so to speak, we
ought to act as if the social rate of time preference were zero."

Other authors like [Cass1965, Ferejohn-Page 1978, Michel 1990, Cowen-Parfit 1992,
Schelling 1995, Rasmussen 2001] also adopted a skeptic attitude against inter-
generational time preference which is the base of intergenerational discounting,
i.e. the discounted-sum criterion.

6



At the origin of this rejection of intergenerational time preference, there is
doubtless a requirement to impartially treat the different generations, require-
ment accentuated today by the problems of exhaustion of certain natural re-
sources and the problems of pollution like that of climate change. [Arrow 1995]
informs us on the nature and the source of this requirement: it is a moral
requirement whose source is the principle of universalizability :
[Arrow 1995] p 7:

"Abatement and other very long-lived investment are thus definitely
matters of moral obligations, not of self-interest"

and p 12:

"A general principle which guides the formation of moral judgments
is what many philosophers call universalizability...One way of char-
acterizing universalizability is that it is the view that would be taken
by a disinterested spectator."

[Solow 1973], in a paper where he reveals the significant shortcomings of the
max-min criterion, ascribes to [Rawls 1971] the call to take account of a social
contract between generations:

"[It is part of Rawl’s argument for the max-min criterion that] we
should regard earlier and later generations as facing each other con-
temporaneously when the social contract is being drawn."

Such a contract can only refer, I suppose, to impartiality between genera-
tions.

In addition to being partial, the discounted-sum criterion is seen as a short-
run criterion. In fact, it is a consequence of partiality. The following example,
found in [Lauwers 1998], highlights this fact.

"...set β = 0.95 and the value function Fβ (u) =
P∞

k=1 β
k−1uk ranks

the stream v1 = (1, ...1, 0, 0...) [the value 1 appears 13 times] strictly
above v2 = (0, ...0, 1, 1...) [the value 0 appears 13 times] . That the
utility level 1 occurs infinitely many times in the future is sacrificed
for the sake of obtaining this utility level in the first thirteen peri-
ods. Since the example can be constructed for each value of β, it
follows that positive discounting does not comply with our notion of
intergenerational justice."

2.2 Anonymity, long-term well-being and short-term sac-

rifices

The merit of Arrow’s paper is that it clarifies the ethical and economic bases
of intergenerational choice underlying the mathematical developments on this
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question. However, contrary to the position adopted here, [Arrow 1995] sup-
ports intergenerational discounting mainly on the ground that anonymity would
impose too large sacrifices on present generations. Yet, it is well-known that
impartial treatment of generations, or intergenerational anonymity, leads to the
maximum long-term well-being, characterized by growth theory’s golden-rule2 .
I would like to quote a passage from [Allais 1947] where, on the one hand

one can find the explanation of the mechanism connecting intergenerational
anonymity to the golden rule, explanation which the present paper takes as a
starting point, but which, on the other hand, panders, in appearance, to the
objection of [Arrow 1995] against intergenerational anonymity. That will thus
make it possible to introduce the logic underlying this objection. [Allais 1947]
p.225:

"Let us indicate that if the State takes into account the present
generation and the future generations, i.e. if it estimates that all
the generations are identical to the point of view of the estimate of
the increases and the reductions in satisfaction, it will be necessarily
led to seek the maximization of the social productivity, whatever
sacrifice it can cost for the present generation. We saw, indeed,
that the additional saving necessary once created allows an indefinite
increase in the real collective income of all the future generations
and that thus, of any policy of lowering of the interest rate which
keeps an equal account of the generations present and future, the
possible sorrow of the present generation to constitute the additional
saving necessary is indefinitely compensated by the supplement of
satisfaction from which will profit the future generations"3

It is the property of estimating "that all the generations are identical to the
point of view of the estimate of the increases and the reductions in satisfac-
tion" that is labelled Allais-anonymity in the present paper. Allais-anonymity
is discussed and characterized in section 7.
Let’s specify that "maximation de la productivité sociale" indicates the

golden rule, and that the lowering of the interest rate is seen like a manner
of pushing the economy to produce at the golden rule level.
Although this passage indicates that an anonymous treatment of the gener-

ations is likely to lead the economy to produce at the highest possible level, one

2See [Mankiw 2001] p. 116 for an analysis of this issue in the context of the Solow model,
or [Heal 2001] for an application to ecological problems.

3Original text : "Indiquons que si l’Etat prend en considération la génération présente et les
générations futures, c’est-à-dire s’il estime que toute les générations sont identiques au point de
vue de l’estimation des accroissements et des diminutions de satisfaction, il sera nécessairement
conduit à rechercher la maximation de la productivité sociale, quelque sacrifice qu’il puisse
en coûter pour la génération présente. Nous avons vu, en effet, que l’épargne supplémentaire
nécessaire une fois créée permet une augmentation indéfinie du revenu collectif réel de toutes
les générations futures et qu’ainsi, de toute politique d’abaissement du taux d’intérêt qui
tient un égal compte des générations présente et future, la peine éventuelle de la génération
présente pour constituer l’épargne supplémentaire nécessaire est indéfiniment compensée par
le supplément de satisfaction dont bénéficieront les générations futures"
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can be tempted to deduce from it that any sacrifice of present generations is
then justified. That is what led [Arrow 1995] to see as unacceptable the prin-
ciple of intergenerational anonymity since the idea of unlimited sacrifice clearly
conflicts with a more fundamental principle: the principle of self-regard.
This charge, of imposing unlimited sacrifice on present generations, is in fact

the essential argument against anonymity. It has been criticized in [Asheim-Buchholz 2003].
Their argument is to say that the criterion used in [Arrow 1995] is in fact too
malleable to allow precise conclusions. In [Blackorby-Bossert-Donaldson 2005],
one finds a proposal, which remains to be explored, to avoid would-be unbearable
sacrifices of present generations without having recourse to the discounted-sum.

"Our view is that, for purpose of social evaluation, the well-being
of future generations should not be discounted. If maximization of
ethically appropriate objective function requires the present gener-
ation to sacrifice most of its consumption for the benefit of others,
then such an action can be considered supererogatory: desirable but
beyond the call of duty. If these sacrifices are considered to be too
demanding, we do not think it is a suitable response to give to future
generations a smaller weight in the social ordering."

In what follows, it will be argued that in the social choice process suggested
here, present generations will not have to suffer exaggerated sacrifices.

2.3 A two-stage social choice process: consensus then ef-

ficiency...

As seen in the introduction, we are interested in a representable criterion Ψ.
Moreover, Ψ is supposed to be differentiable using the supmetric. It is well
known since [Basu-Mitra 2003] that a social welfare relation representable by a
real valued function cannot be at the same time anonymous and strong Pareto.
This result generalizes the theorem of Yaari ([Diamond 1965] 4). That means
the impossibility for an anonymous social welfare function of being sensitive
to individual changes, what consolidates the idea of sacrifice of the individual
vis-a-vis the community. That seems paradoxical because it contradicts the fact
that infinity has some importance since it is made up from individuals of null
weight. Perhaps it is the reason why the assumption of the representability of
the intergenerational choice by a real valued function was generally dropped
after [Basu-Mitra 2003] (except in [Asheim-Mitra-Tungodden 2006]).
But contradiction is only seemingly. In fact the individual counts, but

through the collectivity. The negligibility of the individual in front of infin-
ity is a usual assumption in physics or in the theory of probability. Nobody
is astonished, for example, that an individual outcome has a null probability if

