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I  Introduction
Telecommunications bandwidth has grown at an

unprecedented rate in recent years with current esti-

mates suggesting that seven percent of the world’s

population now has access to the Internet. Indeed,

while North America still leads the world in terms of

adoption, Table I shows that nearly half of all users

now reside outside the Unites States (US). Given the

proliferation of telecommunication applications such

as Internet browsing, email, Voice over Internet Pro-

tocol (VoIP) and video broadband, as well as strong

volume growth in the traditional Public Switched

Telephone Network (PSTN), it is likely that the

growth exhibited in Figure I is likely to continue in

the near future. In 1999, for example, standard inter-

national telephone traffic grew by over 15 % in 1999

to 107.8 billion minutes. Although VoIP still

accounts for only a small fraction of the total voice

market, traffic grew tenfold to over 1.7 billion min-

utes, with the fastest growth occurring in US-develop-

ing country outgoing routes (TeleGeography, 2001b).

Not surprisingly, such growth has stimulated vigor-

ous competition in both national and international

telecommunications markets. At the national level,

countries such as Germany and Israel have experi-

enced spectacular returns to deregulation with long-

distance calling market prices dropping 91 % and

94 %, respectively (Newton 2000). Similarly, Tele-

Geography (2000) global trends suggest that call vol-

ume growth has been stimulated largely by succes-

sive price cuts. Technology has played a substantial

role, initially by least-cost routing arrangements such

as callback and traffic refile, and more recently by

routing voice and facsimile transmissions through the

Internet, thus providing competitors with the means

of reducing or avoiding international settlements.

In response, incumbent carriers have sought to

increase their scale so as to defend revenues and deter

entry by new competitors. According to TeleGeogra-

phy (2001b), submarine cables increased the aggre-

gate trans-Atlantic bandwidth by a factor of 12 to

Internet traffic dynamics
G A R Y  M A D D E N  A N D  G R A N T  C O B L E - N E A L

Gary Madden

is a Professor at

CEEM, Curtin

University of

Technology,

Perth, Australia

Grant Coble-Neal

is a PhD student

The telecommunications industry has evolved at unprecedented rates with current estimates

suggesting that seven percent of the world’s population now has access to the Internet. However,

such growth has stimulated vigorous competition in national and international telecommunications

markets leading to a price-cost margin squeeze and unsustainable rates of network expansion. This

study demonstrates the reliability of established extrapolation methods for forecasting bandwidth

demand and provides network managers with the opportunity to observe Internet traffic dynamics.

The ability to anticipate periods of peak use and surplus capacity is likely to pay dividends in terms

of a more targeted approach to network expansion plans.

Figure I  Internet host growth 1981–2001 (Source:

Internet Software Consortium, http://www.isc.org/)

Region Hosts (‘000s) % Users (‘000s) %

Africa 305.3 0.25 3,337.6 0.77

Asia 10,280.3 8.28 81,733.9 18.73

Europe 23,365.6 18.81 103,827.0 23.80

Oceania 2,297.1 1.85 19,995.1 4.58

Central America 496.0 0.40 1,643.7 0.38

South America 1,367.6 1.10 18,001.1 4.13

North America 86,098.5 69.32 207,734.0 47.62

Total 124,210.3 100.00 436,272.4 100.00

Table I  Internet hosts and users by region (Source: Telcordia

Technologies, http://www.netsizer.com/)

1) A terabit is one million million bits.
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over two terabits per second in just one year.1)

Overall, telecommunication’s three basic building

blocks, fibre, digital signal processors and routers,

are improving their capacity for throughput ten times

faster than the mainstream computer industry (New-

ton, 2000).2) High-speed routers, for example, are

now switching terabits of information each second. In

addition, laboratory tests show that a fibre strand the

width of a human hair can transmit three trillion bits

per second, enough to transmit the entire world’s

Internet (Newton 2000).

However, network expansion is expensive. Construc-

tion costs can range from USD 4,000 to USD 3 mil-

lion per kilometer depending on the choice of

upgrade level of dense wavelength-division multi-

plexing (TeleGeography, 2001a). Similarly, subma-

rine cable installation costs range from USD 0.5 bil-

lion for a 10,000 kilometer cable to USD 2.0 billion

for 30,000 kilometers. Meanwhile, carriers’ main-

stream business continues to be cannibalized by the

proliferation of Internet Service Providers purchasing

flat rate access to upstream network only to offer

VoIP to the incumbent carriers’ own customer base.

Thus, while telecommunications traffic continues

to grow at a rapid rate, networks are expanding at

economically unsustainable rates. Such long-term

impacts of technological change are always hard to

forecast, but that task is especially difficult in the

case of e-commerce, where markets are currently

very far from equilibrium. In the ‘land rush’ to secure

Internet real estate, to gain first-mover market posi-

tion and other advantages, many firms are pursuing

strategies that are properly interpreted as the payment

of one-time, largely sunk entry costs (Borenstein and

Saloner 2001).

