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Abstract

The paper focuses on the comparison of the direct and iterated AR predictors when Xt is a difference

stationary process. In particular, it provides some useful results for comparing the efficiency of the two

predictors and for extracting the trend from macroeconomic time series using the two methods. The main

results are based on an encompassing representation for the two predictors which enables to derive their

properties quite easily under a maintained model. The paper provides an analytic expression for the mean

square forecast error of the two predictors and derives useful recursive formulae for computing the direct

and iterated coefficients. From the empirical standpoint, we propose estimators of the AR coefficients

based on the tapered Yule-Walker estimates; we also provide a test of equal forecast accuracy which is

very simple to implement and whose critical values can be obtained with the bootstrap method. Since

multistep prediction is tightly bound up with the estimation of the long run component in a time series,

we turn to the role of the direct method for trend estimation and derive the corresponding multistep

Beveridge-Nelson decomposition.
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1 Introduction

Let Xt, t = 1, 2, . . . , n, be an integrated stochastic process, so that ∆Xt = Xt − Xt−1 is a stationary zero

mean process. We assume throughout that we are interested in predicting h-steps ahead the levels (rather

than the differences) of the series. Two important linear predictors, the direct (labelled by D henceforth)

and iterated predictors (labelled by I), are obtained by fitting the following finite order autoregressive (AR)

model, usually by least squares:

Xt+h = Xt +

p∑

j=1

φ
(i)
jh∆Xt−j+1 + ǫ

(i)
t+h|t, i = D, I, (1)

where ǫ
(i)
t+h|t denotes the h-steps ahead prediction error. The two predictors use the same information set,

represented by the vector ∆X
′
t = [∆Xt, ∆Xt−1, . . . ,∆Xt−p+1], but differ in the definition of the coeffi-

cients φ
(i)
jh .

The direct predictor of the levels Xt+h arises from the direct projection of ∆hXt+h = Xt+h − Xt on

∆Xt; it can be expressed as X
(D)
t+h|t = Xt + ∆hX

(D)
t+h|t, where ∆hX

(D)
t+h|t =

∑p
j=1 φ

(D)
jh ∆Xt−j+1, and the

coefficients minimize the h-step ahead mean square forecast error, MSFED(h, p) = E[(Xt+h − X
(D)
t+h|t)

2].
Notice that this is different from the direct predictor of the changes ∆Xt+h, which arises from projecting

∆Xt+h onto ∆X
′
t.

The indirect (or plug-in) predictor is obtained from the AR(p) model by iterating via the chain rule the

one-step-ahead predictor, so as to obtain forecasts of all the intermediate future changes ∆Xt+k, for k =

1, . . . , h, which are combined to yield: X
(I)
t+h|t = Xt+

∑h
k=1 ∆X

(I)
t+k|t, where ∆X

(I)
t+k|t =

∑p
j=1 φ

(I)
j1 ∆X

(I)
t+k−j|t

(with ∆X
(I)
t+k−j|t = ∆Xt+k−j , if j ≥ k), and the coefficients φ

(I)
j1 , j = 1, . . . , p, minimize MSFED(1, p) =

E[(Xt+1 − X
(I)
t+1|t)

2] = E[(∆Xt+1 − ∆X
(I)
t+1|t)

2]. Obviously, φ
(I)
j1 = φ

(D)
j1 . From the application of the

chain rule we can express the indirect predictor as X
(I)
t+h|t = Xt +

∑p
j=1 φ

(I)
jh ∆Xt+j−1, where φ

(I)
jh are the

iterated AR multistep coefficients (which will be defined more properly in a later section).

The efficiency of the two methods is judged by comparing MSFED(h, p) with MSFEI(h, p) = E[(Xt+h−

X
(I)
t+h|t)

2]; if we are given a finite realisation of Xt, the comparison will be based on their sample counter-

parts. There is a vast and well established literature comparing the performance of the two predictors for

the purpose of forecasting more than one step ahead, not exclusively in the AR case. We refer to Bhansali

(2002) and Chevillon (2007) for comprehensive surveys of the literature. Actually, the seminal paper by

Cox (1961) concerned multistep estimation of a first order integrated moving average model, yielding ex-

ponential smoothing forecasts. Other essential references are Findley (1983), Weiss (1991), Tiao and Xu

(1993), Tiao and Tsay (1994), Clements and Hendry (1996), and Ing (2003, 2004). In a recent paper, Mar-

cellino, Stock and Watson (2008) carry out an extensive real time multistep forecasting exercise comparing

the performance of the direct and the iterated predictors for a set of U.S. macroeconomic time series. Their

main finding is that, despite the theoretical superiority of the direct forecasts, the iterated predictor stands

out as a winner.

In this paper we focus on the comparison of the direct and iterated AR predictors when Xt is a difference

stationary process. In particular, we aim at comparing the efficiency of the direct approach for out of sample

forecasting at different horizons and we discuss its role for trend extraction from macroeconomic time series.

For this purpose we derive an encompassing representation for the two predictors (see section 2), according

to which they result from the application of stable AR filters to the stationary changes of the series. This sets

2



up a common ground for the comparison of their theoretical properties, which are easily obtained under a

maintained model. The paper provides an analytic expression for the mean square forecast error of the two

predictors and derives useful recursive formulae for the direct and iterated coefficients.