4This theorem is sometimes referred as the second impossibility theorem of Diamond, as
in [Sakai 2003b], although Diamond ascribes it to Yaari in [Diamond 1965].
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there is an infinity of equiprobable outcomes5 . Even in economics, the assump-
tion of price-taker behavior in the theory of competitive equilibrium, rests on
the idea of the negligibility of the individual ([Lauwers 1998]).
What is more awkward is that Ψ is not even weak Pareto, a condition often

perceived as essential (for example in [Fleurbaey-Michel 2003]). But, on the
other hand, theorem 1 and theorem 2 in [Fleurbaey-Michel 2003] suggest also
that in the presence of continuity, weak Pareto is a condition rather close to
strong Pareto. In other words, condition weak Pareto is not so weak. Ψ being
continuous, one should not thus too much reproach it for not respecting weak
Pareto! I will try to illustrate through a simple example why this is so. Suppose
that, taking into account the possibilities of production, the optimal asymptotic
level of the utility is 100. We have seen above that what is important for the
anonymous (and continuous) criterion is only what happens to the infinity. But
the infinity of generations which will be as close as one wants to 100, is the
same one, whether it starts from the 20th or the 10000th generation. So, be it
after 20 generations or 10000 generations that the economy reaches a level close
enough to 100, that is indifferent to the anonymous criterion. But, in the first
alternative, the utility level is strictly larger than in the second alternative for
every generation. Thus, the anonymous criterion violates weak Pareto and the
reason is the weight of infinity.
To escape this inevitable shortcoming of Ψ, I propose not to regard Ψ as

representing all the social welfare relation, but simply as the voice of the inter-
generational consensus, or if you prefer, that of the principle of universalizability,
or the voice of the disinterested spectator. Thus Ψ , the consensual criterion,
would be the first stage of the total social welfare relation, to which one can add
considerations of efficiency (i.e. Pareto-optimality) as second stage. This way,
the total social welfare relation will be necessarily strong Pareto. However, it
will not be continuous.
This diagram of social choice process makes it possible to (partly) have the

advantages of continuity while keeping the strong Pareto property, because to
impose continuity on the first stage of the social welfare relation does not oblige
to give up the strong Pareto property for the total social welfare relation.
We will see through the discret-time example in "Allais-anonymity II" that

such a two-stage optimization gives completely realistic results. In fact this
assertion is hardly surprising since Ψ is only the generalization of a criterion
already well-known and largely used. This underlines the intuitive character of
Ψ.
The idea of two-stage optimization has been suggested in [Ferejohn-Page 1978]

and was first specified and applied in [Asheim 1991] then in [Lauwers 1998],
[Asheim-Buchholz 2003] and [Asheim-Buchholz-Tungodden 2001]. The exam-
ple in [Lauwers 1998] is closer to the present one since it is also based on medial
limits. In the two examples [Asheim 1991, Asheim-Buchholz-Tungodden 2001],

5There nevertheless exists a theory of lexicographical probabilities that gives weight to zero
probability events. See L. Blume, A. Brandenburger and E. Dekel, Lexicographic probabilities
and choice under uncertainty, Econometrica vol59 n◦1(1991)61-79. I thank G.B. Asheim for
having made me aware of that.
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the first stage consists in ruling out ethically undesirable streams by means of
Asheim’s J-rule in the first example and Suppes-Sen rule in the second one.
But an additional assumption is imposed there: the assumption of "immediate
productivity". This assumption excludes the economies with possibility of over-
accumulation. In [Asheim-Buchholz 2003] both the first and the second stage
are based on undiscounted utilitarianism with different utility functions (see
[Asheim-Buchholz 2003] page 15). These utility functions are calibrated of kind
to make optimal a given increasing consumption stream.
There is in the literature other candidates for a social welfare relation, that

have the advantage of being at the same time strong Pareto, anonymous and
complete, of course at the expense of supmetric continuity. But then it seems
that it is at the cost of their noncomputability ([Svensson 1980, Mihara 1999,
Fleurbaey-Michel 2003]), what harms their practical aspect clearly. Let’s also
notice that [Asheim-Mitra-Tungodden 2006] propose a social welfare relation
which is representable and, at the same time, checks an intergenerational equity
condition : Hammond equity for the future. This result is obtained by slightly
weakening continuity and efficiency.

2.4 ...without exaggerated sacrifices

I come now to the fear that such a criterion would impose to present generations
some unbearable sacrifice. Admittedly, taking into account long-run interest
would possibly impose some sacrifice on present generations and as long as such
a sacrifice significantly improves long-run interest, the anonymous criterion will
demand it. But this does not mean, as in [Arrow 1995], that any sacrifice of
present generations is desirable. The reason is that, precisely, Ψ violates weak
Pareto whereas [Arrow 1995] implicitly uses Ramsey criterion which is strong
Pareto. So to speak, it is the good side of the insensitivity of Ψ: Ψ does not
demand sacrifices that do not significantly improve long-run interest.
Here are two examples illustrating the link between this characteristic of Ψ

and the superfluity of disproportionate sacrifices.
Firstly, the insensitivity of Ψ to short-run changes allows the distribution of

the effort requested to the present generations on a great number of generations,
as great as one wants. Take again the previous example. Suppose that, to reach
the level of utility 100, an additional effort of saving, say ∆s, is needed. This
effort can thus be indifferently distributed on 10000 generations, that is to say
∆s
10000 per generation. That would make it almost imperceptible for a generation.
In other words, the anonymous consensual criterion imposes the destination to
which you must go (i.e. the utility level: 100), not the speed that you must
employ.
The second example is based on the discrete-time case analysed in "Allais-

anonymity II". It can be summarized as follows. When the economy is under-
capitalized, the sacrifice of a generation, say g1, necessarily benefits the following
generations. However, in the presence of technical progress and starting from a
certain level of sacrifice, only the immediately posterior generations would have

11



a substantial profit from it. For the more distant generations the profit would
become negligible, to such a degree that the anonymous consensual criterion
would not improve anymore. That is possible because Ψ is not weak Pareto.
If the generations g2, g3... were tempted to make the same sacrifice as g1 to
improve more the situation of their immediate descendants, they would deterio-
rate their own situations. So that ultimately, the situation of all the generations
would worsen and, consequently, the value of the anonymous consensual crite-
rion would not increase, Ψ being nevertheless nondecreasing. This is the reason
why, in the presence of technical progress, it is not optimal to push the capital
to the level where net marginal productivity is zero.
In fact, in this example, one does nothing but find the well-known golden-

rule: net marginal productivity of capital = rate of technical change (see the
proof in "Allais-anonymity II"). By using a Cobb-Douglas production function
as well as the data provided in [Mankiw 2001] p.135 on the American economy:
marginal productivity of capital mpk = 0.12, share of capital in the production
α = 0.3, stationary rate of savings at the current level of capital s = 10%,
optimal marginal productivity of capital mpk∗ = 0.07, we deduce the optimal
savings rate thanks to the relations:

s∗

s
=

µ
k∗

k

¶1−0.3
=

mpk∗

mpk
' 1.7

from where s∗ = 17%. This savings rate is far from expressing exaggerated
sacrifices.

However one has to expect that anonymity indeed increases the rate of sav-
ings. But the reason is not as well the importance of the sacrifices as the need
for maintaining a high stock of capital making possible a higher consumption
level, higher than the one reached with a discounted-sum criterion. Anyway,
even if one established that anonymity imposes too high a rate of savings, that
would not prove that anonymity is a concept null and void, but simply that the
current economic situation deviates from it.

To finish this section, here is now an argument,
due to [Blackorby-Bossert-Donaldson 2005], that reverses the objection of

non respect of the Pareto property against the discounted-sum criterion. The
idea is to regard the date of birth of an individual as a variable and not a
characteristic of this individual. By advancing the date of birth of an indi-
vidual i, one increases the value of the discounted-sum criterion. It is then
possible to decrease the utility of individual i of a quantity ∆ui while keeping
the discounted-sum criterion above its initial level, so that the utility stream
(u1, u2, ..., ui −∆ui, ...) with premature birth of individual i, is strictly pre-
ferred to (u1, u2, ..., ui, ...). Hence, the ordering defined by the discounted-sum
criterion "approves of changes in birth dates even when, in term of well-being,
no one gains and someone loses" ([Blackorby-Bossert-Donaldson 2005] p.3).
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3 Preliminary

3.1 Model

Since the aim is to examine intertemporal choice, or more precisely intergen-
erational choice, the model suggested avoids what one could call the "spatial
dimension" of the economy, i.e. intra-generational exchanges, differentiation of
goods, agents and firms, distribution of wealth ...and focuses on the "temporal
dimension". Hence, our economy is constituted by a succession of generations,
each generation being made up of only one individual who is at the same time
consumer and producer.
Another significant characteristic of the model is that capital accumulation

is achieved through bequests. This rises from the observation that bequest con-
stitutes ultimately the current shape of transmission of capital from generation
to generation.
Moreover, the model avoids monetary questions. The reason is that on the

long-run (centuries), it is seems quite clear to me that whatever be monetary
transfers, what is important for the economy is the accumulation of nonmone-
tary capital, the word "nonmonetary capital" being used here in its smithian,
physical meaning (in opposition to monetary), of durable goods incorporating a
share of human work, including knowledge. In this view, accumulating capital
amounts to some extent to storing work.
It is necessary to recognize that there is inevitably here a standpoint in

favour of the monetarist idea of long-term neutrality of money. Consequently,
the present approach deviates from certain works in the line of [Samuelson 1958]
or [Balasko-Shell 1980] utilizing money to allow for example for son-father trans-
fers. On the other hand, it is closer to the demonetized models of [Solow 1956]
or [Cass 1972].
From this point of view, although it is possible to observe negative bequests

(son-father transfers), along the optimal growth path the nonmonetary capital
should probably reach a sufficiently high value so that the most extravagant
father nevertheless transmits a positive bequest to his son. Notice that, by
excluding other behaviors clearly nonoptimal like the deliberated destruction
of capital, and considering that spatial dimension is removed, this extravagant
father can waste his capital only via his own consumption. Hence, it would not
be restrictive for the determination of this optimal growth path, to suppose that
the bequests are all positive. I will thus make this assumption.
For simplicity, there is only one good that is used for consumption, invest-

ment, savings and bequests. At the beginning of its active life, a given generation
gi inherits a quantity bi−1 of that good. Its only acts during its life are: to con-
sume, produce, invest in order to increase its future consumption and, at the
end of the active lifetime, to bequeath bi to the descent. In doing so, generation
gi achieves a level of life-utility Ui(bi−1, bi). Also, for simplicity, it is supposed
that a generation is economically non-existent apart from its active life. Thus,
generations do not really overlap.
The following example shows how one can define Ui starting from the instan-
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taneous utility function u and the production function F . However, to preserve
the generality of this work, functions Ui need not be specified, provided that
they observe the conditions of section 5.

