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Abstract

We study how a continuum of agents learn about disseminated information by

observing others’ actions. Every period each agent observes a public and private noisy

signal centered around the aggregate action taken by the population. The public signal

represents an endogenous aggregate variable such as a price or a quantity. The private

signal represents the information gathered through private communication and local

interactions. We identify conditions such that the average learning curve is S-shaped:

learning is slow initially, intensifies rapidly, and finally converges slowly to the truth.

We show that increasing public information always slows down learning in the long run

and, under some conditions, reduces welfare. Lastly, optimal diffusion of information

requires that agents “strive to be different”: agents need to be rewarded for choosing

actions away from the population average.

∗We’d like to thank, for fruitful discussions and suggestions, George-Marios Angeletos, Bruno Biais, Chris
Edmond, Doireann Fitzgerald, Boyan Jovanovic, Christian Hellwig, Thomas Mariotti, Stijn Van Nieuwer-
burgh, Dimitri Vayanos, Laura Veldkamp, Ivan Werning, and seminar participants at NYU, Harvard, LSE,
Toulouse, Columbia, MIT, Society of Economics Dynamics Meeting (2006), Stanford Institute for Theo-
retical Economics (2006), Minnesota Workshop in Macroeconomic Theory (2006), Federal Reserve Bank of
Cleveland Summer Workshop in Money, Banking, and Payment (2006) for their comments.

†Department of Economics, Stanford University, e-mail: amador@stanford.edu
‡Department of Economics, University of California Los Angeles, e-mail: poweill@econ.ucla.edu

1



1 Introduction

Households and firms learn about the state of the economy in both a public and a private

fashion. They gather public information by observing noisy endogenous aggregates such as

asset prices or the macroeconomic figures published by agencies. At the same time, some

information remains dispersed because households and firms know more about their local

markets than about the economy as a whole. Hence, they also gather some information in

a private fashion, by interacting among each other. In this paper, we study the interaction

of these public and private learning channels in a large population. We provide conditions

such that information diffuses along an S-shaped learning curve. We show that, in the long

run, more public information always slows down the diffusion of private information and

sometimes reduces welfare. Lastly, we provide an analysis of optimal information diffusion.

We consider an economy populated by a continuum of agents who, at time zero, receive

some public and private signals about the state of the world. This is the only source of

exogenous information arrival in the model. After that, each agent takes an action at every

moment. The state is revealed at a random time and the payoff to each agent is decreasing

in the distance between her current action and the revealed state. However, before the state

is revealed, the initial private information of agents slowly diffuses in the population through

the following mechanism. At all times, each agent observes two signals. The first signal is

public, shared by everyone, and is designed to represent an endogenous aggregate variable

such as a price or some macroeconomic aggregate. The second one is private, only observed

by the agent: it represents the information gathered through private communication and

local interactions. The two signals are endogenous: they are centered around the current

average action in the population. Because the average action reflects agents’ current forecasts

about the state of the world, the observation of these signals allow our continuum of agents

to progressively learn about the state of the world.

We show that there exists an equilibrium in which agents eventually learn the truth. The

average belief in the population converges to the state of the world, but it does so along an

S-shaped curve as long as the initial information is sufficiently dispersed. This is because

agents become more and more confident about the information they gathered privately, and

make forecasts that are increasingly sensitive to this private information. Since the private

information of others is the only new thing there is to learn and because of the informational

noise, a larger sensitivity to private information increases the informativeness of the average
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forecast, accelerates learning, and creates a convex learning curve. The learning curve is

concave at the end because convergence to the truth implies that learning must eventually

slow down. In addition, when agents learn privately, they learn independently from one

another: this means that agents learning histories are increasingly heterogeneous, and implies

that the dispersion of beliefs increases at the beginning. Of course, the dispersion of beliefs

eventually converges to zero as agents learn the truth.

Public information ends up crowding out private information, and a more precise initial

public signal will eventually reduce the precision of agents beliefs. The culprit is an informa-

tion externality. Indeed, with an increase in the precision of public information, each agent’s

action becomes more sensitive to the public information which is already known by everyone

and hence useless for learning. At the same time the average action becomes less sensitive

to the private information of others which is the only new thing there is to learn. Together

with the presence of an observational noise, this makes it harder for an agent to learn from

the average forecast, and eventually slows down information diffusion. Note that, because

of our continuum-of-players assumption, an agent has no incentive to take this effect into

account when choosing his action.

Whether public information is socially beneficial depends on the trade-off between a short-

run gain and a long-run loss. The short-run gain is to make agents better informed, while the

long-run loss is to slow down the diffusion of private information in the population. We prove

that, as long as agents are sufficiently patient, a given marginal increase in the precision of

the public signal is always welfare reducing. Hence, differently from Morris and Shin [2002],

even in the absence of a payoff externality better public information can reduce welfare.

In the last part of the paper we study the problem of a planner who maximizes utilitarian

welfare by telling agents what forecast to make as a deterministically time-varying affine

function of their public and private forecasts. In equilibrium, agents do not take into account

the impact on information diffusion of their actions and hence a learning externality appears.

The planner internalizes this externality by requiring that agents strive to be different: they

should make forecasts that are more sensitive to their private information than in equilibrium.

We show in addition that, as long as the initial information is sufficiently dispersed, the

planner’s sensitivity deviates from the equilibrium sensitivity non-monotonically over time:

the optimal sensitivity is close to the equilibrium sensitivity at the beginning, far away in

the middle, and close again at the end. This is because the cost of increasing the sensitivity
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is very large at the beginning, while the benefit is very small at the end. Namely, at the

beginning, each agent has a tiny amount of private information which varies widely around

the true state of the world. Increasing the sensitivity to private information would create a

large increase in the dispersion of agents forecasts and result in a huge welfare loss. At the

end, on the other hand, agents know almost all the private information, and the benefit of

increasing the sensitivity in order to speed up learning is very small. Finally, we show that

the planner’s solution can be decentralized in a dynamic version of Morris and Shin [2002]

beauty contest, by rewarding agents for making forecasts away from the population play. In

other words, agents should be rewarded for being different.

Literature Review

Our work is related to the recent literature on the social value of public information (see

Morris and Shin [2002], Hellwig [2005], and Angeletos and Pavan [2005]). In these models,

public information may reduce welfare because a static payoff externality gives individual

agents a coordination motive, but at the same time washes out in the social welfare function.

Our contribution is to study an alternative mechanism based on a dynamic information

externality: in our model public information crowds out the diffusion of information in

the population. Morris and Shin [2005] set up an overlapping-generations beauty-contest

game in which a similar learning externality arises: they show that, when it discloses its

information, a central bank ends up learning less from private agents’ actions. While Morris

and Shin’s model is designed to study the learning process of the central bank, our work

focuses on the learning process and welfare of private agents.1

Information externalities have been studied in the social learning literature (see, among

many others, Vives [1993], Chamley and Gale [1994], and Vives [1997]). The maintained

assumption of these models is that agents learn from public signals. The present paper adds

to this literature the possibility of learning from each other privately. The assumptions that

agents learn either from public or private signals end up having strikingly different implica-

tions. Indeed, when agents learn from public signals, the learning speed is decreasing over

time. This key implication is reversed in our model because agents learn from the learning

1Because private agents in Morris and Shin’s model do not inherit the information set of previous gen-
erations, they do not suffer from the dynamic learning externality emphasized in our paper. Hence, in the
absence of a payoff externality, a release of public information always improves their welfare (although it
reduces the precision of the information gathered by the central bank). This result stands in contrast with
the welfare results of our paper.
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of others, which creates an information snowballing effect: initially, learning speed increases

over time. This implies that information diffuses along a S-shape, a pattern documented by

a number of empirical studies of social learning (see Chapter 9 of Chamley [2004] and see

also Jovanovic and Nyarko [1995]). Recent work on social learning focused on learning in

networks: Bala and Goyal [1998], Gale and Kariv [2003], Smith and Sorensen [2005] study

deterministic networks with finite number of agents, Banerjee and Fudenberg [2004] provide

a continuum-of-agents setup (see also DeMarzo et al. [2003] for a network of boundedly ratio-

nal agents). Because they lack tractability, these models end up focusing almost exclusively

on the question of convergence to the truth. Our continuous-time model with a continuum

of agents can be solved in closed form, which allows us to take the learning-in-network lit-

erature a step further, with an analysis of transitional dynamics, welfare, and the impact of

public information.

Another related literature uses search-and-matching model in order to study how agents

learn from local interactions with others. In Wolinsky [1990] seminal work, information

diffuses at the individual level but stays constant at the aggregate level: indeed, agents

leave the economy after trading and uninformed agents continuously enter the economy (see

also the recent work of Kircher and Postlewaite [2006]). The issue of convergence when

information diffuses on the aggregate has been subsequently addressed in Green [1991],

Blouin and Serrano [2001], and in the independent work of Duffie and Manso [2006]. Wallace

[1997], Katzman et al. [2003], and Araujo and Shevchenko [2006] address learning about a

money supply shock in Trejos and Wright [1995] random-matching model. For tractabil-

ity, they assume that the money supply becomes public after either one or two periods.

Araujo and Camargo [2006] relax this assumption in a Kiyotaki and Wright [1989] model,

and study the government incentives to expand the money supply. Our setup is somewhat

simpler than these models because agents do not learn from trading but from observing the

action of others. The benefit of this simplification is that we can explicitly characterize the

transitional dynamics of beliefs and study the welfare impact of public information.

The rest of the paper is organized as follows. Section 2 introduces the setup. Section

3 solves for an equilibrium. Section 4 studies the dynamics of diffusion and the role of the

private and public signals. Section 5 studies the impact on welfare of changes in the quality of

public information, and how the social planner’s problem can be decentralized in a dynamic

beauty context. Section 6 concludes, and appendix collects all the proofs not in the main
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text.

2 Set up

Time is continuous and runs forever. We fix a probability space {Ω,G, Q} together with an

information filtration {Gt, t ≥ 0} satisfying the usual conditions (Protter [1990]).

Our economy is populated by a continuum of agents, who seek to forecast the same

random variable x ∈ R. At time zero, agents receive a public signal about x, as well as

some independent private signals which make them asymmetrically informed. Given the

continuum assumption, if any particular agent could gather the signals of all others, she will

know the realized value of x. The objective of this paper is to study situations where such

pooling is not feasible and we model explicitly how the initial information diffuse slowly in

the population through endogenously generated public and private signals.

Preferences.

We assume that, at each time, each agent i ∈ [0, 1] prepares a forecast ait of the random

variable x, which we take to be normally distributed with mean zero and precision P̄ . The

realization of x is to be announced at some random “day of reckoning” τ > 0, which is

Poisson distributed with intensity r > 0, and independent from everything else. At the day

τ of reckoning, an agent receives the payoff − (aiτ − x)2. This quadratic specification ensures

that, at each time, an agent’s optimal forecast is the expectation

ait = E [x | Git] (1)

of the random variable x, conditional on her information filtration {Git , t ≥ 0} that we

define below.

Information.

The information available to an agent evolves over time in the following fashion. First at

time zero, agents become asymmetrically informed about x: each of them receives both a

public signal Z0 and a private signal zi0

Z0 = x + W0√
Π0

(2)

zi0 = x + ωi0√
π0

, (3)
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where W0 and (ωi0)i∈[0,1] are normally distributed with mean zero and variance 1, pairwise

independent, and independent from everything else. The precision of the public and private

signals are measured by Π0 and π0, respectively.

Note that if agents could pool their time-zero private signals, they would be able to

infer the exact realization of the state of the world x. A standard way of obtaining such

pooling of information is to assume that agents observe an endogenous aggregate variable.

For example, if agents were able to observe the cross-sectional average action

At ≡
∫ 1

0

ait di, (4)

in the first period, t = 0, they would be able to infer the exact value of x.

