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I. Introduction

Lucas critique suggests parameter instability in usual policy multiplier based models, where the 

multipliers are estimated by running a regression of output on the relevant/hypothesized policy variables. I 

aim to test this implication for the U.S. economy using a simple aggregate demand and supply model, with 

rational expectations as the mechanism of expectation formation, given a money supply specification. The 

relevant data set (for inferential purposes) is quarterly, 1986:1 – 2005:4, with the exact model specification 

chosen from Heijdra and Ploeg.

Lucas’s suggestion of parameter instability is derived from the underlying instability in the 

relevant parameters that determine the policy multipliers. Therefore, based on one of the following four 

outcomes, one may conclude the following:

a. Parameter stability in both the final equation and the relevant equations1 that determine the output: 

    Lucas critique cannot be supported by this technique of analysis;

b. Parameter stability in the final equation, parameter instability in the relevant equations that determine

    the output: Lucas critique cannot be supported by this technique of analysis;

c. Parameter instability in the final equation, parameter stability in the relevant equations that determine

    the output: Lucas critique cannot be supported by this technique of analysis;

d. Parameter instability in the final equation, parameter instability in the relevant equations that 

    determine the output: Lucas critique cannot be ruled out by this technique of analysis.

Further, the final estimated equation for output must satisfy certain parameter restrictions that are imposed 

by the structure of the model, since in this case it is estimated independently of other equations in the 

model, using tests of misspecification.

II. Data Set

The data set consists of quarterly time series on money, output and price level from 1985 to 2006. 

For the money supply, the relevant measure is the seasonally adjusted M1, and the data source is the 

Bureau of Economic Analysis, U.S. Department of Commerce. For the price level, the unchained Urban 

CPI (all items, U.S. city average) is taken as the proxy with 1982-84 as the base year. This series is not 

seasonally adjusted. The source is the U.S. Bureau of Labor Statistics. For output, the nominal GDP (in 

billions of dollars) is considered. The time series is seasonally adjusted. The source is the Bureau of 

Economic Analysis, U.S. Department of Commerce.

The original output series is quarterly, whereas the original price series and the money supply 

series are annual. Thus, to convert them into a quarterly series, I consider the corresponding value in the 

third, sixth, ninth and the twelfth months of each year.

To seasonally adjust the price time series, I consider two methods: Firstly, price (P) is regressed on 

variables D2, D3, D4 with an intercept, where D2 is the dummy that takes the value of 1 in the second 

quarter and 0 in the other quarters. Similarly, D3 and D4 are defined, so that the intercept term measures 

the estimated price level in the first quarter (Range: 1985:1 to 2005:4). However, this regression yields a 

very low Durbin-Watson (DW) Statistic of 0.007493. The residuals show a distinctly upward trend. 

Therefore, estimating the similar equation with an autoregressive error of first order, AR(1), I find absence 

of both heteroskedasticity (White’s test) and autocorrelation (Breusch-Godfrey’s LM test, DW statistic). 

Gujarati suggests that the residuals of such a regression must be added to the mean value of P to get the 

seasonally adjusted series. However, the problem with this procedure is that such a series does not show 

any upward trend, unlike the original series. If one applies the same procedure using the first equation, then 

although the trend is obtained, but the errors are autocorrelated. I therefore refrain from following this 

method, especially since in Gujarati’s illustration, there was no specification error. It should be noted that 

whereas in the earlier case, coefficients of D2, D3 and D4 were statistically insignificant, in the second 

case, only the coefficient of D4 was statistically significant. This is another reason for not using the earlier 

equation. Further, this clearly points out that the price level in the fourth quarter is correlated with that in 

the next fourth quarter, and so on. Therefore, my second method for seasonal adjustment is to regress P on 

P-4. In this case, the DW statistic was very low (0.228075). Therefore, I regressed P on P-4 assuming AR(1) 
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error term. In this case, the DW statistic is 1.901727. The equation passes both the tests of autocorrelation 

and White’s test of heteroskedasticity assuming cross-terms. To arrive at the seasonally adjusted values, I 

obtain a static forecast of this equation. The sample for regression is 1986:1 to 1995:4. For the second 

period, the DW statistic for this equation is 2.148295. However, this equation does not pass the White’s test 

of heteroskedasticity, assuming cross-terms. Whereas the Obs*R-squared is statistically significant, the 

coefficients of the regressor and its square are insignificant:
White Heteroskedasticity Test:
F-statistic 4.080233     Probability 0.025284
Obs*R-squared 7.206857     Probability 0.027230

Test Equation:
Dependent Variable: RESID^2
Method: Least Squares

Sample: 1996:2 2005:4
Included observations: 39

Variable Coefficient Std. Error t-Statistic Prob.  
C 151.1953 106.3820 1.421249 0.1638

P(-4) -1.843817 1.245163 -1.480784 0.1474
P(-4)^2 0.005628 0.003630 1.550346 0.1298

R-squared 0.184791     Mean dependent var 1.210286
Adjusted R-squared 0.139502     S.D. dependent var 2.742927
S.E. of regression 2.544423     Akaike info criterion 4.779488
Sum squared resid 233.0671     Schwarz criterion 4.907454
Log likelihood -90.20002     F-statistic 4.080233
Durbin-Watson stat 2.609302     Prob(F-statistic) 0.025284

This implies that the error term may be correlated with the regressor. However, this is not the case, since 

the Ramsey’s RESET test is passed. Both the F-statistic and the log- likelihood ratio suggest that the fitted 

values of P (to two terms) are not correlated with P. Therefore, a final implication is that the linear 

specification of the model may be incorrect. In any case, I follow this equation to maintain homogeneity in 

the techniques for seasonal adjustment. 