Example 1 The continuous-time neoclassical OG model with exogenous neutral
technical change:

Ui(h, l) =

max
c(t)

Z T

0

u(c(t))dt

subject to :
·

k + c(t) = F (N i−1, N i−1k(t))− a · k(t);

k(0) = h; k(T ) = l and c ∈
£
0, F (N i−1, N i−1k)

¤

where N is the factor of neutral technical change, k the capital, a the capital
depreciation rate and c the consumption.

3.2 Formalization of the optimal growth path

Thus, consider a sequence of functions (Ui)i≥1, each function Ui being defined
from Di ⊂ R2+ to R. Conditions to impose on (Ui)i≥1are discussed further in
section 5.
Let k0 be a real positive number such that the set{l ∈ R/(k0, l) ∈ interior of D1}is

not empty.
Denote:

D = {K = (k1, k2, · · · ) / for all i ≥ 1 : (ki−1, ki) ∈ Di}

Consider a consensual criterion represented by a real valued and Frechet-
differentiable functional Ψ (on a space to be defined in section 7) such that

the consensual value of the sequence (Un)n≥1 is given by Ψ
³
(Un)n≥1

´
. As a

function representing preferences, Ψ can be supposed to be concave and nonde-
creasing, but these assumptions don’t play here any mathematical role.
For K ∈ D and i an integer ≥ 1, denote respectively Pi (K) and S (Ψ) the

following programs:
Pi (K) =

max
B∈D

Ui(bi−1, bi)

subject to : Uj(bj−1, bj) ≥ Uj(kj−1, kj) ∀j ≥ 1, j 6= i

where bi−1, bi are the i-1th and the ith components of B and ki−1, ki are the
i-1th and the ith components of K.

S (Ψ) =

14



max
B∈D

Ψ [(Ui(bi−1, bi))i≥1]

Clearly, a bequests plan K is a Pareto-optimal bequests plan if and only if
it is solution to Pi (K) for all i ≥ 1 and K is a consensual optimum for the
criterion Ψ if and only if it is solution to S (Ψ). If K is simultaneously Pareto-
optimal and consensus-optimal, it is described as optimal growth path or social
optimum.
We focus in this paper on program S (Ψ), while programs Pi (K) are the

object of "Allais-anonymity II".

4 Properties of the work spaces

4.1 Decomposition lemma and calculus of the differential
of a function on lr∞

For r ≥ 0, define lr∞ =
©
B = (b1, b2, ...)/bi ∈ R and supi≥1 |bi| e−ri ≺ +∞

ª
,

lr1 =
n
B = (b1, b2, ...)/ bi ∈ R and

P+∞
i=1 |bi| e

ri ≺ +∞
o
,

cr =
©
B = (b1, b2, ...)/ bi ∈ R and bie

−ri converges
ª
and

cr0 =
©
B = (b1, b2, ...)/ bi ∈ R and |bi| e−ri converges to 0

ª
.

Let δr∞ be the functional defined on cr by: δr∞(x) = limi−→+∞ xi.e
−r.i

and δ∞ the functional defined on the set of real converging sequences c by:
δ∞(x) = limi−→+∞ xi. Denote l

r∗
∞ the dual of lr∞.

It is known that lr∞ and lr1 are complete normed vector spaces respectively
for the norms kBkr = supi≥1 |bi| e

−ri and kBk1,r =
P+∞

i=1 |bi| e
ri. Henceforth, I

will use the norm k.kr and simply write it k.kwhen possible.
It is standard to consider that the set of feasible growth rates is up-bounded,

which means that there is p ≥ 0 such that D ⊂ lp∞.

Lemma 2 : Let y ∈ lr∗∞. Then we can write in a unique manner:

y = y1 + y2

where y1verifies:
+∞X

i=1

|y1i| e
r.i ≺ +∞

and y2 is such that its restriction to cr is proportional to δr∞.

Let f be a function from lr∞ to R, Frechet-differentiable at x0 ∈ lr∞. Denote
δf(x0) the Frechet-differential of f at x0. By definition, δf(x0) ∈ lr∗∞. We then
apply the decomposition lemma:

δf(x0) = δf1(x0) + δf2(x0)
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where δf1(x0) ∈ lr1 and δf2(x0) is such that its restriction to cr is propor-
tional to δr∞.
Denote the restriction of δf2(x0) to cr by δf2(x0)bcr. Then, there is a real

α (x0) such that:
δf2(x0)bc = α (x0) δ

r
∞

We can consider δf1(x0) as the finite part of the differential, and δf2(x0) as
the infinite part. Denote α (x0) by

∂f
∂r∞ (x0). A formula to calculate

∂f
∂r∞ (x0)

is given in 8.1.

4.2 The interior of D

Definition 3 Let B ∈ lp∞.

π(B) = inf {α ≥ 0/ lim sup |bn| e−nα ≺ +∞} is the reason superior of B and
π(B) = sup {α ≥ 0/ lim inf |bn| e−nα Â 0} is the reason inferior of B .
ω(B) = lim sup |bn| e

−nπ(B) and ω(B) = lim inf |bn| e
−nπ(B) are respectively

the amplitude superior and the amplitude inferior of B.
If π(B) = π(B) = π, B is said to be homogeneous of reason π. If, in

addition, ω(B) Â 0 and ω(B) ≺ +∞, B is said strictly of reason π (or π is the
strict reason of B). If ω(B) = ω(B), B is said to be convergent of reason π.

Remark 4 (a)The reason of a homogeneous bequests plan corresponds to the
capital growth rate. (b)K convergent of reason π is equivalent to K ∈ cπ.

Let sp∞ be the subset of lp∞ of sequences strictly of reason p. Let lp∞+ and

sp∞+ be respectively the subset of l
p
∞ and s

p
∞ of positive sequences. Denote

◦
lp∞+

the interior of lp∞+ and sp∞++ the subset of s
p
∞+ of strictly positive sequences.

Denote
◦
D the interior of D.

Proposition 5
◦
D ⊂ sp∞++

Remark 6 If we had D ⊂ lp∞+ but not p = inf {α/D ⊂ lα∞}, this would imply

that
◦
D = ∅. Indeed, there would be x ≺ p such that D ⊂ lx∞. For all B in

D we would have lim sup |bn| e
−xn ≺ +∞ which implies lim inf |bn| e

−pn = 0.

Then, since
◦
D ⊂ sp∞++, we must have

◦
D = ∅. This would be catastrophic since

all optimization theorems require non empty interiors.
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5 Assumptions on the sequence (Ui)i≥1

5.1 Regularity, variation and concavity

Assume that:

� For all i ≥ 1, Di is strictly included in R
2
+, closed and with a non-empty

interior

� Ui is of class C2 on Di

� U 0ih Â 0 (U
0
ih and U

0
il are respectively the derivatives of Ui with respect to

its first and second variable)

� Di convex, Ui concave. One can then show easily that D is also convex.

These conditions are standard, except the second one which is needed to set
the differentiability of the sequence (Ui)i≥1.

5.2 Geometricity

5.2.1 Definition

Denote G the mapping that associates to K ∈ D, G(K) = (Ui(ki−1, ki))i≥1.

Definition 7 If {α/D ⊂ lα∞} 6= ∅ and p = inf {α/D ⊂ lα∞}, D is geometric of
reason p. If on top of that D ⊂ lp∞, D is strictly geometric of reason p.

