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INTRODUCTION 

 The standard and well-known result from the economic insurance literature is that a risk-averse 

consumer will purchase full insurance when insurance prices are actuarially fair [Arrow, 1963;Mossin, 

1968; Smith, 1968].
1
 Some exceptions to this rule have been shown [Cook and Graham, 1977; Doherty 

and Schlesinger, 1983, 1990; Mayers and Smith, 1983].
2
 Risk neutrality on the part of the insurer coupled 

with perfect competition implies that insurance prices will be actuarially fair. The risk neutral insurance 

firm is indifferent regarding risk as long as the premium equals the expected loss from the risk.  

There is always some possibility of insolvency for the insurer unless the excess capital held is 

larger than the total possible loss that could be experienced. Nevertheless, the assumption of risk 

neutrality on the part of the insurer is a rational assumption and is justified with a simple explanation 

concerning profit maximization and Bertrand competition between two insurers.  That explanation is 

given in the first part of this essay. 

 The secondary goal of this essay is to show an insurance market equilibrium defined by an 

insurance product price and a probability of insolvency for the insurer(s). 

                                                           
1
 Proof: 

Suppose  P  represents the probability of no accident and (1-P) the probability of an accident, Suppose a risk averse 

consumer who has initial wealth of W and can purchase a percentage of insurance coverage α , where 0 1α≤ ≤  

which costs a total of xα and returns x units of consumption/ wealth in the event of a claim/ accident. Also suppose 

that the severity of a loss is Ω . The von Neumann-Morgenstern expected utility function for the consumer is then 

(1 ) ( ) ( (1 ))EU p U W x pU W xα α= − − + − Ω + − . The consumer maximizes this expected utility function 

(no budget constraint) by choosing an amount of insurance coverage, x, to purchase. The first order condition of the 

EU function is then (1 ) ( ) (1 ) ( (1 ))p U W x p U W xα α α α′ ′− − + − − Ω + − , rearranging terms we get the 

equation 
(1 ) ( ) (1 )

( (1 ))

p U W x

pU W x

α α
α α

′− − −=
′ − Ω + −

, and we note that actuarially fair insurance means that prices are 

proportional to risk, which implies that (1 ) / (1 ) /p p α α− = −  which implies that 

( ) ( (1 ))U W x U W xα α′ ′− = − Ω + −  which implies that (1 )W x W xα α− = − Ω + −  which says that the 

consumer purchases full insurance because xΩ = . 
2
Cook and Graham (1977) showed that a rational insurance purchaser “will typically not fully insure an 

irreplaceable commodity;” Doherty and Schlesinger (1983) showed that full insurance depends on the correlation 

between insurable and uninsurable risk; Doherty and Schlesinger (1990) show that rational insurance purchasing 

when there is some probability of contract non-performance (default) leads to less than full insurance coverage; 

Mayers and Smith (1983) demonstrate “that when the payoffs of the policy are correlated with the payoffs to the 

individual's other assets, the demand for insurance contracts is generally not a separable portfolio decision.” 
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THE MODEL 

 While insurers compete on price to reach a level at or around the actuarially fair price, the 

insureds themselves are assumed to be concerned with financial quality as previous research has already 

modeled the insurance market [Doherty and Schlesinger, 1990; Cummins and Mahul, 2003; Rees, et al, 

1999; Cummins and Lamm-Tennant, 1994; Cummins and Danzon, 1997; Gron, 1994; Winter 1988, 91a, 

94; Cagle and Harrington, 1995]. It is assumed that insureds are concerned with the probability of 

insolvency of their insurer; this would seem to be a rational assumption. As the probability of insolvency 

increases, the probability of not receiving indemnity for a loss increases, making the value of the 

insurance to the insured conditional upon the probability of insolvency for the insurer. A representative 

insured is taken for the entire insurance market. Two symmetric insurance firms competing on price are 

introduced in this part of the essay. 

