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Abstract

The paper extends the analysis of price competition among capacity-
constrained sellers beyond the cases of duopoly and symmetric oligopoly.
We �rst provide some general results for the oligopoly and then focus
on the triopoly, providing a complete characterization of the mixed
strategy equilibrium of the price game. The region of the capacity
space where the equilibrium is mixed is partitioned according to the
features of the mixed strategy equilibrium arising in each subregion.
Then computing the mixed strategy equilibrium becomes a quite sim-
ple task. The analysis reveals features of the mixed strategy equilib-
rium which do not arise in the duopoly.

1 Introduction

The issue of price competition among capacity-constrained sellers has at-
tracted considerable interest since Levitan and Shubik�s (1972) modern reap-
praisal of Bertrand and Edgeworth. Assume a given number of �rms pro-
ducing an homogeneous good at constant and identical unit variable cost up
to some �xed capacity. Assume, also, a non-increasing and concave demand
and that any rationing takes place according to the surplus maximizing rule.
Then there are a few well-established facts about equilibrium of the price
game. First, at any pure strategy equilibrium the �rms earn the competi-
tive pro�t. However, a pure strategy equilibrium need not exist, unless the
capacity of the largest �rm is small enough compared to total capacity (see,

0We are grateful to Jiawei Chen, Giuseppe Freni, Daisuke Hirata, and Attila Tasnadi for
valuable comments and suggestions on an earlier version of this paper. The responsibility
for any remaining errors rests entirely with the authors.
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for instance, Vives, 1986). When a pure strategy equilibrium does not exist,
existence of a mixed strategy equilibrium is guaranteed by Theorem 5 of
Dasgupta and Maskin (1986) for discontinuous games.

Under the aforementioned assumptions on demand and cost, a character-
ization of mixed strategy equilibrium was provided by Kreps and Scheinkman
(1983) for the duopoly within a two-stage capacity and price game. That
model was subsequently extended to allow for non-concavity of demand (Os-
borne and Pitchik,1986) or di¤erences in unit cost among the duopolists
(Deneckere and Kovenock, 1996). This led to the discovering of new phe-
nomena, such as the possibility of the supports of the equilibrium strategies
being disconnected and non-identical for the duopolists.

Yet, there is still much to be learned about mixed strategy equilibria
under oligopoly, even with constant and identical unit cost and concave
demand, where a complete characterization of the mixed strategy equilib-
rium is only available for the case of equal capacities (see, among others,
Vives, 1986). More recently Hirata (2008) showed how some features of
the duopolistic mixed strategy equilibrium need not hold in the triopoly.
The present paper di¤ers in scope from Hirata�s since we provide a com-
plete characterization of the mixed strategy equilibria in the triopoly: our
analysis will reveal any qualitative features possibly arising in the triopoly,
including the facts highlighted by Hirata (2008).1 Di¤erences between our
contribution and Hirata�s will be further clari�ed below and in the following
sections.

We �rst point out a number of properties of a mixed strategy equi-
librium under oligopoly. Further progress requires a taxonomy, something
which seems hard to manage in general oligopoly. We turned to the tri-
opoly, whose analysis is in itself challenging and can provide insights for
subsequent generalizations to oligopoly. The aim proved to be worth pur-
suing. Unlike in the duopoly, the equilibrium distributions need not have
identical supports for all the �rms. For one thing, the maximum as well as
the minimum of the supports need not be the same for all the �rms.2 Fur-
thermore, supports need not be connected. As another di¤erence from the
duopoly, the equilibrium is not unique when the capacity of the largest �rm
is su¢ciently large, in which case there is actually one degree of freedom in
the determination of the equilibrium distributions of the other �rms. This
result extends straightforwardly to n-�rm oligopoly: under that condition,

1Our own research and Hirata�s have been made independently from each other. (Re-
sults were made publicly available in Hirata, 2008, and De Francesco and Salvadori, 2008.)

2That minima may di¤er has also been recognized by Hirata (2008).
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the equilibrium distributions of the n � 1 �rms other than the largest one
are determined up to n � 2 degrees of freedom. (On the possibility of a
continuum of equilibria, see also Hirata, 2008).

The paper is organized as follows. Section 2 contains de�nitions and the
basic assumptions of the model along with a few basic results on equilibrium
payo¤s in oligopoly. Section 3 shows that several features of mixed strategy
equilibrium extend from duopoly to the oligopoly. Most notably, as far as
the largest �rm is concerned: the minimum of the support of its equilibrium
strategy is determined as in the duopoly; the maximum - also determined as
in the duopoly - is charged with positive probability if its capacity is strictly
higher than for any other �rm.

Sections 4 to 6 are devoted to the triopoly. In Section 4 the region of
the capacity space involving a mixed strategy equilibrium is partitioned into
several subsets according to the features of the resulting equilibrium. This
leads to a classi�cation theorem which characterizes equilibrium pro�ts and
bounds the supports of the equilibrium strategies throughout the region of
mixed strategy equilibria. Section 5 addresses the event of the support being
disconnected for some �rm: we clarify which type of gaps can in principle
arise and how gaps would be determined should they arise. Having done
this, we are able to complement our classi�cation theorem with a uniqueness
theorem: the equilibrium is either unique or not fully determined, and we
identify the two complementary subsets of the region of mixed strategy
equilibrium where the former and the latter hold true, respectively. The
event of a gap in some support is established in Section 6. In that section
we compute the mixed strategy equilibrium in one of the subsets where
the supports of the equilibrium strategies have the same bounds for all the
�rms. That subset is in its turn partitioned into two subsets according to
the nature of the equilibrium: in one the supports are connected for all the
�rms, in the other, there is a gap in the support of the smallest �rm. To
show that gaps are a more general phenomen, in Section 6 we also look
elsewhere in the region of mixed strategy equilibria and provide an example
with a gap in the support of the intermediate-size �rm. Section 7 brie�y
concludes.

2 Preliminaries

There are n �rms, 1; 2; :::; n, supplying a homogeneous good. The �rms are
assumed to produce at the same constant unit cost, normalized to zero, up
to capacity. The demand is denoted as D(p) and its inverse as P (x). When
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positive, D(p) is assumed to be decreasing and concave. Without loss of
generality, we consider the subset of the capacity space (K1;K2; :::Kn) such
that K1 � K2 � ::: � Kn; and we de�ne K = K1+ :::+Kn. As already said,
the �rms are charging the competitive price, pc = max f0; P (K)g at any pure
strategy equilibrium of the price game. Thus such an equilibrium fails to
exist when argmax p(D(p)� �j 6=1Kj) > pc, or, to put it more throroughly,
when either

�j 6=1Kj < D(0); pc = 0; (1)

or

K1 > �p
c
�
D0(p)

�
p=pc

; pc > 0: (2)

It is assumed throughout that either (1) or (2) holds, so that we are in the
region of mixed strategy equilibria.

We henceforth denote by ��i �rm i�s equilibrium payo¤ (expected pro�t),
by �i(p) �rm i�s expected pro�t when charging p and the rivals are playing
their equilibrium pro�le of distributions, ��i(p), by �i(p) = Pr(pi < p) �rm
i�s equilibrium (cumulative) distribution, where Pr(pi < p) is the probability

of i charging less than p; by Si the support of �i, and by p
(i)
M and p

(i)
m the

maximum and the minimum of Si, respectively. More speci�cally, we say
that p 2 Sj when �j(�) is increasing at p, that is, when �j(p+h) > �j(p�h)
for any h > 0, whereas p =2 Sj if �j(p + h) = �j(p � h) for some h > 0.
Of course, any �i(p) is non-decreasing and everywhere continuous except at
p� : Pr(pi = p�) > 0, where it is left-continuous (limp!p�� �i(p) = �i(p

�)) ,
but not continuous.

Obviously, ��i � �i(p) everywhere and �
�
i = �i(p) almost everywhere

in Si. Some more notation is needed to go deeper through the properties
of �i(p). Let N = f1; :::; ng be the set of �rms, N�i = N � fig, and
P(N�i) = f g be the power set of N�i. Further, let

Zi(p;��i) := p
X

 2P(N�i)

qi; �r2 �r�s2N�i� (1� �s); (3)

where qi; = maxf0;minfD(p) �
P
r2 

Kr;Kigg is �rm i�s output when any

�rm r 2  charges less than p and any �rm s 2 N�i �  charges more than
p.3 It is immediately recognized that for each p in which all functions �j(p)

3Note that �r2 �r is the empty product, hence equal to 1, when  = ;; and it is
similarly �s2N�i� (1� �s) = 1 when  = N�i.
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(j 6= i) are continuous, then

�i(p) = Zi(p;��i(p));

whereas
Zi(p

�;��i(p
�)) � �i(p

�) � lim
p!p�+

Zi(p;��i(p))

if Pr(pj = p�) > 0 for some j 6= i. This is enough to state the following

Lemma 1 (i) Zi(p;��i) is continuous in p. For every p and every
��i there exist � > 0 and �0 > 0 such that Zi(p;��i) is concave in p in
the intervals [p; p+ �] and [p� �0; p]: as a consequence, Zi(p;��i) is locally
concave in p whenever it is di¤erentiable.

(ii) For given ��i and for any  2 P (N�i), Zi(p;��i) is kinked at
p = P (

P
r2 

Kr) and locally convex there if �r2 �r�s2N�i� (1� �s) > 0.

(iii) Zi(p;��i) is continuous and di¤erentiable in �j (each j 6= i) and
@Zi=@�j � 0. More precisely @Zi=@�j < 0 if there exists some  containing
j such that

�r2 0�r�s2N�i� g(1� �s) > 0: (4)

and

0 < D(p)�
X

h2 0

Kh < Ki +Kj : (5)

where  0 =  � fjg.
(iv) For any i 2 N , ��i � �i(p) with �

�
i = �i(p) for p in the interior of

Si:
Proof. (i) Zi(p;��i) is a linear combination of functions which are

concave in the intervals [p; p+�] and [p��0; p] for � and �0 su¢cientely small.
(ii) The left derivative of Zi(p;��i) at p = P (

P
r2 

Kr) equals the right

derivative plus the negative quantity pD0(p)�r2 �r�s2N�i� (1� �s).
(iii) Di¤erentiation of Zi(p;��i) with respect to �j yields, after re-

arrangement,4

@Zi
@�j

= p
X

 2P(N�i)

(qi; � qi; 0)�r2 0�r�s2N�i� (1� �s) (6)

Then, @Zi=@�j � 0 since qi; � qi; 0 � 0. Clearly, @Zi=@�j < 0 if and only
if there exists  such that inequality (4) holds and qi; � qi; 0 < 0, which
leads to inequalities (5).