In this paper, we prevent agents from instantly pooling all their private information by

introducing noise in the observation of the average action. We assume that agents observe

a noisy public signal of the average action, Zt, solving the following stochastic differential

equation

dZt = Atdt +
dWt√

Pε

(5)

with initial condition given by equation (2). This public signal represents the information

conveyed by some endogenous aggregate variable. This could be, for instance, an asset price

in a noisy-rational model of financial markets.

On the other hand, each agent i also observes a private signal zit of the average action

satisfying

dzit = Atdt +
dωit√

pε
, (6)

with initial condition given by equation (3). Such a signal captures the decentralized gath-

ering of information. One could think for instance, of local interaction and private commu-

nication such as gossips.2

We let W and (ωi)i∈[0,1], in equations (5) and (6), be pairwise independent Wiener pro-

2The work of Amador and Weill [2006] suggests that specification (6) may arise when each agent continu-
ously observes, with idiosyncratic noise, the forecast of other randomly chosen agents. Intuitively, observing
the forecast of a randomly chosen agent amounts to sample from a distribution centered around the average
forecast At. When the time between period and the precision of the noise go to zero at the same rate,
Amador and Weill [2006] informally arrive at specification (6).
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cesses with initial conditions Wi0, ωi0, independent from x and from τ .

Note that one crucial assumption in specification (5)-(6) is that agents’ signals are dis-

tributed about the cross-sectional average forecast At. This assumption, which is standard in

the social learning literature (see Chamley [2004] and references therein), means that agents

do not learn by directly observing the information of others, but instead by observing a noisy

average of their actions.

Equilibrium.

Given a process A for the average action, we can define the information sets of generated in

the economy as

Definition 1. Let A be a process for the average action. The public information is repre-

sented by the filtration {Ft, t ≥ 0} generated by {Zs, 0 ≤ s ≤ t}. Similarly, an agent’s pri-

vate information is represented by the filtration {Fit, t ≥ 0} generated by {zis, 0 ≤ s ≤ t}.
The filtration Git generated by Ft ∪ Fit represents all the information available to agent

i ∈ [0, 1] at any time t > 0.

We can now state our notion of equilibrium.

Definition 2. An equilibrium is pair of processes {ai, A} where ai is a Git-adapted individual

announcement process and A is a Gt-adapted average announcement process, such that:

(i) at each time, ait solves equation (1),

(ii) and At solves equation (4).

The notion of equilibrium is standard. The average announcement process A determines

the information sets of the agents, both the public and the private filtrations. Given their

information, agents maximize their expected utility. And finally, the cross-sectional average

forecast of the population A is consistent with the agents individually optimal forecasts.

3 An Equilibrium

In this section we explicitly construct an equilibrium. We start by showing that an agent’s

forecast of x at any time is the convex combination of two forecasts: a public forecast that

summarizes the public information in the economy and a private one that summarizes the

particular agent’s private information. To do this, we guess
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Hypothesis (H). There exists two continuous precision functions πt and Πt such that

observing Zt is equivalent to observing Z̃t, and observing (Zt, zit) is equivalent to observing

(Z̃t, z̃it), where

dZ̃t = x dt +
dWt√

Πt

(7)

dz̃it = xdt +
dωit√

πt

. (8)

Formally, let F̃t be the filtration generated by {Z0, Z̃u, 0 < u ≤ t}, and let F̃it be the

filtration generated by {zi0, z̃iu, 0 < u ≤ t}. Then Ft = F̃t and Git = Ft ∪ Fit = F̃t ∪ F̃it.

Hypothesis (H) states that observing the original public and private signals Zt and zit, which

are centered around the average forecast in the population, is equivalent to observing two

transformed signals centered instead around the true value of the parameter x. These trans-

formed signals are generated with the same noises (W, ωi), but with time-varying precisions

(Πt, πt) which are determined in equilibrium.

We first introduce some notations. Conditional only on the history of the transformed

private signal z̃, the initial private signal z0, together with a totally diffuse initial prior, we

define an agent’s best private forecast of x by x̂it = E
[

x | F̃it

]

. Similarly, conditional on

the history of the transformed public signal Z̃, the initial public signal Z0, together with

the initial common prior that x is normally distributed with mean zero and precision P̄ , we

denote an agent’s best private forecast of the state by X̂t ≡ E
[

x | F̃t

]

= E [x | Ft]. We refer

to X̂t as the public forecast at time t and x̂it as agent i’s private forecast. Lastly, we let

the precision of these private and public forecasts be denoted by

pt =
{

E
[

(x − x̂it)
2 | F̃it

]}−1

(9)

Pt =
{

E
[

(x − X̂t)
2 | Ft

]}−1

, (10)

where we anticipate that the precision pt of the private forecast is the same for all agents at

any given time t.

Our objective is to derive the dynamics of the action of any given agent i as a combination

of both his private and the public forecasts, x̂it and X̂t. Bearing this in mind, we first

determine the dynamics of the public forecast, X̂t, and of its precision, Pt; and of the private

forecast x̂it and its precision pt.
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In order to see how we obtain the law of motion of X̂t, it is convenient to consider the

following discrete time approximation of the filtering problem (the formal proof in continuous

time can be found in the appendix). Suppose that at the beginning of time t, the public

forecast is that x is normally distributed with mean X̂t and precision Pt. During the small

time interval [t, t + ∆], equation (5) means that agents receive a public signal, ∆Z̃t, which

is approximately equal to3

∆Z̃t = x∆ +
√

∆
εt√
Πt

⇔ ∆Z̃t

∆
= x +

εt√
Πt∆

, (11)

for some standard normal random variable εt. Equation (11) means that agents receive a

signal centered about x, with precision Πt∆. Given normality, the public forecast about x

after having observed ∆Z̃t is then a weighted average of the prior forecast and the newly

received signal,

X̂t+∆ =

(

Pt

Pt + Πt∆

)

X̂t +

(

Πt∆

Pt + Πt∆

)

∆Z̃t

∆
, (12)

where the weights on the prior and the signal reflect their relative precisions. Subtracting

X̂t on both sides, and plugging equation (11), the change in the public forecast is

X̂t+∆ − X̂t =
Πt

Pt + Πt∆

[

∆
(

x − X̂t

)

+
√

∆
εt√
Πt

]

, (13)

suggesting that, in the continuous-time limit as ∆ goes to zero, the public forecast X̂t solves

the stochastic differential equation,

dX̂t = −Πt

Pt

[

(

x − X̂t

)

dt +
dWt√

Πt

]

. (14)

To complete the characterization of X̂t it is also necessary to obtain the law of motion for

Pt. Note that at each time interval [t, t + ∆], the public signal has precision Πt∆. Since, the

precision of the posterior is the sum of the precision of the prior, and of the precision of the

3The variance of the increment of Wienner process is proportional to the time interval, which implies the
presence of

√
∆ in the discrete time approximation.
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signal, it follows that Pt+∆ = Pt + Πt∆, and hence letting ∆ go to zero,

dPt = Πt dt

which determines the law of motion for Pt.

A similar analysis determines the law of motion of the private belief x̂it and its precision pt

under hypothesis (H). The following proposition, whose proof can be found in the appendix,

formalizes these results.

Proposition 1 (Dynamics of Private and Public Forecasts). Suppose that hypothesis (H)

holds. The public and private forecasts (X̂t, x̂it) and the precisions (Pt, pt) solve the system

of stochastic differential equations

dX̂t =
Πt

Pt

[

(

x − X̂t

)

dt +
dWt√

Πt

]

(15)

dx̂it =
πt

pt

[

(x − x̂it) dt +
dωit√

πt

]

(16)

dPt = Πt dt (17)

dpt = πt dt, (18)

with the initial conditions P0 = P̄ + Π0 and p0 = π0. In addition, the above system can be

integrated into

X̂t =

(

1 − P̄

Pt

)

x +
1

Pt

[

√

Π0W0 +

∫ t

0

√

ΠudWu

]

(19)

x̂it = x +
1

pt

[√
π0ωi0 +

∫ t

0

√
πudωiu

]

(20)

Proof. In the appendix.

We next show that an agent’s optimal action is a weighted average of his private forecast and

the public forecast, where the weights are given by the relative precision of those forecasts,

Corollary 1 (Optimal Announcement). Suppose that hypothesis (H) holds. Then, the ex-

pectation of x conditional on the information available to agent’s i ∈ [0, 1] at time t > 0 is

ait = E [x | Git] =
Pt

pt + Pt

X̂t +
pt

pt + Pt

x̂it, (21)
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and the posterior precision of her beliefs is

{

E
[

(x − ait)
2 | Git

]}−1
= Pt + pt. (22)

Proof. In the appendix.

Once the belief of an agent has been characterized by equation (21), we can aggregate

the actions in the population, and obtain the average

At =
Pt

pt + Pt

X̂t +
pt

pt + Pt

x. (23)

So, under hypothesis (H) we have characterized the dynamics of the beliefs of an agent after

observing signals according to equation (7) and equation (8), and computed the implied

aggregate behavior. To complete the characterization of equilibrium, we will now provide

an intuitive verification of our Hypothesis (H), and compute the law of motions for the

precisions of the public and the private forecasts, Pt and pt – the formal proof is left to the

Appendix.

Consider for instance the public signal, dZt = At dt + dWt/
√

Pε and suppose that At

evolves according to equation (23). Note that X̂t is public under hypothesis (H) and known

at time t. Hence, an agent can subtract from dZt, the part Pt/(pt + Pt)X̂t of At that she

already knows. This implies that the public signal is observationally equivalent to pt/(pt +

Pt)x dt + dWt/
√

Pε. Dividing this through by pt/(pt + Pt), we find that observing the public

signal is equivalent to

dZ̃t = x dt +
dWt√
Pε

pt

pt+Pt

,

as conjectured, implying that Πt = Pε [pt/(pt + Pt)]
2.

Similarly, together with the public signal which determines At, the private signal is

observationally equivalent to

dz̃it = x dt +
dωit√
pε

pt

pt+Pt

,

implying that πt = pε [pt/(pt + Pt)]
2. This confirms that hypothesis (H) holds. Hence we

can state the following Theorem:
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Theorem 1 (Equilibrium). Let Πt = Pε(pt/(pt + Pt))
2 and πt = pε(pt/(pt + Pt))

2 and where

pt and Pt evolve according to Proposition 1. The pair of processes {ai, A} where ai solves

equation (21) and A solves equation (23) is an equilibrium.

Proof. In the Appendix.

Note that Πt and πt represent the precisions of the newly received public and private

signals. The informativeness of these newly received signals at any time is a function of the

precisions of the private and public forecasts, pt and Pt respectively: it increases with pt

and decreases with Pt. Hence, the more agents know privately, the more informative their

new signals become and the faster they learn. Improvements in the public forecast has the

opposite effect: they slow down subsequent learning. This suggests that public and private

learning affect differently the diffusion of information in the economy. The next section sheds

some light into these different effects while studying the dynamics of the system.

4 Information Dynamics

This section analyzes the dynamics of the equilibrium described above. In the first two

subsections, we study the dynamics of the precisions of public and private forecasts. We

show that , in the limit as time goes to infinity, each agent learns the realization of the

random variable x. We also provide comparative statics and relate our results to that of

Vives [1997]. In the third subsection we study cross-sectional beliefs: we show that, if

the initial private information is sufficiently dispersed, the mean belief in the population

converges to the truth along a S-shaped curve, and that the dispersion of beliefs in the

population converges to zero along a hump-shaped curve.
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4.1 Dynamics of Precision

A Closed-form Solution

From (17) and (18) and using the equilibrum values of Πt and πt, the precisions of the public

and the private forecasts evolve according to the Ordinary Differential Equations (ODE)

Ṗt =

(

pt

Pt + pt

)2

Pε (24)

ṗt =

(

pt

Pt + pt

)2

pε, (25)

Note also that, by (22), the precision of agent i’s beliefs is the sum of the precisions of the

public and his private forecasts: Pt + pt.