 This essay outlines a basic model where the equilibrium is defined by a price and a probability of 

insolvency.  The probability of insolvency represents the financial quality of the insurer; the probability of 

contract non-fulfillment on the part of the insurer. Previous research has been done on the rational 

purchase of insurance coverage when there is a positive probability of contract non-performance and the 

impact that financial quality has on the demand for insurance.
3
 

MOTIVATION FOR THE ASSUMPTION OF RISK-NEUTRALITY OF AN INSURER 

 Consider the standard Rothschild-Stiglitz view of the world where two states of the world are 

modeled, 
1

W and 
2

W , without an insured loss and with an insured loss respectively as shown in Figure 

1.1. Consider an initial endowment E and consider a high and a low risk insured. Suppose the entire 

endowment could be lost in the event that the second state of the world is reached without insurance. 

Consider the case of a pooling equilibrium in Figure 1.1 represented by contract P which cannot exist as 

                                                           
3
 See, for example, Doherty and Schlesinger, 1990; Cummins and Mahul, 2003; Tapiero and Jacque, 1987; also see 

Cagle and Harrington, 1995; and Cummins and Danzon, 1997.   
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shown by Rothschild and Stiglitz. Any insurer offering contract γ  will be able to make a profit by 

attracting the low-risk insureds and not the high-risk insureds and so the pooling equilibrium cannot exist 

because the existence of the γ contract alongside a pooling equilibrium would contradict the profit 

maximization portion of the definition of equilibrium. Any insurer offering a contract of γ would make a 

profit, but would lose the low-risk market to another insurer who could offer a contract closer to 
Lα , the 

contract along the fair-odds, actuarially fair insurance line for the low-risk insured.
4
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<the upward sloping indifference curve in Figure 1.1 needs to be fixed> 

As a condition of profit maximization, the insurer will necessarily take on any risk that pays a 

premium greater than the actuarially fair expected loss. This competitive behavior implies that insurers 

                                                           
4
 It is left to the reader to prove it a necessary and sufficient condition that a risk-neutral insurer prices insurance at 

an actuarially fair insurance price when under Bertrand competition. 
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will price insurance along the actuarially fair insurance line where the low-risk insured is offered 

contract
Lα , the separating contract for the low-risk insurance market. 

FINANCIAL QUALITY 

 The assumptions necessary for the equilibrium in this essay rely upon the financial quality 

hypothesis that insurers are willing to pay more for an insurance policy which is backed by an insurer 

with superior financial quality. As long as an insurer receives a price which is greater than or equal to the 

expected loss, the insurer is profit maximizing. And yet, it is straightforward that an insurer who charges a 

price which is strictly greater than the expected loss has a lower probability of insolvency than an insurer 

receiving a price exactly equal to the expected loss.
5
 They are both profit maximizing, but the former 

insurer is receiving larger profits while also having a lower probability of insolvency. The regulator 

fulfills the role of verifying the accuracy of the financial quality/ solvency of the insurers.  

 Doherty and Schlesinger (1990) note that the actuarially fair insurance price for the insurance 

product which includes some probability of contract nonperformance (insolvency) is actually lower than 

the actuarially fair insurance price for the insurance product underwritten by an insurer which is perfectly 

solvent. Although the willingness to pay more for an insurance product with a lower probability of 

insolvency for the insurer holds true in accordance with the results of Doherty and Schlesinger, it should 

be noted that insurance in the case of the property and casualty insurance industry includes some social 

risk which necessarily implies that insurance will not be actuarially fair.
6
 

                                                           
5
 An insurer who earns greater underwriting profit has a lower probability of insolvency. Note that as the price, P, 

increases, the probability of insolvency, Ψ decreases. The probability of insolvency function is introduced in 

equation (1.8) and in extended form is written as: 

[ ]( )

[ ]( )
1

2

2

exp
var

n

i i i

i

K Y P E rK

Y E

β
=

− − Ω − −
Ψ =

Ω

  
   

 
 
 

∑
 

6
 Social risk exists whenever wealth in two different states of the world differ from each other. If the wealth is the 

same in all states of the world (claim or not insurance claim) then full insurance is possible. In the case of property 

and casualty insurance, consider the case of a home insurance claim or an automobile insurance claim. If a home or 
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The insurer who is able to fake financial quality without holding excess costly capital reserves is 

able to raise insurance prices in response to the utility maximizing behavior of insurance consumers who 

wish to be insured by a financially solvent insurer. This argument is useful in motivating a rationale for 

the existence of a regulator whose purpose is to audit insurers to determine their true probability of 

insolvency. 