Section 3 illustrates these results when the true model is ARIMA(1, 1, 1); an important finding is that

the comparative efficiency gains of the direct predictor over the iterated one are larger when the AR model

is grossly misspecified, in which case the predictive performance of the direct AR predictor is poor anyway,

in comparison with the minimum MSFE predictor. It would be preferable in these occurrences to move

away from the AR representation and to look for an alternative specification, but large improvements can be

obtained by combining the direct predictor with a multistep exponential smoothing predictor.

In section 4 we discuss several empirical issues. For consistency with the theoretical framework, we

propose estimators of the coefficients φ
(i)
jh based on the solution of tapered Yule-Walker systems. We also

provide a test of equal forecast accuracy which is very simple to implement and whose critical values can

be obtained with the bootstrap method.

Since multistep prediction is tightly bound up with the estimation of the long run component in a time

series, we turn to the role of the direct method for trend estimation (section 5) and derive the corresponding

long-run Beveridge-Nelson decomposition (Beveridge and Nelson, 1981). Section 6 provides two empiri-

cal illustration concerning the U.S. gross domestic product and monthly inflation; in the second case, the

direct method produces a significant increase in predictive accuracy at horizons greater than a year and

yields estimates of smoother trends. In section 7 we summarize the contribution of the paper and draw our

conclusions.

2 A convenient representation

In this section we establish a simple and fundamental result which derives the two competitor predictors,

direct and iterated, as arising from the application of a stable AR filter to the stationary changes of the

series. Let us denote the h-step ahead prediction error associated to the i-th predictor, X
(i)
t+h|t, i = D, I,

by ǫ
(i)
t+h|t = Xt+h − X

(i)
t+h|t. Since both predictors take the form X

(i)
t+h|t = Xt +

∑p
j=1 φ

(i)
jh∆Xt+j−1, the

prediction error is rewritten as

ǫ
(i)
t+h|t = Xt+h − Xt −

p∑

j=1

φ
(i)
jh∆Xt+j−1.

The linear combination of past and lagged values of the process on the right hand side can be expressed in

terms of the first differences ∆ = 1 − L, where L is the lag operator, LjXt = Xt−j :

ǫ
(i)
t+h|t = [Sh−1(L) + Lh−1φ

(i)
h (L)]∆Xt+h. (2)

Here we have denoted Sm(L) = 1 + L + L2 + · · · + Lm−1, ∆h = 1 − Lh = ∆Sh(L), and φ
(i)
h (L) =

1 − φ
(i)
1hL − · · · − φ

(i)
phLp.

The corresponding MSFE is obtained as the variance of the filtered first differences of the process.

Writing the multistep prediction filter as νi(L) = Sh−1(L) + Lh−1φ
(i)
h (L), it is immediate to show that

MSFEi(h, p) = γ(0)
∑

j

ν2
ij + 2

∑

k

γ(k)
∑

j

νijνi,j+k, i = D, I, (3)
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where γ(k) = E(∆Xt∆Xt−k) is the autocovariance function of ∆Xt and νij is the coefficient of the

polynomial νi(L) associated with the j-th power of the lag operator.

Expression (3) is useful since it allows to express the MSFE of the direct and indirect predictors as a

function of true underlying process, via its autocovariance function. It is the AR counterpart of the result

obtained for the exponential smoothing predictor by Tiao and Xu (1993, formula 2.3). In the frequency

domain, the equivalent expression is

MSFEi(h, p) =
1

2π

∫ π

−π

|νi(e
−ıω)|2g(ω)dω,

with |νi(e
−ıω)|2 = νi(e

−ıω)νi(e
ıω), the squared gain of the filter νi(L), and g(ω) represents the spectral

generating function of ∆Xt+h.

In the light of (3), the differences in the two predictors lie in the AR coefficients φ
(i)
jh . For the direct

predictor, i = D, the coefficients φ
(D)
h = [φ

(D)
1h , . . . , φ

(D)
ph ]′ are obtained by minimizing MSFE(h, p)(D)

with respect to φD
h . The optimization problem leads to the following linear system of equations:

Γφ
(D)
h = γh, (4)

with

Γ =




γ(0) γ(1) · · · γ(p − 1)

γ(1) γ(0)
. . . γ(p − 2)

...
. . .

. . .
...

γ(p − 1) γ(p − 2) · · · γ(0)




, γh =




γ(1) + · · · + γ(h)
γ(2) + · · · + γ(h + 1)
...

γ(p) + · · · + γ(h + p − 1)


 .

Notice that, from

γh = γh−1 + γ(h),γ(h) =




γ(h)
γ(h + 1)
...

γ(h + p − 1)


 , h = 2, . . . ,γ1 = γ(1),

it follows

φ
(D)
h = φ

(D)
h−1 + φ(h), φ(h) = Γ

−1γ(h). (5)

Bondon (2001) and Brockwell and Dahlhaus (2004) provide generalized Levinson–Durbin recursions for

computing the coefficients φ(h), which operate both on the order p and the forecast lead h.

The iterated method obtains the coefficients φ
(I)
jh , j = 1, . . . , p in (2) recursively from the one-step-ahead

coefficients, which are obtained from the linear system φ
(I)
1 = φ

(D)
1 = Γ

−1γ1:

φ
(I)′

h = e
′
1(I − T

h)(I − T)−1
T = e

′
1

h∑

j=1

T
j

where

T =




φ
(I)
1 φ

(I)
2 · · · φ

(I)
p−1 φ

(I)
p

1 0 · · · 0 0

0 1
. . . 0 0

...
. . .

. . .
...

...