In this environment, common carriers will need to

develop improved forecast models to accurately pre-

dict bandwidth demand and target network expan-

sion. This paper uses Internet Traffic Report as a data

source that measures Internet bandwidth loads and

availability on a continuous basis.3) The data is gen-

erated by a test called a “ping”, which measures

round-trip travel time along major paths on the Inter-

net. Several servers in different areas of the globe

perform the same ping at the same time and an index

based on average response times across test servers

is calculated.

The traffic index produces a score in the ranges [0,

100]. A zero score is ‘slow’ and 100 is ‘fast’ by com-

paring the current response of a ping echo to all pre-

vious responses from the same router over the past

seven days. Response time in reference to Internet

traffic is how long it takes for data to travel from

point A to point B and back (round trip). A typical

response time on the Internet is 200 milliseconds.

To be continually accurate and useful, statistics are

gathered at many geographically diverse routers and

many geographically diverse ‘satellite’ locations to

test from.

This study obtains alternative forecasts of broadband

capacity using ARMA, ARARMA, Holt, Holt-D

exponential smoothing, Naïve, Robust Trend, as well

as a deterministic trend model. The ARMA method is

the well-established Box-Jenkins approach to model

systematically recurring patterns in stationary data.

The ARARMA model, proposed by Parzen (1982), is

designed to model long memory processes, using an

initial autoregressive specification to filter potentially

non-stationary data. Holt’s exponential smoothing fil-

ters random noise and extrapolates the underlying lin-

ear trend contained in the data while Holt’s-D models

time series as a linear trend decaying towards a con-

stant. Robust Trend essentially models a time series

as a stochastic trend with an outlier filter. Thus, the

trend is allowed to adapt as observations accumulate

while providing a restrained reaction to sudden unex-

pected pulses in the data. Introduced by Grambsch

and Stahel (1990), this technique has been shown to

perform best for homogenous telecommunications

data by Fildes et al. (1998). Naïve is the simple ran-

dom walk extrapolation and Trend provides a deter-

ministic alternative to Holt, Holt-D and Robust

Trend. Both Naïve and Trend are included as indica-

tive benchmarks with which to compare forecast

accuracy of the alternative methods.

The paper is organised as follows: Section II

describes sample data, and a discussion of the various

forecast models is contained in Section III. Model

results are presented in Section IV and concluding

remarks are presented in Section V.

2) A digital signal processor (DSP) is a specialized micro-processor that performs calculations on digitized signals that were originally

analogue (e.g. voice). DSPs are used extensively for echo cancellation, call progress monitoring, voice processing, and voice and

video signal compression. Routers are the central switching offices of the Internet and are the interface devices between different net-

work architectures such as x.25, Frame Relay and Asynchronous Transfer Mode. These intelligent devices decide which backbone

network to transmit data, monitor the condition of the network and redirect traffic to avoid congestion.

3) The Internet Traffic Report URL is http://www.internettrafficreport.com/index.html.
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II  Data
The data set described and analyzed in this paper is

comprised of 59 time-series, each containing 232

observations. These data are sampled from a continu-

ous data generating process and sampled daily at

7 AM Australian Eastern Standard Time weekdays

for the period February 18, 2000 to March 30, 2001.

A representative specimen of these data is shown in

Figure II. As described, the data oscillate between

zero and 100 and appear to exhibit characteristics

typical of stationary series. Another feature, which is

common to many of the series in this data set, is the

sudden downward spike in the series. These spikes

indicate brief periods of unusually high congestion

and, depending on the motivation for generating fore-

casts, can either be treated as outliers which are atypi-

cal of the series or incorporated in the model as an

infrequent but important characteristic of the data

generating process.

Summary statistics, reported in Table II, highlight

the frequency of the downward spikes with 28 of the

59 routers reporting zero minimum values. Regions

represented include East Asia, Australia, Western

Europe, Israel, Russia, North America and South

America. Absent regions include Antarctica, Africa

and most parts of the Middle East. The Denver den-

ver-br2.bbnplanet.net router is recorded as providing

the fastest response while AOL1 pop1-dtc.atdn.net

has the lowest response time. On average, the Perth1

opera.iinet.net.au router provides the consistently

fastest response while Yahoo fe3-0.cr3.SNV.global-

center.net is typically the slowest.4)

Following Fildes (1992) we analyze the series in

terms of frequency of outliers, strength of trend,

degree of randomness and seasonality, with the

results shown in Figure III through Figure V. An

observation (Xt) is classed as an outlier if Xt < Lx –

1.5(Ux – Lx) or Xt > Lx + 1.5(Ux – Lx), where Lx

denotes the lower quartile and Ux the upper quartile.

The strength of trend is measured by the correlation

between the series (with outliers removed) and a time

trend, with the absolute value of the trend indicating

its strength. Randomness is measured by estimating

the regression:

X’
t = α + βt + δ1X’

t-1 + δ2X’
t-2 + δ 3X’

t-3, (1)

where X’
t denotes the series Xt with outliers removed.