The simplifying assumption is made that this is a costless process and that the regulator attains 

perfect information regarding the probability of insolvency and passes that information on to the 

consumers who then maximize their utility.  

From this point onwards, the Bertrand price competition is left behind and a profit maximizing 

monopolist is assumed. This change allows for a simplified representation of the calculation of an 

equilibrium which involves a price and a probability of insolvency.  

There are three states of the world for consumers, 1W E P= − is wealth for the consumer in state 

one when the insured has no loss but has paid a premium P for insurance. 2W E P α= − − Ω + Ω is 

wealth for the consumer in state two when a premium was paid, a loss occurs, the insurer is solvent, and 

the claim is paid; the insured recovers αΩ of the loss. 
3W E P= − − Ω is wealth for the consumer when 

                                                                                                                                                                                           

an automobile is damaged, this represents the destruction of some wealth for society, even though the insured is 

indemnified. The existence of social risk implies that insurance cannot be actuarially fair: 

 

Proof:  

Suppose the total wealth before an accident is not equal to the total wealth after an accident,
1 2W W> , then the 

consumer will necessarily not be able to fully insure and xΩ ≠ . The expected utility function for the insurance 

consumer is 1 1(1 ) ( ) ( (1 ))EU p U W x pU W xα α= − − + − Ω + − and the first order condition rearranged is 

1

1

(1 ) ( ) (1 )

( (1 ))

p U W x

pU W x

α α
α α

′− − −=
′ − Ω + −

 but 
1 1( ) ( (1 ))W x W xα α− ≠ − Ω + −  because 

1 2W W> . So 

1

1

( )
0

( (1 ))

U W x

U W x

α
α

′ − <
′ − Ω + −

which implies that 
(1 ) (1 )p

p

α
α

− −>  which proves that with social risk, prices are 

higher than the otherwise actuarially fair price. 
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a premium is paid, a loss occurs and the insurer is insolvent so that the insured does not recover anything 

from the insurer. 

The consumer’s objective is to maximize expected utility by choosing a level of insurance 

coverage α . Equation (1.1) shows the consumers objective function. 

 1 2 3( ) (1 ) ( ) (1 ) ( ) ( )EU U W U W U Wα φ φ φ= − + − Ψ + Ψ  (1.1)
7
 

 The first order condition for the maximization of (1.1) is 0EU ′ =  as in, 

 1 2 3(1 ) ( ) (1 ) ( ) ( ) 0U W U W U Wφ φ φ′ ′ ′− + − Ψ + Ψ =  (1.2) 

 Note that for every level of insurance coverage α there is a probability that the insured will not 

receive indemnity. Although there may be an upper limit on the total amount that the insurer would ever 

have to pay out in claims, if the cost of holding capital is strictly positive, the insured will never be able to 

fully insure. This is a condition which could imply actuarially unfair insurance in addition to the social-

risk condition noted earlier. Note that if the probability of insolvency is zero, the consumer’s utility 

maximization problem reduces to the standard one. Let 
*α be the solution to the consumer’s utility 

maximization problem and then consider the consumer’s indirect utility function, equation (1.3). 

 *

1 2 3(1 ) ( ) (1 ) ( ) ( )V U W U W U Wφ φ φ= − + − Ψ + Ψ  (1.3) 

 The consumer’s demand for insurance coverage is then a function of , , , ,P Eφ Ψ Ω as is the 

indirect utility function. For simplicity, consider the case where the endowment, probability of loss, and 

expected loss are held constant so that the demand for insurance and the indirect utility are only a function 

of , PΨ . For any given level of indirect utility 
*V , there is a tradeoff that the consumer is then willing to 

make between the probability of insolvency and the price, , PΨ  so that ( )PΨ  and ( )P Ψ  . The 

                                                           
7
 This is based on a standard von Neumann-Morgenstern expected utility equation with three potential states of the 

world. 
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relationship is assumed to be one-to-one; for any level of indirect utility, there is a unique Ψ for any 

given P and there is a unique P for any given Ψ . 