4Note that qi; � qi; 0 = 0 whenever j =2  . This allows to simplify the notation.
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(iv) Suppose contrariwise that ��i > �i(p
�) for some p� internal to Si.

This reveals that p� is not charged by i: it is Pr(pj = p�) > 0 for some j 6= i
and Zi(p

�;��i(p
�)) > �i(p

�) > limp!p�+ Zi(p;��i(p)). As a consequence
there is a right neighbourhood of p� in which ��i > �i(p): a contradiction.

Let pM = maxi p
(i)
M and pm = mini p

(i)
m ; M = fi : p

(i)
M = pMg and

L = fi : p
(i)
m = pmg. Moreover, if#M < n, then we de�ne bpM = maxi=2M p

(i)
M

and, with an abuse of language, if #M = n, then we say that bpM = pM .

Similarly, if #L < n, then we de�ne bpm = mini=2L p
(i)
m whereas bpm = pm

if #L = n. We henceforth write �i�(p) and �i�(p) to refer to �i(p) and
�i(p), respectively, over some range �; then, �i(p) does not need to equal
�i�(p) outside �. Finally, limp!h+�i�(p) and limp!h��i�(p) are denoted
as �i�(h

+) and �i�(h
�), respectively.

Since Kreps and Scheinkman it is known that pM = p
(1)
M = p

(2)
M =

argmax p(D(p)�K2) in a duopoly with K1 � K2; also, �1(pM ) < �2(pM ) =
1 if K1 > K2; while �1(pM ) = �2(pM ) = 1 if K1 = K2. Therefore
��i = pM (D(pM ) � K2) for any i such that Ki = K1. The next propo-
sition summarizes some generalizations of these results to oligopoly that
have been made recently.

Proposition 1 pM = argmax p(D(p)��j 6=1Kj) and, for any i : Ki = K1;

��i = max p(D(p) � �j 6=1Kj); furthermore, p
(i)
M = pM for any i : Ki = K1

and �j(pM ) = 1 for any j : Kj < K1.

Proof. This statement is an obvious consequence of the statement that

p
(i)
M = pM for some i : Ki = K1 and that �

�
i = max p(D(p) � �j 6=1Kj) for

any i : Ki = K1.(A complete proof of this statement is in De Francesco
(2003); see also Boccard and Wauthy (2001) and, for a more recent proof,
Loertscher (2008).)

According to this result, in the region of mixed strategy equilibria, the
equilibrium payo¤ of the largest �rm is decreasing in the capacity of any rival
and is independent on its own capacity. The fact that ��i = max p(D(p) �
�j 6=1Kj) for any i : Ki = K1 has a nice interpretation. Note that, in the
region of the capacity space where the equilibrium is in mixed strategies,
max p(D(p) � �j 6=1Kj) is nothing but the minimax payo¤ for any i : Ki =
K1.

5 Thus, what Proposition 1 is actually saying is that the equilibrium
payo¤ of (any of) the largest �rm(s) equals its minimax payo¤.

5Let ��i denote any mixed strategy pro�le on the part of �rm i�s rivals, where i :
Ki = K1 and let p(��i) denote any of �rm i�s best response to ��i. It is immediately
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Since Kreps and Scheinkman it is also known that, in a duopoly, #L = 2
and Pr(pi = pm) = 0 for i = 1; 2; so that ��1 = pmminfD(pm);K1g: This

implies that pm = maxfbp;bbpg; where bp � ��1=K1 and bbp is the smallest solution
of the equation in p

pD(p) = ��1.

Finally, �rm 2�s equilibrium payo¤ is ��2 = pmK2. Since S1 = S2 = [pm; pM ],
then �1(p) and �2(p) are found straightforwardly by solving the two-equation
system ��i = Zi(p;��i(p)). It will be seen below to which extent these results
generalize beyond duopoly.

3 Some properties of equilibrium for the oligopoly

In this section we establish a number of general properties of mixed strategy
equilibria under oligopoly. The following proposition presents a number of
basic properties, which represent generalizations of analogous results holding
for duopoly.

Proposition 2 (i) #M � 2 and #L � 2:
(ii) At any p� 2 (pm; pM ), it cannot be #fi : p

� 2 Sig = 1:
(iii) For any p� 2 (pm; pM ); p

� > P (�
i:p

(i)
m <p�

Ki).

(iv) i 2 L for any i : Ki = K1.
(v) Let i 2 N�1 and j 2 N�1 � fig. At any p 2 (pm; pM ):
(v.a) @Z1=@�i < 0 and @Zi=@�1 < 0 for any i;
(v.b) if p � P (K1); @Zi=@�j = 0;
(v.c) if p < P (K1) and n=3, then @Zi=@�j < 0; if p < P (K1) and n > 3;

then, for each i 2 R(p) (for each j 2 R(p)), there is some j 2 R(p) (resp.,

some i 2 R(p)) such that @Zi=@�j < 0, where R(p) = fr : p
(r)
m � pg.

(vi) pm > P (�j2LKj).
(vii) For any p� 2 (pm; pM ), Pr(pj = p�) = 0 for any j.

(viii) pm = maxfbp;bbpg.

Proof. (i) This is so because Zi (�) is concave in p on a right neighbour-
hood of pm and on a left neighbourhood of pM . Suppose contrariwise that
#L = 1 and let L = fig. Then �0j = 0 for all j 6= i in a neighbourhood
of pm. Hence d�i(p)=dp = @Zi=@p, contrary to the fact that �i(p) = ��i
in a right neighbourhood of pm. A similar argument rules out the event of
#M = 1:

understood that �i(p(��i)) � pM (D(pM )��j 6=1Kj) with strict equality holding for some
��i.
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(ii) The proof is similar to the previous one, given the fact that Zi (�) is
concave on a right neighbourhood of any p and a left neighbourhood of any
p.

(iii) Otherwise for i : p
(i)
m < p it would be �i(p) = pKi for p 2 Si\[pm; p

�]:
a contradiction.

(iv) Since D(pM ) >
P

j 6=1Kj , if pm < p
(i)
m for some i : Ki = K1, then

a fortiori D(p) >
P

j2LKj for p � pM : as a consequence, for any j 2 L;

�j(p) is increasing for p 2 [pm; p
(i)
m ): a contradiction.

(v.a) A crucial role is played here by statements (i) to (iv) above and
the fact that D(p) >

P
j 6=1Kj . To see that @Z1(p)=@�i < 0 one must check

that at least one product on the right-hand side of (4) is strictly negative.
This is so for  = R(p) � f1g if j 2 R(p) and  = R(p) [ fjg � f1g if
j =2 R(p): in fact, q1; �q1; 0 < 0 since 0 < q1; < K1 and, at the same time,
�r2 0�r�s2N�i� (1 � �s) > 0: One can similarly see that @Zi(p)=@�1 < 0:
in fact, we take  = R(p) if i =2 R(p) and  = R(p) � fig if i 2 R(p), and
see that q1; � q1; 0 < 0.

(v.b) Now qi; � qi; 0 = Ki �Ki = 0 for any  2 N�i such that 1 =2  ;
while qi; � qi; 0 = 0� 0 = 0 for any  2 N�i such that 1 2  :

(v.c) Note that the �rst inequality (6) holds for  = f1; jg since p <
P (K1); whereas the second inequality (6) holds for  = N�i sinceD(p) < K:
therefore @Zi=@�j < 0 for n = 3, since then f1; jg = N�i. Turning to
the oligopoly, note that, by statement (iii), the second inequality (6) also
holds for  = R(p) � fig. Thus @Zi=@�j < 0 if #R(p) = 3, since then
f1; jg = R(p)� fig. Finally, with #R(p) > 3, let 	1 (	2) be the set of the
subsets  of N�i which satisfy the �rst (resp., the second) inequality (6):
neither 	1 nor 	2 are empty. If 	1 \	2 6= ;; then @Zi=@�j < 0. If instead
	1 \	2 = ;, then for any  2 	1,

D (p)�
X

h2 

Kh � Ki > �Kj ,

while, for any  2 	2,

D (p)�
X

h2 

Kh � �Kj < Ki.

Of course, there is some  l 2 	1 such that  l [ flg 2 	2 where l 2 R(p)�
fi; jg and therefore

�Kj � D (p)�
X

h2 l

Kh �Kl � Ki �Kl:
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Thus Kl � Ki +Kj . But this cannot hold if either i or j is the largest �rm
in R(p) apart for �rm 1. This completes the proof of the claim.

(vi) If #L = n, then inequality pm � P (�j2LKj) implies that each
�rm earns no more than its competitive pro�t, contrary to Proposition 1.
Suppose next #L < n: If pm < P (�j2LKj), then �j(p) would be increasing
over the range [pm;minfbpm; P (�j2LKj)g] for any j 2 L. To rule out the
event of pm = P (�j2LKj) when #L < n; it will be shown that otherwise it
would be limp!p+m

�0i(p) < 0 for each i 2 L. Note that �
�
i = pmKi and

��i = �i(p) = p[D(p)� �j2L�figKj ]�j2L�fig�j + pKi(1��j2L�fig�j)

= p[D(p)�D(pm)]�j2L�fig�j + pKi

in a neighborhood of pm: Therefore

�j2L�fig�j =
(pm � p)Ki

p[D(p)�D(pm)]
:

Then

d�j2L�fig�j
dp

= Ki
�pm[D(p)�D(pm) + pD

0(p)] + p2D0(p)

p2[D(p)�D(pm)]2
;

and

lim
p!p+m

d�j2L�fig�j
dp

= Ki
pmD

00(p) + 2D0(p)

2p2m[D
0(p)]2

< 0:

This in its turn implies that limp!p+m
�0i(p) < 0 for each i 2 L since, in the

present case, �i(p)Ki = �j(p)Kj for each i; j 2 L.
(vii) A distinction is drawn according as to whether p� 2 S1 or p

� =2
S1. In the former case, if contrariwise �j(p

�) < limp!p�+ �j(p) for some
j 6= 1, then limp!p�+ �1(p) < limp!p�� �i(p) since @Z1=@�j < 0 because
of statement (v): a contradiction. In a similar way it is also proved that
�1(p

�) = limp!p�+ �1(p). Assume now that p
� =2 S1. It must preliminarily

be noted that such an event might only arise (if ever) when p� < P (K1):
Indeed, if p� � P (K1) and p

� =2 S1; then, as a consequence of statement
(v) above, d�i(p)=dp = @Zi=@p in a neighbourhood of p

�; contrary to the
fact that �i(p) is constant in a neighbourhood of p

� for any i such that
p� 2 Si. If, on the other hand, p

� < P (K1); then, according to statement

(v.c), @Zi=@�j < 0 for some i such that p
(i)
m � p. Therefore, if �j(p

�) <
limp!p�+ �j(p) for some j, it would be limp!p�+ �i(p) < limp!p�� �i(p): a
contradiction.