Note that ODE (24) is equal to ODE (25) multiplied by Pε/pε. So, as long as pε > 0, this

implies that Pt − (Pε/pε)pt stays constant over time, meaning that Pt −P0 = Pε/pε(pt − p0).

Plugging the previous equation into equation (25), the ODE (25) of pt becomes

ṗt =

(

pt

pt + α/β

)2
pε

β2
, (26)

where α = P0−Pε/pεp0 and β = 1+Pε/pε. Hence given an initial condition for the precision

p0 of the private forecast, and using equation (26), it is possible to characterize the dynamics

of pt and hence the dynamics of the entire system,

Proposition 2 (Dynamics of Precisions). If pε > 0 then

(i) The precision of the public forecasts Pt is an affine function of the private forecasts,

Pt = α + (β − 1)pt ,

where α = P0 − Pε

pε
p0 and β = 1 + Pε

pε
.

(ii) The precision of the private forecast monotonically converges to infinity, limt→∞ pt =

∞.

(iii) The ratio pt/(pt + Pt) monotonically converges to pε/(pε + Pε).
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(iv) The precision of the private forecasts pt, is such that

t =
H(pt) − H(p0)

pε

where H(pt) = 2αβ log p + β2p − α2/p,

(v) As t → ∞ the precision of the total beliefs, pt + Pt, is such that

pt + Pt =

(

pε

pε + Pε

)2

(pε + Pε) t − 2α log(t) + O

(

log

(

log(t)

t

))

. (27)

Proof. In the Appendix.

There is an special case not covered in the proposition. Suppose that there is no private

learning, pε = 0; agents only learn through public signals, Pε > 0. This case was studied by

Vives [1997] in a discrete-time model, and below we replicate his results in our continuous-

time setup.

The Vives case: pε = 0

Vives studies a discrete time version of our set up with the difference that there is no private

learning. In our set up this occurs for pε = 0. For this case however, the results in Proposition

2 do not apply. The following proposition solves for the precision of total beliefs in Vives’

case.

Proposition 3 (Vives). When pε = 0, the precision of the total beliefs, pt + Pt, is

pt + Pt = p0 + Pt = 31/3

(

p2
0Pεt +

(p0 + P0)
3

3

)1/3

(28)

Proof. Let yt = Pt + p0. Given that pt = p0 we have from (24) that

ẏt =
1

y2
t

p2
0Pε

It is now easy to verify that (28) is the solution to this differential equation given initial

condition y0 = p0 + P0.

This proposition replicates Vives’ asymptotic result. When agents observe only public

signals of the average action in the population, the speed of learning is dramatically reduced
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in the limit. In this case, the precision of total beliefs goes to infinity at rate t1/3. This

is slower than the rate at which the beliefs would converge if agents were to observe noisy

signals of x every period with a constant noise – in that case the precision of belief would

go to infinity at rate t. Note that this is also the rate at which the precision converges to

infinity for the case where pε > 0 (as seen by equation (27)). Hence, when learning is based

only on public signals, the speed of learning is dramatically reduced. Later sections will

discuss more about this particular case.

Some Intuitions

We have decomposed what a given agent knows into a public forecast (shared with everyone

else in the economy) and a private forecast (containing all the information observed by that

agent and no-one else). Note that from equation (21), an agent’s belief at any point in time

about x is a weighted average of his private forecast and the public forecast. Agents learn in

this economy by observing the average action, given by equation (23), with noise. To obtain

equation (23), we just need to note that the average private belief in the population,
∫

x̂itdi,

is x: the idiosyncratic errors in the private forecasts wash out.

In the case of the public signal, an agent observes the aggregate action plus some noise

with precision Pε. Given the functional form of the average action, we have shown in the

proof of Theorem 1 that observing the average action plus that noise is equivalent to a signal

with mean x and precision

Πt =

(

pt

pt + Pt

)2

Pε. (29)

A similar analysis works for the case of the private signal.

Hence, the precisions of the signals observed by an agent at any time are endogenous and

are a function of the precision of all agents beliefs at that time. Note in particular that when

the private forecasts are more precise (the higher pt for given Pt), the more informative the

endogenous generated signals are! When the private forecast is more precise, agents take

actions that are more sensitive to them; and because agents learn only from the private part

of the beliefs of others this increases the amount of “new” information aggregated when

observing the average action plus noise.

From equation (29) it is possible to informally obtain the law of motions for the precision

of both the public and the private information. Note that at time t, after observing the public
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signal, the precision of the public forecasts increases exactly by the precision of the newly

observed signal. This is exactly what equation (24) states. A similar argument explains

equation (25).

To understand the asymptotic result stated in the proposition 2, note that part (ii)

of the proposition shows that in the limit, as time goes to infinity, the precision of the

signals generated by the average action converges. Hence, the sum of the precisions of the

endogenously generated private and the public signals converges in the limit to

lim
t→∞

(

pt

pt + Pt

)2

(pε + Pε) =

(

pε

pε + Pε

)2

(pε + Pε) (30)

As can be seen from (27), this is the coefficient on t in the asymptotic expansion of the

precision of total beliefs. When t goes to infinity, it is as if agents repeatedly observe signals

about x with precision given by (30). Differently from Vives [1997], as long as pε is not 0,

learning does not slows down dramatically asymptotically.

4.2 The Role of Public and Private Signals

Having solved the model, we now proceed to study the role of public and private information

in the dynamics of information diffusion. To simplify notation, we refer to pt and Pt as the

equilibrium value of the precisions of the private and public forecasts at time t, while keeping

in mind that these precisions are functions of the initial precisions p0, P0, and the exogenous

noise, pε, and Pε.

Let’s start from the Vives case. For this case we have an explicit equation for the precision

of total beliefs at time t (equation 28). We can think of the quality of public information

as being determined from two different sources: the initial prior’s precision P0 and the

public noise’s precision Pε. Increasing P0 and increasing Pε, increases the quality of public

information. As can be seen from equation (28) such increases always increase the precision

of total beliefs: they increase the amount learned at all times. The next proposition states

this.

Proposition 4 (Vives). When pǫ = 0, then both, an increase in the precision of the prior,

P0, or an increase in the precision of the public noise, Pε, increases the precision of total
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beliefs at all times:

∂(p0 + Pt)

∂P0

> 0, for all t ≥ 0

∂(p0 + Pt)

∂Pε
> 0, for all t > 0

Proof. Follows by inspection of equation (28).

Public information is benign in the Vives model, because it accelerates learning: better

public information increases the precision of agents beliefs at all times.4 However, as we will

now show, things change dramatically when there is also private learning in the economy:

better public information crowds out the private learning and eventually reduces the total

amount learned by all agents. Before showing this last result, let us first proof that public

information crowds out all types of learning.

Proposition 5 (Public Info Crowds Out of Learning). When pε > 0 and Pε > 0, improving

the quality of the public signals (increasing Pε or P0) decreases the precision of private

forecasts at all times:

∂pt

∂P0

< 0, for all t > 0 and
∂pt

∂Pε

< 0, for all t > 0

and eventually decreases the precision of the public forecast: there exists finite t1 and t2 such

that

∂Pt

∂P0
< 0, for all t > t1 and

∂Pt

∂Pε
< 0, for all t > t2

Proof. Note first that none of these changes affects p0 (the initial condition of the public

forecasts which is given by the precision of the initial private signals). By equation (26),

which describes the law of motion for pt, we see that an increase in P0 increases α and reduces

strictly ṗt for all pt. Hence pt falls for all t. Note that the same is true for an increase in Pε,

which increases β and strictly reduces ṗt for all pt.

For the second part, note that equation (27) and using that Pt = (Pt+pt)(β−1)/β+α/β,

4In the discrete time version of the Vives the result of Proposition 4 is not always correct. However, a
similar result holds if we perform the comparative statics from the second period onwards.
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implies that

Pt =
p2

εPε

(pε + Pε)2
t − 2

(P0pε − pεPε)Pε

pε(pε + Pε)
log(t) + O(log(log(t))) (31)

As can be seen from this equation, Pε has a negative effect on the highest order term, and

hence marginally increasing it will eventually reduce Pt. Note that P0 has no effect in the

highest order term, but has a negative effect in the log(t) term, hence marginally increasing

P0 will eventually reduce Pt as well.

The previous proposition presents and important result: more precise public signals

will eventually reduce the amount known! The intuition for such strong result relies on

the endogeneity of learning. As the public forecast becomes more precise (because of more

precise signals), agents will put more weight on the public belief when choosing their actions,

and less on their private beliefs. This endogenous change generated by a more precise public

signal, has the effect of reducing the amount of private information that can be inferred

from their actions. Hence the endogenous signals become less informative about the true

parameter and learning is impaired. This implies that the precision of the private forecasts

at all times is reduced. However, the proposition is stronger: it shows that eventually the

public forecasts are also impaired. In the one hand, better public signals slow down learning

as explained above, but on the other hand, better public signals directly contribute to a

more precise public forecast. The proposition shows that the first effect always dominates

for large enough t. We can now state the following corollary.

Corollary 2. When Pε > 0 and pε > 0, increasing the precision of the initial prior, P0,

or increasing the precision of the public noise, Pε, eventually reduces the precision of total

beliefs.

That is, there exists finite values t1 and t2 such that,

∂(pt + Pt)

∂P0

< 0, for all t > t1

∂(pt + Pt)

∂Pǫ
< 0, for all t > t2

When agents learn privately, pε > 0, better public information eventually reduces the

total amount learned.
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Note that the dynamics of the private information are governed by

ṗt =

(

pt

P0 + pt + Pε

pε
(pt − p0)

)2

pε (32)

And either an increase in p0 or an increase in pε, increases the ṗt for any given pt > p0, and

hence it will increase the precision of the private forecast at all times. The dynamics of the

public forecast are similarly given by

Ṗt =

(

pt

P0 + pt + Pε

pε
(pt − p0)

)2

Pε (33)

and hence, an increase in p0 or pε increases Ṗt for given Pt, and implies a higher public

forecast at all times. The following proposition now follows,

Proposition 6. An increase in p0 or pε, increases the precision of both the private forecast

and the public forecast at all times.

4.3 Dynamics of Cross-sectional Beliefs

We close this section on equilibrium with the dynamics of cross-sectional beliefs. In the

present normal-quadratic framework, the distribution of beliefs in the population is also

normal and can be characterized in closed form.

We focus our attention on the average distribution of beliefs across realizations of public

signal. That is, at each time t > 0, we look at the distribution ait conditional on the

realization of x but unconditional on the public information. Combining equations (19),

(20) and (21),

ait =
pt

pt + Pt

{

x +
1

pt

[√
π0ωi0 +

∫ t

0

√
πu dωiu

]}

+
Pt

pt + Pt

{

x

(

1 − P̄

Pt

)

+
1

Pt

[

√

Π0W0 +

∫ t

0

√

Πu dWiu

]}

, (34)

which implies that, conditional on x, the belief ait is normally distributed. Taking expecta-

tions on both sides conditional on x shows that the mean belief is

E [ait | x] = x

(

1 − P̄

pt + Pt

)

, (35)
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and that the cross-sectional dispersion of the beliefs is

V [ait | x] =
pt + Pt − P̄

(pt + Pt)2
. (36)

We can also analyze the dynamics of the cross-sectional belief distribution. Let ρt =

E[ait|x], then

ρ̇t = xP̄
ṗt + Ṗt

(pt + Pt)2
= xP̄ (pε + Pε)

(

pt

(βpt + α)2

)2

≡ xf(pt)

Hence ρ̇ is negative or positive depending on whether x is negative or positive: the path of

E[ait|x] monotonically approaches x.