Two notes on forecasting the equation are important: Firstly, I perform a static forecast, i.e. the 

previous values of P used for the forecast, are actual and not the estimated values. Second, I include the 

observations for the year 1985 to get the estimates for the year 1986. This does not provide the forecast for 

1986:1 due to absence of the value for 1984:4, so I substitute its actual value. Values for the year 1985 are 

not seasonally adjusted. In both the time periods, the equation forecast is very good, with very low bias 

proportion and variance proportion. The seasonally adjusted series is labeled PF.

III. Detecting Structural Change

The following are the graphs for money (M), seasonally adjusted prices (PF) and output (Y) for 

the time period 1986:1 to 2005:4:
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There is no evidence of structural break in these graphs. The graphs of PF and Y show an upward 

trend. The graph of M shows a decline in the money supply from around 1994:1 but the decline is not 

abrupt and money supply starts rising from 1997:1. However, this shift in money supply after 1994:1 may 

account for evidence of greater parameter instability in the second period. 

Therefore, tests for parameter instability may be used to detect shifts in policy multipliers, 

knowing that they are not caused by a structural break in M, PF or Y. (Johnston and Dinardo)

IV. Evaluation of the data set

For the first time period, 1986:1 – 1995:4, I regress log(Y) on log(Y(-1)), log(M) and log(M(-1)) 

assuming an intercept term, since this is the equation that determines the relevant multipliers in the model. 

The method used is OLS. It is observed that the equation passes both the tests of autocorrelation and 

heteroskedasticity. The DW statistic is 1.71073, and from the White’s test of heteroskedasticity, the Obs*R-

squared has a p-value of 0.922156. However, the F-statistic and the log likelihood ratio in the Ramsey’s 

RESET test (null hypothesis: coefficients of fitted log(Y) raised to powers are zero) have a p-value lower 

than 0.05 suggesting some variable endogeneity. This is true for both the cases, i.e., when the order of 

predicted log(Y) is 1 and when it is 2. Thus, I perform Hausman test for the three variables, log(Y(-1)), 

log(M) and log(M(-1)) separately. This was done by regressing the suspect variable on its instrument (I take 

the lagged value as the instrument) and the other exogenous variables, assuming an intercept term. The 

residual series of this OLS regression was one of the regressors in the original equation. According to the 

test, the coefficient of the residual must be insignificant for the variable to be considered exogenous, at a 

given significance level (Here, 0.05). The results are summarized for the three variables below:

Variable t-statistic of the coefficient of the corresponding residual series p-value

log(Y(-1)) -0.995695 0.3264

log(M) -2.091756 0.0442

log(M(-1)) -1.310059 0.1992

This suggests that only log(M) should be considered endogenous. Therefore, I use the two stage least 

squares method to estimate the original equation, using log(M(-2)) as the instrument for log(M). The new 

equation satisfies the Breusch-Godfrey’s test of serial correlation and White’s test of heteroskedasticity. The 

results from the estimation are given below:
Dependent Variable: LOG(Y)
Method: Two-Stage Least Squares

Sample(adjusted): 1986:3 1995:4
Included observations: 38 after adjusting endpoints
Instrument list: LOG(Y(-1)) LOG(M(-2)) LOG(M(-1))

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.216690 0.059334 3.652012 0.0009
LOG(Y(-1)) 0.951166 0.016696 56.96944 0.0000

LOG(M) -0.071880 0.077696 -0.925151 0.3614
LOG(M(-1)) 0.104543 0.078451 1.332588 0.1915

R-squared 0.999189     Mean dependent var 8.685645
Adjusted R-squared 0.999118     S.D. dependent var 0.152944
S.E. of regression 0.004543     Sum squared resid 0.000702
F-statistic 13969.77     Durbin-Watson stat 1.765163
Prob(F-statistic) 0.000000
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White’s test: the Obs*R-squared has a p-value of 0.871991 and the F statistic has a p-value of 0.911653. 

Breusch-Godfrey test: Obs*R-squared has a p-value of 0.724011.