9



(viii) Since�1(p) � pminfD(p);K1g, then�1(p) < �
�
1 for p < maxfbp;bbpg.

At the same time it cannot be that pm > maxfbp;bbpg: if it were, then it would
be �1(p

�
m) = pmminfD(pm);K1g > �

�
1:

Note that, since bp is decreasing in K1, the event of bbp � bp arises at
relatively large levels of K1. An immediate consequence of statement (viii)
is

Corollary 1. pm � P (K1) if and only if bbp � bp:
Note that if ��j = pmKj for all j 6= 1 and Si = [pm; pM ] for all i; then

the equilibrium distributions would be found, as in duopoly, by solving the
n-equation system ��i = Zi(p; ��i(p)) throughout [pm; pM ]: But there is no
guarantee that the above features hold, hence we are not yet in a position to
the determine the equilibrium. Yet, we can make some remarks regarding
pM .

Proposition 3 (i) Let K1 > K2. Then �1(pM ) < 1. (ii) If Kr = K1, then
�r(p) = �1(p) for p 2 [pm; pM ]; and �r(pM ) = �1(pM ) = 1. Furthermore, if

at the same time Kj < K1 for some j, then p
(j)
M < pM .

Proof. (i) Suppose contrariwise that �1(pM ) = 1: As a consequence,
��i = �i(p

�
M ) = pM maxfD(pM )�

P
j 6=iKj ; 0g for i 2M �f1g. If D(pM ) �P

j 6=iKj , then �
�
i = 0 while �i(p

�
m) = pmKi > 0: a contradiction. If,

instead, D(pM ) �
P

j 6=iKj > 0; then, since argmax p[D(p) �
P

j 6=iKj ] 2

(0; pM ) for i 2 M � f1g, it would be �i(p) > �i(p
�
M ) for some p: a contra-

diction. Thus it must be Pr(p1 = pM ) > 0 and �i(p
�
M ) > �i(pM ).

(ii) Since D(pM ) >
P

j 6=1Kj , we can write �
�
r = �r(p) = p�1E(xr j p1 <

p) + p(1 � �1)Kr = p�1[E(xr j p1 < p) �Kr] + pKr, where p is internal to
Sr and E(xr j p1 < p) denotes r�s expected output at p conditional on �rm
1 charging less than p. Similarly, we can write ��1 = �1(p) = p�r[E(x1 j
pr < p) � K1] + pK1 for p internal to S1. Obviously, E(xr j p1 < p) =
E(x1 j pr < p); so that �r(p) = �1(p) - as required by Proposition 1 - if
and only if �r = �1. Further, it cannot be �r(pM ) = �1(pM ) < 1, otherwise
�r(p

�
M ) > �r(pM ) contrary to the presumption that pM is quoted with

positive probability by �rm r: Nor can it be p
(j)
M = pM for any j : Kj < K1.

By arguing as in the proof of the previous statement we would obtain that
�j(p) > �j(pM ) at some p < pM .
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4 The triopoly: upper and lower bounds of the

supports of equilibrium strategies

In the preceding sections we have seen how there are a number of properties
which generalize from the duopoly to oligopoly. Equipped with these results
and in order to get further insights for the oligopoly, in the remainder of
the paper we provide a comprehensive study of mixed strategy equilibria
in the triopoly. Compared to the duopoly, the triopoly will be seen to
allow for much wider diversity throughout the region of mixed equilibria,
the equilibrium being a¤ected on several grounds by the ranking of pm and
pM relative to the demand prices of di¤erent aggregate capacities, namely,
P (K1 +K2), P (K1 +K3), and P (K1).

Without loss of generality, in the region of mixed strategy equilibria of
the (K1;K2;K3)-space we restrict ourselves to the subset where K1 � K2 �
K3. As soon as one set out to construct the equilibrium it emerges that there
may be signi�cant di¤erences in some equilibrium features at the di¤erent
points in that subset. The following partition of that subset gives a full
account of the diversity in the bounds of the equilibrium supports and on
the degree of determinateness of the equilibrium.6 (Note that, because of
Proposition 1 and statement (viii) of Proposition 2, pM and pm are known
once K1, K2, and K3 are given.)

6The results presented by Hirata (2008) refer to a less �ne partition of that subset. Most
notably, that partition does not fully distinguish according as to whether pM 7 P (K1)
nor according as to whether pM � P (K1 + K3) or P (K1 + K3) < pM � P (K1). As a
consequence, the possibility of a continuum of equilibria is not addressed at full lenght
nor is it the determination of M .
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A = f(K1;K2;K3) : K1 � K2 > K3; pm � P (K1 +K2); pM � P (K1 +K3)g

B1 = f(K1;K2;K3) : K1 � K2 > K3;

pm � P (K1 +K2); P (K1 +K3) < pM � P (K1)g

E1 = f(K1;K2;K3) : K1 � K2 > K3; pm � P (K1 +K2); pM > P (K1)g

C1 = f(K1;K2;K3) : K1 � K2 > K3; P (K1 +K2) < pm < P (K1 +K3)g

C2 = f(K1;K2;K3) : K1 � K2 > K3; P (K1 +K3) � pm; pM � P (K1)g

C3 = f(K1;K2;K3) : K1 � K2 > K3;

P (K1 +K3) � pm <
K1 �K3

K1
P (K1); pM > P (K1)g

F = f(K1;K2;K3) : K1 � K2 > K3;

maxfP (K1 +K3);
K1 �K3

K1
P (K1)g � pm < P (K1); pM > P (K1)g

D = f(K1;K2;K3) : K1 � K2 � K3; pm � P (K1)g

B2 = f(K1;K2;K3) : K1 � K2 = K3; pm < P (K1); pM � P (K1)g

E2 = f(K1;K2;K3) : K1 � K2 = K3; pm < P (K1); pM > P (K1)g

It is easily checked that it is actually K1 > K2+K3 whenever pM � P (K1),
hence at any (K1;K2;K3) 2 C3 [D [E1 [E2 [ F; and K1 > K2 whenever
pM � P (K1 +K3), hence at any (K1;K2;K3) 2 B1 [ C2.

The following theorem collects most of the results to be achieved in this
section.

Theorem 1. (a) In A, ��i = pmKi for all i, L = f1; 2; 3g and M =
f1; 2g.

(b) In B1 [B2, �
�
i = pmKi for all i and L =M = f1; 2; 3g.

(c) In C1 [ C2 [ C3, �
�
i = pmKi for i 6= 3 and �

�
3 > pmK3; L = M =

f1; 2g; p
(3)
M < P (K1).

(d) In D, ��1 = pmD(pm) and �
�
j = pmKj for j 6= 1; �1(p) = 1� pm=p;

while �2(p) and �3(p) are any pair of non-decreasing functions such that
pK2�2 + pK3�3 = pD(p)���1; �j(pm) = 0 and �j(pM ) = 1 for j 6= 1:

(e) In E1 [ E2, �
�
i = pmKi for all i, L = f1; 2; 3g and #M � 2 with

bpM � P (K1). Over [P (K1); pM ], �1(p) = 1�pm=p; and �2(p) and �3(p) are
any pair of non-decreasing functions such that pK2�2+pK3�3 = pD(p)���1;
�j(P (K1)

+) = �j(P (K1)
�) and �j(pM ) = 1 for j 6= 1.

(f) In F , ��i = pmKi for all i, L = f1; 3g and p
(2)
m � P (K1). Over the

range [P (K1); pM ] distributions are determined like in E1 [ E2.
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In addition, we will see how to determine p
(3)
m and��3 when (K1;K2;K3) 2

C1 [ C2 [ C3. The route leading to the results listed in Theorem 1 begins
with the determination of #L in the various subsets making up the partition
of the region of mixed strategy equilibria. Then we will address the deter-
mination of L and the �0is. Finally, we will determine M in each subset of
the partition. In connection to the �rst task an intermediate step is made
by the following Lemma.

Lemma 2. If #L = 2; then Pr(pj = pm) = 0 for each j 2 L; if #L = 3
and Pr(pi = pm) > 0 for some i, then Pr(pj = pm) = 0 for each j 6= i.

Proof. Let L = fi; jg: If Pr(pj = pm) > 0, then, taking account of
statement (vi) of Proposition 2, ��i = �i(p

+
m) < pmminfD(pm);Kig while

�i(p
�
m) = pmminfD(pm);Kig: a contradiction. A similar argument estab-

lishes the second part of the statement, relating to the event of L = fi; j; kg.

We are now ready to address the determination of #L. First of all note
that if #L = 3 then equilibrium distributions constitute a solution of system

��i = Zi(p; ��i(p)); �i > 0; �
0
i � 0 for each i; (7)

in an open to the left right neighbourhood of pm, where �
�
2 and �

�
3 are

constants to be determined. Note, furthermore, that Pr(pi = pm) = �i(p
+
m).

The following result addresses the determination of #L in the whole region
of mixed strategy equilibria except set D along with the determination of
Pr(pi = pm) throughout the partition. In this connection, it must be noted
that subset B2 [E2 can be partitioned into two subsets, one in which pm �
P (K1+K2) = P (K1+K3) and one in which P (K1+K2) = P (K1+K3) <
pm < P (K1). It is shown that whether #L = 2 or #L = 3 depends on the
size of pm relative to P (K1+K2) and P (K1); as well as on whether K2 > K3

or K2 = K3.

Proposition 4 (i) Let pm � P (K1+K2) or, equivalently, let (K1;K2;K3) 2
A [ B1 [ E1 or (K1;K2;K3) fall in the subset of B2 [ E2 where pm �
P (K1 +K2). Then #L = 3 and Pr(pi = pm) = 0 for each i.