Now, note that

f ′(pt) =

(

2

pt
− 4β

βpt + α

)

f(pt) = 2
α − βpt

(βpt + α)pt
f(pt)

Hence f ′(pt) < 0 when pt > α/β and f ′(pt) > 0 when pt < α/β. Given that pt is

increasing through time, this implies that |ρ̇| starts decreasing from the time where pt > α/β,

and is increasing before that. Hence a necessary and sufficient condition for the path of ρ

to be S-shaped is that p0 < α/β. By noticing that this last inequality is equivalent to

p0 < P0/(2β − 1) = (P̄ + Π0)/(1 + 2Pε/pε), we have thus shown the following result,

Proposition 7 (S-shaped means if dispersed private information). The path of E[ait|x]

monotonically approaches x as times tends to infinity, and

1. if p0 < (P̄ + Π0)/(1 + 2Pε/pε), then there exists a t0 > 0 such that |dE[ait|x]/dt| is

increasing for all t < t0 and decreasing for all t > t0,

2. if p0 > (P̄ + Π0)/(1 + 2Pε/pε), then |dE[ait|x]/dt| is decreasing for all t.

Proof. In the text.

A similar analysis can be done with the cross-sectional dispersion of beliefs. Let σt =

V [ait|x]. First note that limt→∞ σt = 0. Also,

σ̇t = σt(ṗt + Ṗt)

(

1

pt + Pt − P̄
− 2

pt + Pt

)

=
σt(ṗt + Ṗt)

(pt + Pt)(pt + Pt − P̄ )

(

2P̄ − pt − Pt

)

21



So, when pt + Pt < 2P̄ then σt is increasing through time, and when pt + Pt > 2P̄ , then σt

is decreasing. Given that p0 + P0 < 2P̄ is equivalent to p0 < P̄ − Π0, the following result

follows now directly

Proposition 8 (Hump-shaped dispersion). The limt→∞ V [ait|x] = 0, and

1. if p0 < P̄ −Π0, then there exists a t1 > 0 such that V [ait|x] is increasing for t < t1 and

decreasing towards zero for t > t1.

2. if p0 > P̄ − Π0, then V [ait|x] is monotonically decreasing towards zero for all t.

Proof. In the text.

The next figure presents a particular example of the dynamics of cross-sectional beliefs for

the case where the path of the mean is S-shaped and the dispersion of belief is hump-shaped.
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Figure 1: The figure shows the time path of the mean and dispersion of cross-sectional beliefs
ait, conditional on the realization of x. We choose P̄ = 2.04, π0 = Π0 = 0.02, pε = Pε = 10.
In order to calculate the time path of (pt, Pt), we use the Euler method (see Judd [1999])
with step size h = 0.01 to discretize the ODEs (25) and (24).

It is also possible to say whether the time in the inflexion of the path of E[ait|x] occurs

before or after the time of the highest dispersion,
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Proposition 9. Let t0 and t1 be defined as in propositions 7 and 8,

1. if Π0/Pε < π0/pε, then t0 < t1,

2. if Π0/Pε > π0/pε, then t0 > t1,

3. if Π0/Pε = π0/pε, then t0 = t1.

Proof. Note that t0 is defined by pt0 = α/β and t1 is defined by pt1 +Pt1 = 2P̄ , or equivalently

pt1 = (2P̄ − α)/β. Hence, if (2P̄ − α)/β > α/β, then pt1 > pt0 . So, if P̄ > α, then

pt1 > pt0 or equivalently t1 > t0. The result follows by noticing that P̄ > α is equivalently

to Π0/Pε < π0/pε.

5 Welfare

Whether public information is socially beneficial depends on the tradeoff between a short-

term gain and a long-term loss. Public information initially improves the precision of agents,

generating a short term gain. The long-term loss, as shown in Proposition 5 comes from

a learning externality: public information eventually slows down the diffusion of private

information in the population. In the first subsection that follows we provide conditions

ensuring that the long-term loss dominates: namely, we show that if agents are sufficiently

patient, then a marginal increase in public information always reduces utilitarian welfare.

Hence, differently from Morris and Shin [2002], even in the absence of a payoff externality

more public information can be welfare reducing.

In the second subsection we analyze the problem of optimal information diffusion, sub-

ject to the learning technology. We show that the planner improves information diffusion

by requiring that agents strive to be different: they should make forecasts that are more

sensitive to their private forecast than in the equilibrium. In addition, the socially optimal

sensitivity of agents’ forecasts to private forecasts deviates from the equilibrium sensitivity

non-monotonically over time. The optimal sensitivity is close the equilibrium sensitivity at

the beginning, far away in the middle, and close again at the end.

5.1 The Equilibrium Welfare Cost of Public Information

We take our welfare criterion to be the equally weighted sum of agents’ expected utility. By

the Law of Large Number, this criterion coincides with the ex-ante utility of a representative
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agent,

W = −E

[
∫ ∞

0

(ait − x)2 re−rt dt

]

, (37)

where re−rt is the probability density that the game ends at time t > 0. Because ait =

E [x | Git] and E
[

(ait − x)2 | Git

]

= 1/(pt + Pt), an application of Fubini’s Theorem implies

that (37) can be written

W = −
∫ ∞

0

re−rt

pt + Pt

dt. (38)

Public information increases the total precision pt +Pt of agents beliefs in the short run but,

as shown in Proposition 5, it decreases pt + Pt in the long run. Hence, because (38) is the

present value of 1/(pt + Pt) it is natural to conjecture that, as long as r is close enough to

0, public information reduces welfare. Although intuitive, this result is not obvious because,

even when r goes to zero, the trade-off between the short-term gain and the long-term

loss remains non trivial. Indeed, since 1/(pt + Pt) converges to zero, the welfare flows are

vanishingly small.

Note that from equation (25),

ṗt =

(

pt

α + βpt

)2

pε (39)

Hence the welfare can be rewritten as,

W = −
∫ ∞

0

(

α + βpt

p2
t

)

r

pε

e−rt (ṗt dt) (40)

Now, from Proposition 2, we have

t =
H(pt) − H(p0)

pε
(41)

for H(p) ≡ 2αβ log p+β2p−α2/p. Given that pt monotonically approaches infinity through

time, changing the integrating variable from t to p in equation (40), yields

W = − r

pε

∫ ∞

p0

(

α + βp

p2

)

e
−r

�
H(p)−H(p0)

pε

�
dp. (42)

Note that the equilibrium welfare function W depends on the initial precision P0 of public
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information only through α = P0 − Pε/pεp0. This means that a marginal increase in the

precision of the initial public signal decreases social welfare if and only if ∂W/∂α < 0. Based

on this remark we show

Theorem 2 (Welfare Cost of Public Information). For all p0, there exists an η > 0 such

that 0 < r < η implies ∂W/∂P0 < 0.

Proof. In the appendix

Theorem 2 means that, for any initial level p0 of private information, a marginal increase

in public information reduces welfare, as long as the intensity r of finishing the game is low

enough. Hence, in contrast with Morris and Shin [2002], an increase in public information

can reduce welfare even when payoffs induce no coordination motives.

The Theorem does not imply, however, that welfare is a monotonically decreasing function

of P0. Indeed, an infinite increase in precision would reveal the state of the world and would

clearly improve welfare. By continuity, one might expect that a sufficiently large release of

public information would also improve welfare. This intuition is confirmed by the numerical

calculation of Figure 2: it shows that welfare is a non-monotonic function of P0. It first

decreases but eventually increases if P0 is large enough.

0 10 20 30 40 50 60 70 80 90 100
−0.25

−0.2

−0.15

−0.1

−0.05

0

W (P0)

P0

Figure 2: The figure shows welfare as a function of the precision P0 of public information.
We choose p0 = 0.05, pε = 1, and Pε = 0.01. The blue plain line is for an intensity r = 0.001
of finishing the game, and the green dotted line is for an intensity r = 0.005.
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5.2 Optimal Information Diffusion

In this subsection we study the socially optimal diffusion of information. We let a planner

choose the sensitivity of agents’ forecasts to their private and public forecasts, in order to

maximize utilitarian welfare. Choosing a sensitivity that is greater than the equilibrium

sensitivity generates a dynamic welfare gain. Indeed, because of the information externality,

it speeds up the dissemination of private information in case the game continues. On the

other hand, this also generates a static welfare loss in case the game ends, because it increases

(on average) the dispersion of agents’ forecast around the realized value of x. Note, however,

that the equilibrium sensitivity minimizes the dispersion of forecasts at each time, implying

that the static welfare loss is of second order, while the dynamic welfare gain is of first order.

Therefore, the socially-optimal sensitivity to private forecast greater than the equilibrium

sensitivity. In addition, we show that the optimal sensitivity deviates from the equilibrium

sensitivity non-monotonically over time. It is close to the equilibrium sensitivity at the

beginning, far way in the middle, and close again at the end.

5.2.1 The planner’s problem

A planner chooses a Git-adapted forecast process ai in order to maximize the ex-ante utility

(37) of a randomly chosen agent, subject to the learning technology. In setting up our

planning problem, we follow Vives [1997] and restrict attention to the class of deterministic

affine forecasts, whereby an agent’s forecast is restricted to be

ait = γtx̂it + ΓtX̂t (43)

for some deterministic functions (γt, Γt) of time and where, as before, x̂it is an agent’s private

forecast and X̂t is the public forecast.5

Learning Dynamics. Given our restriction (43), we can solve for the learning dynamics

exactly as before. Starting with hypothesis (H), we use equations (19) and (20) of Proposition

5 Although the existence of a linear equilibrium makes it natural to study affine forecast, we could not
prove that an unrestricted optimum is indeed affine. In section 5.2.2, we illustrate one virtue of an optimal
affine rule (43): it can be implemented by letting agents play a beauty contest game à la Morris and Shin
[2002].
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1 to find that

At = γt

∫

x̂it di + ΓtX̂t = γtx + ΓtX̂t. (44)

We then intuitively verify hypothesis (H), as before. Recall that the public signal is dZt =

At dt + dWt/
√

Pε. Since an agent can subtract from At, the the part ΓtX̂t that she already

knows, the public signal is observationally equivalent to γtx dt + dWt/
√

Pε. Dividing this

through by γt, we find that the public signal is observationally equivalent to dZ̃t = x dt +

dWt/(
√

Pεγt), meaning that the precision Πt of the public signal is Πt = Pεγ
2
t . A similar

reasoning shows that the precision πt of the private signal is πt = pεγ
2
t . The following Lemma

provides the formal verification result:

Lemma 1. When ait = γtx̂it+ΓtX̂t, hypothesis (H) is verified with Πt = Pεγ
2
t and πt = pεγ

2
t .