The adjusted R2 is used to measure the variation

explained by the model. A high R2 indicates low

Figure II  Japan dm-gw1.kddnet.ad.jp

4) Time of day effects and scale of demand may have an impact on router performance. For example, the Perth router services a small

market and is likely to have relatively low congestion early in the morning, while in real time, the Yahoo router may be at peak

demand in the mid-late afternoon.
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Router Average Std.deviation Min. Max.

China2 beijing-bgw1-lan.cernet.net 57.68 10.23 22.00 87.00

HK1 hkt004.hkt.net 58.01 7.54 16.00 72.00

India cust-gw.Teleglobe.net 61.60 8.98 13.00 81.00

Japan dm-gw1.kddnet.ad.jp 58.96 7.54 0.00 67.00

Malay fe1-0.bkj15.jaring.my 56.05 11.53 4.00 79.00

Phil3 tridel-…-inc.Sacramento.cw.net 60.98 5.60 31.00 67.00

Sing1 pi-s1-gw1.pacific.net.sg 58.11 8.39 4.00 69.00

Sing2 gateway.ix.singtel.com 60.81 7.81 27.00 72.00

Taiwan cs4500-fddi0.ficnet.net.tw 59.03 9.06 26.00 77.00

Bris Fddi0-…-core1.Brisbane.telstra.net 61.15 7.92 0.00 69.00

Canb Fddi0-0.civ3.Canberra.telstra.net 61.02 7.55 0.00 68.00

Gosfor Ethernet0.gos2.Gosford.telstra.net 61.44 7.82 0.00 69.00

Melb mc5-a2-0-4.Melbourne.aone.net.au 60.28 7.43 14.00 70.00

Perth1 opera.iinet.net.au 62.63 6.67 0.00 72.00

Perth2 Fddi0-0.wel1.Perth.telstra.net 61.32 8.10 0.00 68.00

Syd1 sc2-exch-fe0.Sydney.aone.net.au 61.04 6.19 27.00 74.00

Syd2 FastEthernet0-…Sydney.telstra.net 60.88 8.03 0.00 70.00

Terri terrigal-gw.terrigal.net.au 52.56 12.99 0.00 69.00

Denmar albnxi3.ip.tele.dk 56.29 9.20 0.00 68.00

Fran1 isicom-gw.iway.fr 53.72 10.68 0.00 67.00

Fran2 rbs2.rain.fr 54.90 8.82 0.00 69.00

Greece athens1.att-unisource.net 60.69 9.79 0.00 71.00

Holl1 amsterdam3.att-unisource.net 58.31 5.83 41.00 70.00

Holl2 hvs01.NL.net 56.23 9.22 3.00 68.00

Ice Reykjavik14ASI.isnet.is 57.81 10.86 0.00 68.00

Israel haifa-rtr.actcom.co.il 61.07 9.26 0.00 75.00

Italy Pa6.seabone.net 60.34 7.47 0.00 70.00

Norway ti09a95.ti.telenor.net 56.32 13.64 0.00 68.00

Russ1 ru-msk-en-1.teleport-tp.net 58.65 11.63 0.00 72.00

Swed1 apv-i1-pos1…-stockholm.telia.net 57.26 10.82 0.00 68.00

Swed2 mlm1-core.swip.net 58.91 6.71 28.00 67.00

UK1 atm0-0-x.lon2gw1.uk.insnet.net 57.92 10.93 0.00 66.00

UK2 access-th-3-e0.router.technocom.net 59.97 8.62 31.00 73.00

AOL1 pop1-dtc.atdn.net 50.04 8.76 15.00 63.00

AOL2 pop1-rtc.atdn.net 50.74 9.22 25.00 64.00

Atlant atlanta1-br1.bbnplanet.net 49.68 10.20 11.00 66.00

Bost1 cambridge1-br1.bbnplanet.net 55.29 11.33 7.00 73.00

Bost2 core3-hssi5-0.Boston.cw.net 49.53 10.58 0.00 65.00

Canad1 core-fa5-0-0.ontario.canet.ca 55.01 8.03 23.00 67.00

Canad2 border6.toronto.istar.net 51.11 15.82 0.00 74.00

Chica1 Fddi0.AR1.CHI1.Alter.Net 53.09 9.19 18.00 69.00

Dallas dallas1-br2.bbnplanet.net 53.25 12.63 0.00 67.00

Denver denver-br2.bbnplanet.net 49.85 13.85 0.00 90.00

Detroi eth1-0-0.michnet1.mich.net 47.91 11.84 2.00 65.00

LA1 borderx2-fddi-1.LosAngeles.cw.net 54.41 9.21 0.00 66.00

LA2 la32-0-br1.ca.us.ibm.net 57.37 6.97 32.00 67.00

Mex4 core2-mexico.uninet.net.mx 54.87 13.09 0.00 69.00

Mex5 dgsca-cs.core-atm.unam.mx 48.60 14.02 2.00 67.00

Mex6 rr1.mexmdf.avantel.net.mx 57.76 10.13 8.00 67.00

NY p2-0-0.nyc4-br1.bbnplanet.net 49.12 9.53 19.00 70.00

Sacram border7-…-0.Sacramento.cw.net 57.30 6.74 28.00 67.00

SanFrn core1.SanFrancisco.cw.net 56.72 7.02 33.00 66.00

Seattl border3-fddi-0.Seattle.cw.net 54.46 9.07 7.00 66.00

Yahoo fe3-0.cr3.SNV.globalcenter.net 46.63 19.09 0.00 67.00

Brazil routrjo07.embratel.net.br 59.67 8.61 15.00 70.00

Chile bwl-gw-net3.rdc.cl 56.88 14.20 0.00 67.00

Colom1 gip-bogota-1-ethernet0-1.gip.net 57.08 11.50 5.00 73.00

Colom2 impsat.net.co 58.85 8.95 13.00 71.00

Venez cha-00-lo0.core.cantv.net 58.63 8.96 0.00 81.00

Table II  Summary statistics (Source: Opinix, 2001)
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randomness while a low R2 reveals high randomness.

Deterministic seasonality is estimated by regressing

the series on an intercept and dummy variables which

equal one when t = s, where t denotes observation

Xt’s position in time and s corresponds to the fre-

quency of the seasonality. For example, to test the

hypothesis that Mondays are statistically different to

bandwidth capacity for the rest of the week, t = {1,

2, 3, 4, 5, …, T}, s = {1, 5, 10, 15, …, T} and dummy

variable DMonday = 1 for t = s, zero otherwise.

Figure III reveals that half the series contain between

one and five percent outliers. In percentage terms

these data appear slightly more heterogeneous than

Fildes’ (1992) telecommunications data. As indicated

in the specimen displayed in Figure II, Figure III

shows that the data are generally uncorrelated with

time. This contrasts with Fildes (1992) where the data

there exhibit strong negative trends. Moreover, the