5.2.2 Geometricity assumptions

Henceforth, it will be assumed that:

� D is strictly geometric of reason p and
◦
D 6= ∅.

� G(D) is strictly geometric of reason p1.

The strict geometricity of D is crucial as far as we need non empty interiors
to use optimization theorems. The strict geometricity of G(D) doesn’t play any
role in the formal validity of the results. However, these results are stripped of
any economic meaning if G(D) is not strictly geometric, or, more precisely, if
Ψ is defined on a space lq∞ with q Â p1. Indeed, in this case and for a criterion
Ψ fulfilling the assumptions (3) and (4), δ(ΨG) (K) = 0 for all steady-state
K in D (see definition of steady-state forward). Thus, all steady-states in D
are consensual optima. Obviously, such a consensual criterion Ψ is not very
interesting!
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5.3 Linearity at infinity of (Ui)i≥1

5.3.1 Introduction

The assumptions maid above on (Ui)i≥1 (subsection 5.1) are not enough to
guarantee the differentiability of G, which is needed to obtain the first order
condition of optimality. That is why I introduce the condition of linearity at in-
finity of (Ui)i≥1. This condition is sufficient to have the differentiability of G at
interior points. Moreover, one can check that it is fulfilled for discret-time mod-
els with standard instantaneous utility functions and production functions and
for models with an homothetic sequence (Ui)i≥1, with rather general conditions
on the utility functions, the production functions and (Ui)i≥1.6

5.3.2 The condition of linearity at infinity

Define Θ, the operator from D× lp∞ to R∞ (the set of real sequences) such that
Θ(B,X) is the sequence (θn)n≥1where

θn(B,X) =
¡
xn−1 xn

¢µ U 00nh2(bn−1, bn) U 00nlh(bn−1, bn)
U 00nhl(bn−1, bn) U 00nl2(bn−1, bn)

¶µ
xn−1
xn

¶

for n ≥ 1 (with x0 = 0 and X = (xn)n≥1).

Definition 8 Let K ∈
◦
D. The condition of linearity at infinity of (Ui)i≥1at the

point K for the reasons (p, p1) is that there is α Â 0 and M ≥ 0 such that for
all X ∈ lp∞, kXkp ≤ 1 and for all B ∈ S(K,α) ∩D we have:

kΘ(B,X)kp1 ≤M.

This condition implies that the Hessian of Un at (bn−1, bn) tends to 0 when
n tends to infinity, what means the linearity of Un at (bn−1, bn) when n tends
to infinity.

6 Differentiability of G

Let K ∈
◦
D and suppose that G fulfills the condition of linearity at infinity at

K for (p, p1). When there is no risk of confusion, denote u
0
hn = U 0nh(kn−1, kn),

u0ln = U 0nl(kn−1, kn), U
0
h (K) the sequence (u

0
hn) and U 0l (K) the sequence (u

0
ln).

6A discrete-time example is provided in "Allais-anonymity II"
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Lemma 9 Under the above assumptions, the linear transformation δG(K) de-
fined for ∆K ∈ lp∞ (with ∆k0 = 0 ) by

δG(K) ·∆K =
h
U

0

nh (kn−1, kn)∆kn−1 + U
0

nl (kn−1, kn)∆kn
i
n≥1

has range in lp1∞and checks:

lim
k∆Kkp−→0

kG(K +∆K)−G(K)− δG(K) ·∆Kkp1
k∆Kkp

= 0

Moreover, G is Gateaux-differentiable at K in every direction ∆K ∈ lp∞and
its Gateaux-differential at K with the increment ∆K is δG(K) ·∆K. If G is
continuous at K, G is Frechet-differentiable at K and δG(K) is its Frechet-
differential at K.

Proposition 10 If the condition of linearity at infinity holds at a point K ∈
◦
D then the sequences (U 0nh(kn−1, kn))n≥1and (U

0
nl(kn−1, kn))n≥1are in lp1−p∞ .

Proposition 11 If the condition of linearity at infinity holds at a point K ∈
◦
D, G is continuous and Frechet-differentiable at K and δG(K) is its Frechet-
differential at K.

7 Consensual optimality

Except in 7.4, suppose that K ∈
◦
D and that G (see 5.2 for the definition of

G) fulfills the condition of linearity at infinity at K for (p, p1) (see 5 for the
definition of linearity at infinity).

7.1 The differential of Ψ ◦G

Definition 12 K ∈ D is a steady state bequests plan if and only if limu0hne
−(p1−p)n

and limu0lne
−(p1−p)n both exist (u0hn and u0ln are respectively the derivatives of

Un at (kn−1, kn) with respect to its first and second variable).

Remark 13 (a)It would have been natural to qualify convergent plans as steady
state plans but this definition proved difficult to handle. (b)It can be easily
shown that if the sequence (Ui) is homothetic, the two definitions are quite near.
(c)This definition of steady states is also quite natural because on the one hand,
U 0h (K) and U

0
l (K) are in lp1−p∞ , on the other hand it is natural that in a steady

state the marginal rate of substitution between bequest and heritage
u0hn
−u0

ln

tends

to a limit.
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As defined in section 3.2, a consensual optimum is a bequests plan maximiz-
ing an inter-generations criterionΨ(G(B)), whereΨ(x) is a Frechet-differentiable
function from lp1∞ to R.
Denote the vector δΨ1(G(K)) = (

∂Ψ
∂x1
(G(K)), ∂Ψ∂x2 (G(K)), · · · ) by (Ψ

0
1,Ψ

0
2, · · · )

and ∂Ψ
∂p1∞ (G(K)) by Ψ

0
p1∞ (the symbol δ indicates the Frechet-differential; for

∂Ψ
∂p1∞ , see 4).

Thanks to the differentiability of G, we have:

Proposition 14 If K is a steady state and ∆B ∈ cp, then:

δ [ΨG] (K) ·∆B

=
+∞X

i=1

(Ψ0iu
0
li +Ψ

0
i+1u

0
hi+1)∆bi +Ψ

0
p1∞(u

0
he
−p + u0l)∆b

where u0h = limu0hne
−(p1−p)n and u0l = limu0lne

−(p1−p)n, ∆b = lim∆bne−pn.

7.2 Allais-anonymity

As in [Mabrouk 2005], I try to characterize consensus optima when the consen-
sual criterion treats all generations the same way. The label "egalitarianism"
in [Mabrouk 2005] is replaced by "Allais-anonymity" because on the one hand
indifference to permutations is rather called anonymity in the literature, on the
other hand the present concept of anonymity is distinct from other versions in
the literature and, to my knowledge, it was first suggested in [Allais 1947], as
said in sections 1 and 2.

Definition 15 Ψ is Allais-anonymous at a point G if and only if Ψ0i(G) = 0
for all i ≥ 1.

Proposition 16 Let s be a one-to-one mapping on N∗ and define bs the trans-
formation on lp1∞ such that, for G = (gi) ∈ lp1∞,, bs(G) = (gs(i)). Then, Ψ is
Allais-anonymous at a point G if and only if:

δΨ(G) ·∆G = δΨ(G) · bs(∆G) (1)

for all s and for all ∆G ∈ c in a given neighborhood of G.

Proposition 16 shows that definition 15 is equivalent to indifference to the
permutations of "small" gains and losses of utility. That corresponds, at the
infinitesimal level, to the quotation of Allais in section 2.
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Example 17 Consider the linear functional δp1∞ defined on cp1 in section 4 and
take as consensual criterion Ψ, a positive Hahn-Banach extension of δp1∞ on lp1∞
(existence is guaranteed by the theorem of Krein, see [Naimark 1970] p.63). For
i ≥ 1, denote ei the sequence (eij) where eij = 0 if i 6= j and eii = 1. For
G ∈ lp1∞ and h ∈ R, we have

Ψ (G+ hei)−Ψ (G) = Ψ (G+ hei −G)

= Ψ(hei) = hδp1∞(ei) = 0

Thus,

Ψ0i(G) = lim
h→0

Ψ (G+ hei)−Ψ (G)
h

= 0

and Ψ is Allais-anonymous.

Proposition 18 Let s be a permutation on N∗ such that the set

{i/i 6= s (i)}

is finite. Denote bs the transformation on lp1∞ such that, for G = (gi) ∈ lp1∞,
bs(G) = (gs(i)). Then, if Ψ is everywhere Allais-anonymous we have:

Ψ(bs(G)) = Ψ(G) (2)

Equation (2) means that if we change the order of a finite number of com-
ponents in G, it does not change the consensual value. Thus, if Ψ is everywhere
Allais-anonymous, it is finitely-anonymous. As said in the introduction and
section 2, we easily see that Ψ is not paretian. In the sequel, the condition
"everywhere Allais-anonymous" will simply be referred as "Allais-anonymous".