To test for stability, I conduct the Chow’s breakpoint test and the Chow’s forecast test. In the first 

test, the null hypothesis is that the corresponding parameters in the equations of the separated data sets are 

equal. In the second test, the regression from the first sub data set is used to forecast the values of the 

dependent variable in the second sub data set. A significant deviation in prediction suggests parameter 

instability. For the breakpoint test, this requires rejection of the null hypothesis. Both tests use the F statistic 

(formulas seen in the E-Views help). I take the separating date as 1991:1. The result of the breakpoint test 

is:
Chow Breakpoint Test: 1991:1 
F-statistic 0.580445     Probability 0.679095

For the forecast test, the result is:
Chow Forecast Test: Forecast from 1991:1 to 1995:4
F-statistic 0.339498     Probability 0.986319

Both the tests provide evidence for parameter stability, at 5% level of significance. The F-statistic for the 

null hypothesis of the equality of error variances is 1.9244. It is not significant at the 5% significance level 

with degrees of freedom, 18, 18. Thus, the results from the two tests are accurate at this significance level.

For the second time period, 1996:1 – 2005:4, I regress log(Y) on log(Y(-1)), log(M) and 

log(M(-1)) by OLS, assuming an intercept term. In this case, the estimated equation satisfies the White’s 

test of heteroskedasticity and the Breusch-Godfrey’s test of serial correlation at the 5% level of 

significance. The DW statistic is 2.024726. However, the Ramsey’s RESET test gives some conflicting 

results. If the order of fitted log(Y) is 1, i.e., the estimated log(Y) is raised to the power of 2, then there is 

no evidence of misspecification/endogeneity at 5% level of significance. The p-value of the F statistic is 

0.805711, and the p-value of the log likelihood ratio is 0.791141. However, if the order of fitted log(Y) is 

raised to 2 and the test is carried out again, then we find that the p value of the log likelihood ratio is only 

marginally above 0.05. It is 0.51732. The p-value of the F statistic is 0.080666. Looking at the significance 

of the coefficients, the p-value of the coefficient of the fitted log(Y) raised to the power of 3 is 0.0268, and 

for the lower order of the power of 2 is 0.0267. This test result is more compelling than the previous one 

because it suggests significance of the coefficients of log(Y(-1)), log(M) and log(M(-1)), unlike in the 

previous test in which these were all not significant. Therefore, I again perform the Hausman test for the 

three variables log(Y(-1)), log(M) and log(M(-1)) separately. The results are:

Variable t-statistic of the coefficient of the corresponding residual series p-value

log(Y(-1)) -2.438942 0.0199

log(M) -1.399726 0.1704

log(M(-1)) -1.870767 0.0698

Therefore, at the 5% level of significance, only log(Y(-1)) can be considered endogenous. Thus, I estimate 

the original equation using the two stage least squares method, using log(Y(-2)) as the instrument for 

log(Y(-1)). The Breusch-Godfrey test for serial correlation gives a bit conflicting result: the p-value of the 

F statistic is 0.000001; however, the p-value of the Obs*R-squared is 0.168462. Further, the coefficients of 

resid(-1) and resid(-2) are both non-significant at the 5% level when the residual series is regressed on all 

the regressors, resid(-1) and resid(-2), assuming an intercept term. Therefore, it can be concluded that 

autocorrelation is not of at least the second order. The same significance results are obtained when the order 

of residual lags is extended to 3, and to 4. Thus, although a higher order autocorrelation cannot be ruled out 

at the 0.05 significance level, the bias in the estimates of the coefficients in the original equation may not 

be too large. For White’s test of heteroskedasticity, the p-value of Obs*R-squared is 0.372014. In fact, all 

the coefficients in the regression of residual series on the cross-products of the regressors are non-

significant at the 0.05 significance level. The results from the estimation of the original equation using the 

two stage least squares method are:
Dependent Variable: LOG(Y)
Method: Two-Stage Least Squares

Sample: 1996:1 2005:4
Included observations: 40
Instrument list: LOG(Y(-2)) LOG(M(-1)) LOG(M)

Variable Coefficient Std. Error t-Statistic Prob.  
C -0.074814 0.056601 -1.321793 0.1946

LOG(Y(-1)) 0.974653 0.010825 90.03681 0.0000
LOG(M(-1)) 0.074482 0.048229 1.544353 0.1312
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LOG(M) -0.029079 0.050860 -0.571744 0.5710
R-squared 0.999138     Mean dependent var 9.196576
Adjusted R-squared 0.999066     S.D. dependent var 0.143996
S.E. of regression 0.004401     Sum squared resid 0.000697
F-statistic 13891.68     Durbin-Watson stat 2.024463
Prob(F-statistic) 0.000000

 To test for parameter stability, I again conduct the Chow’s breakpoint test and Chow’s forecast 

test. The date used for separation is 2001:1. The result from the Chow’s breakpoint test is:
Chow Breakpoint Test: 2001:1 
F-statistic 11.32406     Probability 0.000008

The result from the Chow’s forecast test is:
Chow Forecast Test: Forecast from 2001:1 to 2005:4
F-statistic 3.297722     Probability 0.009429

In both the cases, the hypothesis of parameter stability is rejected at the 0.05 significance level. The F-

statistic for the null hypothesis of the equality of error variances is 1.18604 approx. It is not significant at 

the 5% significance level with degrees of freedom, 20, 20. Thus, the results from the two tests are accurate 

at this significance level. As said earlier, this difference in the conclusion on parameter stability for the two 

sub-periods may be due to a fall in the money supply around the year 1994, though this does not suggest a 

structural break, based on the graph of the money supply for the whole period.