Simplification of the objective. We use the results of Proposition 1 to simplify the

planner’s objective. We first substitute equations (19) and (20) into (43) to find that

ait − x = x

[

γt + Γt

(

1 − P̄

Pt

)

− 1

]

+
γt

pt

[√
π0ωi0 +

∫ t

0

√
πudωiu

]

+
Γt

Pt

[

√

Π0W0 +

∫ t

0

√

ΠudWu

]

After squaring and taking expectations on both sides, we find that

E
[

(ait − x)2] =
1

P̄

[

γt + Γt

(

1 − P̄

Pt

)

− 1

]2

+
γ2

t

p2
t

[

π0 +

∫ t

0

πu du

]

+
Γ2

t

P 2
t

[

Π0 +

∫ t

0

Πu du

]

=
1

P̄

[

γt + Γt

(

1 − P̄

Pt

)

− 1

]2

+
γ2

t

pt
+

Γ2
t

Pt

[

1 − P̄

Pt

]

, (45)

where the first line follows because E(x) = 0 and E(x2) = V (x) = 1/P̄ , and because x,

ωi and W are mutually independent. The second line follows from the fact that pt − p0 =

pt−π0 =
∫ t

0
πu du and Pt−P0 = Pt−Π0−P̄ =

∫ t

0
Πu du, meaning simply that the precision of

the posterior is the sum of the precisions of the signals. Given the initial condition (p0, P0),

the planner’s problem is to choose a time path for (γt, Γt) in order to maximize

−
∫ ∞

0

E
[

(ait − x)2] re−rt dt, (46)
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subject to the ODEs

ṗt = pεγ
2
t (47)

Ṗt = Pεγ
2
t . (48)

Note that these laws of motion imply, as before, that Pt is an affine transformation of pt. In

particular, Pt = α + (β − 1)pt where α and β are as in part (i) of Proposition 2.

While the sensitivity Γt to the public forecast enters the objective (45), it does not enter

ODEs (47) and (48), meaning that it has no impact on the time path (pt, Pt) of precisions.

This implies that the optimal optimal Γt maximizes the flow welfare (45) given γt. Taking

first-order conditions with respect to Γt on the right-hand side of (45) immediately shows:

Lemma 2. Given any time path for γt, the planner’s objective (46) is maximized by Γt =

1 − γt.

Plugging Γt = 1 − γt into (45) we find that

rE
[

(ait − x)2] = r

(

γ2
t

pt

+
(1 − γt)

2

Pt

)

≡ u(pt, Pt, γt).

We let an admissible control be some measurable function γ : R+ → [0, 1] (Corollary 3 will

show that the constraint γ ∈ [0, 1] is not binding). Given an admissible control, the state

(pt, Pt) evolves according to the ODE (47) and (48), where the initial condition (p0, P0) is

given. The planner’s intertemporal utility is

v(p0, P0, γ) = −
∫ ∞

0

u(pt, Pt, γt)e
−rt dt.

and the planner’s problem is to find the supremum of v(p0, P0, γ), subject to the constraint

that γ is an admissible control. An optimal control is a solution of the planner’s problem.

We let V (p0, P0) be the planner’s maximum attainable utility. We first show some

Proposition 10 (elementary properties). The value function V (p, P ) is i) strictly negative,

ii) bounded below by −1/(p + P ), iii) increasing in both its arguments, and iv) continuous.

Moreover, v) for every p ≤ p′ and every P ≤ P ′,

(1−e−rT ) min

{

p′ − p

(p′ + pεT )2
,

P ′ − P

(P ′ + PεT )2

}

≤ V (p′, P ′)−V (p, P ) ≤ p′ − p

p2
+

P ′ − P

P 2
(49)

for any T.
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Proof. In the appendix.

The negativity follows immediately from the fact that the flow welfare is negative. The

lower bound is obtained in the worse case when agents learn nothing and keep the same

precision p + P of beliefs forever.

Proposition 10 shows that public information always increases the value of the planner.

Note the sharp contrast with what can happen in the equilibrium characterized in previous

sections. Indeed, as we know from Theorem 2, an increase in public information can decrease

equilibrium welfare. However, if the planner could control the sensitivity of agents actions

to the public and their private forecasts, more precise public information always increases

welfare.

To establish properties of an optimal control, we rely on the theory of viscosity solu-

tions of Hamilton-Jacobi-Bellman (HJB) equations (see Bardi and Capuzzo-Dolcetta [1997]).

This allows us to use continuous-time dynamic programming techniques without assuming

smoothness of the value function. Let us first define a generalized notion of directional

derivative6

∂+V (p, P ; pε, Pε) ≡ lim sup
t→0+

V (p + pεt, P + Pεt) − V (p, P )

t
. (50)

Our main dynamic programming result is that this generalized directional derivative can

be used for stating a Hamilton-Jacobi-Bellman (HJB): indeed, it represents the impact

on the rate of change of the value function, of increasing the control γ2. The following

proposition, whose proof is found in the appendix, is a direct application of the results in

Bardi and Capuzzo-Dolcetta [1997]:

Proposition 11 (HJB). The value function solves the HJB equation

rV (p, P ) = sup
γ∈[0,1]

{

u(p, P, γ) + γ2∂+V (p, P ; pε, Pε)
}

, (51)

for all (p, P ). Let γ∗(p, P ) solve (51):

γ∗(p, P ) ≡ min

{

1,
p

p + P − pP∂+V (p, P ; pε, Pε)/r

}

. (52)

6As a remark, note that part (v) of Proposition 10 implies that V (p, P ) is Lipschitz continuous in any
open set of R2

+. By Rademacher’s Theorem, this implies that the classical derivative of V exists almost
everywhere. Hence the generalized directional derivative ∂+V coincides with the classical derivative for
almost all states.
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Then γ∗
t = γ∗(pt, Pt) where pt = p0 +

∫ t

0
(γ∗

t )
2pεdt, and Pt = P0 +

∫ t

0
(γ∗

t )
2Pεdt is an optimal

control for the planner’s problem with initial conditions p0 > 0, P0 > 0.

Proof. In the appendix.

The proposition establishes several results at once. First it shows that the value function is

a solution of a HJB equation when using the generalized derivative. It also tell us that there

exists an optimal control, which is generated by the the feedback rule (52).

This proposition is also useful in proving properties of the optimal control γ∗(p, P ). First,

evaluating the right-hand-side of (51) at γ = 1, one finds

0 > rV (p, P ) ≥ −r

p
+ ∂+V (p, P ; pε, Pε),

which implies that ∂+V (p, P ; pε, Pε)/r < 1/p. Plugging this inequality into (52) immediately

implies that

Corollary 3 (the constraint γ ≤ 1 is never binding). An optimal feedback rule γ∗ is such

that γ∗(p, P ) < 1 for all (p, P ) ∈ R2
+.

Proof. In the appendix.

In addition, because V (p, P ) is increasing in both its argument, it follows that ∂+V (p, P, pε; Pε) ≥
0. Note that part (v) of Proposition 10 implies as well that

V (p + pεt, P + Pεt) − V (p, P )

t
≥ (1 − e−rT/2) min

{

pε

(p + pεT )2
,

Pε

(P + PεT )2

}

for any T > 0 and t < T/2. Given that the right hand side of the above inequality is strictly

positive for any finite T , taking limsup on the left-hand side implies that ∂+V (p, P, pε; Pε) >

0. Now, using that ∂+V (p, P, pε; Pε) > 0 in (52) implies that

Proposition 12. An optimal feedback rule is such that

γ∗(p, P ) >
p

p + P
.

for any strictly positive pair (p, P ).

Proposition 12 means that the planner mitigates the learning externality by requiring the

sensitivity γ∗(p, P ) to private forecasts to be strictly greater than the equilibrium sensitivity
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of p/(p + P ). Since the planner finds it optimal to diffuse information faster than in an

equilibrium where all information ends up being revealed, this intuitively suggests that

Corollary 4 (full revelation is socially optimal). Consider any optimal control and the

associated time path (p∗t , P
∗
t ) of precisions with initial state (p0, P0) > 0. Then both p∗t and

P ∗
t go to infinity as t goes to infinity

Proof. In the appendix.

The following last theorem characterizes features of an optimal control at the boundaries,

for either small and large precisions:

Theorem 3 (Equilibrium behavior is socially optimal at infinity and at zero).

1. For any α ∈ R, let L(p) = α + Pε/pεp. Then:

lim
p→∞

∣

∣

∣

∣

γ∗(p, L(p)) − p

p + L(p)

∣

∣

∣

∣

= 0.

2. In addition, for all P0 > 0

lim
(p,P )→(0,P0)

γ(p, P ) = 0.

Proof. In the appendix.

To explain the first part of Theorem 3, consider an optimal path (p∗t , P
∗
t ). We then know

that there exists some α ∈ R such that, at each time, P ∗
t = α + Pε/pεp

∗
t = L(p∗t ). Moreover,

both the private and the public precision go to infinity. Taken together with the Theorem,

these imply that equilibrium behavior is optimal as time goes to infinity.

The second part of the Theorem states that the socially optimal sensitivity goes to zero

as the private precision goes to zero. This means that the equilibrium behavior is socially

optimal at the beginning of time, as long as the precision of the initial private information

is close enough to zero.

5.2.2 Implementation in a beauty contest game

In the previous subsection, we solved for the solution of planner’s problem when the plan-

ner could choose the sensitivity of agents actions to the public and their private forecasts.
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We showed that a solution to that problem existed. Efficiency implied that public informa-

tion always increased welfare and agents where to weight more their private forecasts when

choosing their actions than in the equilibrium play. In this subsection we propose a way

of decentralizing such an allocation. Our main result in this subsection is to show that a

sequence of appropriately chosen zero-sum beauty contest games a la Morris and Shin [2002]

implements the planners allocation as an equilibrium. The beauty contest implementation

is characterized by the “strive to be different” property: agents have to be rewarded when

choosing actions away from the current average population play.

Our beauty contest representation is as follows. If the game ends at time t > 0, we follow

Morris and Shin [2002] and let the payoff of agent i ∈ [0, 1] be given by,

−(ait − x)2 − bt

1 − bt
(Lit − L̄t), (53)

where bt ∈ (−∞, 1) and

Lit =

∫ 1

0

(ajt − ait)
2 dj (54)

L̄t =

∫ 1

0

Lit di. (55)

The first term of (53) is the payoff of the forecasting game we studied so far. The second term

is the payoff of the beauty contest game. Note that the cross-sectional sum
∫ 1

0
(Lit − L̄) di of

agents’ beauty-contest losses is equal to zero. This means that the beauty contest is a zero

sum game that can be run with a balance budget.

According to equation (53), an agent trades off the distance of his action to the random

variable x against the distance from the average action in the population. The parameter

bt captures the strength of the beauty contest: larger bt means that an agent worries more

about staying close to average forecast.

A strategy is some Git-adapted forecast process, and the solution is taken to be the

Bayesian equilibrium of the dynamic game. Note that, at any point in time, given his

beliefs, and taking as given the strategies of all other agents, an agent’s strategy maximizes

his expected payoff of the current period. This follows because a particular agent’s action is
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negligible by the continuum-of-agents assumption. In particular, it has to be the case that

ait = (1 − bt)E [x | Git] + btE [At | Git]

= (1 − bt)

(

pt

pt + Pt

x̂it +
Pt

pt + Pt

X̂t

)

+ btE [At | Git] , (56)

where At denotes the average forecast in the population, x̂it and X̂it denote the private and

public beliefs, and pt and Pt denote their respective precisions. We guess and verify that

there is an equilibrium in which an agent forecast takes the linear form

ait = γtx̂it + (1 − γt)X̂t, (57)

for some sensitivity γt. Proposition 1 implies that At =
∫

ait di = γtx + (1 − γt)X̂t, and

therefore that

E [At | Git] = γtE [x | Git] + (1 − γt)X̂t

= γt

(

pt

pt + Pt
x̂it +

Pt

pt + Pt
X̂t

)

+ (1 − γt)X̂t. (58)

Plugging (58) into the best reply (56) and identifying unknown coefficients with equations

(57) shows that there exists a

Proposition 13 (Morris and Shin [2002] linear equilibrium.). There exists a linear equilib-

rium of the beauty contest game in which agents forecasts take the linear form (57), with

γt =
(1 − bt)pt

(1 − bt)pt + Pt

. (59)

We now show that a solution of the planning problem can be implemented in a sequence

of beauty contest games, by choosing an appropriate time path b∗t of the beauty-contest

parameter. Indeed, the equilibrium γt lies in (0, 1) and we know from Corollaries 3 and 12

that a solution to the planning problem satisfies γ∗
t ∈ (0, 1). Now because the beauty contest

equilibrium sensitivity γt is strictly monotonic in parameter bt, it follows that there exists

a unique beauty-contest parameter b∗t ∈ (−∞, 1) solving γ∗
t = (1 − b∗t )p

∗
t/ ((1 − b∗t )p

∗
t + P ∗

t ).