histograms in Figure IV and Figure V reveals the

Figure III  Outlier frequency Figure IV  Strength of linear trend

Figure V  Variation explained by linear/AR

Figure VI  Daily variation in capacity utilization
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variation in the data presents a high degree of ran-

domness with virtually no serial correlation.

Finally, Figure VI presents some evidence of regular-

ity in weekly capacity variation aggregated by region.

As shown, there appear to be regular dips occurring

on different days across regions. Asia generally ex-

periences lower traffic volumes across the later part

of the week, while the majority of Australian routers

have excess capacity in the early part of the week.

By contrast, Europe and North America experience

relatively smooth traffic flows, possibly reflecting

more sophisticated capacity pricing regimes and/or

advanced network management systems. Finally,

variations in South American Internet traffic are tied

to specific routers.

In addition to daily variations in traffic volumes,

regressions are conducted to test for regularity in

weekly and monthly patterns. Weekly variations are

virtually non-existent with only six routers revealing

regular spikes across weeks. Surprisingly, given the

short time series, significant monthly variation was

found in 95 % of routers. Although the sustained

increase in traffic is too haphazard across routers to

discern a cyclical pattern, most experience statisti-

cally significant increases for an average of two
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5) 60 day forecasts are necessary due to the existence of standard capacity contracts.

6) Note that ARMA often provides the same accuracy as the Naïve trend forecast. This is due to the general-to-specific modeling

approach that uses the Akaike Information Criterion to identify the best fitting model from a grid of up to six autoregressive and

moving average lags. In many cases, this algorithm identified Naïve as the optimal model.

months with some routers showing surges of up to

three months. Given the nature of the index calcu-

lations, this possibly reflects the average lagged

response time required before routers are expanded

to cope with the increased traffic. Once routers are

expanded, the Internet traffic index for the router

is likely to increase, reflecting the permanently

increased capacity.

Overall, the data series exhibit a high degree of ran-

domness and regular spikes in index scores. Com-

pared to the telecommunications data analyzed in

Fildes (1992) and Fildes et al. (1998), these data

appear considerably more heterogeneous and less

predictable.

III  Forecast models and accuracy
measures

Forecast models considered are univariate ARMA,

ARARMA, Holt, Holt-D exponential smoothing,

Robust Trend, with Naïve and Trend benchmarks.

All of these forecast methods have been shown to be

reliable by Makridakis et al. (1982), Fildes (1992),

Fildes et al. (1998) and Makridakis and Hibon (2000)

and consistently perform in the annual M-Competi-

tion. Implicit in these analyses however, is that the

data are nonstationary, while the data analysed here

are believed to be stationary. Given this fundamental

difference in assumption some of the forecast tech-

niques have been modified to avoid problems associ-

ated with over-differencing. For example, the ARMA

method is applied rather than ARIMA. ARARMA

explicitly questions the practice of differencing to

achieve stationarity and has the advantage of utilising

information contained in the data normally lost when

differencing. Moreover, the approach outlined in

Parzen (1982) contains a formal method of determin-

ing when it is appropriate to apply the AR filter and

hence, the method is adopted intact. Holt and Holt-D

methods are techniques for extrapolating the under-

lying trend that may be present in the data. Although

the deterministic trend correlations are mostly zero,

short-run trends may prevail and therefore Holt and

Holt-D may be appropriate given their simplicity and

reliability. However, to ensure the opportunity for

accuracy is maximised, the parameter is optimised

(rather than being arbitrarily set once) at each time

origin as recommended in Fildes et al. (1998). Robust

Trend, however, is modified by not differencing the

data before calculating the stochastic trend. The per-

ceived advantage in adopting this method is the out-

lier filter and its use of the median rather than mean

in the estimator, which may provide some advantage

over the simple random walk extrapolation. Thus for

direct comparative purposes, Naïve is included as a

benchmark model. If the outliers do not bias the esti-

mates, the forecasts will be hard to improve on, given

the reported properties of the data.