I now conduct parameter stability tests for the entire time period, 1986:1 – 2005:4. I regress log(Y) 

on log(Y(-1)), log(M), log(M(-1)) using OLS and assuming an intercept term. This equation passes the 

White’s test of heteroskedasticity at the 5% level: the p-value of Obs*R-squared is 0.803076. If the residual 

lag is taken as 1, then for the Breusch-Godfrey’s test of serial correlation, the p-value of the F-statistic is 

0.069499, and for the Obs*R-squared is 0.062840. This suggests absence of AR(1) error. Further, the 

coefficient of resid(-1) is non-significant at the 0.05 significance level when the residual series is regressed 

on the regressors and resid(-1) assuming an intercept term. However, if the residual lag is extended to 2, 

then for this test, we find p-values lower than 0.05 for the F-statistic and the Obs*R-squared. Further, the 

coefficient of resid(-2) has a p-value of 0.0243, suggesting the presence of AR(2) error term. For the 

Ramsey’s RESET test, the p-values of the F-statistic and the log likelihood ratio are less than 0.05 for both 

the order of fitted terms, 1 and 2. However, in the first case, when log(Y) is regressed on all the regressors 

and the fitted value of log(Y) raised to the power of 2, the coefficients are non-significant at the 0.05 

significance level. In the second case, the p-values of the F-statistic and the log likelihood ratio are higher 

than in the previous case, but still are significant at the 0.05 significance level. However, the coefficients of 

the fitted values are still not significant at the 0.05 significance level. Thus, to check for endogeneity, I 

perform the Hausman’s test separately for log(Y(-1)), log(M) and log(M(-1)). The results are shown below:

Variable t-statistic of the coefficient of the corresponding residual series p-value

log(Y(-1)) -1.868934 0.0655

log(M) -0.760112 0.4496

log(M(-1)) -0.823885 0.4126

Thus at the 0.05 significance level, no variable can be considered endogenous and the estimation method 

remains of the OLS. However, note that it was earlier concluded that in this case, the error term is AR(2). 

Thus, I consider two cases: Firstly, I regress log(Y)-log(Y(-2)) on the corresponding second order 

differenced regressors, assuming OLS. Secondly, I regress log(Y)-log(Y(-1))-log(Y(-2)) on the 

correspondingly differenced regressors, assuming OLS. Note that the intercept term vanishes in both the 

cases, but our estimates of the regression coefficients must reflect the true estimates of the policy 

multipliers since they do not get changed in this process (assuming that the requisite specification tests are 

passed). The results are summarized below:

CASE 1 CASE2

White’s test: p-value of Obs*R-squared: 0.401899; 

in the regression of the square of the residual series 

on the regressors, no coefficient is significant at the 

0.05 level. 

White’s test: p-value of Obs*R-squared: 0.089836; 

in the regression of the square of the residual series 

on the regressors, some coefficients are significant 

at the 0.05 level. 

However, at best, the bias in the estimates is not 

large since the Obs*R-squared is not significant at 

the 0.05 level. 

DW statistic: 1.676031, Breusch-Godfrey test: For 

residual lag of 1, the Obs*R- squared has a p-value 

DW statistic: 1.597687. Breusch-Godfrey test: For 

residual lag of 1, the Obs*R- squared has a p-value 
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of 0.217558. For the lag of 2, it has a p-value of 

0.000874. Also, 

the coefficient of resid(-2) is significant at

the 0.05 significance level.

of 0.092107. For the lag of 2, it has a p-value of 

0.132655. Also, the coefficients of resid(-1) and 

resid(-2) are not significant at the 0.05 significance 

level, suggesting absence of an AR(2) error.

Ramsey’s RESET test: When the order of the fitted 

terms is 1, the p-values of both the F-statistic and 

the log likelihood ratio are less than 0.05. When the 

order of the fitted terms is 2, the p-values further 

decline for both the F-statistic and the log 

likelihood ratio.            

Ramsey’s RESET test: When the order of the fitted 

terms is 1, the p-value of the F-statistic is 0.157880 

and of the log likelihood ratio is 0.146033. When, 

the order of the fitted terms is 2, the p-values 

decline for both but are still higher than 0.05, 

suggesting that the F-statistic and the log likelihood 

ratio are not significant. Also, the coefficients of the 

fitted values are not significant at the 0.05 level.