Written in terms of the optimal feedback rule we define b∗(p, P ) to be,

b∗(p, P ) = 1 − γ∗(p, P )

1 − γ∗(p, P )

P

p
(60)
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Using the same methods as in the proof of Theorem 3, one can also characterize the behavior

of the optimal beauty contest parameter b∗t at infinity. We summarize our results in the

following proposition.

Proposition 14 (Implementation and Striving to be Different). Let p0, P0 ∈ R+ be the initial

conditions. There exists a process b∗t ∈ (−∞, 1] indexing a sequence of beauty contests, such

that the equilibrium of the associated dynamic beauty contest game coincides with the solution

of the planner’s problem and where b∗t = b∗(p∗t , P
∗
t ) with p∗t = p0 +

∫ t

0
γ∗(p∗τ , P

∗
τ )2pεdτ and

P ∗
t = P0 +

∫ t

0
γ∗(p∗τ , P

∗
τ )2Pεdτ . The following holds as well,

1. b∗t < 0 for all t > 0,

2. limt→∞ b∗t = 0,

The solution of the planner problem can be implemented by letting agents play a continuous-

time beauty contest game with time varying parameter b∗t . In such a game, agents are strictly

rewarded for choosing actions away from population play. However such a reward vanishes

as time goes to infinity and agents learn the truth. We will show numerically in the following

section, that such a reward also vanishes in states where private information is sufficiently

dispersed (p0 small enough).

5.2.3 Numerical example

We conclude our study with a numerical illustration. We solve a discrete-time approximation

of the planner’s problem using a value function iteration algorithm (see, e.g., Chapter 12 of

Judd [1999]). The approximation is obtained by setting some small step h > 0, letting

the flow welfare be u(pt, Pt, γt) × h, and taking the laws of motion of pt and Pt to be

pt+h = pt +pεγ
2
t h, and Pt+h = Pt +Pεγ

2
t h. Lastly, it is convenient to reduce the dimension of

the state space by noting that Pt = α+(β−1)pt, where β = 1+Pε/pε and α = P0−(β−1)p0.

We take the intensity of finishing the game to be r = 1, the initial conditions to be

(p0, P0) = (0.05, 1), and the precision of the private and public signals be (pε, Pε) = (1, 0.1).

The upper panel of Figure 3 shows the time path of the planner’s sensitivity γ∗
t , and the

lower panel shows the time path of the optimal beauty contest parameter b∗t . The time path

of b∗t is not monotonic. Figure 4 shows that the difference γ∗
t − p∗t/(p∗t + P ∗

t ) between the

socially optimal and the equilibrium sensitivity is not monotonic.
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Figure 3: Optimal sensitivity and beauty contest parameters
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Figure 4: The difference between the planner’s and the equilibrium sensitivity.

6 Conclusion

This papers studies how private information diffuses among a continuum of agents who learn

from both public and private observations of others’ actions. We provide conditions such

that agents learn the truth along a S-shape curve, reflecting an information snowballing

effect. We show that greater public information at the beginning always slows down the the

diffusion of private information in the economy, and sometimes reduces welfare. We solve

an optimal information diffusion problem and show that the planner speeds up diffusion by

requiring that agents strive to be different, in the sense of taking action that far away from
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the population average. In addition, we show that the planner deviates from the equilibrium

solution non-monotonically over time. Socially-optimal and equilibrium actions are close to

each other at the beginning when information is very dispersed, far away in the middle, and

close again at the end when information is almost fully revealed. Further work may address

the optimal timing of public information release in this economy.
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A Proofs

A.1 Proof of Proposition 1

Equations (15)-(18) follows from a direct application of one-dimensional Kalman filtering formula (see, for

instance, Oksendal [1985], pages 85-105). In order to derive equation (19), we multiplying both sides of (15)

by Pt. We find

PtdX̂t = Πt

[

(

x − X̂t

)

dt +
dWt√

Πt

]

⇒ PtdX̂t + dPt

(

X̂t − x
)

=
√

ΠtdWt

⇒ d
[

Pt

(

X̂t − x
)]

=
√

ΠtdWt

⇒ Pt

(

X̂t − x
)

− P0

(

X̂0 − x
)

=

∫ t

0

√

ΠudWu

⇒ X̂t =
P0

Pt
X̂0 +

(

1 − P0

Pt

)

x +
1

Pt

∫ t

0

√

ΠudWu (61)

where the second line follows from the fact that dPt = Πt. Because Pt is a deterministic function of time it

follows that d[(X̂t − x)Pt] = dX̂tPt + (X̂t − x)dPt, which implies the third line. The fourth line follows from

integrating the third line from u = 0 to u− t, and the fifth line follows from rearranging. Now note that X̂0

and P0 are the posterior mean and precision at time zero, after observing the public signal Z0 = x+W0/
√

Π0

and starting from the common prior that x is normally distributed with a mean of zero and a precision P̄ .

Therefore, P0 = P̄ + Π0 and

X̂0 =

(

1 − P̄

P̄ + Π0

)

x. (62)

Equation (19) then follows from plugging (62) back into (61). Equation (20) follows from exactly the same

algebraic manipulation with one difference. In the case of the private forecast, x̂i0 and p0 are the posterior

mean and precision at time zero, after observing the private signal zi0 = x + ωi0/
√

π0, and a totally diffuse

prior. (That is the precision of the prior is equal to zero.) Therefore, we have that p0 = π0 and x̂i0 = zi0.

A.2 Proof of Corollary 1

The result follows easily by noticing that, under assumption H , the signals that generated the private and the

public forecast are independent conditional on x. Hence, an agent’s total forecast will be a linear combination

of the public and his private forecasts, with weights given by their respective precisions.

A.3 Proof of Theorem 1

The only thing left to check is hypothesis (H), which is done in appendix A.6, letting γt = pt/(pt + Pt) and

Γt = Pt/(pt + Pt).
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A.4 Proof of Proposition 2

Part (i): Proved in the text.

Part (ii): The dynamics of pt are given by

ṗt =

(

1

β + α/pt

)2

pε

This implies that pt is increasing through time. Letting κ = 1/β2 if α < 0 and κ = 1/(β + α/p0)
2 otherwise,

it follows that

ṗt ≥ κpε

where κ > 0, and,

pt = p0 +

∫ t

0

ṗτdτ ≥ p0 + κpεt,

and hence pt converges to infinity as t goes to infinity.

Part (iii): Let’s compute the dynamics of the ratio pt/Pt. Given that Pt = (β − 1)pt + α, and given that

pt tends to infinity, it follows,

lim
t→∞

pt

Pt
= lim

t→∞

1

β − 1 + α/pt
=

1

β − 1
=

pε

Pε

The short run dynamics of pt/Pt are given by

d

dt
log

pt

Pt
= d

log pt − log Pt

dt
=

ṗt

pt
− Ṗt

Pt

Using pt =
(

pt

pt+Pt

)2

pε, and Ṗt =
(

pt

pt+Pt

)2

Pε, we get that

d
log pt − log Pt

dt
=

(

pt

pt + Pt

)2(
pε

pt
− Pε

Pt

)

The ratio pt/Pt is strictly increasing whenever pt/Pt < pε/Pε and strictly decreasing when pt/Pt > pε/Pε.

So pt/Pt monotonically approaches pε/Pε.

Part (iv): Let yt ≡ pt + Pt. Note that yt = α + βpt and

ẏt =

(

yt − α

yt

)2
pε + Pε

β2

The solution of this differential equation is given by,

G(yt, t) ≡ 2α log(yt − α) + yt −
α2

yt − α
− p2

ε/(Pε + pε)t = C0 (63)

which after some re-arranging implies part (iv).
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Part (v): First note that limt→∞ yt = ∞ which implies by equation (63) that

lim
t→∞

yt

t
= p2

ε/(Pε + pε). (64)

Note that

(

yt −
p2

ε

pε + Pε
t + 2α log(t)

)

= −2α log
(yt

t
− α

t

)

+
α2

yt − α
− C0 (65)

which dividing by log(t), taking limits and using (64), implies

lim
t→∞

(

yt − p2
ε

pε+Pε

t
)

log(t)
= −2α

So, yt/t is of order O(log(t)/t). Hence the right-hand side of equation (65) is of the order O (log (log(t)/t)).

The asymptotic expansion of yt is then

yt =
p2

ε

pε + Pε
t − 2α log(t) + O

(

log

(

log(t)

t

))

(66)

A.5 Proof of Theorem 2

We take the derivative of W with respect to α. We find

∂W

∂α
= − r

pε

∫ ∞

p0

{

1

p2
− α + βp

p2

r

pε

∂

∂α
(H(p) − H(p0))

}

e−r/pε(H(p)−H(p0)) dp

= − r

pε

∫ ∞

p0

{

1

p2
− α + βp

p2

r

pε

[

−2α

(

1

p
− 1

p0

)

+ 2β log

(

p

p0

)]}

e−r/pε(H(p)−H(p0)) dp. (67)

We now integrate the first term
∫∞

p0
(−1/p2)e−r/pε(H(p)−H(p0)) dp of integral (67) by part, noting that

−1/p2 = d/dp (1/p− 1/p0). This gives

−
∫ ∞

p0

1

p2
e−r/pε(H(p)−H(p0)) dp

=

[(

1

p
− 1

p0

)

e−r/pε(H(p)−H(p0))

]∞

0

+

∫ ∞

p0

(

1

p
− 1

p0

)

H ′(p)e−r/pε(H(p)−H(p0)) dp

=

∫ ∞

p0

(

1

p
− 1

p0

)

H ′(p)e−r/pε(H(p)−H(p0)) dp, (68)

because H(p) → ∞ as p → ∞. We manipulate the second term of the integral as follows:

∫ ∞

p0

α + βp

p2

r

pε

[

−2α

(

1

p
− 1

p0

)

+ 2β log

(

p

p0

)]

e−r/pε(H(p)−H(p0)) dp

=

∫ ∞

p0

H ′(p)

H ′(p)

α + βp

p2

r

pε

[

2α(p − p0)

pp0
+ 2β log

(

p

p0

)]

e−r/pε(H(p)−H(p0)) dp

=

∫ ∞

p0

[

p

α + βp

]2
α + βp

p2

[

2α(p − p0)

pp0
+ 2β log

(

p

p0

)]

r

pε
H ′(p)e−r/pε(H(p)−H(p0)) dp

=

∫ ∞

p0

1

α + βp

[

2α(p − p0)

pp0
+ 2β log

(

p

p0

)]

r

pε
H ′(p)e−r/pε(H(p)−H(p0)) dp, (69)
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where the third line follows from the fact that H ′(p) = [(α + βp) /p]
2
. Plugging (68) and (69) into the above

equation (67) gives:

∂W

∂α
=

r

pε

∫ ∞

p0

Φ(p, p0)
r

pε
H ′(p)e−r/pε(H(p)−H(p0)) dp, (70)

where

Φ(p, p0) =

[

1

p
− 1

p0

]

+
1

α + βp

[

2α(p − p0)

pp0
+ 2β log

(

p

p0

)]

.

Now since Φ(p, p0) → −1/p0 as p → ∞, there exists some p∗ such that Φ(p, p0) < −1/(2p0) for all p > p∗.