The choice of accuracy measures used in this analysis

is guided by the recommendations of Armstrong and

Collopy (1992). For the reasons outlined in that

paper, the Mean Absolute Percentage Error (MAPE),

Median Absolute Percentage Error (MdAPE), 

% Better, Geometric Mean Relative Absolute Error

(GMRAE) and Median Relative Absolute Error

(MdRAE) are used. Both GMRAE and MdRAE are

Winsorized as recommended by Armstrong and Col-

lopy. Mean square error measures are avoided since

these statistics are scale dependent and sensitive to

outliers.

IV  Forecast results
In order to identify forecast methods that perform

well four sets of forecasts are created by dividing the

data into overlapping time intervals, with each fore-

cast method using 114 observations to forecast over

the next 60 observations.5) In effect, this approach

uses a rolling window beginning at the first observa-

tion and steps forward 10 days, re-estimating the

forecasts over the next 114 observations. The overall

result is 295 forecasts per method with which to

judge forecast performance. In evaluating the reliabil-

ity of the alternative methods, forecasts are compared

with actual values retained in the post-sample data.

Table III presents the main results, measuring fore-

cast accuracy in terms of the average absolute error.

In general, the various trend extrapolation methods

performed better than the more sophisticated ARMA

and ARARMA methods while both Holt and Holt-D

consistently performed worst.6) As shown at the bot-

tom of Table III, the modified Robust Trend method

produced the most accurate forecasts approximately

65 % of the time with an average 7.5 % error. Holt-D

performed best on a number of occasions, which is

probably due to the occasional appearance of weak

trends in these data.
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Further evaluation is provided in Table IV, which

presents the GMRAE and MdRAE forecast error

measures. Both GMRAE and MdRAE compare each

method to a no change benchmark forecast for com-

parative purposes. Thus, a score less than one indi-

cate the forecast method is at least more reliable than

the simplest extrapolation. Using these criteria, it is

apparent that both Filtered Trend and Robust Trend

consistently outperform the alternatives.