Note that in the comparison for the White’s test, the cross-products of the regressors are not taken into 

account, due to the differencing of the variables2. Therefore, I use the second equation to test for parameter 

stability. Its regression estimates and related results are shown below:
Dependent Variable: LOG(Y)-LOG(Y(-1))-LOG(Y(-2))
Method: Least Squares

Sample: 1986:1 2005:4
Included observations: 80

Variable Coefficient Std. Error t-Statistic Prob.  
LOG(Y(-1))-LOG(Y(-2))-

LOG(Y(-3))
0.990420 0.007205 137.4586 0.0000

LOG(M)-LOG(M(-1))-
LOG(M(-2))

-0.012619 0.036113 -0.349425 0.7277

LOG(M(-1))-LOG(M(-2))-
LOG(M(-3))

0.026951 0.036154 0.745449 0.4583

R-squared 0.999419     Mean dependent var -8.893266
Adjusted R-squared 0.999404     S.D. dependent var 0.307619
S.E. of regression 0.007509     Akaike info criterion -6.908627
Sum squared resid 0.004342     Schwarz criterion -6.819301
Log likelihood 279.3451     Durbin-Watson stat 1.597687

I use the date 1996:1 as the separation in this data set for the Chow’s tests. The result of the 

Chow’s breakpoint test is:
Chow Breakpoint Test: 1996:1 
F-statistic 0.380278     Probability 0.767494
Log likelihood ratio 1.223927     Probability 0.747271

The result of the Chow’s forecast test is:
Chow Forecast Test: Forecast from 1996:1 to 2005:4
F-statistic 0.724123     Probability 0.840944
Log likelihood ratio 46.25640     Probability 0.229734

Thus, both tests indicate parameter stability over the 20 year period at the 5% level of significance. Next, I 

use the recursive residuals test for stability. In this test, the recursive residuals are computed from t=4 to 

t=20, since 3 observations are the minimum required to estimate the three regression coefficients. E-Views 

gives a plot of these residuals along with a +2 S.E., -2S.E. band. Residuals lying outside this band indicate 

parameter instability. The graph is shown below:
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This suggests parameter instability in the period 1990:2 - 1991:1. Next, I perform the CUSUM test. E-
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Views plots the cumulative sum of squares of the recursive residuals divided by the standard error of 

regression for the sample data set. It also plots the 5% critical value lines. If the values of this statistic go 

beyond these lines, then parameter instability is concluded for those time-periods. The graph is:
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The above graph does not provide evidence of parameter instability for the 20 year period. Finally, I use the 

One-step forecast test. In this test, the recursive residuals are plotted for the entire period as before. Further, 

the graph shows the p-values for those points where the hypothesis of parameter stability would be rejected 

at the 0.05, 0.10 and 0.15 levels of significance. For points whose p-value is lower than 0.05, we observe 

that the graph goes outside the standard error bounds. This test is thus important in that it clearly identifies 

periods of instability. The graph is shown below:
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The qualitative results on parameter instability are similar as in the test of recursive residuals.

After performing the tests for parameter stability, the estimated equation must now be checked for 

parameter constraints. Let C(1) be the regression coefficient of log(Y(-1))-log(Y(-2))-log(Y(-3)). Let C(2) 

be the regression coefficient of log(M)-log(M(-1))-log(M(-2)). Let C(3) be the regression coefficient of 

log(M(-1))-log(M(-2))-log(M(-3)). Then the estimated equation must satisfy the following constraints: 

µ1*C(2)+C(3) = 0 and µ2*C(2)+C(1) = 0, where µ1 and µ2 are the regression coefficients of log(M(-1)) and 

log(Y(-1)) in the regression of log(M) on log(M(-1)) and log(Y(-1)) that yields consistent and unbiased 

estimates of these parameters.

Firstly, I regress log(M) on log(M(-1)) and log(Y(-1)), using the OLS method and assuming an 

intercept term. In this case, the most important problem comes with the tests for autocorrelation. The DW 

statistic is 1.213367. This is less than the lower bound of the DW statistic at the 0.05 significance level. 

Thus, the null hypothesis of no autocorrelation is rejected. Further, using the residual lag of 1, the Obs*R-

squared statistic is significant at the 0.05 significance level. Further, at the residual lag of 2, this statistic is 

again significant. The coefficients of resid(-1) and resid(-2) are also significant. Therefore, I estimate this 

equation assuming an AR(2) error term to get consistent estimates of the regression coefficients. In the 

actual model, it is assumed that autocorrelation is absent. Therefore, this regression is carried out only to 

obtain consistent estimates. The results from this regression are presented below:
Dependent Variable: LOG(M)
Method: Least Squares
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Sample: 1986:1 2005:4
Included observations: 80
Convergence achieved after 8 iterations

Variable Coefficient Std. Error t-Statistic Prob.  
C 0.220828 0.100815 2.190428 0.0316

LOG(M(-1)) 0.940943 0.041029 22.93380 0.0000
LOG(Y(-1)) 0.022150 0.026645 0.831289 0.4084

AR(2) 0.422821 0.121826 3.470697 0.0009
R-squared 0.995370     Mean dependent var 6.928926
Adjusted R-squared 0.995187     S.D. dependent var 0.203518
S.E. of regression 0.014119     Akaike info criterion -5.633830
Sum squared resid 0.015151     Schwarz criterion -5.514729
Log likelihood 229.3532     F-statistic 5445.816
Durbin-Watson stat 1.497954     Prob(F-statistic) 0.000000
Inverted AR Roots        .65       -.65