(ii) Let (K1;K2;K3) fall in the subset of B2 [ E2 where P (K1 +K2) =
P (K1 +K3) < pm < P (K1). Then #L = 3 and Pr(pi = pm) = 0 for each
i.7

7That L = 3 in the circumstances of statements (i) and (ii) has independently been
discovered also by Hirata (2008, see Claims 2 and 5). Hirata does not address the issue
of Pr(pi = pm):
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(iii) Let (K1;K2;K3) 2 C1[C2[C3[F; or, equivalently, P (K1+K2) <
pm < P (K1) and K2 > K3. Then #L = 2:

(iv) Let (K1;K2;K3) 2 D; that is, pm � P (K1). Then Pr(pi = pm) = 0
for each i.

(v) Pr(pi = pm) = 0 for each i 2 L.
(vi) ��i = pmKi for each i 2 L, except that �

�
1 = pmD(pm) in set D.

Proof. (i) The �rst part is an obvious consequence of statement (vi)
of Proposition 2. The second part of the statement is proved by showing
that �i(p

+
m) = 0 for each i at any solution of system (7). Suppose �rst that

pm < P (K1 +K2). Then the equations in system (7) read

��1 = p�2�3[D(p)�K] + pK1;

��2 = p�1�3[D(p)�K] + pK2;

��3 = p�1�2[D(p)�K] + pK3:

Hence
�
dZi(p; ��i(p))=dp

�
p=p+m

= 0 for each i if and only if

(D �K)[�2�3 + pm(�
0
2�3 + �2�

0
3)] +D

0pm�2�3 +K1 = 0;

(D �K)[(�1�3 + pm(�
0
1�3 + �1�

0
3)] +D

0pm�1�3 +K2 = 0;

(D �K)[(�1�2 + pm(�
0
1�2 + �1�

0
2)] +D

0pm�1�2 +K3 = 0;

where D;D0; �1; �2; �3; �
0
1; �

0
2, and �

0
3 are all to be undertood as limits for

p ! p+m. Now, suppose contrariwise that, say, �1(p
+
m) > 0 (one might as

well suppose either �2(p
+
m) > 0 or �3(p

+
m) > 0). Then, according to Lemma

2, �2(p
+
m) = �3(p

+
m) = 0; and the system above becomes

pm(D �K)(�
0
2�3 + �2�

0
3) = �K1;

pm(D �K)(�
0
1�3 + �1�

0
3) = �K2;

pm(D �K)(�
0
1�2 + �1�

0
2) = �K3:

But this system cannot hold. Indeed, in order for the �rst equation to hold it
must be either �02 =1 or �03 =1 (or both): then, either the third equation
or the second equation (or both) cannot hold. The same logic applies when
pm = P (K1+K2), regardless of whetherK2 > K3 orK2 = K3. For example,
in the former case, the equations in system (7) read

��1 = p�2[D(p)�K1 �K2]� p�2�3K3 + pK1;

��2 = p�1[D(p)�K1 �K2]� p�1�3K3 + pK2

��3 = p(1� �1�2)K3;
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in a right neighbourhood of pm and the same procedure proves the statement
in this case too.

(ii) Assume contrariwise that p
(1)
m = p

(2)
m < p

(3)
m . Then

��2 = Z2(p; ��2(p)) = p�1(D(p)�K1) + p(1� �1)K2

�3(p) = Z3(p; ��3(p)) = p�1(1� �2)(D(p)�K1) + p(1� �1)K2

for p 2 (pm; p
(3)
m ]. It is immediately seen that Z3(�) < Z2(�) for any �1; �2 >

0: Consequently, ��3 = Z3(p
(3)+
m ; ��3(p

(3)
m )) < ��2: �rm 3 has not made a best

response since it can guarantee itself ��2 by charging pm. To establish the
second part of the statement, assume contrariwise that �i(p

+
m) > 0 for some

i. Then ��j = Zj(p
+
m; ��j(p

+
m)) < �j(p

�
m) = pmKj for j 6= i: a contradiction.

(iii) The statement is proved by showing that, if #L = 3; then either
Zi(p

+
m; ��i(p

+
m)) < Zi(pm; ��i(pm)) for some i - a clear contradiction - or

system (7) has no solution. The proof runs somewhat di¤erently according as
to whether P (K1+K2) < pm < P (K1+K3) or P (K1+K3) � pm < P (K1).

(iii.a) P (K1 +K2) < pm < P (K1 +K3).
There are three cases to consider: either �i(p

+
m) > 0 for some i 2 f1; 2g,

or �3(p
+
m) > 0; or �i(p

+
m) = 0 for each i. In the �rst case ��j = �j(p

+
m) <

�j(p
�
m) = pmKj for j 2 f1; 2g and j 6= i. In both the second and third case

the equations in system (7) read

��1 = p�2[D(p)�K1 �K2]� p�2�3K3 + pK1;

��2 = p�1[D(p)�K1 �K2]� p�1�3K3 + pK2;

��3 = p(1� �1�2)K3;

over range (pm; P (K1+K3)). Then
�
dZi(p; ��i(p))=dp

�
p=p+m

= 0 if and only
if

pm[�
0
2�3K3 + �2�

0
3K3 � �

0
2(D �K1 �K2)] = K1;

pm[�
0
1�3K3 + �1�

0
3K3 � �

0
1(D �K1 �K2)] = K2;

pm(�
0
1�2 + �1�

0
2) = 1:

Since �0i � 0, the �rst two equations cannot hold unless �
0
2 and �

0
1 are both

�nite, whereas the third equation requires that at least one of them is not.

(iii.b) P (K1 +K3) � pm < P (K1).
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The equations in system (7) read

��1 = p[�2(D(p)�K1 �K2)� �2�3(D(p)�K1)

+�3(D(p)�K1 �K3) +K1];

��2 = p[�1(D(p)�K1 �K2)� �1�3(D(p)�K1) +K2];

��3 = p[�1(D(p)�K1 �K3)� �1�2(D(p)�K1) +K3];

for p 2 (pm;minfbpM ; P (K1)g]. We consider a partition of four cases. In
the �rst case, P (K1 + K3) < pm and �i(p

+
m) > 0 for some i. If i = 1;

then ��j = Zj(p
+
m; ��j(p

+
m)) < �j(p

�
m) = pmKj for j 6= i; if i 2 f2; 3g;

then ��1 = Z1(p
+
m; ��1(p

+
m)) < �1(p

�
m) = pmK1. A similar contradiction is

obtained in the second case, in which P (K1+K3) = pm and �i(p
+
m) > 0 for

some i 2 f1; 2g. Then, ��j = Zj(p
+
m; ��1(p

+
m)) < �j(p

�
m) = pmKj for j 6= i

and j 2 f1; 2g: As third case, assume that P (K1 +K3) = pm and �1(p
+
m) =

�2(p
+
m) = 0. Then the proof follows as in the last two cases inspected in

(iii.a). The partition is completed by the case where P (K1 +K3) < pm and
�i(p

+
m) = 0 for each i. Arguing as before it is now obtained

pm
�
�02�3(D �K1) + �2�

0
3(D �K1)� �

0
2(D �K1 �K2)+

��03(D �K1 �K3)] = K1;

pm[�
0
1�3(D �K1) + �1�

0
3(D �K1)� �

0
1(D �K1 �K2)] = K2;

pm[�
0
1�2(D �K1) + �1�

0
2(D �K1)� �

0
1(D �K1 �K3)] = K3:

On close scrutiny, a necessary condition for such equations to hold is that
0 < �0i <1 for each i. Granted this, the last two equations become

�pm�
0
1(D �K1 �K2) = K2;

�pm�
0
1(D �K1 �K3) = K3;

which cannot simultaneously hold since K2 > K3 and D(pm) > K1:
(iv) Under the present circustances, equation ��1 = Z1(p; ��1) reads

��1 = pm[D(pm)� �2K2 � �3K3]:

If either �2(p
+
m) > 0 or �3(p

+
m) > 0; then �

�
1 = Z1(p

+
m; ��1(p

+
m)) < �1(p

�
m) =

pmD(pm): a contradiction. To dispose of the event of �1(p
+
m) > 0; note that

Zj(p; ��j(p)) = p(1 � �1)Kj for j 6= 1: then, if �1(p
+
m) > 0; it would be

��j = Zj(p
+
m; ��j(p

+
m)) < �j(p

�
m) = pmKj for j 2 L� f1g:

(v) It is a consequence of statements (i)-(iv) and Lemma 2.
(vi) It is a consequence of previous statement and Corollary 1.
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We know from Sections 2 and 3 that pm and pM are determined just as
in the duopoly. Unlike in duopoly, however, the supports Si need not be the
same for all i, as is immediately revealed by the fact that #L = 2 may hold.
One group of related questions is then whether L = f1; 2g or L = f1; 3g and
how bpm is determined under the circumstances of statement (iii) of Propo-
sition 4. According to the following proposition, L = f1; 2g in C1 [C2 [C3
and L = f1; 3g in F . Furthermore, the proposition points the indetermi-
nacy a¤ecting the equilibrium at p > P (K1) when bpM > P (K1). Figure 1
illustrates statement (a.ii) of the following proposition and statement (i) of
Proposition 6 when set C1 [ C2 [ C3 is concerned.

Proposition 5 (a) Let (K1;K2;K3) 2 C1 [ C2 [ C3. Then: (a.i) L =

f1; 2g and ��i = pmKi for i 6= 3; (a.ii) Let � = [pm; p
(3)
m ], so that ��1 =

�1�(p) = Z1(p; �2�; 0) and �
�
2 = �2�(p) = Z2(p; �1�; 0).

8 Then ��3 =

maxp2e��3�(p) > pmK3 and p
(3)
m = argmaxp2e��3�(p),

9 where �3�(p) =
Z3(p; �1�; �2�), e� = [pm; p�M ] and p�M is such that �2�(p

�
M ) = 1.

(b) If (K1;K2;K3) 2 D, then �
�
1 = pmD(pm) and �

�
j = pmKj for j 6= 1;

�1(p) = 1 � pm=p; while �2(p) and �3(p) are any pair of non-decreasing
functions such that 10

�2 =
pD(p)���1 � pK3�3

pK2
; (8)

�j(pm) = 0 and �j(pM ) = 1 for j 6= 1. Equation (8) is consistent with
L = f1; 2; 3g; L = f1; 2g and L = f1; 3g, as well as M = f1; 2; 3g; M =
f1; 2g and M = f1; 3g, and even with (non-overlapping) gaps in S2 and S3.
Among the in�nite solutions, there exists a simmetric one in �2 and �3.