0 0 · · · 1 0




.
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The iterated AR coefficients satisfy the following first order recursion:

φ
(I)
h = φ

(I)
h−1 + T

h′
e1, (6)

with starting value φ
(I)
1 = T

′
e1 = Γ

−1γ1.

It is important to remark that the indirect predictor can also be obtained by replacing, in the expression

for the direct predictor, the autocovariances γ(p + k), k ≥ 1 with the values implied by the AR(p) model:

γ̃(p + k) =

p∑

j=1

φ1j γ̃(p + k − j)

where γ̃(p + k − j) = γ(p + k − j) for k ≤ j.

In matrix notation, setting

T
∗ =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

φ
(I)
p φ

(I)
p−1 φ

(I)
p−2 · · · φ

(I)
1




,

γ̃(h) = T
∗γ̃(h−1),

An obvious (the coefficient of the AR direct predictor are chosen so as to minimize the MSFE at horizon

h) but important result is that, if Γ is positive definite, MSFEI(h, p) ≥ MSFED(h, p). This fact can be

proven using e.g. the results in Ing (2003), who proves a more general theorem, referring to the case when

Xt is stationary, and taking into account the estimation uncertainty.

3 Comparison for an ARIMA(1,1,1) process

In this section we illustrate the use of expression (3) for characterising the comparative forecasting perfor-

mances of the direct and iterated predictors. We assume that Xt is generated by the ARIMA(1,1,1) process

∆Xt = φ∆Xt−1 + ξt + θξt−1, with |φ| < 1 and |θ| ≤ 1, so that γ(k) in (3) is the autocovariance function

of the stationary ARMA(1,1) process for ∆Xt. The true generating process is simple, but at the same time

sufficiently rich to illustrate a few important facts.

Figure 1 refers to the case h = 4 and p = 2 and displays in the first panel the efficiency ratio

ERID(4, 2) = 100×MSFEI(4, 2)/MSFED(4, 2), as a function of the values of the AR and MA parameters

φ and θ. Obviously, the ratio cannot be smaller than 100. An important evidence is that the superiority of

the direct predictor is not overwhelming, as the scale of the vertical axis suggests, e.g. around 5% when

φ = 0.95 and θ = −0.65. The greatest efficiency gains arise when θ is close to -1 and φ is close to 1, and

no cancelation of roots occurs.

The second figure (top right) serves to assess how good are the direct forecasts as compared to the

true model forecasts, by displaying the efficiency ratio ERDT (4, 2) = 100 × MSFED(4, 2)/MSFE(4),
where the denominator is the true MSFE of the ARIMA(1,1,1) optimal forecasts, MSFE(h) = E{[Xt+h −
E(Xt+h|F t)]

2}, where F t is the information set at time t, which is the minimum value that can be attained

by any predictor. The interesting fact is that for the parameters combinations of interest (φ and −θ are
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close to 1) the performance of the direct predictor is poor anyway, as the efficiency loss with respect to the

minimum MSFE predictor can reach up to 40%.

It is worth the while to compare the predictive accuracy of the direct AR predictor with an important

competitor simple predictor that has been proposed by Cox (1963), Tiao and Xu (1993) and Haywood and

Tunnicliffe-Wilson (1997), namely the multistep exponential smoothing (ES) predictor,

X
(ES)
t+h|t =

∞∑

j=0

wjXt−j , wj = (1 − λh)λj
h,

where the weights sum to one and depend on a single smoothing constant, λh, taking values between 0 and

1, which is chosen so as to minimise MSFE at forecast horizon h. The prediction error can be expressed in

terms of the stationary changes of Xt as follows:

ǫ
(ES)
t+h|t = Xt+h − X

(ES)
t+h|t

= Xt +
∑h

k=1 ∆Xt+k −
∑∞

j=0 wjXt−j

=
[
Sh−1 + Lh−1φ(ES)(L)

]
∆Xt+h

(7)

The lag polynomial φ(ES)(L) is of infinite order and its coefficients satisfy the first order difference equation

φ
(ES)
j = φ

(ES)
j−1 + wj , with starting value φ

(ES)
1 = w0 − 1. Representation (7) follows directly from the fact

that
∑∞

j=0 wj = 1.

The ES predictor uses all the available observations, but since it depends on a single parameter, it has

less flexibility with respect to the direct predictor, which changes also with the lag order p. The plot of the

MSFE ratio 100×MSFED(4, 2)/MSFEES(4) shows (see the bottom left panel of figure 1), the ES predictor

outperforms the direct AR one when θ is close to -1 and greater that −φ. The reverse holds for φ > −θ.

This finding opens the way to combining the forecasts. The MSFE of the combined predictor,

XC
t+h|t = τXD

t+h|t + (1 − τ)XES
t+h|t,

is compared to the minimum MSFE of the optimal forecasts in the right bottom panel of figure 1. The weight

τ ∈ (0, 1) is the first element of the of the vector (i′Σ−1
h i)−1

Σ
−1
h i, where Σh is the variance covariance

matrix of the vector [ǫ
(D)
t+h|t, ǫ

(ES)
t+h|t]

′. The combined predictor outperforms uniformly the direct AR predictor

as it emerges from the comparison of the left panels of figure 1.