Thus, µ1=0.940943, µ2=0.022150. Now, we can test the restrictions 0.940943*C(2)+C(3) = 0 and 

0.022150*C(2)+C(1) = 0. The method I use is that of Wald’s test. The statistic is taken from Maddala. For 

the first restriction, the result is:
Wald Test:
Equation: M4
Null Hypothesis: 0.940943*C(2)+C(3) = 0 
F-statistic 3111.081 Probability 0.000000
Chi-square 3111.081 Probability 0.000000

For the second restriction, the result is:
Wald Test:
Equation: M4
Null Hypothesis: 0.022150*C(2)+C(1) = 0
F-statistic 5.808607 Probability 0.018366
Chi-square 5.808607 Probability 0.015948

Thus, both the restrictions are not satisfied at the 0.05 significance level. Another restriction that can be 

tested is (µ1+µ2)*C(2) + C(1) + C(3) = 0. In this case, it is equivalent to 0.963093*C(2) + C(1) + C(3) = 0. 

The result is shown below:
Wald Test:
Equation: M4
Null Hypothesis: 0.963093*C(2) + C(1) + C(3) = 0
F-statistic 182.0827 Probability 0.000000
Chi-square 182.0827 Probability 0.000000

Even in this case, the restriction is not satisfied at the 0.05 significance level.  

From these tests, there is a strong implication that the estimated equation may not have come from 

this model. This problem is a disadvantage of this analysis, though the Lucas critique holds for any model 

that suggests output to be a function of a policy parameters. However, this does imply that the following 

analysis of stability of this equation and the aggregate demand equation may not necessarily provide strong 

conclusions regarding the stability of the original equation, i.e., it will be difficult to link stability of the 

parameters in the original equation with that of the given structural equations of the model, in this case, the 

AD equation, and the money specification equation (AS equation may be avoided, if AD equation is 

considered – see note 1). Since policy multipliers are determined by the coefficients of these equations and 

are central to the explanation of the Lucas critique, I still continue with analyzing the stability of these 

equations.

The AD equation is yt = β0 + β1(mt-pt) + β2Et-1(pt+1-pt) + vt. The lower case letters denote the log of 

the original variable. pt+1-pt is defined as ∏t, where ∏t is the inflation rate in period t. Thus, by the rational 

expectations hypothesis, Et-1(∏t) = ∏t – εt where {εt}is a white noise. Therefore, the AD equation may be 

written as yt = β0 + β1(mt-pt) + β2∏t + vt- β2 εt. The new residual term is also a white noise. Performing the 

OLS regression, the estimated equation has a very low value of DW statistic: 0.052065. The Obs*R-

squared and the coefficients of resid(-1) and resid(-2) are also significant in the LM test with order 2. Thus, 

I re-estimate the equation assuming AR(1) error. This is not assumed in the model and is done only for 

consistent and unbiased estimation (see note 3). The DW statistic is 1.537226. Thus, the null hypothesis of 

no autocorrelation is rejected. The equation passes the White’s test at the 0.05 significance level, but not the 

Ramsey’s test or the Breusch-Godfrey’s test at the same significance level. Yet, the DW statistic is highest 

for this order of autoregression, considering the orders from 1 to 4.

Thus, I estimate the model using an ARMA(1,2) error term. To see the reason, I present the correlograms 

and the autocorrelation functions of the error term from simple OLS regression in levels and the first 

differences using 36 lags in the appendix. The basic reason is that the peaks in the autocorrelation function 
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dampen over time in the first differences correlogram, unlike in the levels correlogram, suggesting AR(1). 

However, the peaks dampen in an oscillatory fashion, i.e. with both positive and negative values, indicating 

an MA component. I check for both ARMA(1,1) and ARMA(1,2) errors and found better results with the 

latter. The new estimated equation has a DW statistic of 1.590498. It passes the Breusch-Godfrey’s LM 

test: the Obs*R-squared is not significant at the 0.05 significance level: its p-value is 0.083475. Further, it 

passes White’s test for heteroskedasticity at the 0.05 significance level: the Obs*R-squared has a p-value of 

0.122727. Further, the coefficients of all the variables in the regression of the square of the residual on the 

regressors and their cross-products are not significant at the 0.05 level. For the Ramsey’s RESET test, the 

p-values of the F-statistic and the log likelihood ratio are greater than 0.01 and less than 0.05. Thus, there 

may be evidence of endogeneity of some variable, given that the p-values of the coefficients of the fitted 

log(Y(-1)) to the powers of 2 and 3 are both significant. However, I still proceed with inference from this 

equation, assuming that the bias in the standard errors of the coefficients of the original equation is not 

large. To check for stability of the parameters, I follow the Chow’s tests. The recursive residual tests cannot 

be carried out in this case. Like previously, I use 1996:1 as the date to separate the data set into two sub-

sets. The result of the Chow’s breakpoint test is:
Chow Breakpoint Test: 1996:1 
F-statistic 0.374597     Probability 0.864474
Log likelihood ratio 2.112425     Probability 0.833380

The result of the Chow's forecast test is:
Chow Forecast Test: Forecast from 1996:1 to 2005:4
F-statistic 0.854594     Probability 0.686067
Log likelihood ratio 54.51344     Probability 0.062724

Thus, at the 0.05 significance level, both the tests do not reject the hypothesis of parameter stability of the 

aggregate demand equation.