(c) If (K1;K2;K3) 2 F , then L = f1; 3g, p
(2)
m � P (K1) and �

�
i =

pmKi for all i. Over the range [P (K1); pM ], �1(p) = 1 � pm=p while �2(p)
and �3(p) are any pair of non-decreasing functions meeting (8) and such
that �3(P (K

+
1 ) = �3(P (K

�
1 ) and �2(P (K

+
1 ) = 0. It is �3(P (K1)) < 1

unless K1�K3
K1

P (K1) = pm: in this special case, S2 \ S3 = fP (K1)g and the

8We take for granted that [pm; bpm] 2 S1 \S2. For the sake of simplicity the proof that
there is no gap in the range [pm; bpm] is postponed to next section.

9The necessity, in what is here called C1, or the possibility, in C2[C3[F , of p
(3)
m > pm

and ��3 > pmK3 has also been recognized by Hirata (2008, see, respectively, Claims 3 and

5). However, Hirata is not concerned with how p
(3)
m and ��3 are actually determined in

that event.
10That there is a continuum of equilibria in this region has also been proved by Hirata

(2008, see Claim 1).
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equilibrium is determined.11

Proof. (a.i) Given statement (iii) of Proposition 4, we just need to rule

out the event of p
(1)
m = p

(3)
m < p

(2)
m . Consider �rst (K1;K2;K3) 2 C1. Under

that event ��3 = Z3(p; ��3(p)) = pK3 for p 2 (pm;minfp
(2)
m ; P (K1 +K3)g]:

an obvious contradiction. Next let (K1;K2;K3) 2 C2. If it were p
(1)
m =

p
(3)
m < p

(2)
m , then, for i; j 2 L it would be ��i = p�j(D(p)�Kj)+p(1��j)Ki

over the range [pm; p
(2)
m ], and, as a consequence,

�j =
(pm � p)Ki

p[D(p)�Ki �Kj ]
(9)

over that range. By charging a price there �rm 2 would get

�2(p) = Z2(p; ��2(p)) = p�1(1� �3)[D(p)�K1] + p(1� �1)K2;

which is lower than pmK2 at any p < P (K1). As a consequence, if pM <

P (K1); �
�
2 = �2(p

(2)
m ) < �2(pm): a contradiction. If instead pM = P (K1),

then one can avoid the same contradiction only by taking p
(2)
m = p

(2)
M = pM ,

that is, Pr(p2 = pM ) = 1 > 0, contrary to Proposition 1. Finally, let

(K1;K2;K3) 2 C3. Now, with p
(1)
m = p

(3)
m < p

(2)
m it should be p

(2)
m � P (K1),

to avoid the previous contradiction; but then, according to (9), �3(P (K1)) >
1 since pmK1 < (K1 �K3)P (K1).

(a.ii) It is easily checked that �3�(pm) = pmK3 = �3�(P (K1)) and, if
P (K1) > p�M , �3�(p

�
M ) < pmK3; furthermore, �

0
3�(p)p=pm > 0.12 It follows

immediately that ��3 > pmK3, since �rm 3 will earn more than pmK3 at
a price higher than and su¢ciently close to pm, and that �3�(p) has an
internal maximum over the range [pm;minfP (K1); p

�
Mg]. Thus it cannot

be p
(3)
m > argmax�3�(p); otherwise �

�
3 = �3�(p

(3)
m ) < max�3�(p); while

�rm 3 can earn max�3�(p) by charging argmax�3�(p). This being so, let

� = [p
(3)
m ;minfP (K1); bpMg]. To rule out the event of p(3)m < argmax�3�(p),

note that, on a right neighbourhood of p
(3)
m , ��i = �i�(p) = Zi(p; ��i�(p))

for all i and ��i = �i�(p) = Zi(p; ��i�(p)) for i 2 f1; 2g. Thus, taking
account of statement (v) of Proposition 2, �2� < �2� and �1� < �1� since

11See also Hirata (2008, Claim 4) for a proof of a similar result However, Hirata omits
that these results require, among other things, that pM > P (K1).

12 In C1, �
0
3�(p)p=pm = K3; in C2 [ C3, �

0
3�(p)p=pm = pm [�

0
1�]p=pm [D(pm) � K1 �

K3] +K3; where [�
0
1�]p=pm = � K2

pm[D(pm)�K1�K2]
:
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�3� > �3� = 0), implying that Z3(p; ��3�(p)) > Z3(p; ��3�(p)). Hence

if p
(3)
m < argmax�3�(p), we get a contradiction since Z3(p; ��3�(p)) >

Z3(p
(3)
m ; ��3�(p

(3)
m )) = ��3 = Z3(p; ��3�(p)) on a right neighbourhood of

p
(3)
m .13

(b) It is immediately checked that ��j = p (1� �1)Kj for j 6= 1 and
p 2 Sj : Since #L > 1; ��j = pmKj for some j 6= 1; in its turn implying
�1(p) = 1�

pm
p . Further, equation �

�
1 = Z1(p; ��1(p)) reads

��1 = p�2�3[D(p)�K2 �K3] + p�2(1� �3)[D(p)�K2]

+ p(1� �2)�3[D(p)�K3] + p (1� �2) (1� �3)D(p).

This leads to equation (8), leaving one conditional degree of freedom in the
determination of �2 and �3, additional constraints being, of course, �

0
j � 0

throughout [pm; pM ] for all j 6= 1; �j(pm) = 0; and �j(pM ) = 1.
14

As one can easily check, these constraints are met at the symmetric
solution of (8), namely,

�j(p) =
pD(p)���1
p(K2 +K3)

for j 6= 1: (8�)

(c) Again taking account of statement (iii) of Proposition 4, we just need to

rule out the event of p
(1)
m = p

(2)
m < p

(3)
m . Under such an event, �3(p) =

Z3(p; ��2(p)) = p�1(1 � �2)[D(p) � K1] + p(1 � �1)K3 in a neighbour-
hood of pm, where �1(p) and �2(p) are given by equations (9). It is eas-
ily checked that �3(p) > pmK3 in an open to the left neighbourhood of

pm. This implies, �rst, that �
�
3 > pmK3 and, second, that p

(3)
M < P (K1),

otherwise p (1� �1)K3 = ��3 > pmK3 and �
�
2 = p (1� �1)K2 = pmK2

for p 2 [P (K1); p
(3)
M ]. As a result, ��1 = p�2[D(p) � K2 � K3] + p(1 �

�2)[D(p) � K3] over the range (p
(3)
M ; P (K1)) and �2 =

p[D(p)�K3]���1
pK2

.15

But then �2(P (K1)) � 0 since pmK1 � (K1 � K3)P (K1): an obvious

contradiction. Thus it must be p
(1)
m = p

(3)
m < p

(2)
m . Further, it cannot

13One might wish to account for the event of �3�(p) reaching its maximum more
than once in e�: Arguing as in the text, it is established that �3� = 0 for any p �

maxfargmaxp2e��3�(p)g; hence p
(3)
m = maxfargmaxp2e��3�(p)g.

14By the way, holding equation (9), �2(pm) = 0 if �3(pm) = 0 and �2(pM ) = 1 if
�3(pM ) = 1:
15 In the assumption that (p

(3)
M ; P (K1)) � S1 \ S2. Assuming otherwise that this range

belongs neither to S1 nor to S2 would lead to a contradiction. See below, Proposition
7(ii).
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be p
(2)
m < P (K1), otherwise - as shown in the proof of statement (a.i) -

��2 = �2(p
(2)
m ) < pmK2. Thus �1 and �3 are given by equations (9) over the

range [pm; P (K1)]. Over the range (P (K1); pM ]; �1(p) = 1� pm=p; whereas
�2 and �3 are any pair of non-decreasing functions meeting equation (8) and
such that �3(P (K1)

+ = �3(P (K1)
�. (Note that �2(P (K1)

+) = 0 whenever

�3(P (K1)
+ = �3(P (K1)

�.) Quite interestingly, it can be p
(2)
m > P (K1)

rather than p
(2)
m = P (K1). In the former case, �3 =

pD(p)���1
pK3

over the range

[P (K1); p
(2)
m ] and it would still be �2(p

(2)
m )+) = 0. Finally, �3(P (K1)) = 1 if

and only if K1�K3
K1

P (K1) = pm; in this special case, �2 =
p[D(p)�K3]���1

pK2
over

range [P (K1); pM ].

A few remarks are in order as regards the regions of indeterminacy of
equilibrium. For example, as far as region D is concerned, one can gener-
ate solutions with any of the qualitative features claimed in statement (b)
of Proposition 5, by slightly perturbing �3(p) around �j(p) (the symmetric
solution in �2 and �3) over some [p

�; p��] � [pm; pM ]. For example, one
can construct in�nitely many equilibria with L = f1; 2g and M = f1; 2; 3g,
or L = f1; 3g and #M � 2; or even equilibria such that �0j = 0 for some

j 6= 1, over a subset of [p
(j)
m ; p

(j)
M ]: in other words, Sj need not be con-

nected.16 Finally, it is worth looking at what underlies the indeterminacy
of equilibrium. Except in a duopoly, this feature can arise when K1 is suf-
�ciently large. With n � 3, the output of any �rm i 6= 1 when charging
p > P (K1) does not depend on prices quoted by all other �rms except �rm
1: the demand forthcoming to i being zero whenever p1 < p and higher
than Ki whenever p1 > p. (Recall that D(p) >

P
i6=1Ki at any p � pM :)

Thus �i (each i 6= 1) only a¤ects �rm 1�s payo¤ at any p 2 (P (K1); pM ):
consequently, there is one degree of freedom in the determination of �2 and
�3.

Two remarks are in order about statement (a.ii). If argmaxp2e��3�(p) 6=
P (K1 + K3), then [�

0
3�]p=p(3)m

= 0 and [�0j� ]p=p(3)m + = [�0j�]p=p(3)�m
for j =

1; 2; whereas if argmaxp2e��3�(p) = P (K1 +K3), then [�
0
3�]p=p(3)m

> 0 and

[�0j� ]p=p(3)m + < [�0j�]p=p(3)m � for j = 1; 2. (We omit the proof, which can be

derived straightforwardly.)
We still have to determine M in all regions but D and F .