7.3 First order condition

Suppose that
Ψis Allais-anonymous (3)

and that
Ψ0p1∞ Â 0 (4)

The condition (4) means that Ψ is sensitive to long run interest.

Let K be a steady state in
◦
D and ∆B ∈ cp. According to proposition 14,

we can write
δ [ΨG] (K) ·∆B = Ψ0p1∞(u

0
he
−p + u0l)∆b
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If K is an interior maximizer of [ΨG] (K), then δ [ΨG] (K) ·∆B = 0 for all
∆B in lp∞. Consequently, we have necessarily

u0he
−p + u0l = 0 (5)

We can then state:

Theorem 19 Under assumptions (3) and (4) on the consensual criterion, if a

steady state K in
◦
D is a consensual optimum then

u0he
−p + u0l = 0

Equation (5), which will be henceforth named "bequest-rule", can be written

u0h
−u0l

= ep (6)

The right hand-side of (6) is the marginal rate of substitution between her-
itage and bequest. Thus, at the consensual optimum, the asymptotic
marginal rate of substitution between heritage and bequest is equal

to the maximum capital growth rate.
That implies that the more the capital growth rate anticipated by the agent

is high, the less the agent will bequeath to his heir. All occurs as if the growth
of the capital and technical progress compensate for the fall of heritage. This
idea will be better developed in the paper "Allais-anonymity II", of which a
significant part will be devoted to the analysis and the economic interpretation
of the optimum.

7.4 Is a bequest-rule plan consensus-optimal?

Henceforth let’s call a "bequest-rule plan" a plan K such that the bequest-rule
holds. Since the differential of ΨG at K is shown to be equal to zero only for
increments ∆B in cp, the bequest-rule cannot yet be considered as a sufficient
condition of consensual optimality.

Even if sufficiency held, if K is not in
◦
D , we would have problems for G’s

differentiability. Indeed, if K is not in
◦
D , linearity at infinity is no longer

warranted even in standard cases since in the sphere S(K, r) for a given b0 Â 0
there is always n ≥ 1 and B ∈ S(K, r) such that bn ≤ b0. Hence, second
derivatives of Un don’t tend necessarily to 0 on S(K, r). Even if linearity at
infinity held, it would not imply differentiability of G. Indeed, if we look to the
proof of G’s differentiability (8.3), we can see that in that case, K0 and K00 are
not necessarily in D.
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However, these issues seem to be exclusively of a mathematical nature for it
is difficult to give to them an economic meaning. Perhaps with better mathe-
matics, one could establish the sufficiency of the bequest-rule.

8 Proofs

8.1 Proof of the decomposition lemma on lr∗∞
Let R be the real line, l∞ the set of bounded real sequences, l∗∞ its dual,

l1 =
n
B = (b1, b2, ...)/ bi ∈ R and

P+∞
i=1 |bi| ≺ +∞

o
,

c0 = {B = (b1, b2, ...)/ bi ∈ R and lim bi = 0} and
c = {B = (b1, b2, ...)/ bi ∈ R and bi converges} .
l∞ is a Banach space for the norm kxk = sup |xn|

n≥1
and l1 is a Banach space

for the norm kxk =
P+∞

i=1 |xi| and

� l1 ⊂ l∗∞

� l∗1 = l∞(see [Luemberger 1997])

� c∗0 = l1(see appendix A)

Let E be the linear operator from l∞ to lr∞ defined as follows:

E((y1, y2, ...)) = (y1e
r, y2e

2r, ...)

E is one-to-one and continuous. Denote its inverse E−. It is also continuous,
and its adjoint is the inverse of the adjoint of E. We have the relations (see
[Luemberger 1997]):

E−∗ = E∗−1

and

E(l∞) = lr∞, E(l
r
1) = l1, E(c0) = cr0 and E(c) = cr

We first show the relation
cr∗0 = lr1

Proof of relation cr∗0 = lr1
We have E−(cr0) = c0. Moreover, E

− is one-to-one and continuous from cr0
to c0. E

−∗, the adjoint of E−, maps c∗0 onto c
r∗
0 . Therefore we have: E−∗(c∗0) =

cr∗0 . But, as proved in the detailed version of [Mabrouk 2005], c
∗
0 = l1(the proof

is also given in appendix A), so E−∗(l1) = cr∗0 . Now take f ∈ l1. By definition
of the adjoint, for all y ∈ cr0, hE

−∗(f) | yi = hf | E−(y)i =
P+∞
1 fiyie

−r.i =P+∞
1 (fie

−r.i)yi = hE−(f) | yi. Hence, E−∗(f) = E−(f) for all f ∈ l1 so we
can write E−(l1) = cr∗0 . On the other hand, E

−(l1) = lr1. Therefore, c
r∗
0 = lr1¥
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We now proof the lemma:

According to the above proof, E−∗(x1) = E−(x1) for all x1 ∈ l1. It is also
clear that E−(x1) ∈ lr1.
Take y ∈ lr∗∞ . Since E∗ maps lr∗∞ onto l∗∞, E

∗(y) ∈ l∗∞. According to the
decomposition lemma on l∗∞ , proved in the detailed version of [Mabrouk 2005]
(the proof is also given in appendix B), we can write:

E∗(y) = x1 + x2 where x1 ∈ l1 and x2 ∈ c⊥0

This gives

E∗−1(E∗(y)) = E∗−1(x1 + x2) = E∗−1(x1) +E∗−1(x2)

= E−∗(x1) +E∗−1(x2) = E−(x1) +E∗−1(x2)

E−(x1) ∈ lr1, denote it y1.

On the other hand, E∗−1(c⊥0 ) = [E(c0)]
⊥ = cr⊥0 , where

cr⊥0 = {y ∈ lr∗∞Á for all x ∈ cr0, hy | xi = 0}(see [Luemberger 1997]). This
proves that y2 = E∗−1(x2) ∈ cr⊥0 .
We show now that cr⊥0 is the set Br of bounded linear functionals on lr∞,

which restriction to cr is proportional to δ
r
∞. Let br ∈ cr⊥0 . We have E

−∗(c⊥0 ) =
E∗−1(c⊥0 ) = cr⊥0 . Then, there is b ∈ c⊥0 such that E−∗(b) = br. Since b ∈
c⊥0 , there is α ∈ R such that the restriction of b to c is equal to αδ∞ (see
appendix B), what we write bbc= αδ∞. For all y ∈ cr, E

−(y) ∈ c. Then,
hbr | yi = hE−∗(b) | yi = hb | E−(y)i = α.δ∞ [E−(y)] = α.δr∞(y). This shows
that cr⊥0 ⊂ Br. The inverse inclusion is evident.
It remains to prove that the decomposition of y ∈ lr∗∞ is unique. Suppose we

can write y = y1 + y2 and y = y01 + y02 with y1 , y
0
1 ∈ lr1 and y2 , y

0
2 ∈ cr⊥0 . For

all x ∈ cr0, we have hy | xi = hy1 | xi = hy
0
1 | xi . Since l

r
1 = cr∗0 (see above), y1 ,

y01 ∈ cr∗0 . This shows that y1 = y01, which implies y2 = y02¥

Calculus of ∂f
∂r∞ (x0)

Here is a formula to calculate ∂f
∂r∞ (x0). Let h ∈ cr and let rn(h) be the

sequence of cr obtained by setting to 0 the n first terms of h. Since f is a
function from lr∞ to R , Frechet-differentiable at x0 ∈ lr∞ , for all ε Â 0 there is
α Â 0 such that:

khk ≺ α =⇒ |f(x0 + h)− f(x0)− δf(x0).h|

khk
≺ ε

But khk ≺ α =⇒ krn(h)k ≺ α for all n ≥ 1, then

|f(x0 + rn(h))− f(x0)− δf(x0).rn(h)| ≺ ε krn(h)k

Thus
¯̄
¯̄
¯f(x0 + rn(h))− f(x0)−

+∞X

i=n+1

∂f

∂xi
(x0).hi −

∂f

∂r∞(x0).δ
r
∞(h)

¯̄
¯̄
¯ ≺ ε krn(h)k
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Moreover, krn(h)k = supiÂn |hi| e
−ri. It is a positive and decreasing se-

quence converging to |δr∞(h)|. We have also
P+∞

i=n+1
∂f
∂xi
(x0).hi −→ 0 when

n −→ +∞. Then
¯̄
¯̄lim sup

n
f(x0 + rn(h))− f(x0)−

∂f

∂r∞(x0).δ
r
∞(h)

¯̄
¯̄ ≤ ε |δr∞(h)|

which gives
¯̄
¯̄ lim supn f(x0 + rn(h))− f(x0)

δr∞(h)
− ∂f

∂r∞(x0)
¯̄
¯̄ ≤ ε

This proves that

∂f

∂r∞ (x0) = lim
khk−→0,h∈cr,δr∞(h)6=0

lim sup
n

f(x0 + rn(h))− f(x0)

δr∞(h)

We prove similarly the same formula for lim inf ¥

8.2 Proofs for interiority

Proposition 20 Let B ∈ lp∞.