For the money specification equation, the results from the estimation have been shown previously. 

To test for parameter stability, I again use the two Chow’s tests using 1996:1 as the reference date, like 

previously. Note that the recursive residual tests cannot be performed in this case since the error term is 

AR(2). The result of the Chow’s breakpoint test is:
Chow Breakpoint Test: 1996:1 
F-statistic 1.746770     Probability 0.149141
Log likelihood ratio 7.409459     Probability 0.115769

The result of the Chow’s forecast test is:
Chow Forecast Test: Forecast from 1996:1 to 2005:4
F-statistic 1.181072     Probability 0.307789
Log likelihood ratio 67.05951     Probability 0.004671

Thus, Chow’s breakpoint test does not reject the hypothesis of parameter stability at the 0.05 significance 

level. For the Chow’s forecast test, the results are conflicting: the F-statistic is not significant and the log 

likelihood ratio is significant at the 0.05 level. Note that the difference in p-values is quite high. Further, the 

log likelihood is a large sample test. Therefore, parameter stability may be concluded at the 0.05 

significance level, though the results are not as conclusive as for the AD equation.

V. Conclusion

Evidence of parameter stability in the original equation is conflicting. For 1986:1 – 1995:4, both 

the Chow’s tests do not reject the hypothesis of parameter stability at the 0.05 level. This conclusion is 

reversed for the period 1996:1 – 2005:4 from both the tests at the same significance level. To get a better 

picture, I still performed both the tests for the twenty year period, 1986:1 – 2005:4. In this case, both the 

tests indicated parameter stability for the entire period at the 0.05 significance level. However, the results 

from the one step forecast error test and the recursive residuals test suggested parameter instability around 

1990:2 – 1991:1. But, this instability is not reflected in the CUSUM test for the same period. It was 

suggested that parameter instability in the second sub-period, 1996:1 – 2005:4 may have been due to a fall 

in the money supply around the year 1994. Based on all these tests, the least strict interpretation for the 

entire period may be that inference on parameter stability for the twenty year period depends on the tests 

performed, and is thus inconclusive.

A further problem is that the original output equation did not satisfy any of the constraints imposed 

by the model. This suggests that although the fiscal and monetary policy multipliers may in fact change 

with time, the method of using the given structural equations to establish a connection between the stability 

of the structural parameters and the policy multipliers may not yield reliable results. However, the 
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explanation of Lucas critique is based on the fact that these multipliers are a function of the structural 

parameters which change with time, leading to change in the multipliers themselves. Thus, the critique 

asserts a causal connection between the stability of these two sets of multipliers. Thus, even though the 

inferences on this connection will be most probably unreliable, it is still essential to do so.

For the aggregate demand equation, both of the Chow’s tests do not reject the hypothesis of 

parameter stability at the 0.05 level of significance, for the time period 1986:1 – 2005:4. For the money 

specification equation, the results from the Chow’s breakpoint test and the Chow’s forecast test are 

conflicting: the latter rejects the hypothesis of parameter stability at the 0.05 level of significance, unlike 

the former.

Thus, based on these results and the criteria for testing the Lucas critique given in the introduction, 

it appears that the existence of the Lucas critique for this data set is inconclusive. Assuming parameter 

stability in all the equations concerned, one may say that it cannot be denied. However, given that the 

parameter constraints are not satisfied at the 0.05 significance level, this causal relation is questionable. 

There is also some ambiguity regarding parameter stability in the original equation.

VI. NOTES AND TABLES

1 It is sufficient to investigate parameter instability in the AD equation and the money specification 

equation to try to explain the parameter instability, or otherwise, in the original output equation.
2 Since the variables are differenced, some cross-product can lead to the problem of perfect 

multicollinearity. E-Views does not perform the White’s test of heteroskedasticity assuming cross-terms in 

this case.