Time Method Forecasting horizon

origin 1 21 41 61 1-6 1-26 1-46 1-61

1 ARARMA 0.04 0.17 0.06 0.17 0.25 0.20 0.14 0.23

ARMA 0.18 0.13 0.17 0.11 0.12 0.10 0.00 0.05

Filtered-T 0.02 0.18 0.48 0.02 0.23 0.20 0.14 -

Holt 0.23 0.23 0.31 0.34 0.13 0.41 0.49 0.63

Holt-D 0.07 0.02 0.00 0.10 0.00 0.19 0.09 0.13

Naïve 0.18 0.13 0.17 0.11 0.12 0.10 0.00 0.05

Robust-T 0.03 0.04 0.01 0.05 0.23 0.02 0.10 0.05

10 ARARMA 0.26 0.14 0.04 0.19 0.14 0.09 0.08 0.26

ARMA 0.18 0.13 0.17 0.11 0.12 0.10 0.01 0.04

Filtered-T 0.06 0.16 0.06 0.07 0.04 0.20 0.00 0.02

Holt 0.05 0.14 0.24 0.52 0.70 0.85 0.92 0.98

Holt-D 0.07 0.02 0.00 0.10 0.04 0.16 0.06 0.11

Naïve 0.18 0.13 0.17 0.11 0.12 0.10 0.01 0.04

Robust-T 0.03 0.04 0.01 0.05 0.23 0.02 0.10 0.05

20 ARARMA 0.15 0.04 0.04 0.09 0.31 0.23 0.00 0.12

ARMA 0.18 0.12 0.16 0.11 0.13 0.10 0.01 0.04

Filtered-T 0.02 0.06 0.05 0.07 0.25 0.20 0.12 0.08

Holt 141.54 177.14 193.97 233.32 0.97 0.77 1.25 1.34

Holt-D 2.34 2.61 2.48 2.76 0.13 0.09 0.03 0.02

Naïve 0.16 0.10 0.14 0.09 0.13 0.10 0.01 0.04

Robust-T 0.03 0.04 0.01 0.05 0.23 0.02 0.10 0.05

30 ARARMA 0.03 0.02 0.60 0.04 0.13 0.24 0.14 0.23

ARMA 0.16 0.10 0.14 0.09 0.12 0.10 0.01 0.04

Filtered-T 0.21 0.02 0.00 0.05 0.00 0.11 0.07 0.21

Holt 2.19 2.94 3.61 4.71 311.88 292.82 376.52 392.73

Holt-D 0.10 0.02 0.04 0.05 0.07 0.15 0.05 0.10

Naïve 0.17 0.12 0.16 0.10 0.13 0.10 0.01 0.04

Robust-T 0.03 0.04 0.01 0.05 0.23 0.02 0.10 0.05

Mean ARARMA 0.12 0.09 0.19 0.12 0.21 0.19 0.09 0.21

ARMA 0.17 0.12 0.16 0.10 0.12 0.10 0.01 0.04

Filtered-T 0.08 0.10 0.15 0.05 0.13 0.18 0.08 0.08

Holt 36.00 45.11 49.54 59.72 78.42 73.71 94.79 98.92

Holt-D 0.65 0.66 0.63 0.75 0.06 0.15 0.06 0.09

Naive 0.17 0.12 0.16 0.10 0.12 0.10 0.01 0.04

Robust-T 0.03 0.04 0.01 0.05 0.23 0.02 0.10 0.05

Table III  Mean absolute percentage error. Note: Bolded minimum MAPE statistic indicates best performing

method
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A factor often considered important is the variation

in forecast accuracy over the forecast horizon. For

example, evidence from M-Competition results indi-

cates that some methods are better for short-term

forecasts, while others perform best over a longer

horizon. Examination of Figure VII, which shows

forecast errors for the time period with the least num-

ber of outliers, indicates that Holt-D reliably forecast

variation in bandwidth capacity for period one

through 41, closely followed by Robust Trend. Inter-

estingly, ARMA proved most resistant to the distur-

bance experienced for periods 46 through 60. A pos-

sible explanation for this is the ability of the ARMA

method to better model periodic spikes in congestion

while both Robust and Filtered Trend provide a

muted adaptation to sudden large disturbances.

Figure VIII presents MdRAE statistics calculated

across all time origins. This statistic provides a mea-

sure that is less susceptible to distortion than the

MAPE for series where actual values frequently take

zero values. As shown, this measure more clearly dis-

tinguishes the performance of the alternatives. Holt-D

and Holt (omitted due to substantially larger error

measures) are by far the worst performers. By con-

trast, ARMA, Filtered and Robust Trend are clustered

closely together ranging between 0.5 and one. Not

surprisingly, ARMA indicates greater variability with

occasional brief spikes above one and below 0.5

while both trend models produce a more consistent

estimate. Of interest is the robustness of these meth-

ods with little deterioration as the forecast horizon

increases.

Finally, Table V reveals the proportion of times each

forecast performed better than the random walk ex-

trapolation across 295 forecasts. Clearly, both Naïve

and Robust Trend are the most consistent with the

results showing that forecasters can expect these

methods to perform better than random walk extrapo-

lation 60 % of the time. As a comparison of best to

worst, Robust Trend is on average six times more

accurate than Holt.

Overall, the results show that bandwidth capacity can

be reliably forecast. The MAPE statistics show that

Robust Trend tracks the actual index value with aver-

age variation of 7.5 % while ARMA is capable of

corroborating long horizon forecasts. The inherent

stationarity of these data may explain the relative fail-

ure of Holt and Holt-D. Both models work best with

non-stationary data with a substantial noise-to-signal

ratio. Implicit in the implementation of these models

is that model parameters are optimized by first- and

second-differencing series. The consequence of over-

differencing data is the introduction of a unit-root in

the error term and estimation of spurious trends.

Figure VII  Mean absolute percentage error for time origin 10

Figure VIII  Median relative absolute error across all time origins

Note: Holt omitted form chart to show detail

Geometric Mean RAE

Method 1 12 24 36 48 60

ARARMA 1.24 1.78 1.87 1.24 1.65 1.54

ARMA 0.99 0.80 0.79 1.00 0.93 1.05

Filtered-T 0.98 0.57 0.75 0.70 0.63 0.77

Holt 4.50 5.39 4.79 6.17 5.76 5.61

Holt-D 1.37 1.23 1.11 1.34 1.23 1.24

Naïve 0.99 0.80 0.79 0.98 0.93 1.05

Robust-T 1.10 0.50 1.13 0.67 0.50 1.00

Median RAE

ARARMA 1.37 2.10 1.92 1.31 2.02 1.53

ARMA 1.00 0.74 0.80 0.99 0.94 1.01

Filtered-T 0.97 0.65 0.87 0.91 0.77 0.83

Holt 7.54 8.19 7.32 8.24 8.20 8.28

Holt-D 2.81 2.88 2.77 3.01 3.14 2.92

Naïve 1.00 0.73 0.81 0.98 0.96 1.01

Robust-T 1.25 0.56 1.17 0.90 0.64 1.08

Table IV  Geometric mean RAE and median RAE. Note: Bolded statistic

indicates best performing method
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V  Conclusion
Telecommunications bandwidth has grown recently

at an unprecedented rate with current estimates sug-

gesting that seven percent of the world’s population

now has access to the Internet. However, globalisa-

tion of the telecommunications industry has led to

unsustainable network expansion. In the future, carri-

ers will need to develop accurate forecasts as an aid

to a carefully targeted approach to expansion plans.