1-0 ≤ π(B) ≤ π(B) ≤ p.
2-If π(B) = p then ω(B) ≺ +∞.
3-If B is homogeneous then ω(B) ≤ ω(B).
Proof: 2 and 3 are immediate and so are 0 ≤ π(B) and π(B) ≤ p. To

prove π(B) ≤ π(B) suppose π(B) Â π(B). Let x ∈ ]π(B), π(B)[. First, ob-
serve that if α ∈ {α ≥ 0/ lim sup |bn| e−nα ≺ +∞} then for all β ≥ α, β ∈
{α ≥ 0/ lim sup |bn| e−nα ≺ +∞}.
Since x Â π(B), this implies that lim sup |bn| e

−nx ≺ +∞.
Take ε Â 0 such that x+ ε ∈ ]π(B), π(B)[. We have lim sup |bn| e−n(x+ε) ≤

(lim sup |bn| e
−nx)(lim sup e−nε) = 0. Then lim inf |bn| e

−n(x+ε) = 0. We see
easily that it is contrary to x+ ε ≺ π(B)¥

Lemma 21 sp∞ is open in lp∞.

Proof: Let K ∈ sp∞ and α in ]0, ω(K)[.
ω(K) = lim inf |kn| e

−np Â 0 =⇒ for all ε Â 0 there is N such that n Â
N =⇒ |kn| e

−np Â ω(K) − ε. Denote S(K,α) the closed sphere of center K
and radius α. B ∈ S(K,α) =⇒ ||kn|− |bn|| e−np ≤ |kn − bn| e

−np ≤ α. Then
|bn| e

−np ≥ |kn| e
−np − α Â ω(K) − ε − α. Thus ω(B) = lim inf |bn| e

−np ≥
ω(K)− α Â 0. This shows that S(K,α) ⊂ sp∞¥

Lemma 22 sp∞++ =
◦

lp∞+.

25



Proof: If B /∈ sp∞, lim inf |bn| e
−np = 0. For all α Â 0, we can find n such

that the interval [bne
−np − α, bne

−np] contains some strictly negative µn. Thus
the sequence Y defined as follows: yj = bj for j 6= n and yn = µne

np, is in lp∞

but not in lp∞+. This proves that B is not in
◦

lp∞+. Consequently,
◦

lp∞+ ⊂ sp∞. We

can then write
◦

lp∞+ ⊂ sp∞ ∩
◦

lp∞+. But since it is clear that s
p
∞ ∩

◦
lp∞+ ⊂ sp∞++,

we have
◦

lp∞+ ⊂ sp∞++.
Conversely, let’s show first that sp∞++ is open. Let K be in sp∞++ and α in

]0, ω(K)[. There is N such that n ≥ N =⇒ kne
−np ≥ ω(K)− α Â 0. If B is in

S(K, ω(K)−α2 ) and n ≥ N , bne
−np ≥ kne

−np − ω(K)−α
2 ≥ ω(K)−α

2 Â 0. Denote

k = inf {kn/n ∈ [1, N − 1]} and take β = inf
³
ω(K)−α

2 , 12ke
−Np

´
. Take B in

S(K,β). Since S(K,β) ⊂ S(K, ω(K)−α2 ), for n ≥ N , bne
−np ≥ ω(K)−α

2 Â 0. For
n ≤ N − 1, bne−np ≥ kne

−np − β ≥ kne
−np − 1

2ke
−Np ≥ 1

2ke
−Np Â 0. This

shows that S(K,β) ⊂ sp∞++ and sp∞++ is open. Furthermore, it is clear that

sp∞++ ⊂ lp∞+. Since s
p
∞++ is open, it is also included in

◦
lp∞+.¥

Proof of proposition 5: Since D ⊂ lp∞+ we have
◦
D ⊂

◦
lp∞+ = sp∞++¥

8.3 Proofs for the differentiability of G

Proof of lemma 9: Let ∆K ∈ lp∞such that S (K, k∆Kk) ⊂ D. For all n ≥ 1,
since D is convex, the segment [K,K +∆K] is in D and
[(kn−1, kn), (kn−1 +∆kn−1, kn +∆kn)] is in Dn, (∆k0 is taken equal to 0).

We can apply Taylor’s formula : there is tn ∈ [0, 1] such that

Un (kn−1 +∆kn−1, kn +∆kn)− Un (kn−1, kn) (7)

= U
0

nh (kn−1, kn)∆kn−1 + U
0

nl (kn−1, kn)∆kn +

1

2

¡
∆kn−1 ∆kn

¢µ U 00nh2(k
n
n−1, k

n
n) U 00nlh(k

n
n−1, k

n
n)

U 00nhl(k
n
n−1, k

n
n) U 00nl2(k

n
n−1, k

n
n)

¶µ
∆kn−1
∆kn

¶

where knn = kn + tn∆kn and knn−1 = kn−1 + tn∆kn−1.
Denote

K0 = (k21, k
2
2, k

4
3, k

4
4, ...) =

h³
k2p2p−1, k

2p
2p

´i
p≥1

K00 = (k11, k
3
2, k

3
3, k

5
4, ...) =

h³
k2p−12p−1, k

2p+1
2p

´i
p≥1

and take k000 = k00 = k0.
K0 and K00are in S (K, k∆Kk) and, according to the definition of θn(B,X),

we can write:

Un (kn−1 +∆kn−1, kn +∆kn)− Un (kn−1, kn)

= U
0

nh (kn−1, kn)∆kn−1 + U
0

nl (kn−1, kn)∆kn +
1

2
θn(K

0,∆K)
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for n even and

Un (kn−1 +∆kn−1, kn +∆kn)− Un (kn−1, kn)

= U
0

nh (kn−1, kn)∆kn−1 + U
0

nl (kn−1, kn)∆kn +
1

2
θn(K

00,∆K)

for n odd.
G fulfills the condition of linearity at infinity at K means that there is α Â 0

and M ≥ 0 such that for all X ∈ lp∞, kXkp ≤ 1 (with x0 = 0 and X = (xn)n≥1)
and for all B ∈ S(K,α) , we have:

kΘ(B,X)kp1 ≤M.

Take α Â 0 such that S(K,α) ⊂ D and ∆K ∈ lp∞ such that k∆Kk ≤ α.

K0 ∈ S(K,α) and
°°° ∆K
k∆Kkp

°°°
p
≤ 1 implies that

°°°Θ(K0, ∆K
k∆Kkp

)
°°°
p1
≤ M .

Thus °°°°°Θ(K
0,
∆K

k∆Kkp
)

°°°°°
p1

k∆Kk
2
p ≤M k∆Kk

2
p

But

Θ(K0,∆K) = Θ(K0,
∆K

k∆Kkp
)
h
k∆Kkp

i2

thus
kΘ(K0,∆K)kp1 ≤M k∆Kk

2
p

Similarly

kΘ(K00,∆K)kp1 ≤M k∆Kk2p

DenoteΘ = (θn)n≥1where θn = θn(K
0,∆K) if n is even and θn = θn(K

00,∆K)

if n is odd. We can then write kΘkp1 ≤M k∆Kk
2
p .