The insurance firm then optimizes profit by recognizing this demand for insurance. The profit 

maximizing function of the insurer is shown in equation (1.4) where the expected profit, [ ]E π  is a 

function of quantity Y, prices P, expected losses [ ]E Ω , constant marginal transaction cost β  the cost of 

capital r, and capital itself K. The insurer maximizes profit by choosing price and capital. The cost of 

capital r is the difference between the opportunity cost of capital and the return on investment from 

investing the capital. It is assumed that 0r > . 

 [ ] [ ]
,

: ( )
P K

Max E Y P E rKπ β= − Ω − −  (1.4)
8
 

As a function of prices and probability of insolvency, the required capital can be found; equation 

(1.4) can then be rewritten as it is in equation (1.5) where capital is a function of price and probability of 

insolvency. Note that demand, Y, can also be written as a function of prices and probability of insolvency 

by substituting the consumer’s demand function into the monopolist’s profit maximization function. The 

relationship between capital, prices, and the probability of insolvency are shown in equation (1.6) and 

further in the appendix to this essay. 

 [ ] ( ) [ ] [ ]
,

: , ( ) ( , )
P

Max E Y P P E r K Pπ β
Ψ

= Ψ − Ω − − Ψ    (1.5) 

Insolvency risk is given an explicit value in this essay based on an actuarial theory regarding the 

probability of insolvency.
9
 The probability of insolvency can be modeled across infinite or finite time. 

The probability of insolvency is a function of the capital held at the start of time, the expected profit, and 

                                                           
8
It is assumed that the Y risks are independent from each other. 

9
 For a more detailed explanation of the probability of insolvency/ ruin, the reader is directed towards either (Kaas, 

et al, 2001) or (Booth, et al, 1999) and the appendix to this essay.  
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the variance of that expected profit. Equation (1.6) shows that the probability of insolvency for an insurer 

Ψ , is a function of capital, K, expected profit, [ ]E π , and the variance of the expected profit, 

[ ]( )var E π . 

 
[ ]( )

[ ]( )
2

exp
var

K E

E

π
π

 − Ψ =  
  

 (1.6)
10

 

The first order condition for the profit maximization problem of equation (1.5) is shown in 

equation (1.7). 

 
[ ] [ ]

0
E E

P

π π∂ ∂
= =

∂ ∂Ψ
 (1.7) 

 Note that if demand was not a function of the probability of insolvency, the first order condition 

would revert to the standard monopolist’s profit maximization problem where the first order condition 

would be [ ] ( ) 0Y P β′ − Ω − = .  

CONCLUSION 

From equation (1.7) comes the equilibrium price and probability of insolvency
* *,P Ψ . Although 

the probability of insolvency is not utilized by the Canadian Office of the Superintendent of Financial 

                                                           
10

The probability of insolvency for the firm is a function of capital held at the beginning of the period of time under 

consideration, expected profit, and the variance of expected profit. The capital of the insurer increases continuously 

and decreases stepwise; premiums accumulate and (relatively large) claims are paid when they occur. It is assumed 

that the distribution of potential losses for each insurance policy is an exponential distribution and that the 

aggregation of the policies represents the overall distribution of potential losses for the insurer as a whole. The 

probability of insolvency is then the probability of having negative capital. More precisely, for a finite time model, 

the probability of insolvency is the probability of having more claims in a period than all premiums received in that 

period plus the capital held at the start of the period. The probability of insolvency function can be expanded by 

using equation (1.4), the explicit expected profit function of the insurer [ ] [ ]( )E Y P E rKπ β= − Ω − −  , the 

probability of insolvency function then becomes:
[ ]( )( )
[ ]( )2

2
exp

var

K Y P E rK

Y E

β− − Ω − −
Ψ =

Ω

 
 
 
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Institutions (OSFI), OSFI does use a minimum capital test (MCT) to ensure some measure of financial 

quality on the part of insurers.
11

  