This study demonstrates that relatively simple extrap-

olation techniques can provide a useful input into

explaining broadband traffic movements.

The forecast techniques adopted here are extrapola-

tion methods that have performed well in the M-

Competition and are easily implemented. This study

also highlights the need to better understand data gen-

eration characteristics, at least in a broad sense, and

suggests that mechanically differencing data without

reference to the characteristics exhibited data can

yield substantially inferior results. Finally, despite

the high degree of randomness and the high fre-

quency of outliers, Robust Trend again performed

best for telecommunications data.

In general, however, univariate extrapolation tech-

niques can at best provide systematic benchmarks on

observed data. For more insightful analysis, it is nec-

essary to develop structural economic models using

price, income data and traffic data. Among the bene-

fits of such models are the ability to anticipate cycli-

cal fluctuations due to economic factors external to

the telecommunications industry, the estimation of

price and income elasticities and as a means of deter-

mining the degree of reaction and interaction between

competitors. The important distinction in adopting

this approach is that economic analysis relates to

the market for the service that generates these traffic

flows. The release of such competitive intelligence

would likely provide carriers with substantially great

benefits and help to ensure maximal returns to their

increasingly scarce investment funds.
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Method Forecast horizon

1 6 12 18 24 30 36 42 48 54 60

ARARMA 37 41 28 43 35 26 44 48 38 41 31

ARMA 51 58 55 54 64 64 51 61 52 46 49

Filtered-T 47 53 62 53 51 41 53 55 59 47 56

Holt 11 12 8 14 10 7 6 6 8 6 8

Holt-D 43 48 47 44 55 51 43 53 45 42 43

Naïve 51 58 55 54 65 64 51 61 51 46 49

Robust-T 32 51 63 56 32 37 53 54 68 63 36

Table V  Percent better. Note: Bold indicates best performing method
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Appendix AI  Routers by geographic region

Router Location Current index Response time (ms)

Asia

beijing-bgw1-lan.cernet.net China 66 287

hkt004.hkt.net HongKong 61 267

cust-gw.Teleglobe.net India 65 331

tlv-L1.netvision.net.il Israel 66 471

haifa-rtr.actcom.co.il Israel 67 262

hfa-L1.netvision.net.il Israel 61 544

gsr-ote1.kddnet.ad.jp Japan 66 201

doji-alp2-2-1-3-1.mcnet.ad.jp Japan 65 216

POS0-2.oskg2.idc.ad.jp Japan 65 201

fe1-0.bkj15.jaring.my Malaysia 66 263

pi-s1-gw1.pacific.net.sg Singapore 66 334

gateway.ix.singtel.com Singapore 66 285

cs4500-fddi0.ficnet.net.tw Taiwan 66 264

ntt-pc-communications.Tokyo.cw.net Tokyo 66 211

Australia

GigabitEthernet5-1.cha-..brisbane.telstra.net Brisbane 66 418

Pos6-0.woo-core1.Brisbane.telstra.net Brisbane 66 427

Fddi0-0.civ3.Canberra.telstra.net Canberra 64 417

border-gw03-atm301.powertel.net.au Gold Coast 57 373

Ethernet0.gos2.Gosford.telstra.net Gosford 66 397

mc5-a2-0-4.Melbourne.aone.net.au Melbourne 0 0

Pos5-0.exi-core1.Melbourne.telstra.net Melbourne 66 401

So-0-0-1.XR1.MEL1.ALTER.NET Melbourne 64 301

opera.iinet.net.au Perth 63 351

Fddi0-0.wel1.Perth.telstra.net Perth 66 344

c3600.elink.net.au Perth 66 328

sc2-exch-fe0.Sydney.aone.net.au Sydney 65 282

FastEthernet0-0-0.pad8.Sydney.telstra.net Sydney 66 403

So-3-3-1.XR2.SYD2.ALTER.NET Sydney 63 296

FastEthernet0-0-0.pad13.Sydney.telstra.net Sydney 66 400

bb2-gige5-0.rdc1.nsw.excitehome.net.au Sydney 66 261

terrigal-gw.terrigal.net.au Terrigal 64 554

Europe

albnxi3.ip.tele.dk Denmark 67 189

r3-AT2-0-1-Pas5.Hel.FI.KPNQwest.net Finland 67 228

isicom-gw.iway.fr France 64 206

rbs2.rain.fr France 53 239

feth-0-1-0.cr1.Stuttgart.seicom.NET Germany 67 243

athens5.gr.eqip.net Greece 66 264

amsterdam51.nl.eqip.net Holland 66 180

194.atm1-0-0.hr1.ams6.nl.uu.net Holland 66 194

Reykjavik14ASI.isnet.is Iceland 65 196
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Pa6.seabone.net Italy 66 255