16Not dissimilar considerations hold - over range [P (K1); pM ] - for (K1;K2;K3) in F
or, as we will see in next proposition, in E1 or in E2. On all this, see the earlier version
of this paper (De Francesco and Salvadori, 2008).
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Proposition 6 (i) Let (K1;K2;K3) 2 A [C1 [C2 [C3. Then M = f1; 2g

and p
(3)
M < P (K1).

(ii) Let (K1;K2;K3) 2 B1 [ B2. Then #M = 3. Furthermore, �2(p) =
�3(p) whenever K2 = K3.

(iii) Let (K1;K2;K3) 2 E1 [E2. Then p
(j)
M � P (K1) for j 6= 1. For p 2

[P (K1); pM ], �1(p) = 1�pm=p while �2(p) and �3(p) are any non-decreasing
functions consistent with equation (8) and such that �j(P (K1)

+) = �j(P (K1)
�)

and �j(pM ) = 1 for j 6= 1. This is consistent with #M = 3, p
(2)
M < pM ; and

p
(3)
M < pM , and even with (non-overlapping) gaps in S2 and in S3.

Proof. (i) In order to establish thatM = f1; 2g, the set A[C1[C2[C3
is partitioned into the following regions: region (a), where pM � P (K1 +
K2); region (b), where pm � P (K1 + K2) < pM < P (K1 + K3); region
(c), where pm � P (K1 + K2) < P (K1 + K3) = pM ; region (d), where
P (K1 + K2) < pm < pM < P (K1 + K3); region (e), C2 [ C3; region (f),
where P (K1 +K2) < pm < P (K1 +K3) � pM . This is a partition because
regions (a), (b), and (c) make up set A; while regions (d) and (f) make up
set C1.

A constructive argument is provided for region (a). By statement (i)
of Proposition 4, p 2 S1 \ S2 \ S3 in a neighbourhood of pm. Hence, over
that neighbourhood equilibrium distributions are the solution of the three-
equation system

pmKi = p�j�r(D(p)�Kj �Kr) + p(1� �j�r)Ki;

so that �i = (Kj=Ki)�j . Based on this, it can be neither #M = 3 nor p
(2)
M <

pM . It is instead p
(3)
M < pM and S1 = S2 = [pm; pM ] and S3 = [pm; p

(3)
M ] at

one equilibrium.
As to regions (b) through (f), we �rst rule out the event of #M = 3 and

then the event of p
(2)
M < pM . Recall that, by Proposition 3, with #M = 3 it

is �1(pM ) < 1 = �2(pM ) = �3(pM ). Further, in a left neighbourhood of pM
equilibrium distributions would be the solutions of the three-equation system
(7), call them ��i: Let us consider region (c) �rst. As seen more thoroughly

in the following section, solving this system yields ��1 =
q

K2
K1

(p�pm)
p ; ��2 =

K1
K2
��1, and �

�
3 =

D(p)�K1�K2

K3
+ K1

K3
��1 for p 2 � = [P (K1 +K2); P (K1 +

K3)]. Since �
�
2(P (K1 +K3)) = 1, then �

�
1(P (K1 +K3)) = K2=K1; upon

di¤erentiation of ��3 and recalling thatD(pM )�K2�K3+pM [D
0(p)]p=pM =

0 and ��1 = pM [D(pM ) � K2 � K3], it is found
�
��03(p)

�
p=P (K1+K3)�

=
[D0(p)]p=pM

2K3
< 0: a contradiction.
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The event #M = 3 in regions (b), (d), (e), and (f) can be dismissed more
easily. Under that event, �2(p

�
M ) = Z2(pM ; ��2(pM )) = �

�
2 and �3(p

�
M ) =

Z3(pM ; ��3(pM )) = ��3. These two equations contradict each other since
�2(pM ) = �3(pM ) = 1. For example, if the former holds, then �3(p

�
M ) < �

�
3

and the latter cannot hold. Let us see how this works in each case. Note
that, both in (e) and (f), pM � P (K1 +K3). Hence, in either case, under
our working assumption it would be ��2 = pmK2 = pM [1 � �1(pM )]K2:
This yields �1(pM ) = 1 � pm=pM ; in its turn implying Z3(p

�
M ) = pM [1 �

�1(pM )]K3 = pmK3; contrary to statement (a.ii) of Proposition 5. In (d),
��2 = pmK2 = Z2(p

�
M ) = pM [�1(pM )(D(pM )�K1�K3)+ (1��1(pM ))K2];

yielding �1(pM ) =
pM�pm
pM

K2
K�D(pM )

. By substituting this into Z3(p
�
M ) =

pM [1��1(pM )]K3 it is obtained Z3(p
�
M ) =

pM [K1+K3�D(pM )]+pmK2

K�D(pM )
K3. Note

that pM [K1+K3�D(pM )]+pmK2

K�D(pM )
< pm since P (K1+K3) > pM ; hence Z3(p

�
M ) <

pmK3, contrary to statement (a.ii) of Proposition 5. A similar argument
applies to (b).

It remains to dismiss the event of p
(2)
M < pM in regions (b), (c), (d), (e),

and (f). This is done by showing that it would otherwise be �2(p) > �
�
2 in

a left neighbourhood of pM . If p
(2)
M < pM in regions (d), (e) and (f), then

�3(p
�
M ) = pM [1��1(pM )]K3 = �

�
3 > pmK3; implying �1(pM ) = 1�

��3
pMK3

<

1� pm
pM

and hence �2(p
�
M ) = pM�1(pM )maxf0; D(pM )�K1�K3g+pM [1�

�1(pM )]K2 �
��3
K3
K2 >

pmK3

K3
K2 = pmK2. If p

(2)
M < pM under (b) or (c), then

�1(p) = 1 � pm
p in a neighbourhood of pM . Consequently, by charging a

price in that neighbourhood �rm 2 would earn �2(p) = p�1�3[D(p)�K1 �
K3] + p�1(1� �3)[D(p)�K1] + p(1� �1)K2 > p(1� �1)K2 = pmK2 = �

�
2:

Next we prove that p
(3)
M < P (K1): This is trivial when pM � P (K1),

i.e. in A [ C2. In C1 [ C3, �
�
3 > pmK3 and if p

(3)
M � P (K1), then �

�
3 =

P (K1)[1��1(P (K1))]K3 and pmK2 = P (K1)[1��1(P (K1))]K2: an obvious
contradiction.

(ii) Note that, by statements (i) , (ii), and (vi) of Proposition 4, #L =
3 and ��i = pmKi. Consider �rst the case where (K1;K2;K3) 2 B1:

If p
(j)
M < pM for some j 6= 1, then one can easily check that �j(p) >

��j for p 2 [maxfp
(3)
M ; P (K1 + K3)g; pM ]. Turn next to the case where

(K1;K2;K3) 2 B2. Here �
�
2 = ��3 = pmK2 (recall that K2 = K3), hence

pmK2 = Z2(p; ��2(p)) = Z2(p; ��3(p)) on a right neighbourhood of pm.
Therefore, �2(p) = �3(p) and, of course, #M = 3.

(iii) According to statements (i), (ii) and (vi) of Proposition 4, ��j =
pmKj for any j 6= 1. Also, �j(p) = p (1� �1)Kj for p 2 [P (K1); pM ]:
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this leads to �1(p) = 1 � pm=p since p
(j)
M = pM for some j 6= 1. Now, if

it were p
(r)
M < P (K1) then it would be �r(p) > ��r for p 2 [p

(r)
M ; P (K1)],

as one can easily check. Also, the argument in the proof of statement (ii)
of Proposition 5 leads to the stated relationship between �2 and �3 over
[P (K1); pM ]. Any �2 and �3 consistent with equation (8) constitutes a pair
of equilibrium distributions so long as �0j � 0, �j(pM ) = 1 for j 6= 1; and
�j(p) is continuous in P (K1).

Once Propositions 4, 5, and 6 are proved, Theorem 1 is proved too.

Further, Statement (a) of Proposition 5 provides also for p
(3)
m and ��3 in

the regions where L = f1; 2g: In these regions p
(3)
M is easily determined

once ��3 has been computed. Let  = [p
(3)
M ; pM ] so that we can refer to

the equilibrium distributions of �rms 1 and 2 over this range as �1 and
�2 : clearly, Z2(p; �1 ; 1) = ��2 and Z1(p; �2 ; 1) = ��1. Next consider

Z3(p; �1 ; �2) on any left neighbourhood of pM . On re�ection, p
(3)
M is such

that Z3(p
(3)
M ; �1(p

(3)
M ); �2(p

(3)
M )) = �

�
3, Z3(p; �1 ; �2) > �

�
3 on a left neigh-

bourhood of p
(3)
M and Z3(p; �1 ; �2) � �

�
3 for p 2 (p

(3)
M ; pM ].

5 The triopoly: gaps in the supports and unique-

ness of equilibrium strategies

If the supports of equilibrium strategies are connected, then they are de-
termined by Theorem 1 and the equilibrium strategies are the solutions to
the appropriate equations in system (7). However, supports of equilibrium
strategies need not be connected. For example, if pM > P (K1) then �2(p)
and �3(p) are not uniquely determined and we have seen that equation (8)
allows for gaps in S2 or S3 and even non-overlapping gaps in both, within
range [P (K1); pM ]. We have also seen that no gap may exist in S1 within
range [P (K1); pM ]. In this section we will be able to see which type of gaps
can in principle arise for p < P (K1); in the next section, that type of gap
will be seen to be a concrete possibility in subsets B1 and C1. Our analy-
sis here will allow us to determine S1, S2 and S3 and to conclude with a
uniqueness result.

Lemma 3. (i) Z1(p;�2; �3) is concave and increasing in p throughout
[pm; pM ].

(ii) If pm < P (K1 +K3), then Z2(p;�1; �3) is concave in p over ranges
[pm; P (K1+K3)) and (P (K1+K3); P (K1)], but locally convex at P (K1+K3)
if �3 > 0; otherwise it is is concave over range (P (K1 + K3); P (K1)]. If
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pm < P (K1+K2), Z3(p;�1; �2) is concave in p over ranges [pm; P (K1+K2))
and (P (K1 +K2); P (K1)], but locally convex at P (K1 +K2); otherwise it
is is concave over range (P (K1 +K2); P (K1)].

Proof. (i) For each �2 and �3, function Z1(p;�2; �3) is a weighted
arithmetic average of functions of p which are concave and increasing over
the range [pm; pM ].