For higher values of h the predictive gains are more substantial; for instance, for h = 12 and p = 2,

the direct forecast are 20% more accurate than the iterated ones, when φ = 0.95 and θ = −0.65. This is

visible from figure 2, whose top left panel shows the values ERID(12, 2), corresponding to different values

of (φ, θ). The right panel illustrates that once again that for values of θ close to -1 and φ close to 1 the

performance of the direct predictor improves considerably over the iterated one. Finally, by increasing the

order of the AR approximation, for h fixed, the gap between the two predictors narrows (see the bottom left

panel) and the direct predictor outperforms the iterated one θ is close to -1, which is also the case when the

direct predictor displays the poorer performance compared to the true predictor (see the bottom right panel).

The conclusions that we may draw from this simple example are the following.

• The comparative gains of the direct over the iterated predictor may not be very large, especially for

small h and large p.

• Choosing a large p exposes the analysis to the dangers of overfitting. See Granger and Jeon (2006)

for the consequences on the estimated AR polynomials.

6



• Very large predictive accuracy gains are obtainable when the AR model is grossly misspecified, in

which case the predictive performance of the direct AR predictor is poor in comparison with the

minimum MSFE predictor. It would be preferable in these occurrences to move away from the AR

representation and look for an alternative specification, or the combination with alternative forecasts.

• The previous observations suggests that one may use the difference in the two predictors as evidence

for model misspecification and use the direct forecast only in the absence of a better representation of

the series.

• The commonest source of misspecification is due to the presence of an MA component close to the

non-invertibility region. The combination of the direct forecasts with exponential smoothing forecasts

yields a predictor which is almost as efficient as the optimal predictor.

4 Estimation issues and a bootstrap test of predictive ability

Given a realization of the stochastic process Xt, denoted xt, t = 1, . . . , n, there are several alternative

estimators of the direct and indirect coefficients, φ
(i)
h , i = I, D. The most common estimation method

is ordinary least squares (LS), by which the vector φ̂
(D)

h minimizes
∑

t(∆hxt+h − φ̂
(D)′

∆xt)
2, where

∆xt = [∆xt, ∆xt−1, . . . ,∆xt−p+1]
′. The properties of the corresponding predictor have been discussed

by Ing (2004) in the stationary case; Marcellino, Stock and Watson (2006) provide an empirical comparison

of the direct and plug in least squares predictors in terms of their capability of forecasting a large set of

macroeconomic time series, both stationary and non stationary.

The problems with the least square estimates are twofold. First, the AR estimated parameters may be

nonstationary. Secondly, for given horizon and AR order the empirical MSEF of the iterated predictor can be

smaller than that of the direct predictor. On the contrary, the Yule-Walker estimates, which are obtained by

replacing the theoretical autocovariances in (5) by their sample counterparts γ̂(k) = n−1
∑n−k

t=1 ∆xt∆xt+k,

are guaranteed to correspond to a stationary AR process and they enforce the condition ̂MSFEI(h, p) ≥
̂MSFED(h, p).

On the other hand, it is well known that the Yule-Walker estimators suffer from larger bias than the least

squares estimates for short time series and when the root of the AR polynomial is close to one (Parzen, p.

351, Tjostheim and Paulsen, 1983, Kang, 1987, Shaman and Stine, 1988). These drawbacks are alleviated

by tapering. A taper is a data window taking the form of a sequence of positive weights ht, t = 1, . . . , n that

leaves unaltered the series in the middle of the sample and downweights the observations at the extremes.

In other words, tapering amounts to smoothing the observed sample transition from zero to the observed

values when estimating convolutions of data sequences such as the autocovariances and the periodogram.

4.1 Tapered Yule-Walker estimates

The tapered Yule-Walker estimates of the AR coefficients are obtained by replacing the theoretical autoco-

variances with those computed on the sequence ht∆xt, by the estimator:

γ̂(k) =
n

(∑n
t=1 h2

t

)2

n−k∑

t=1

ht∆xtht+k∆xt+k.
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In our applications we consider the Tukey-Hanning data taper (see e.g. Bloomfield, 1985, p. 84, and

Dahlhaus, 1988), such that, defining u = (t − 0.5)/n,

ht =





0.5 [1 − cos(2πu/̺)] , u ≤ 0.5̺,
1, 0.5̺ ≤ u ≤ 1 − 0.5̺,
0.5 [1 − cos(2π(1 − u)/̺)] , u ≥ 1 − 0.5̺,

The ̺ parameter, regulating the fraction of the initial and final stretch of data that are tapered, is set equal to

0.1 (see Hurvich, 1988, for a method to estimate the optimal degree of tapering). Notice that the standard

biased estimator of the autocovariance arise when the boxcar taper, with ht = 1, 1 ≤ t ≤ n and 0 otherwise,

is adopted.

The tapered Yule-Walker estimates have better small sample properties with respect to the non-tapered

counterparts. In particular they can reduce substantially the bias affecting the Yule Walker estimates of the

AR parameters, see e.g. Dahlhaus (1988). Zhou and Roy (2006) document the reduction of the bias and the

corresponding improvement in forecast accuracy in the vector AR case. Tapering was originally proposed

as a device for removing leakage in spectrum estimation using the periodogram (see Percival and Walden,

1983). Velasco and Robinson (2000) discuss its merits for the estimation of the long-memory parameter by

pseudo maximum likelihood in the frequency domain. The reduction of the bias is achieved at the expenses

of an increase in the variance of the estimates. An interesting strategy to avoid it is to use multitapered

estimates (see Walden, 2000).

For solving the system Γ̂φ̂
(D)

h = γ̂h, we use the functions for Toeplitz systems built in the package Ox

4.00 by Doornik (2006), which make use of the Levinson-Durbin algorithm.