Letting M∗ = supp∈[p0,p∗] Φ(p, p0), equation (70) implies that

∂W

∂α
=

r

pε

∫ p∗

p0

Φ(p, p0)
r

pε
H ′(p)e−r/pε(H(p)−H(p0)) dp +

r

pε

∫ ∞

p∗

Φ(p, p0)
r

pε
H ′(p)e−r/pε(H(p)−H(p0)) dp

≤ r

pε

{

M∗

∫ p∗

p0

r

pε
H ′(p)e−r/pε(H(p)−H(p0)) dp − 1

2p0

∫ ∞

p∗

r

pε
H ′(p)e−r/pε(H(p)−H(p0)) dp

}

=
r

pε

{

M∗
(

1 − e−r/pε(H(p)−H(p0))
)

− 1

2p0
e−r/pε(H(p)−H(p0))

}

The term inside the curly brackets is negative as long as r is small enough, and we are done.

A.6 Proof of Lemma 1

We show that the filtration generated by Z and Z̃ are the same, and also that the filtration generated by

(Z̃, z̃i) and (Z, zi) are the same. First, after plugging Equation (23) into Equation (5) and (6), and after

using the formula for Πt and πt, we find that

dZt = ΓtX̂t dt + γtdZ̃t

dzit = ΓtX̂t dt + γtdz̃it

Since, by construction, X̂ is adapted to the filtration generated by Z̃, this implies that the filtration Ft

generated by Zt is included in the filtration F̃t generated by Z̃. It also shows that the filtration Git generated

by (Zt, zit) is included in the filtration F̃t ∪ F̃it generated by (Z̃t, z̃it). To show the reverse inclusions, first

rearrange the above equation into

dZ̃t =
1

γt

(

dZt − ΓtX̂t dt
)

(71)

dz̃it =
1

γt

(

dzit − ΓtX̂t dt
)

(72)

Now, we also know from Proposition 1 that

dX̂t =
Πt

Pt

[

(

x − X̂t

)

dt +
dWt√

Πt

]

=
Πt

Pt

(

−X̂t dt + dZ̃t

)
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After plugging equations (71) in the equation above and rearranging, we find:

dX̂t =
Πt

Pt

{

−
(

1 +
Γt

γt

)

X̂t dt +
1

γt
dZt

}

Therefore, X̂ is adapted to the filtration generated by Z. Together with (71), this means that Z̃ is adapted

to the filtration Ft generated by Z. Together with (71) and (72) this implies that (Z̃, z̃i) is adapted to the

filtration Git generated by (Z, zi).

A.7 Proof of Proposition 10

i) Follows from the fact that the flow welfare u(p, P, γ) < 0.

ii) Consider applying the control γt = pt/(pt + Pt) for all t. The flow welfare is

u

(

pt, Pt,
pt

pt + Pt

)

= − 1

pt + Pt
≥ − 1

p0 + P0
(73)

where the inequality follows from the fact that, with γt ≥ 0, both pt and Pt are increasing functions

of time. Integrating (73) against re−rt from t = 0 to t = ∞ gives v(p0, P0, γ) ≥ −1/(p0 + P0), and

taking the suppremum over all admissible control implies V (p0, P0) ≥ − 1
p0+P0

.

iii) Consider some admissible control γ and the initial conditions (p0, P0) and (p′0, P0), where p′0 > p0.

Let (pt, Pt) and (p′t, P
′
t ) be the corresponding time paths of precisions. The the ODEs (47) and (48)

imply that p′t ≥ pt and P ′
t = Pt, and therefore that

u(pt, Pt, γt) ≥ u(p′t, P
′
t , γt)

⇒ v(p0, P0, γ) ≥ v(p′0, P0, γ)

⇒ V (p0, P0) ≥ v(p′0, P0, γ), (74)

where the third inequality follows from the definition of the value function V (p0, P0). Since inequality

(74) holds for any admissible control, we can take the suppremum over all admissible control to obtain

V (p′0, P0) ≥ V (p0, P0), implying that the value function is increasing in p0. A similar proof shows

that the value function is increasing in P0.

iv) It is a direct consequence of point v).

v) For the upper bound. Consider two initial conditions (p0, P0) and (p′0, P
′
0), with p′0 > p0 and

P ′
0 > P0. By definition of a supremum, for any ε > 0, there exists some admissible control γ′ such

that

V (p′0, P
′
0) ≤

∫ ∞

0

re−rtu(p′t, P
′
t , γ

′
t) dt + ε, (75)

where (p′t, P
′
t ) denotes the associated time path of precisions. In addition, by definition of the value

function

V (p0, P0) ≥
∫ ∞

0

re−rtu(pt, Pt, γt) dt, (76)
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where (pt, Pt) is the time path of precision obtained by also applying γ′ but starting at (p0, P0). Note

that, because we apply the same control starting at (p′0, P
′
0) and (p0, P0), ODEs (47) and (48) imply

that

p′t − pt = p′0 +

∫ t

0

pεγ
′2
t dt − p0 −

∫ t

0

pεγ
′2
t dt = p′0 − p0 (77)

P ′
t − Pt = P ′

0 +

∫ t

0

Pεγ
′2
t dt − P0 −

∫ t

0

Pεγ
′2
t dt = P ′

0 − P0 (78)

Now subtracting inequality (76) to (75) gives

0 ≤ V (p′0, P
′
0) − V (p0, P0) ≤

∫ ∞

0

re−rt (u(pt, Pt, γ
′
t) − u(pt, Pt, γ

′
t)) dt + ε

=

∫ ∞

0

re−rt

[

γ′2
t

(

1

pt
− 1

p′t

)

+ (1 − γ′
t)

2

(

1

Pt
− 1

P ′
t

)]

dt + ε

≤
∫ ∞

0

re−rt

(

p′t − pt

ptp′t
+

P ′
t − Pt

PtP ′
t

)

dt + ε (79)

≤
∫ ∞

0

re−rt

(

p′0 − p0

p2
0

+
P ′

0 − P0

P 2
0

)

dt + ε (80)

=
p′0 − p0

p2
0

+
P ′

0 − P0

P 2
0

+ ε.

where inequality (79) follows from the fact that p′t ≥ pt, P ′
t ≥ Pt and γt ∈ [0, 1], and inequality (80)

follows from (77), (78) together with the fact that p′t ≥ pt ≥ p0 and P ′
t ≥ Pt ≥ P0. Taking ε to zero,

the upper bound obtains.

For the lower bound. For any ε > 0, there is some control γ be such that v(p0, P0, γ)+ε > V (p0, P0).

Let (pt, Pt) denotes the time path of precisions starting from (p0, P0) and applying control γ. Let

(p′t, P
′
t ) be the time path of precisions applying the same control γ but starting instead from (p′0, P

′
0).

Note that as before equations (77) and (78) hold. Given that γ ≤ 1, we have that pt ≤ p0 + pεt and

Pt ≤ P0 + Pεt. Then it follows that

V (p′0, P
′
0) − V (p0, P0) ≥ v(p′0, P

′
0, γ) − v(p0, P0, γ) − ǫ

=

∫ ∞

0

re−rt

[

γ2
t

(

1

pt
− 1

p′t

)

+ (1 − γt)
2

(

1

Pt
− 1

P ′
t

)]

dt − ǫ

=

∫ ∞

0

re−rt

[

γ2
t

p′0 − p0

ptp′t
+ (1 − γt)

2 P ′
0 − P0

PtP ′
t

]

dt − ε

≥
∫ T

0

re−rt

[

γ2
t

p′0 − p0

(p′t)
2

+ (1 − γt)
2 P ′

0 − P0

(P ′
t )

2

]

dt − ε

≥
∫ T

0

re−rt





1
(p′

t
)2

p′

0
−p0

+
(P ′

t
)2

P ′

0
−P0



 dt − ε (81)

≥
∫ T

0

re−rt





1
(p′

0
+pεT )2

p′

0
−p0

+
(P ′

0
+PεT )2

P ′

0
−P0



 dt − ε (82)
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≥
∫ T

0

re−rt





1

max
{

(p′

0
+pεT )2

p′

0
−p0

,
(P ′

0
+PεT )2

P ′

0
−P0

}



 dt − ε

≥
∫ T

0

re−rt

[

min

{

p′0 − p0

(p′0 + pεT )2
,

P ′
0 − P0

(P ′
0 + PεT )2

}]

dt − ε

≥(1 − e−rT )min

{

p′0 − p0

(p′0 + pεT )2
,

P ′
0 − P0

(P ′
0 + PεT )2

}

− ε

where equation (81) follows from using calculating the minimum of the term in brackets, and equation (82)

follows because p′t ≤ p′0 + pεT and P ′
t ≤ P0 + PεT for t ∈ [0, T ]. Taking ε to zero the lowerbound

obtains.

A.8 Proofs of Proposition 11, Corollary 3, Proposition 12, and

Corollary 4

Proof of Proposition 11. For every (p, P ), we let

Φ(p, P ) ≡
{

λ
[

u(p, P, γ) pεγ
2 Pεγ

2
]

+ (1 − λ)
[

u(p, P, γ′) pεγ
′2 Pεγ

′2
]

, (γ, λ) ∈ [0, 1]2
}

,

and we denote by (u, q, Q) a generic element of Φ(p, P ). Lastly, we let the upper Dini derivative at (p, P )

with direction (q, Q) be given by,

∂V +(p, P ; q, Q) ≡ lim sup
t→0+,(q′,Q′)→(q,Q)

V (p + q′t, P + Q′t) − V (p, P )

t
. (83)

In our case, given that V is locally Lipschitz continuous, equation (83) collapses to7

∂V +(p, P ; q, Q) ≡ lim sup
t→0+

V (p + qt, P + Qt) − V (p, P )

t
. (84)

Note that the directional derivative ∂V +(p, P ; q, Q) is positively homogeneous. That is, for any µ ≥ 0,

∂V +(p, P ; µq, µQ) = µ∂V +(p, P ; q, Q).

Proposition 2.8, page 104 in Bardi and Capuzzo-Dolcetta [1997] states that the value function is a

7The proof is as follows. Take a sequence (qn, Qn) converging to (q, Q) and a sequence (tn) converging
to zero. Suppose that (V (p + qntn, P + Qntn) − V (p, q)) /tn has a limit ℓ. We can write

∣

∣

∣

∣

V (p + qntn, P + Qntn) − V (p, P )

tn
− ℓ

∣

∣

∣

∣

≤
∣

∣

∣

∣

V (p + qntn, P + Qntn) − V (p + qtn, P + Qtn)

tn

∣

∣

∣

∣

+

∣

∣

∣

∣

V (p + qntn, P + Qntn) − V (p, P )

tn
− ℓ

∣

∣

∣

∣

≤ K
∣

∣max{qn − q, Qn − Q}
∣

∣+

∣

∣

∣

∣

V (p + qtn, P + Qtn) − V (p, P )

tn
− ℓ

∣

∣

∣

∣

.

where the last equality follows from the local Lipschitz condition for n large enough. Note
that the first term on the right-hand side of the last inequality converges to zero. This
means that the sequences (V (p + qtn, q + Qtn) − V (p, q)) /tn has the same limit ℓ as the sequence
(V (p + qntn, q + Qntn) − V (p, q)) /tn. Taking the supremum of all such limits shows that the lim sup in
(83) coincides with the lim sup in (84).
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viscosity solution of an appropriate HJB equation.8

Then we use Theorem 2.40, in page 128, together with Remark 2.43, page 131, to show that value

function solves the following HJB equation,

rV (p, P ) = sup
(u,q,Q)∈Φ(p,P )

{

u + ∂V +(p, P ; q, Q)
}

. (85)

Note that, if (u, q, Q) ∈ Φ(p, P ), then

[

q Q
]

= (λγ2 + (1 − λ)γ′2)
[

pε Pε

]

,

for some (γ, γ′, λ) ∈ [0, 1]3. Together with the fact that the directional derivative is positively homogeneous,

this implies that

∂V +(p, P ; q, Q) = (λγ2 + (1 − λ)γ′2)∂V +(p, P ; pε, Pε).