(ii) A similar argument applies to establish concavity; as to local con-
vexity, see Lemma 1(ii).

In this section we denote by �1
�(p); �2

�(p); and �3
�(p) the solutions to

the equations in system (7), whether they are the equilibrium strategies or
not. The following result holds.

Lemma 4. (i) (�1
�; �2

�; �3
�) is unique at any p � P (K1).

(ii) In A; B1 [B2 and C1 [C2 [C3, if �1
�; �2

�; and �3
� are increasing

over the range (bpm; bpM ), then �1�; �2�; and �3� are the equilibrium distrib-
utions throughout (bpm; bpM ).

Proof. (i) Let contrariwise (b��1; b��2; b��3) be another solution and let,
without loss of generality, b��1(p) < ��1(p) at some p: Then, since @Z3=@�2 <
0 and @Z2=@�3 < 0, it should be

b��2(p) > ��2(p) in order for Z3(p; b���3) =
��3 and it should be

b��3(p) > ��3(p) in order for Z2(p; b���2) = ��2. Con-

sequently, since @Z1=@�j < 0 for j 6= 1, it would be Z1(p; b���1) < ��1: a
contradiction.

(ii) It must preliminarily be noted that p < P (K1) at any p 2 (bpm; bpM ) in
A, B1[B2, and C1[C2[C3; hence we are in the circumstances of statement
(i). The statement is violated if and only if there is a gap (ep;eep) � [pm; bpM ]
in Sj for some j, so that �j(

eep) = �j(ep+). On the other hand, �j�(eep
+
) >

�j(ep) = �j
�(ep): consequently, either ep or eep or both are charged with positive

probability, contrary to statement (vii) of Proposition 2.

Taking account of statement (ii) of Proposition 2, there are three con-
ceivable types of gaps: some subset of [bpm; bpM ] is a gap in a single support;
some subset of [bpm; bpM ] is a gap in all supports; some subset of [pm; bpm] or
of [bpM ; pM ] is a gap in two supports. We will show that only gaps of the
�rst type are feasible. This means that gaps may only arise within the range
[bpm; bpM ], and only in one support at a time. As a consequence the union of
all supports equals [pm; pM ].

Proposition 7 (i) Assume that some interval (ep;eep) � [bpm;min(bpM ; P (K1))]
is a gap for Si while belonging to Sj and Sr. Then �i

�(p) > �i(p). As a

consequence �i
�(p) is decreasing in a left neighborhood of eep.
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(ii) S1 [ S2 [ S3 = [pm; pM ]

Proof. (i) In (ep;eep) we have

��i > Zi(p; �j(p); �r(p)) (10)

��j = Zj(p; �i(p); �r(p)) (11)

��r = Zr(p; �i(p); �j(p)): (12)

Because of inequality (10), either �j(p) > �j
�(p) or �r(p) > �r

�(p), or both.
Assume �j(p) > �j

�(p), then equation (12) implies �i(p) < �i
�(p). Thus

�i
�(p) is decreasing in a left neighborhood of eep since it must be �i(eep

+
) =

�i(
eep). Note that then equation (11) implies �r(p) > �r

�(p).
(ii) To make our point we have to rule out the event of some interval

(ep;eep) � [bpm; bpM ] being a gap in all supports, and the events of (ep;eep) �
[pm; bpm] or (ep;eep) � [bpM ; pM ] being a gap in two supports. Let us take the
�rst case �rst. Arguing ab absurdo, let (ep;eep) � [bpm;min(bpM ; P (K1))] be the
largest interval constituting a gap in S1, S2, and S3. It must preliminarily
be noted that the gap in S1 must extend on the left of ep. In fact, if ep 2 S1
so that ��1 = �1(ep); it would be �1(p) > ��1 at p slightly higher than ep
- a contradiction - since dZ1=dp = @Z1=@p on a right neighbourhood of
ep and, by statement (i) of Lemma 3, @Z1=@p > 0. To avoid a similar
contradiction for �rm 2 and 3, it must be @Z3=@p � 0 and @Z3=@p � 0 in a
right neighbourhood of ep. We will use this fact to prove that ep cannot be in
any subset of [pm; P (K1 +K3)]. In [pm; P (K1 +K2)],

Z2(p; �1; �3) = p f�1�3(D(p)�K1 �K3) + (1� �1�3)K2g :

Then

@Z2
@p = K2 + �1�3(D(p)�K + pD0(p)) �

� K2 +
P (K1+K2)�pm
P (K1+K2)

K2
K3
(D(p)�K + pD0(p)) �

� K2f1 +
P (K1+K2)�pm
P (K1+K2)

1
K3
[�K3 + P (K1 +K2)D

0(p)p=P (K1+K2)]g =

= K2
K3P (K1+K2)

fpmK3 + P (K1 +K2)D
0(p)p=P (K1+K2)[P (K1 +K2)� pm]g >

K2
K3P (K1+K2)

[��1 � (K1 �K3)P (K1 +K2)]> 0

The equalities derive from simple manipulation. The �rst inequality follows
from the requirement that Z2(p; �1; �3) = pmK2 on a left neighbourhood of
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ep, implying �1�3 = p�pm
p

K2
K�D(p) as we are stipulating that ep 2 [pm; P (K1+

K2)]: thus �1�3 is increasing in p and hence not higher than
P (K1+K2)�pm
P (K1+K2)

K2
K3
.

The second inequality holds since (D(p)�K + pD0(p)) is a decreasing func-
tion. The third inequality follows since pD0 + (D �K2 �K3) > 0 through-
out [pm; pM ); the last inequality follows since �

�
1 > p[D(p)�K2 �K3]

throughout [pm; pM ]. Nor can it be ep 2 [P (K1 + K2); P (K1 + K3)], since
@Z3=@p = K3(1� �1�2) > 0 over that range.

We must still rule out the event of ep 2 (P (K1 + K3); P (K1)). If ep is
in [P (K1 + K3); P (K1)], also eep is and either eep 2 S2 or eep 2 S3, or both.

Suppose eep 2 S3: From the requirement that @Z3=@p = 0 at p = ep (otherwise
an immediate contradiction obtains) it follows that @Z3=@p < 0 at p = eep
since Z3 is concave in p and since �1(

eep) = �1(ep) and �2(eep) = �2(ep)). But
this violates the requirement that dZ3=dp = 0 on a right neighbourhood of eep.
A similar contradiction arises if eep 2 S2: Hence no interval (ep;eep) � [bpm; bpM ]
may be a gap in all supports.

To complete the proof we must rule out the event of (ep;eep) being a gap
in S1 and Sj when (ep;eep) � [pm; bpm] and L = f1; jg or (ep;eep) � [bpM ; pM ] and
M = f1; jg. Similarly as before, in that event the gap in S1 should extend
on the left of ep. As a consequence, statement (ii) of Proposition 2 does not
hold: a contradiction.

We can now complete the analysis to see how equilibrium strategies are
determined when gaps arise.

Proposition 8 Let N = fi; j; rg and suppose ��i is decreasing on a left

neighbourhood of eep > p
(3)
m , where [eep; p(3)M ] is the largest (possibly degenerate)

neighbourhood of p
(3)
M where ��i, �

�
j, and �

�
r are increasing. Denote by ep

the largest solution of �i
�(p) = �i

�(eep) in the range (p(3)m ;eep).
(a) Equilibrium distributions are ��i; �

�
j ; and �

�
r over [eep; p(3)M ], Sj and

Sr are connected throughout (ep; p(3)M ] while (ep;eep) is a gap in Si.
(b) Over (p

(3)
m ; ep) if ��i; ��j, and ��r are increasing, they are the equi-

librium distributions. Otherwise there is a gap to be determined as in (a).
(c) If a gap emerges at step (b), a similar statement as in (b) holds for

the right neighbourhood of p
(3)
m still left to analyze and so on and so forth.17

Proof. By construction, each �rm gets its equilibrium payo¤ at any

p 2 [eep; p(3)M ] and the same holds for j and r at any p 2 (ep;eep), where
17By necessity, at some step ��i; �

�
j , and �

�
r are increasing on the right neighbourhood

of p
(3)
m still left to analyze.
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Zj(p; �i
�(ep); �r(p)) = ��j and Zr(p; �i�(ep); �j(p)) = ��r . Further, it does not

pay for �rm i to charge any p 2 (ep;eep): Zi(p; �j ; �r) < ��i = Zi(p; �j
�; �r

�)

since �j > ��j and �r > ��r throughout (ep;eep). One can argue likewise
while moving on the left of ep and up to p(3)m : thus the strategy pro�le under
consideration constitutes an equilibrium.

To check uniqueness, we begin by noting that, by statement (i) of Propo-

sition 7, none of �i, �j and �r can be constant over any interval in [
eep; p(3)M ].

By the same token we can dismiss any strategy pro�le with any subset of

[ep; p(3)M ] other than (ep;eep) constituting a gap in Si. Nor can there be equilibria
with a gap (p; p) in Sj such that p 2 (ep;eep). This would restrict the gap in
Si to (q;eep), where q 2 [p;eep), so that �i(eep) = ��i(eep) = ��i(q), contrary to

the fact that ��i(q) > ��i(eep).
The results of this section allow to supplement Theorem 1 with a unique-

ness result.

Theorem 2. In A; B1 [ B2, and C1 [ C2 [ C3, the equilibrium is
unique throughout [pm; pM ]. In F and E1 [E2, all equilibria share the same
�i over range [pm; P (K1)].

6 On the event of a disconnected support

Based on the results above one can compute the mixed strategy equilibrium
once the demand function and the �rm capacities are �xed. To illustrate how
this task is accomplished, in this section we will determine the equilibrium
for (K1;K2;K3) 2 B1. This region is of special interest because S3 turns out
to be disconnected under well-speci�ed circumstances. But the possibility
of gaps is by no means restricted to that region. This will be proved at the
end of the section, by means of a numerical example yielding a gap in S2 for

(K1;K2;K3) 2 C1. The example also shows that range [eep; p(3)M ] may in fact
be degenerate, as acknowledged in Proposition 8.