4.2 Order Selection

The choice of the AR order p is done by information criteria. The selection of p for stationary time series has

been considered by Shibata (1980) and Bhansali (1996), who advocate the use of the Akaike Information

Criterion, where the estimated one-step innovation variance is replaced by the estimated h-step prediction

error variance. Hurvich and Tsai (1997) introduced a multistep generalization of the corrected AIC, given

by

AICC(h, p) = n[log ̂MSFED(h, p) + 1] + 2(p + 1)
n

n − p − 2
. (8)

4.3 A Bootstrap Test of Predictive Efficiency

We can take advantage of the properties of the tapered Yule-Walker estimates to build up a test of the

significance of the improved predictive performance of the direct predictor. In fact, the statistic representing

the difference between the mean square forecast error ̂MSFEI(h, p) − ̂MSFED(h, p) is always nonnegative

and can be written as a linear combination of the first p autocovariances. However, the weights of the

combination depend on the estimated coefficients νij , which in turn depend on the autocovariance function

of ∆Xt.

To judge the significance of the reduction of the MSFE arising from using the direct predictor at horizon

h we propose the following F -type test statistic, defined in terms of the Granger and Newbold (1986, p.

310) measure of forecastability at horizon h:

F (h, p) =
(R2

D − R2
I)/p

(1 − R2
D)/(n − p)

(9)
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where

R2
i (h, p) = 1 −

̂MSFEi(h, p)

γ̂(0)
, i = I, D.

is the forecastability index. The statistic (9) is the standard test for the p restrictions φ
(D)
h = φ

(I)
h , but it has

not the usual F distribution in finite samples.

In the light of (3),

R2
i (h, p) = 1 −


∑

j

ν̂2
ij + 2

∑

k

ρ̂(k)
∑

j

ν̂ij ν̂i,j+k,


 , i = D, I,

with ρ̂(k) = γ̂(k)/γ̂(0) and ν̂i(L) = Sh−1(L) + Lh−1φ̂
(i)
h (L). It follows form the positive-definiteness of

the tapered autocovariance sequence that R2
i (h, p) ≥ 0 and R2

D(h, p) ≥ R2
I(h, p), so that F (h, p) ≥ 0. The

null of equal forecast accuracy will thus be rejected for ”large” values of the test statistic.

The p-values of the finite sample distribution of the statistic (9) are obtained by the bootstrap method,

using the sieve bootstrap to obtain replicates of the observed time series (see Bühlmann, 1997, 2002, and

the references therein). The test procedure takes the following steps.

1. For a given pair (h, p) compute the direct and iterated predictors and the statistic F̂ (h, p) in (9).

2. Determine the AR order p∗ of the one-step-ahead model (h = 1) by selecting the value in (1, [n/10])

that minimizes the Hurvich and Tsai (1989) corrected AIC given above in (8).

3. Estimate the AR coefficients model by the Yule-Walker method, solving Γ̂φ̂ = γ̂1, where Γ̂, γ̂1

contain either the standard or the tapered sample autocovariances.

4. Generate B bootstrap replicates of the series by sampling with replacement the centered innovations

et − ē, et = ∆xt −
∑p∗

j=1 φ̂j∆xt−j , t = p∗ + 1, . . . , n, ē = (n − p∗)−1
∑

et, and computing

recursively for t = p∗ + 1, . . . , n, x
(b)
t = x

(r)
t−1 +

∑p∗

j=1 φ̂j∆x
(b)
t−j + eb

t , using the starting values

xp∗ ,∆xj , j = 2, 3, . . . , p∗, where eb
t , b = 1, . . . , B, is a draw from the empirical distribution of

et − ē.

5. For each bootstrap replication compute the statistic F (b)(h, p). The distribution function of F (b)(h, p),
b = 1, . . . , B, is used to approximate the unknown distribution of the F-test statistic (9). Bootstrap

p-values are obtained as the proportion of the bootstrap statistics F (b)(h, p), that are more extreme

than the actual statistic F̂ (h, p) computed at the first step.

5 Long range forecasting and trend estimation: the multistep Beveridge-

Nelson decomposition

Using the identity

Xt+h = Xt +
h∑

j=1

∆Xt+j ,
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the h-step ahead predictor based on the information set available at time t, denoted F t, is obtained by adding

to the current Xt all forecastable future changes up to time t + h, i.e.:

X̃t+h|t = Xt +
h∑

j=1

∆̃Xt+j|t, (10)

where ∆̃Xt+j|t = E(∆Xt+j |F t).

If h is allowed to go infinity in (10) and we assume that the drift is zero, then X̃t+h|t tends to the

Beveridge-Nelson (1981, BN henceforth) trend, or permanent, component, and limh→∞
∑h

j=1 ∆̃Xt+j|t is

minus the BN cycle (transitory component). In the case when the drift is nonzero, E(∆Xt) = β 6= 0, the

BN trend is redefined as X̃t+h|t − βh, which equals the current value of the series plus ”all forecastable

future changes beyond the mean rate of drift”.

The direct and iterated AR methods provide two different approximations to limh→∞
∑h

j=1 ∆̃Xt+j|t.