Data tables:

 Date                 M                        P                      PF                    Y                    

1985:1  566.6000  106.4000  106.4000  4119.500

1985:2  582.2000  107.6000  107.6000  4178.400

1985:3  603.3000  108.3000  108.3000  4261.300

1985:4  619.8000  109.3000  109.3000  4321.800

1986:1  633.5000  108.8000  108.8000  4385.600

1986:2  660.6000  109.5000  110.1425  4425.700

1986:3  687.4000  110.2000  110.3781  4493.900

1986:4  724.7000  110.5000  111.3901  4546.100

1987:1  733.8000  112.1000  110.2117  4613.800

1987:2  743.2000  113.5000  112.8471  4690.000

1987:3  747.5000  115.0000  114.1818  4767.800

1987:4  750.2000  115.4000  115.1939  4886.300

1988:1  761.7000  116.5000  116.9277  4951.900

1988:2  778.4000  118.0000  117.8743  5062.800

1988:3  783.7000  119.8000  119.4724  5146.600

1988:4  786.7000  120.5000  120.1123  5253.700

1989:1  783.0000  122.3000  121.5075  5367.100

1989:2  773.5000  124.1000  123.6566  5454.100

1989:3  781.0000  125.0000  125.7422  5531.900

1989:4  792.9000  126.1000  125.5986  5584.300

1990:1  801.6000  128.7000  127.7982  5716.400

1990:2  808.9000  129.9000  130.3268  5797.700

1990:3  820.0000  132.7000  130.6609  5849.400

1990:4  824.7000  133.8000  133.4872  5848.800

1991:1  838.7000  135.0000  136.1396  5888.000

1991:2  856.7000  136.0000  136.0370  5964.300

1991:3  870.2000  137.2000  138.7122  6035.600

1991:4  896.9000  137.9000  138.3197  6095.800

1992:1  936.6000  139.3000  139.1649  6196.100

1992:2  954.4000  140.2000  140.3429  6290.100
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1992:3  988.0000  141.3000  141.4622  6380.500

1992:4  1024.800  141.9000  142.0593  6484.300

1993:1  1036.600  143.6000  143.3940  6542.700

1993:2  1075.100  144.4000  144.5532  6612.100

1993:3  1104.200  145.1000  145.5721  6674.600

1993:4  1129.700  145.8000  145.7978  6800.200

1994:1  1140.200  147.2000  147.6260  6911.000

1994:2  1145.200  148.0000  148.1308  7030.600

1994:3  1151.900  149.4000  148.8301  7115.100

1994:4  1150.700  149.7000  150.1649  7232.200

1995:1  1146.800  151.4000  151.2284  7298.300

1995:2  1144.200  152.5000  152.2844  7337.700

1995:3  1141.800  153.2000  153.9776  7432.100

1995:4  1127.400  153.5000  153.6135  7522.500

1996:1  1122.500  155.7000  155.7000  7624.100

1996:2  1115.100  156.7000  156.6797  7776.600

1996:3  1096.000  157.8000  157.3158  7866.200

1996:4  1081.400  158.6000  157.8676  8000.400

1997:1  1072.300  160.0000  160.4387  8113.800

1997:2  1065.700  160.3000  160.9170  8250.400

1997:3  1067.300  161.2000  161.5815  8381.900

1997:4  1072.800  161.3000  162.2562  8471.200

1998:1  1077.400  162.2000  163.2317  8586.700

1998:2  1076.800  163.0000  163.1969  8657.900

1998:3  1079.800  163.6000  164.4346  8789.500

1998:4  1095.900  163.9000  164.3307  8953.800

1999:1  1097.200  165.0000  165.3800  9066.600

1999:2  1099.600  166.2000  166.3136  9174.100

1999:3  1096.700  167.9000  167.1715  9313.500

1999:4  1123.000  168.3000  168.1723  9519.500

2000:1  1107.600  171.2000  169.3595  9629.400

2000:2  1103.500  172.4000  171.7226  9822.800

2000:3  1099.700  173.7000  173.4465  9862.100

2000:4  1087.700  174.0000  173.5733  9953.600

2001:1  1108.700  176.2000  176.4773  10021.50

2001:2  1126.700  178.0000  177.2132  10128.90

2001:3  1205.200  178.3000  178.9103  10135.10

2001:4  1182.000  176.7000  178.5576  10226.30

2002:1  1191.300  178.8000  179.5950  10333.30

2002:2  1192.700  179.9000  181.3413  10426.60

2002:3  1195.900  181.0000  181.1721  10527.40

2002:4  1219.500  180.9000  180.0373  10591.10

2003:1  1237.300  184.2000  183.1761  10705.60

2003:2  1281.000  183.7000  185.0367  10831.80

2003:3  1298.100  185.2000  185.1244  11086.10

2003:4  1305.500  184.3000  185.2594  11219.50

2004:1  1328.200  187.4000  188.1346  11405.50

2004:2  1343.700  189.7000  187.4398  11610.30

2004:3  1363.000  189.9000  190.7758  11779.40

2004:4  1375.200  190.3000  188.9973  11948.50

2005:1  1371.400  193.3000  193.0225  12154.00

2005:2  1380.800  194.5000  195.2668  12317.40

2005:3  1379.400  198.8000  194.7312  12558.80

2005:4  1373.200  196.8000  197.7583  12705.50

For the definition of the variables and the data sources, see Section II. 
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Note: The correlograms of the levels and first difference of the error term of the AD equation estimated by 

the OLS method are attached.
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