In region B1 we partition the range [pm; pM ] into three subsets: � =
[pm; P (K1+K2), � = [P (K1+K2); P (K1+K3)), and  = [P (K1+K3); pM ].
In � the equations in system (7) read

8
<
:

��1 = p[�2��3�(D(p)�K2 �K3) + (1� �2��3�)K1]
��2 = p[�1��3�(D(p)�K1 �K3) + (1� �1��3�)K2]
��3 = p[�1��2�(D(p)�K1 �K2) + (1� �1��2�)K3];
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and the solution is

��1� =

s
K2

K1

(pm � p)K3

p(D(p)�K)
; ��2� =

K1

K2
��1�; �

�
3� =

K1

K3
��1�: (13)

In �; the equations in system (7) read

8
<
:

��1 = p
�
�2��3�(D(p)�K2 �K3) + �2�

�
1� �3�

�
(D(p)�K2) +

�
1� �2�

�
K1

�
;

��2 = p[�1��3�(D(p)�K1 �K3) + �1�
�
1� �3�

�
(D(p)�K1) +

�
1� �1�

�
K2];

��3 = p[�1�
�
1� �2�

�
+
�
1� �1�

�
]K3;

and the solution is

��1� =

s
K2

K1

(p� pm)

p
; ��2� =

K1

K2
�1�; �

�
3� =

D(p)�K1 �K2

K3
+
K1

K3
��1� :

(14)
In ; the equation in system (7) read

8
>><
>>:

��1 = p
�
�2�3(D(p)�K2 �K3) + p�2

�
1� �3

�
(D(p)�K2)

+
�
1� �2

�
�3(D(p)�K3) +

�
1� �2

�
(1� �3)K1

�

��2 = p
�
�1

�
1� �3

�
(D(p)�K1) +

�
1� �1

�
K2

�

��3 = p
�
�1

�
1� �2

�
(D(p)�K1) +

�
1� �1

�
K3

�
;

and the solution is

��1 =

s
K2K3(p� pm)2

p2(D(p)�K1 �K2)(D(p)�K1 �K3) + (p� pm)K1p(D(p)�K1)
;

��2(p) = 1�
K3

K2
+
K3

K2
��3

��3 =
(p� pm)K2 + p�

�
1(p)(D(p)�K1 �K2)

p��1(D(p)�K1)
:

In range �, ��0i� > 0. (If ��0i� � 0 for some i, then �
�0
j� � 0 for all j 6= i,

thereby violating the requirement that �0i = 0 since Lemma 3 holds.) On
the other hand, while ��1�(P (K1 + K2)) < 1 and ��2�(P (K1 + K2)) < 1
(the latter is checked by simple manipulation and using the fact that ��1 >
p(D�K2�K3)) throughout [pm; pM )) it might be �

�
3�P (K1+K2) � 1 (as
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illustrated by the third example below), which would obviously prevent the
equilibrium distributions from coinciding with the ��i��s throughout �. In
range , �1(pM ) < 1 = �2(pM ) = �3(pM ) and �

0
i > 0 in the interior of

; with �03 = �02 = 0 at p = pM .
18 As to range �, ��i�(P (K1 +K3)) < 1

for all i. This is seen almost immediately as far as ��1� is concerned. As to
��j� (j 6= 1), by simple computations it is found that �

�
j�(P (K1+K3)) < 1

if and only if ��1 > (K1 � K2)P (K1 + K3), which certainly holds since
��1 > p(D �K2 �K3) throughout [pm; pM ).

It might be ��03� < 0 in a left neighbourhood of P (K1 +K3): Note that

��03� =
D0(p)

K3
+
K1

K3
��01� =

D0(p)

K3
+
1

2

�
K2

K1

(p� pm)

p

��1=2 K2

K3

pm
p2
:

Since ��03� is decreasing, it will be �
�0
3� > 0 throughout � if and only if

[��03�]p=P (K1+K3) � 0: This in its turn amounts to

K2pm � �2
�
D0(p)

�
p=P (K1+K3)

� [P (K1 +K3)]
2

s
K2

K1

�
1�

pm
P (K1 +K3)

�
:

(15)
If this inequality holds, then equilibrium distributions are actually the ��i��s
throughout �.(Note that in this case, ��3�(P (K1 +K2)) < 1 since �

�00
3� < 0

throughout �.) If not, then, by Proposition 8, there is a gap [ep; P (K1+K3)]
in S3. Two cases are possibile according as to whether �

�
3�(P (K1+K3)) �

��3�(P (K1+K2)) or �
�
3�(P (K1+K3)) < ��3�(P (K1+K2)). In the former

case ep is such that ��3�(ep) = ��3�(P (K1 + K3)), in the latter it is such
that ��3�(ep) = ��3�(P (K1 + K3)). In the former case, the equilibrium
distributions are provided by equations (13) throughout � and by equations
(14) over subset [P (K1+K2); ep] of �, the remaining subset [ep; P (K1+K3)]

being the gap in S3: here �3 = ��3�(P (K1+K3)), �1 =
��2�pK2

p[D(p)�K1�K2��3K3]

and �2 =
��1�pK1

p[D(p)�K1�K2��3K3]
. In the latter case, equations (13) provide the

equilibrium distributions over subset [pm; ep] of � and �3 = ��3�(P (K1+K3))

throughout range [ep; P (K1 + K3)], the gap in S3. Now �1 =
��2�pK2

p�3(D(p)�K)

and �2 =
��1�pK1

p�3(D(p)�K)
over subset [ep; P (K1 + K2)] of the gap and �1 =

��2�pK2

p[D(p)�K1�K2��3K3]
and �2 =

��1�pK1

p[D(p)�K1�K2��3K3]
over the remaining subset

[P (K1 +K2); P (K1 +K3)].

18On all this, see the appendix in De Francesco and Salvadori (2008).
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We provide one example for each of the three cases which can arise for
(K1;K2;K3) 2 B1: no gap in any Si, a gap in S3 with ep 2 �; a gap in S3
with ep 2 �.

First example: D(p) = 10� p; K1 = 5:98; K2 = 1; and K3 = 0:97: Then
pM = 4:015, pm = 4:0152=5:98, and ��i = pmKi for each i. Condition (15)
is met, hence Si = [pm; pM ] for all i.

Second example: D(p) = 10 � p;K1 = 23=4; K2 = 3; K3 = 2: Then
pM = 2:5, pm = 25=23, and ��i = ��i = pmKi for each i. Condition
(15) is violated, hence �3 is constant over range [ep; P (K1 + K3)]; where
P (K1+K3) = 2:25. It is easily found that ep � 1:57358 > P (K1+K2) = 1:25.

Third example: D(p) = 10 � p; K1 = 5:45; K2 = 3; and K3 = 2:2:
Then pM = 2:4, pm = 2:42=5:45, and ��i = pmKi for each i. Condition
(15) is violated, hence �3 is constant over range [ep; P (K1 + K3)]; where
P (K1+K3) = 2:35: It is easily found that ep � 1:48165 < P (K1+K2) = 1:55.
In fact, one can also easily check that ��3�P (K1 +K2) � 1:036.

Finally, to get further insights on gaps we work out an example for region
C1. Let D(p) = 20 � p and (K1;K1;K1) = (15; 4; 0:5). Then, pM = 7:75,
��1 = 60:0625, pm = 4:00416, and ��2 = 16:016. Note that (15; 4; 0:5) 2
C1 since P (K1 + K2) = 1 < pm = 4:00416 < P (K1 + K3) = 4:5. We

partition [pm; pM ] into � = [pm; p
(3)
m ), � = [p

(3)
m ; p

(3)
M ), and  = [p

(3)
M ; pM ].

In �, �1� = 4(4:00416�p)
p(1�p) and �2� = 15(4:00416�p)

p(1�p) . One can easily check

that argmaxp2[pm;P (K1)] Z3(p; �1�; �2�) = P (K1 + K3), hence p
(3)
m = 4:5

and ��3 = �3(p
(3)
m ) � 2:11620. To �nd p

(3)
M , note that, in , �1 = 1 �

(pm=p) = 1 � (4:00416=p) and �2 =
p(D(p)�K3)���1

pK3
= 2p(19:5�p)�60:0625p .

Then the equation Z3(p; �1 ; �2) = �
�
3 over range [pm; P (K1)] yields p

(3)
M �

4:66038. Turning to range �, denote the relevant19 solutions of the equations
in system (7) by ��1� ; �

�
2�; and �

�
3� . One can check that

�
��02�(p)

�
p=p

(3)
M

<

0. Therefore, there is a gap [ep;eep] in S2, with eep = p
(3)
M . As to ep, this is

found by solving ��2�(p) = ��2�(eep) = :487931 over (p
(3)
m ; p

(3)
M ), which yields

ep � 4:57316. Further, one can check that ��1�(p), �
�
2�(p); and ��3�(p)

are all increasing throughout [p
(3)
m ; ep], so there are no further gaps. To sum

up: S1 = [4:00416; 7:75], S2 = [4:00416; 4:57316] [ [4:66038; 7:75]; and S3 =
[4:5; 4:66038].

19The equations in system (7) brings to a second degree algebraic equation, only one of
the solutions for ��2� being nonnegative.
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7 Concluding remarks

In this paper we have extended the analysis of price competition among
capacity-constrained sellers beyond the duopoly and symmetric oligopoly
cases. We have �rst derived some general results on the mixed strategy
equilibrium under oligopoly - among them, the fact that the minimum of
the support of the equilibrium strategy is determined for the largest �rm
like in duopoly (a similar result was recently provided as for the maximum).
It emerged in the course of our investigation that mixed strategy equilibria
might look quite di¤erent depending on the �rm capacities: supports of the
equilibrium strategies may or may not coincide across all the �rms, the equi-
librium need not be fully determined as far as the �rms other than the largest
one are concerned, and equilibrium payo¤s may or may not be proportional
to capacities.20 Thus a complete characterization of mixed strategy equilib-
rium requires a taxonomy, and we have provided it for the case of triopoly.
We have partitioned the region of the capacity space where the equilibrium
is mixed into several subregions according to the set of properties of the
equilibrium which turns out to be speci�c to each subregion. Another novel
feature - in the context of concave demand, constant and identical unit cost
and e¢cient rationing - revealed by our analysis is the possibility of some
support of equilibrium strategies being disconnected, and we have showed
how gaps are actually determined in that event. Having made the taxonomy
of mixed strategy equilibria - in terms to the determination of the minima
and the maxima of the supports, the equilibrium payo¤s of the �rms, and
the degree of determinateness of the equilibrium - and having seen how any
gap is determined, computing the mixed strategy equilibrium is an easy
task, as exempli�ed in Section 6.
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