As a matter of facts, the integration of all forecastable future changes up to time h,
∑h

j=1 ∆̃Xt+j|t, is

approximated by φ
(i)′

h ∆Xt, i = I,D, and thus the BN trend arising from both methods is

mit = lim
h→∞

Xt+h|t = Xt + lim
h→∞

φ
(i)′

h ∆Xt, i = I,D. (11)

Letting φ
(i)
∞ = limh→∞ φ

(i)
h , (an approximation to) the BN trend can be expressed as the following one

sided moving average of the series:

mit = (1 + φ
(i)
∞,1)Xt + (φ

(i)
∞,2 − φ

(i)
∞,1)Xt−1 + · · · + (φ(i)

∞,p − φ
(i)
∞,p−1)Xt−p+1 − φ(i)

∞,pXt−p. (12)

The filter weights, which add up to one, can be obtained directly by letting h → ∞ in the expressions (5)

and (6), respectively.

5.1 The BN trend for AR(1) predictors

In the AR(1) case (p = 1), letting h → ∞ in (5) gives

φ(D)
∞ =

g(0) − γ(0)

2γ(0)
=

1

2
(P − 1), P =

g(0)

γ(0)
.

The parameter P is often referred to in the literature as the persistence parameter (being equal to the normal-

ized spectral generating function at the zero frequency, or equivalently, to the ratio of the long run variance

to the variance of ∆Xt).

In the iterated case T is a scalar matrix; taking the limit of (6), and denoting φ1 = φ
(I)
1 ,

φ(I)
∞ =

φ1

1 − φ1
=

γ(1)

γ(0) − γ(1)
,

since φ1 = γ(1)/γ(0). The BN trend is mit = (1 + φ
(i)
∞ )Xt − φ

(i)
∞,pXt−1 = Xt + φ

(i)
∞∆Xt.

If we assume that Xt is the IMA(1,1) process ∆Xt = (1 + θL)ǫt, then we have, respectively,

mIt =
1

1 − ρ(1)
Xt −

ρ(1)

1 − ρ(1)
Xt−1,mDt = (1 + ρ(1))Xt − ρ(1)Xt−1, ρ(1) =

θ

1 + θ2
.

10



When θ = 0 (Xt is a pure random walk), the two expressions are equivalent. When θ is equal to -1, Xt is

white noise and the BN trends are, respectively, mIt = 2
3Xt + 1

3Xt−1,mDt = 1
2(Xt + Xt−1). Notice that

mit, i = I, D, can be regarded as estimators of the mean of the process and that the second is more efficient.

In general, the true BN trend is

mt =
1 + θ

1 + θL
Xt = Xt +

θ

1 + θL
∆Xt,

so that the mean square error ratio equal to

Eff(θ) =
Var(mIt − mt)

Var(mDt − mt)
=

(φ
(I)
∞ − θ)2 + (θφ

(I)
∞ )2

(φ
(D)
∞ − θ)2 + (θφ

(D)
∞ )2

.

The ratio is always greater than 1 for |θ| ≤ 1, except for θ = 0, in which case it is exactly 1. For θ = 1 the

direct approximation is twice as efficient; the maximum of the ratio is when θ = 0.5, for which Eff(0.5) =
2.78. Finally, Eff(−1) = 1.11.

5.2 The iterated case

In the iterated case the coefficients φ
(I)
∞ can be expressed in terms of the one-step AR polynomial coeffi-

cients, φ
(I)
1 . Intuitively, this is so since in (5) all the autocovariances beyond lag p are made dependent upon

the first p autocovariances. Hence, we can derive an explicit limit for the iterated coefficients:

φ(I)′

∞ = e
′
1(I − T)−1

T,

where the matrix T was given in section 2, and depends solely on φ
(I)
1 .

Theorem: The BN trend implied by the indirect method can be expressed

mIt =
φ

(I)
1 (L)

φ
(I)
1 (1)

Xt. (13)

Proof: The proof is direct. Writing for simplicity of notation φ
(I)
1 = φ = [φ1, . . . , φp]

′, φ(L) = 1− φ1L−
· · · − φpL

p, φ(1) = 1 − φ′
i, i = [1, 1, . . . , 1]′, and defining C as the matrix with unit elements on the main

diagonal, -1 on the first subdiagonal and zero elsewhere, so that C
−1 is a lower triangular matrix with all

elements equal to one (sometimes referred to as the random walk generating matrix),

I − T = C − e1φ
′, (I − T)−1 = C

−1 +
1

φ(1)
iφ′

C
−1;

using (I − T)−1
T = (I − T)−1 − I and replacing into (12), yields the nice representation (13).

5.3 The BN trend at horizon h

The estimator mDt is clearly unfeasible, unless we know the true model that generated Xt. In fact, the

example presented in section 5.1 postulated that the true model is IMA(1,1) and considered the long run

forecast function implied by the AR(1) predictors for ∆Xt.
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Hence, the analytic form of mDt is only useful for theoretical discussion. Nevertheless, we can construct

an approximation at horizon h, with h sufficiently large, m
(h)
it = Xt + φ

(D)′

h ∆Xt, or, equivalently,

m
(h)
Dt = (1 + φ

(D)
h,1 )Xt + (φ

(D)
h,2 − φ

(D)
h,1 )Xt−1 + · · · + (φ

(D)
h,p − φ

(D)
h,p−1)Xt−p+1 − φ

(D)
h,p Xt−p.

Obviously, m
(h)
Dt = mDt if Xt is an IMA(1,q) process with q ≤ p.