Equation (7) gives

G(K +∆K)−G(K)− δG(K) ·∆K =
1

2
Θ

thus

kG(K +∆K)−G(K)− δG(K) ·∆Kkp1 ≤
1

2
M k∆Kk2p . (8)

But
¯̄
¯kG(K +∆K)−G(K)kp1 − kδG(K) ·∆Kkp1

¯̄
¯

≤ kG(K +∆K)−G(K)− δG(K) ·∆Kkp1

which gives

¯̄
¯kG(K +∆K)−G(K)kp1 − kδG(K) ·∆Kkp1

¯̄
¯ ≤ 1

2
M k∆Kk2p
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and since G(K +∆K)−G(K) ∈ lp1∞, we have also δG(K) ·∆K ∈ lp1∞.
For all X ∈ lp∞,

α
kXkp

X ∈ S(0, α) and then

δG(K) ·
α

kXkp
X =

α

kXkp
δG(K) ·X ∈ lp1∞

Thus, δG(K) ·X ∈ lp1∞and δG(K) is a linear transformation from lp∞ to lp1∞.
In addition, equation (8) implies

lim
k∆Kkp−→0

kG(K +∆K)−G(K)− δG(K) ·∆Kkp1
k∆Kkp

= 0

We then see easily that G is Gateaux-differentiable at K in every direction
∆K ∈ lp∞ and its Gateaux-differential at K with the increment ∆K is δG(K) ·
∆K.
Moreover, if G is continuous at K, equation (8) proves that

lim
k∆Kkp−→0

δG(K) ·∆K = 0

This implies that δG(K) is a continuous linear transformation. Hence,
δG(K) is the Frechet-differential of G at K.¥

Proof of proposition 10: According to lemma 9, for all B ∈ lp∞, the
sequenceh

U
0

nh (kn−1, kn) bn−1 + U
0

nl (kn−1, kn) bn
i
n≥1

is in lp1∞. Thus, there isM(B) ≥
0 such that

¯̄
¯U

0

nh (kn−1, kn) bn−1 + U
0

nl (kn−1, kn) bn
¯̄
¯ e−np1 ≤M(B)

Let M Â 0. Take B ∈ lp∞ such as |bn| e
−np = kBk for all n ≥ 1, with b1 ≥ 0,

b2 of the sign of b1U
0

2l (k1, k2) and so on ...so that
¯̄
¯U

0

nh (kn−1, kn) bn−1 + U
0

nl (kn−1, kn) bn
¯̄
¯

=
¯̄
¯U

0

nh (kn−1, kn)
¯̄
¯ |bn−1|+

¯̄
¯U

0

nl (kn−1, kn)
¯̄
¯ |bn|

for all n ≥ 1. Then
¯̄
¯U

0

nh (kn−1, kn) bn−1 + U
0

nl (kn−1, kn) bn
¯̄
¯ e−np1

=
h¯̄
¯U

0

nh (kn−1, kn)
¯̄
¯ |bn−1|+

¯̄
¯U

0

nl (kn−1, kn)
¯̄
¯ |bn|

i
e−np1

=

⎡
⎣
¯̄
¯U 0

nh (kn−1, kn)
¯̄
¯ e−p1e(n−1)(p−p1)

¯̄
bn−1e−(n−1)p

¯̄

+
¯̄
¯U 0

nl (kn−1, kn)
¯̄
¯ en(p−p1) |bne−np|

⎤
⎦

= kBk

⎡
⎣
¯̄
¯U 0

nh (kn−1, kn)
¯̄
¯ e−p1e(n−1)(p−p1)

+
¯̄
¯U 0

nl (kn−1, kn)
¯̄
¯ en(p−p1)

⎤
⎦ ≤M(B)
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Thus ⎡
⎣ e−p1

¯̄
¯U 0

nh (kn−1, kn)
¯̄
¯ e(n−1)(p−p1)

+
¯̄
¯U 0

nl (kn−1, kn)
¯̄
¯ en(p−p1)

⎤
⎦ ≤ M(B)

kBk

This shows that the sequences
³¯̄
¯U 0

nh (kn−1, kn)
¯̄
¯
´
n≥1

and
³¯̄
¯U 0

nl (kn−1, kn)
¯̄
¯
´
n≥1

are in lp1−p∞ ¥

Proof of proposition 11: Given lemma 9, it is enough to prove the continu-

ity of G at K. As in the proof of lemma 9, take α1 Â 0 such that S (K,α1) ⊂
◦
D.

Let ∆K ∈ lp∞ be such that K +∆K is in S (K,α1). For all n ≥ 1, the segment
[(kn−1, kn), (kn−1 +∆kn−1, kn +∆kn)] is in Dn, (∆k0 is taken equal to 0). We
apply Taylor’s formula : there is tn ∈ [0, 1] such that

U 0nh (kn−1 +∆kn−1, kn +∆kn)− U 0nh (kn−1, kn)

= U 00nh2(k
n
n−1, k

n
n)∆kn−1 + U 00nhl(k

n
n−1, k

n
n)∆kn

where knn = kn + tn∆kn and knn−1 = kn−1 + tn∆kn−1.
Denote

K0 = (k21, k
2
2, k

4
3, k

4
4, ...) =

h³
k2p2p−1, k

2p
2p

´i
p≥1

K00 = (k11, k
3
2, k

3
3, k

5
4, ...) =

h³
k2p−12p−1, k

2p+1
2p

´i
p≥1

and take k000 = k00 = k0.
K0 and K00are in S (K, k∆Kk).
G fulfills the condition of linearity at infinity atK means that there is α2 Â 0

and M ≥ 0 such that for all X ∈ lp∞, kXkp ≤ 1 (with x0 = 0 and X = (xn)n≥1)
and for all B ∈ S(K,α2) we have:

kΘ(B,X)kp1 ≤M.

Take ∆K ∈ lp∞ such that k∆Kk ≤ α = inf(α1, α2). For all X ∈ lp∞ such
that kXkp ≤ 1, we then have kΘ(K0,X)kp1 ≤M. This implies

¯̄
¯̄ x2n−1U 00nh2(k0n−1, k0n) + xnxn−1U 00nhl(k

0
n−1, k

0
n)

+x2nU
00
nl2(k

0
n−1, k

0
n)

¯̄
¯̄ ≤Menp1

for all n ≥ 1.
Since the functions (Un)n≥1 are concave, U

00
nh2(k

0
n−1, k

0
n) ≤ 0 and U 00nl2(k0n−1, k0n)

≤ 0.
Take x1 = ep,
x2 = e2psign [−x1U 002hl(k01, k02)] ...,
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xn = enpsign
£
−xn−1U 00nhl(k0n−1, k0n)

¤
.... Then, X = (xn)n≥1 ∈ lp∞ and

kXkp = 1. Hence, for all n ≥ 1, xnxn−1U 00nhl(k0n−1, k0n) ≤ 0. We then have

−x2n−1U 00nh2(k0n−1, k0n)− xnxn−1U
00
nhl(k

0
n−1, k

0
n)

≤ −x2n−1U 00nh2(k0n−1, k0n)− xnxn−1U 00nhl(k
0
n−1, k

0
n)

−x2nU 00nl2(k0n−1, k0n)

=

¯̄
¯̄ x2n−1U 00nh2(k0n−1, k0n) + xnxn−1U 00nhl(k

0
n−1, k

0
n)

+x2nU
00
nl2(k

0
n−1, k

0
n)

¯̄
¯̄

≤ Menp1

But for n ≥ 2,

−x2n−1U 00nh2(k0n−1, k0n)− xnxn−1U
00
nhl(k

0
n−1, k

0
n)

= e(n−1)p
h
e(n−1)p

¯̄
U 00nh2(k

0
n−1, k

0
n)
¯̄
+ enp

¯̄
U 00nhl(k

0
n−1, k

0
n)
¯̄i

Thus
h
e(n−1)p

¯̄
U 00nh2(k

0
n−1, k

0
n)
¯̄
+ enp

¯̄
U 00nhl(k

0
n−1, k

0
n)
¯̄i
≤Men(p1−p)ep

Similarly, we have

h
e(n−1)p

¯̄
U 00nh2(k

00
n−1, k

00
n)
¯̄
+ enp

¯̄
U 00nhl(k

00
n−1, k

00
n)
¯̄i
≤Men(p1−p)ep

On the other hand

U 0nh (kn−1 +∆kn−1, kn +∆kn)− U 0nh (kn−1, kn)

= U 00nh2(k
0
n−1, k

0
n)∆kn−1 + U 00nhl(k

0
n−1, k

0
n)∆kn

for n even and

U 0nh (kn−1 +∆kn−1, kn +∆kn)− U 0nh (kn−1, kn)

= U 00nh2(k
00
n−1, k

00
n)∆kn−1 + U 00nhl(k

00
n−1, k

00
n)∆kn

for n odd. Thus, for n even

|U 0nh (kn−1 +∆kn−1, kn +∆kn)− U 0nh (kn−1, kn)|

≤
¯̄
U 00nh2(k

0
n−1, k

0
n)
¯̄
|∆kn−1|+

¯̄
U 00nhl(k

0
n−1, k

0
n)
¯̄
|∆kn|

≤
¯̄
U 00nh2(k

0
n−1, k

0
n)
¯̄
k∆Kk e(n−1)p +

¯̄
U 00nhl(k

0
n−1, k

0
n)
¯̄
k∆Kk enp

≤ k∆KkMepen(p1−p)

and similarly for n odd. We show the same way that

|U 0nl (kn−1 +∆kn−1, kn +∆kn)− U 0nl (kn−1, kn)|

≤ k∆KkMepen(p1−p)
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Denote respectively the sequences (U 0nh (kn−1 +∆kn−1, kn +∆kn))n≥1and
(U 0nl (kn−1 +∆kn−1, kn +∆kn))n≥1 by U 0h (K +∆K) and U 0l (K +∆K). Pre-

vious inequalities give kU 0h (K +∆K)− U 0h (K)kp1−p ≤ k∆KkMep and

kU 0l (K +∆K)− U 0l (K)kp1−p ≤ k∆KkMep. Thus, since U 0h (K) and U
0
l (K)

are in lp1−p∞ (see proposition 10), we have

kU 0h (K +∆K)kp1−p ≤ k∆KkpMep + kU 0h (K)kp1−p
≤ αMep + kU 0h (K)kp1−p

We obtain the same inequality for kU 0l (K +∆K)kp1−p.