Therefore, for all (u, q, Q) ∈ Φ(p, P ), there exists (γ, γ′, λ) ∈ [0, 1]3 such that

u + ∂V +(p, P ; q, Q)

= λu(p, P, γ) + (1 − λ)u(p, P, γ′) + (λγ2 + (1 − λ)γ′2)∂V +(p, P ; pε, Pε)

≤ u
(

p, P,
√

λγ2 + (1 − λ)γ′2
)

+ (λγ2 + (1 − λ)γ′2)∂V +(p, P ; pε, Pε) (86)

= u (p, P, γ′′) + γ′′2∂V +(p, P ; pε, Pε).

where inequality (86) follows from the concavity of g 7→ u(p, P,
√

g) and γ′′ ≡
√

λγ2 + (1 − λ)γ′2 ∈ [0, 1].

Plugging this inequality back into the HJB equation (85) implies that

rV (p, P ) = sup
γ∈[0,1]

{

u(p, P, γ) + γ2∂V +(p, P ; pε, Pε)
}

. (87)

For the existence of the optimal control we use Theorem 2.61 part (ii) in page 142 of Bardi and Capuzzo-Dolcetta

[1997] together with Remark 2.62 in page 142, which imply that

γ∗
t = γ∗(p∗t , P

∗
t ) ≡ arg max

γ∈[0,1]

{

u(p∗t , P
∗
t , γ) + γ2∂V +(p∗t , P

∗
t ; pε, Pε)

}

(88)

where p∗t = p0 +
∫ t

0
(γ∗

t )2dt and P ∗
t = P0 +

∫ t

0
(γ∗

t )2dt is an optimal control.

Proof of Corollary 3 and Proposition 12. We first note that V (p, P ) < 0. Therefore, evaluating

the right-hand side of (87) at γ = 1, we find that 0 > rV (p, P ) ≥ −r/p + ∂+V (p, P ; pε, Pε), so that

∂V +(p, P ; pε, Pε) < r/p. This implies that the right-hand side of (88) is a strictly concave function of γ.

8The infinite-horizon optimal control problem of Bardi and Capuzzo-Dolcetta [1997] is formulated with
the state space R

N and requires that the utility flow function to be bounded. This is different from our
problem in which the state space is R

2
+ and the utility flow unbounded as either p or P go to zero. In appendix

A.11 we show that we can nevertheless apply their results by fixing some strictly positive (pmin, Pmin) and
using the change of variable p = max{x, pmin} and P = max{X, Pmin}, where (x, X) ∈ R

2.
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Therefore, taking first-order conditions shows that the unconstrained optimum of (87) is

γ∗(p, P ) =
p

p + P − pP∂V +(p, P ; pε, Pε)/r
.

That ∂V (p, P ; pε, Pε) ≥ 0 implies that γ∗(p, P ) ≥ p/(p + P ). That ∂V +(p, P ; pε, Pε) < r/p implies that

γ < 1.

Proof of Corollary 4. In order to show Corollary 4 first note that, because ODEs (47) and (48) are

proportional to each others, it follows that P ∗
t = α + (β − 1)p∗t , where β = 1 + Pε/pε and α = P0 −Pε/pεp0.

plugging this back into the ODE (47) and applying Proposition 12, we obtain

ṗ∗t ≥ pε

(

p∗t
α + βp∗t

)2

⇒ ṗ∗t

(

α2

(p∗t )
2

+
2αβ

p∗t
+ β2

)

≥ pε

⇒ d

dt
H(p∗t ) ≥ pε, (89)

almost everywhere t ≥ 0 and where H(p) = −α2/p + 2αβ log(p) + β2p. We can integrate both sides of (89)

to find that H(p∗t ) ≥ H(p0) + pεt. Since H(p) is increasing and goes to infinity as t goes to infinity, we find

that p∗t and hence P ∗
t both go to infinity as t goes to infinity.

A.9 Proof of Theorem 3

1. Proof of the first part. First note that (49) implies that

0 ≤ V (p + pεt, P + Pεt) − V (p, P )

t
≤ pε

p2
+

Pε

P 2

and therefore that

∂+V (p, P ; pε, Pε) ≤
pε

p2
+

Pε

P 2
(90)

Consider the optimal control γ∗
t and the associated time path (p∗t , P

∗
t ) of precisions. Plugging (90)

into (52) we find that

0 ≤ γ∗
t ≤ p∗t

p∗t + P ∗
t − pεP ∗

t /p∗t − Pεp∗t /P ∗
t

. (91)

Corollary 4 shows that both p∗t and P ∗
t go to infinity as t goes to infinity. In addition, the ODEs

(47) and (48) are proportional to one another, implying that P ∗
t = α + (β − 1)p∗t , where, as usual,

α = P0 − Pε/pεp0 and β = 1 + Pε/pε. Therefore, both p∗t /P ∗
t and P ∗

t /p∗t have finite limits as t goes

to infinity. Hence, (91) implies that |γ∗
t − p∗t /(p∗t + P ∗

t )| goes to zero as t goes to infinity.

2. Proof of the second part. We first show a preliminary result.

Lemma 3. For every P0 > 0, V (p, P ) can be extended by continuity at (0, P0).

Proof. In order to prove the Lemma, we first note that limp→0+ V (p, P0) exists because p 7→ V (p, P0)
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is increasing and bounded below. Denoting this limit by L(0, P0), we then write, for any (p, P ),

|L(0, P0) − V (p, P )| ≤ |L(0, P0) − V (p, P0)| + |V (p, P0) − V (p, P )|

≤ |L(0, P0) − V (p, P0)| +
Pε

(min{P, P0})2
|P − P0|

where the second inequality follows from (49). The first term on the right-hand side goes to zero by

definition of L(0, P0). Since the second term on the right-hand side also goes to zero as P → P0,

we have shown that V (p, P ) goes to L(0, P0) as (p, P ) goes to (0, P0), and we can extend V (p, P ) by

continuity at (0, P0) with V (0, P0) = L(0, P0).

Now solving γ∗(p, P ) = p/(p + P − pP∂+V (p, P ; pε, Pε)/r) for ∂+V (p, P ) shows that

γ∗(p, P )2∂V +(p, P ; pε, Pε) = r

[

γ∗(p, P )2

p
+

γ∗(p, P )2 − γ∗(p, P )

P

]

.

Plugging this back into the HJB equation and rearranging shows that

V (p, P ) = − 1

P
(1 − γ∗(p, P )) . (92)

We now show

Lemma 4. For any P0 > 0,

lim
(p,P )→(0,P0)

V (p, P ) = − 1

P0
. (93)

Proof. Lemma 3 shows that the limit of equation (93). Suppose that it is strictly greater than

−1/P0. Equations (92) then implies that the control γ∗(p, P ) also has a limit as (p, P ) goes to (0, P0),

and that this limit is strictly positive. Hence, there exists some δ > 0 and k > 0 such that, if

max{|p|, |P − P0|} < δ, then γ∗(p, P ) > k.

Now consider any initial condition (p̂0, P̂0) such that max{|p̂0|, |P̂0 − P0|} < δ/2. Let γ̂∗
t be the

associated optimal control and (p̂∗t , P̂
∗
t ) the associated time path of precision. Because the optimal

control is less than 1, the rate of change of precisions is bounded above, implying that there exists

some time T such that, for any initial condition (p̂0, P̂0) such that max{|p̂0|, |P̂0−P0|} < δ/2, we have

max{|p̂∗t |, |P̂ ∗
t − P0|} < δ for all t ∈ [0, T ], and therefore γ̂∗

t = γ∗(p̂∗t , P̂
∗
t ) > k. So now we can write

V (p̂0, P̂0) = −
∫ ∞

0

r

(

(γ̂∗
t )2

p̂∗t
+

(1 − γ̂∗
t )2

P̂ ∗
t

)

e−rt dt

≤ −
∫ T

0

rk2

p̂∗t
e−rt dt

≤ −
∫ T

0

rk2

p̂0 + pεt
e−rt dt

= e−rT rk2/pe log

(

p̂0 + pεT

p̂0

)

.

We obtain the first inequality because: i) the integrand is negative so the integral over [0,∞) is

bounded above by the integral over the smaller interval [0, T ], ii) −γ2
t /pt−(1−γt)

2/Pt ≤ −γ2
t /pt, and
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iii) γ̂∗
t > k. The second inequality follows from the fact that γ∗

t ≤ 1 which implies that p̂∗t ≤ p̂0 + p∗εt.

The third inequality follows by direct integration. Letting (p̂0, P̂0) go to (0, P0) then shows that

V (p̂0, P̂0) goes to minus infinity, which is a contradiction.

The second part of the Theorem then follows from the above lemma together with equation (92).

A.10 Proof of Proposition 14

That b∗ < 0 follows directly from γ∗(p, P ) > p/(p + P ). The only thing left to show is the limit of b∗t at

infinity, which follows from equation (90).

A.11 An Auxiliary Planner’s Problem

In order to apply the results of Bardi and Capuzzo-Dolcetta [1997], we need to formulate the optimal control

problem in R
N and make sure that the utility flow is bounded. To that end, we fix some strictly positive

(pmin, Pmin) and we consider the auxiliary utility flow

u(pt, Pt, γ; pmin, Pmin) = −r

(

γ2
t

max{pt, pmin}
+

(1 − γt)
2

max{Pt, Pmin}

)

.

As before, we let an admissible control be some measurable function γ : R+ → [0, 1]. Given an admissible

control, the state (pt, Pt) evolves according exactly as before according to the ODEs (47) and (48), where

the initial condition (p0, P0) ∈ R
2 is given. In particular, in this auxiliary problem, we do not restrict the

state to be positive. The planner’s intertemporal utility is

v(p0, P0, γ) = −
∫ ∞

0

u(pt, Pt, γt)e
−rt dt.

and the planner’s problem is to find the supremum of v(p0, P0, γ), subject to the constraint that γ is an

admissible control. An optimal control is a solution of the planner’s problem. We let V (p0, P0; pmin, Pmin)

be the planner’s maximum attainable utility.

Because the utility flow of this auxiliary planner’s problem is bounded, it is easy to check that the

regularity conditions (A0)-(A4) page 97-88 in Bardi and Capuzzo-Dolcetta [1997] hold. This allows us to

apply Proposition 2.8 page 104 showing that the value function solves an HJB equation. In order to state

the HJB equation with the generalized directional derivative, as in Proposition 11 of the present paper, we

need to show that the value function is locally Lipschitz continuous, as follows: going through exactly the

same steps as in the proof of Proposition 10, it is easy to show that the following modified Lipchitz condition

holds. For all p′ ≥ p and P ′ ≥ P ,

V (p′, P ′; pmin, Pmin) − V (p, P ; pmin, Pmin) ≤
p′ − p

(max{p, pmin})2
+

P ′ − P

(max{P, Pmin})2
.

Now note that the planner’s value in the auxiliary and the original problems coincide for all (p, P ) ≥
(pmin, Pmin). Indeed, consider such an initial condition and any admissible control in the auxiliary problem.

Then, because precision is increasing, we have pt ≥ pmin and Pt ≥ Pmin at all times. Therefore, we can drop

the max in the utility flow meaning that v(p, P, γ) = v(p, P, γ; pmin, Pmin). Taking the supremum over all
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admissible control shows that V (p, P ) = V (p, P ; pmin, Pmin) for all p ≥ pmin and P ≥ Pmin. Clearly, the two

functions also share the same generalized directional derivative. Hence, they must solve the same HJB for

all p ≥ pmin and P ≥ Pmin.
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