Another possibility is to construct an estimate of the forecastable future changes of the series by deriv-

ing the one step ahead predictor implied by the h-step ahead coefficients, and applying the chain rule for

forecasting any step ahead in the future. Hence, having obtained the h-step ahead AR prediction coeffi-

cients φ
(D)
h , we can obtain the corresponding one-step ahead coefficients as those coefficients that, when

propagated h-steps ahead by the chain rule, would produce exactly φ
(D)
h . Denoting by φ∗

h the vector of

implied one-step coefficients, the above argument leads to the solution of the following nonlinear system of

equations:

φ
(D)′

h = e
′
1(I − T

h
h)(I − Th)−1

Th

where φ
(D)
h is known and

Th =




φ∗′

h

· · · · · · · · ·

Ip−1
... 0




We can equivalently obtain φ∗
h as the vector, containing the coefficients of the projection of ∆Xt+1 onto

∆Xt, that minimize the h step ahead prediction error variance. Hence, the model is the same as for the

iterated method, i.e. a standard AR(p) autoregressive model, but the coefficients are obtained by minimizing

the h-step ahead, rather than the one-step ahead, prediction error variance (this is sometimes refereed to as

multistep estimation of a standard AR model).

From φ∗
h we construct the corresponding AR lag polynomial φ∗

h(L), and we obtain the following ap-

proximation, indexed by the forecast horizon h, of the BN trend:

m
(h)∗
Dt =

φ∗
h(L)

φ∗
h(1)

Xt. (14)

Obviously, limh→∞ m
(h)∗
Dt = mDt.

5.4 The BN smoother

As shown in Proietti and Harvey (2000), when the true model is AR(p), under suitable conditions, there ex-

ists a two sided Beveridge-Nelson smoother, given by the following two-sided symmetric weighted average

of the series:

µIt =
φ

(I)
1 (L)φ

(I)
1 (L−1)

[φ
(I)
1 (1)]2

Xt =
φ

(I)
1 (L−1)

φ
(I)
1 (1)

mIt. (15)

A sufficient condition for the interpretation of the BN smoother as the Wiener-Kolmogorov trend extraction

filter for the decomposition into orthogonal components with uncorrelated disturbances, using the identify-

ing assumption that the trend is a random walk and the cycle is stationary, is that the persistence parameter,

[φ1(1)(I)]−1, is less than one.
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For the BN smoother at forecast horizon h we have two possibilities. The first is to apply the BN

smoother above using the implied AR(p) lag polynomial obtained by multistep estimation:

µ
(h)∗
Dt =

φ∗
h(L)φ∗

h(L−1)

[φ∗
h(1)]2

Xt =
φ∗

h(L−1)

φ∗
h(1)

m
(h)∗
Dt . (16)

For h → ∞ this estimator coincides with the final BN smoother estimator:

µDt = (1 + φ
(D)
∞,1)mDt + (φ

(D)
∞,2 − φ

(D)
∞,1)mD,t+1 + · · · + (φ(D)

∞,p − φ
(D)
∞,p−1)mD,t+p−1 − φ(D)

∞,pmD,t+p.

An alternative approximate BN smoother is obtained by replacing in the expression for the final BN

smoother the quantities arising from h-step ahead estimation:

µ
(h)
Dt = (1 + φ

(D)
h,1 )m

(h)
Dt + (φ

(D)
h,2 − φ

(D)
h,1 )m

(h)
D,t+1 + · · · + (φ

(D)
h,p − φ

(D)
h,p−1)m

(h)
D,t+p−1 − φ

(D)
h,p m

(h)
D,t+p.

6 Illustrations

This section presents two illustrations dealing with two relevant macroeconomic indicators of the U.S. econ-

omy: quarterly real gross domestic product (logarithms, sample period: 1947.q1–2008.q2) and monthly in-

flation, obtained as xt = ln CPIt−ln CPIt−1, where CPI is the consumer price index for all urban consumers

released by the U.S. Bureau of Labor Statistics (seasonally adjusted, January 1960 - April 2008).

6.1 Gross domestic product

The top panel of figure 3 displays the percent gain in forecast accuracy arising from the direct method:

G(h, p) = 100 ×

(
1 −

̂MSFED(h, p)

̂MSFEI(h, p)

)

for h = 1, . . . , 40 and p = 1, . . . , 15. The maximum gain, around 9%, is obtained for h = 32 and p = 10.

The second panel shows for each forecast lead time the order selected by Hurvich and Tsai’s corrected AIC

criterion (8); p is around 3 for small lead times and increases up to 12 for horizons around 7-8 years (28-

32 quarters). For convenience, the plot also displays the efficiency of the direct predictor G(h, p) for the

selected p.

The next question is whether the empirical accuracy gains are statistically significant. The bottom

panel answers this by plotting against h the bootstrap p-values (using B = 9999 replicates) of the test

statistic F (h, p) in (9), where p is equal to the value selected by AICC . The steady line is drawn at the

value 0.05. The plot reveals that none of these gains are significant at the 5% level, although the value for

h = 32, p = 10, gets very close to it (the estimated p-value is 0.056).

Hence, it appears that the direct predictor does not outperform the iterated one, unless one is willing to

adopt a very long horizon (8 years) and a significance level greater than 0.056. Suppose that we are willing to

do that; the BN permanent and cyclical component that would originate from estimating the AR coefficients

assuming a long run horizon are depicted in figure 4 and compared to the standard BN components, obtained

from fitting an AR(p) model to the series by minimizing the one-step ahead prediction error variance. In

particular, the top panels display the estimated trend m̂It, as given in (12) or (13), with the coefficients

replaced by the tapered Yule-Walker estimates, and the deviations xt − m̂It; the one-step estimated BN
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trend closely follows the observed GDP and the resulting BN cycle has small amplitude. The bottom panels

display m̂h∗
Dt, the trend obtained assuming the eight years forecast horizon, h = 32, and the corresponding

cycle xt − m̂h∗
Dt. See section 5.3 for details.