core1-pos8-0.telehouse.ukcore.bt.net London 66 205

core2-6.csc-1.ldn5.psie.net London 63 190

zcr1-so-1-0-0.Londonlnt.cw.net London 65 185

core1-gig2-0.bletchley.ukcore.bt.net Milton Keynes 65 177

r2-Se0-1-0.0.ledn-KQ1.NL.kpnqwest.net Netherlands 65 209

ti09a95.ti.telenor.net Norway 67 257

cisco0.Moscow.ST.NET Russia 65 241

bgw-ser5-0-0.Moscow.Rostelecom.ru Russia 65 249

apv-i1-pos1-0-0-int-stockholm.telia.net Sweden 66 212

mlm1-core.swip.net Sweden 65 200

atm0-0-x.lon2gw1.uk.insnet.net UK 63 188

access-th-3-e0.router.technocom.net UK 65 180

pos3-0.cr1.lnd5.gbb.uk.uu.net UK 64 180

North America

pos4-1-0-622M.cr1.ANA2.gblx.net Anaheim 66 113

pop1-dtc.atdn.net AOL 65 137

pop1-rtc.atdn.net AOL 65 137

atlanta1-br1.bbnplanet.net Atlanta 66 120

cambridge1-br1.bbnplanet.net Boston 41 178

core3-hssi5-0.Boston.cw.net Boston 0 0

pos1-0-0-155M.ar1.BOS1.gblx.net Boston 65 115

core-fa5-0-0.ontario.canet.ca Canada 66 123

chi-core-03.inet.qwest.net Chicago 66 80

Fddi0.AR1.CHI1.Alter.Net Chicago 65 83

c1-pos2-0.chcgil1.home.net Chicago 66 80

router.mitchell.edu Connecticut 61 138

dallas1-br2.bbnplanet.net Dallas 65 105

dllstx1wcx2-oc48.ipcc.wcg.net Dallas 65 115

denver-br2.bbnplanet.net Denver 64 106

so-1-0-0-3.mp1.Denver1.level3.net Denver 0 0

eth1-0-0.michnet1.mich.net Detroit 53 112

borderx2-fddi-1.LosAngeles.cw.net Los Angeles 64 119

la32-0-br1.ca.us.ibm.net Los Angeles 63 109

mae-west.wenet.net MAE West 0 0

ar8.mexmdf.avantel.net.mx Mexico 65 154

core2-mexico.uninet.net.mx Mexico 67 149

rr1.mexmdf.avantel.net.mx Mexico 66 152

inet-mex-roma-3-g5-0-0.mex.uninet.net.mx Mexico 65 147

if-9-0.core2.Montreal.Teleglobe.net Montreal 65 136

vsnl-c-o-cwc.NewYorknyr.cw.net New York 65 542

p2-0-0.nyc4-br1.bbnplanet.net New York 64 107

ge12-0-0.access1.hud-ny.us.xo.net New York 66 100

sl-gw9-nyc-8-0.sprintlink.net New York 65 114

TelecomItaliaMumbi1.so-…-NYC2.gblx.net New York 65 330

ix-10-0-1.bb6.NewYork.Teleglobe.net New York 66 318
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sl-bb21-pen-15-0.sprintlink.net Philadelphia 65 113

pos2-0-622M.cr2.PHI1.gblx.net Philadelphia 66 112

pos1-0-0-155M.ar1.PHI1.gblx.net Philadelphia 66 110

j01-ge-0-1-0-0.phx.opnix.net Phoenix 63 109

p2-1.phnyaz2-cr2.bbnplanet.net Phoenix 65 114

border7-fddi-0.Sacramento.cw.net Sacramento 66 113

core1.SanFrancisco.cw.net San Francisco 66 112

main1-core5-oc12.sjc1.above.net San Jose 65 175

bbr01-p3-0.sntc04.exodus.net Santa Clara 65 113

border3-fddi-0.Seattle.cw.net Seattle 65 113

198.ATM6-0.XR2.SEA1.ALTER.NET Seattle 66 121

pos4-0.core1-ott.bb.attcanada.ca Toronto 63 99

dcr01-g6-0.trnt01.exodus.net Toronto 64 95

299.ATM7-0.XR1.VAN1.ALTER.NET Vancouver 65 124

fa-1-1-0.a04.vinnva01.us.ra.verio.net Virginia 63 109

br1-a3120s8.wswdc.ip.att.net Washington DC 65 113

wdc-core-02.inet.qwest.net Washington DC 65 105

111.at-6-0-0.TR2.DCA6.ALTER.NET Washington DC 63 112

so2-1-0-622M.br1.WDC2.gblx.net Washington DC 66 110

pos2-0-155M.cr1.WDC2.gblx.net Washington DC 67 109

South America

rcorelma1-rcoreats1.impsat.net.ar Argentina 53 321

multicanal-atm1.prima.com.ar Argentina 66 267

gsr01.spo.embratel.net.br Brazil 66 246

fast5-cr2-net5.attla.cl Chile 65 268

telefonica-mundo-chile-no-rev-dns Chile 65 218

gip-bogota-1-ethernet0-1.gip.net Colombia 66 223

cha-00-lo0.core.cantv.net Venezuela 65 190
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