Denote Γ = sup
h
αMep + kU 0h (K)kp1−p , αMep + kU 0l (K)kp1−p

i
.

Now apply Taylor formula to Un and build K0
1 and K00

1 in S(K,∆K) as
above. We have respectively for n even and odd:

Un (kn−1 +∆kn−1, kn +∆kn)− Un (kn−1, kn)

= U 0nh(k
0
1n−1, k

0
1n)∆kn−1 + U 0nl(k

0
1n−1, k

0
1n)∆kn

and

Un (kn−1 +∆kn−1, kn +∆kn)− Un (kn−1, kn)

= U 0nh(k
00
1n−1, k

00
1n)∆kn−1 + U 0nl(k

00
1n−1, k

00
1n)∆kn

thus

|Un (kn−1 +∆kn−1, kn +∆kn)− Un (kn−1, kn)| e
−np1

≤ Γ
³
e−p |∆kn−1| e

−(n−1)p + |∆kn| e
−np

´
≤ k∆KkΓ

¡
1 + e−p

¢

then
kG(K +∆K)−G(K)k ≤ k∆KkΓ

¡
1 + e−p

¢

and G is continuous at K.¥

8.4 Proofs for consensual optimality

Proof of proposition 14: We have

δ [ΨG] (K) ·∆B = δΨ(G(K)) · [δG(K) ·∆B]

and
δG(K) ·∆B = (u0hi∆bi−1 + u0li∆bi)i≥1

for all ∆B in lp∞.
Using lemma 2, write δΨ(G(K)) = δΨ1(G(K))+δΨ2(G(K))where δΨ1(G(K)) ∈

lp11 and δΨ2(G(K)) is such that its restriction to cp1 is proportional to δ
p1
∞.
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For ∆X ∈ cp1 , denote ∆x = limn∆xne
−p1n. We have

δΨ2(G(K)) ·∆X =

∙
∂Ψ

∂p1∞
(G(K))

¸
∆x

Since K is a steady state and ∆B ∈ cp, then (u
0
hi∆bi−1 + u0li∆bi)i≥1 ∈ cp1 .

Denote ∆b = limn∆bne
−pnand ∆b0 = 0. We then have:

δ [ΨG] (K) ·∆B

= δΨ1(G(K)) · [(u
0
hi∆bi−1 + u0li∆bi)i≥1]

+δΨ2(G(K)) · [(u
0
hi∆bi−1 + u0li∆bi)i≥1]

=
+∞X

i=1

Ψ0i(u
0
hi∆bi−1 + u0li∆bi) +Ψ

0
p1∞ limi

(u0hi∆bi−1 + u0li∆bi) e
−p1i

=
+∞X

i=1

(Ψ0iu
0
li +Ψ

0
i+1u

0
hi+1)∆bi +Ψ

0
p1∞(u

0
he
−p + u0l)∆b

¥

Proof of proposition 16: It is similar to the proof of proposition 8 in
[Mabrouk 2005]

Proof of proposition 18: Let n = sup {i/i 6= s(i)}. Let x ∈ Rn. For
G ∈ lp1∞ denote xG = (x1, x2, ..., xn, gn+1, gn+2, ...). Let f (x) = Ψ (xG). We
have

f 0i (x) = Ψ
0
i (xG) = 0

for all x ∈ Rn and G ∈ lp1∞.
f is then constant on Rn. There is x ∈ Rn such that bs(G) = xG. Thus,

Ψ(bs(G)) = Ψ(G)¥

A Proof of c∗0 = l1

For i ≥ 1, let ei be the element of l∞ such that all its components are zero
except the ith which is 1. Let x ∈ c0 and f ∈ c∗0. We have

Pn
1 xiei −→ x,

so f (
Pn
1 xiei) −→ f (x), then

P+∞
1 xif(ei) = f (x). One the other hand, f

continuous ⇔ |f(x)|
kxk ≤ kfk for all x ∈ c0 (see appendix1). keik = 1 gives

|f(ei)| ≤ kfk for all i ≥ 1. Let α ∈ ]0, 1[. Take xn = sign(f(en)) ·
1
nα then

x = (xn)n≥1 ∈ c0. We have

+∞X

1

|f(en)|

nα
= |f(x)| ≤ kxk . kfk = kfk

Now, let ϕ(α) =
P+∞
1

|f(en)|
nα . Then ϕ is bounded and decreasing on ]0, 1[.

Hence, it has a finite limit as α −→ 0. We can show easily that this limit
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is
P+∞
1 |f(en)| . Thus the sequence (f(en))n≥1 is in l1. Owing to the equalityP+∞

1 xif(ei) = f (x), we can identify it to f .
So c∗0 ⊂ l1. The inverse inclusion is evident¥

B The decomposition lemma on l∗∞

B.1 The lemma

Lemma 23 Let y ∈ l∗∞. Then we can write in a unique manner:

y = y1 + y2

where y1verifies:
+∞X

i=1

|y1i| ≺ +∞

and y2 is such as its restriction to c is proportional to δ∞.

B.2 Proof

B.2.1 Projection from l∗∞ on l1

For i ≥ 1, let ei be the element of l∞ such that all its components are zero
except the ith which is 1.
Let y ∈ l∗∞. Consider the sequence: (y | ei)i≥1. This sequence is in l1.

7 De-
note Φ the mapping from l∗∞ to l1 which associates to y the sequence (y | ei)i≥1 .
Φ is a projection from l∗∞ to l1. Indeed, it is a linear transformation and, con-
sidering l1as a subset of l

∗
∞, if y ∈ l1then Φ (y) = y.

B.2.2 Decomposition of an element y ∈ l∗∞ by Φ

Consider the mapping Identity I from c0 to l∞:

I : c0 −→ l∞
x−→x

We can verify easily that Φ is the adjoint operator of I, what we write:

Φ = I∗

I being linear and continuous, we deduce that Φ is a continuous8 linear
operator.

7We show this like we have shown that (f(en))n≥1is in l1. See appendix A.
8The adjoint of a continuous linear operator is continuous too.
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Furthermore, we have:9

R(I)⊥ = N(I∗)

where
R(I) = {y ∈ l∞Á∃x ∈ c0 : I(x) = y} = c0

and
N(I∗) = {x ∈ c0ÁI∗(x) = 0}

which means:
N(Φ) = c⊥0

For y ∈ l∗∞, define k = Φ(y)− y. We can write:

y = Φ(y) + k.

with Φ(y) ∈ l1 and k ∈ c⊥0 .
We have decomposed an element y of l∗∞ as a sum of an element of l1 and

an element of c⊥0 . We easily show that this decomposition is unique.

B.2.3 Study of c⊥0

We have:

kδ∞k = sup
x∈c

|limxn|

kxk
= sup

x∈c

|limxn|

sup |xn|
= 1

and
∀α ∈ R : kαδ∞k = |α| kδ∞k = |α|

so we can apply Hahn-Banach theorem, and extend αδ∞ with an element of l∗∞,
say β.
Denote B the set of such linear functionals. We now show that c⊥0 = B.

We see easily that B is a vector subspace of l∗∞ included in c⊥0 . Reciprocally,
let β ∈ c⊥0 and x ∈ c. Denote e = (1, 1 · · · ). We have x − (δ∞ | x)e ∈ c0, so
hβ | (x− (δ∞ | x)e)i = 0. Thus β | x = (β | e)(δ∞ | x). This proves that the
restriction of β to c is proportional to δ∞. Then β ∈ B and c⊥0 ⊂ B.¥

9See [Luemberger 1997] p155.
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