The estimated trend m̂h∗
Dt (which is the sample counterpart of (14)) is much smoother than its one-step

trend; as a consequence, the estimated cycle has larger amplitude and displays the alternation of phases

and the persistence that is characteristic of the U.S. business cycle. This is so since the estimation criterion

enhances the long run properties of the estimated model, in that the filter (2) assigns more weight to the low

frequencies and discard the high frequency fluctuations for estimating the AR coefficients.

6.2 Monthly inflation

The U.S. monthly inflation series is often modelled by an IMA(1,1) model, as in Stock and Watson (2007)

and the references therein, with a negative MA coefficient. Hence, we expect that the AR representation is

misspecified. Figure 5 presents the percent reduction in the prediction error variance obtained from using

the direct predictor en lieu of the iterated predictor. The efficiency gains increase with the forecast horizon

and with the order of the AR polynomial reaching a maximum at h = 41, p = 26 (where it reaches around

20%).

The order p minimizing the corrected AIC is typically very large (see the middle panel of figure 5): for

the one-step ahead predictor (h = 1) it is already equal to p = 12 and jumps to around 30 for h ≥ 12. The

finding that long autoregressions are required is consistent with the presence of a MA component close to

the non invertibility region.

The reduction of the MSFE produced by the direct predictor is highly significant at all horizons greater

than h = 16, as it is visible from the bottom panel of figure 5.

We thus turn to the implications of adopting the multistep direct AR model for the estimation of the

underlying level of inflation. The top right panel of figure 6 displays the standard BN trend arising from the

AR(12) model for ∆xt fitted by minimizing the one-step ahead prediction error variance. The second panel

on the right depicts the BN smoothed trend computed according to the two-sided symmetric filter in (15).

These plots should be compared with the multistep BN and smoothed BN trends, estimated respectively

using the sample counterpart of m
(h)∗
Dt , see equation (14), and µ

(h)∗
Dt , given in (16). These estimates are

characterized by a higher degree of smoothness, which is motivated by the fact that the estimates of the

AR polynomial optimize the predictive performance at an horizon, h = 41, between 3 and 4 years. Conse-

quently, the multistep BN trend, the estimation of the value the series would take if it were on its long-run

path does not carry over to a great extent the high frequency fluctuations present in the series. The compari-

son of the real time and the smoothed estimates further reveals that the former suffer from a phase shift, due

to the one sided nature of the signal extraction filter, which is not present in the smoothed estimates.

7 Conclusive remarks

We think that the paper can contribute to the already substantive literature on multistep estimation, and on

the comparison of direct and iterated AR predictors, in the following ways.

• By providing an encompassing representation for the direct and iterated predictors that enables the

derivation of the analytic mean square forecast error and recursive formulae for the AR coefficients.
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• By proposing inferences (parameter estimates, bootstrap tests of equal predictive accuracy) based

on the tapered autocovariance function. The estimation methodology has several advantages over

ordinary least squares.

• By establishing the connection between multistep forecasting and trend estimation. In particular we

introduced the multistep Beverigde-Nelson decomposition for the direct method and extended it to

the two-sided BN decomposition.

There are several issues that we would like to address in our future research. As far as the estimation

methodology is concerned, we can improve the sampling properties of the Yule-Walker estimates by mul-

titapering, see Walden (2000); moreover, the class of Burg estimators (see Hurvich and Tsai, 1997, and

Brockwell, Dahlhaus and Trinidade, 2005) deserves further investigation. While the extension to second

order difference stationary, or I(2), processes seems only labor intensive, the multivariate extensions are

more promising. We find particularly attractive the notions of multistep impulse response functions and

of multistep trends in a multiple time series, as devices that can provide a different characterization of the

dynamic behavior and interrelations between time series.
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Figure 3: U.S. real gross domestic product. Percentage reduction in MSFE:

100
(
1 − ̂MSFED(h, p)/ ̂MSFEI(h, p)

)
(top panel); selected AR orders and percent efficiency gain

versus forecast horizon h (middle panel); bootstrap p-values of the predictive accuracy test statistic.

20



1960 1980 2000

750

800

850

900

BN trend p=3, h=1

Series Trend 

1960 1980 2000

−4

−2

0

2

4
BN cycle p=3, h=1

1960 1980 2000

750

800

850

900

BN trend p=10, h=32

Series Trend 

1960 1980 2000

−4

−2

0

2

4

BN cycle p=10, h=32

Figure 4: U.S. real gross domestic product. Beveridge-Nelson trends and cycles: standard (iterated) decom-

position for h = 1 and multistep direct decomposition at horizon h = 32. The AR order has been selected

according to the modified AIC criterion.
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US Inflation. Percent efficiency gain − D vs I
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Figure 5: U.S. monthly inflation. Percentage reduction in MSFE: 100
(
1 − ̂MSFED(h, p)/ ̂MSFEI(h, p)

)

(top panel); selected AR orders and percent efficiency gain versus forecast horizon h (middle panel); boot-

strap p-values of the predictive accuracy test statistic.
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Figure 6: U.S. monthly CPI inflation. Beveridge-Nelson trends and smoothed (two-sided) trends: standard

(iterated) decomposition for h = 1 and multistep direct decomposition at horizon h = 41. The AR order

has been selected according to the modified AIC criterion.
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