                                                           
11

 The MCT For Federally Regulated Property and Casualty Insurance Companies requires capital to be held for 

Policy Liabilities. The regulation requires the insurer to hold onto capital which is calculated as a “margin” 

(percentage) of the potential liabilities. The regulation states on page 18 that “The margins establish a balance 

between the recognition of varying risks associated with different classes of insurance and the administrative 

necessity to minimize the test’s complexity.” Future research could be done on a cost-benefit analysis of the extra 

administrative cost that a more complex solvency regulation might involve compared to the benefit in terms of 

efficiency improvements for the industry.  
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APPENDIX 

 This appendix provides additional information and analysis of the probability of insolvency 

function. It shows the numerous ways in which an insurer can improve financial quality. It shows the first 

and second partial derivatives of the probability of insolvency function with respect to the variables that 

determine it. If an insurer wishes to improve financial quality, numerous approaches can be taken besides 

simply raising prices and/ or holding more capital; operation and distribution structures can be altered and 

different lines of business with less variance can be underwritten.  

The probability of insolvency for the firm is a function of capital held at the beginning of the 

period of time under consideration, expected profit, and the variance of expected profit. Equation (1.8) 

shows that the probability of insolvency for an insurer, Ψ , is a function of capital, K, expected profit, 

[ ]E π , and the variance of the expected profit, [ ]( )var E π .The capital of the insurer increases 

continuously and decreases stepwise; premiums accumulate and claims are paid when they occur. It is 

assumed that the distribution of potential losses for each automobile insurance policy is an exponential 

distribution and that the aggregation of the policies represents the overall distribution of potential losses 

for the insurer as a whole. The probability of insolvency is then the probability of having negative capital. 

More precisely, for a finite time model, the probability of insolvency is the probability of having more 

claims in a period than all premiums received in that period plus the capital held at the start of the period. 

 
[ ]( )

[ ]( )
2

exp
var

K E

E

π
π

 − Ψ =  
  

 (1.8) 

The probability of insolvency function can be expanded by using equation (1.4), the expected profit 

function of the insurer [ ] [ ]( )E Y P E rKπ β= − Ω − −  , the probability of insolvency function is then shown in 

expanded form in equation (1.9). 

 
[ ]( )( )
[ ]( )2

2
exp

var

K Y P E rK

Y E

β− − Ω − −
Ψ =

Ω

 
 
 

 (1.9) 

As the capital reserves at the start of the time period, K, increase, the probability of insolvency 

decreases as shown in the model. As equation (1.10) shows, an increase in capital leads to a decrease in 

the probability of insolvency at an increasing rate as the cost of capital, r, is held constant at zero. It could 

be assumed that the more stable an insurer becomes, the more closely 0r → , where r is considered here 

the cost of capital and approaches zero because the cost of capital is the cost of borrowing minus the 

revenue from investing the capital which is merely held to decrease insolvency risk. Assuming that 

expected loss, quantity, marginal costs, the cost of capital, and capital are all held constant, there exists a 

relationship where capital is a function of prices and a given level of probability of insolvency, ( , )K P Ψ .  

 

[ ]
[ ]

[ ]
[ ] [ ]

2

0

2

2 2 2

0

4 2 2 2
0,

4 2 2 2 4
0

r

r

Kr YP Y YE

K Y VarE

Kr YP Y YE r

K Y VarE K Y VarE

β

β
=

=

− + + Ω∂Ψ = ⋅Ψ <
∂ Ω

− + + Ω∂ Ψ ∂Ψ= ⋅ + ⋅Ψ >
∂ Ω ∂ Ω

 (1.10) 
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 Note that capital can be written as a function of prices and the probability of insolvency as in 

equation (1.11) when the other variables are held constant and the quantity is also written as a function of 

prices and probability of insolvency as shown in equation (1.17). 

 
[ ]( )
[ ]( )1 2

ln

2 i

Var E
K

Y P E rYβ− −

Ω Ψ
=

− − Ω − −
 (1.11) 

As the expected profit increases, the probability of insolvency also decreases. Profitability in this 

case should be related to the difference between the premium collected and the money paid out in actual 

damages resulting from claims. The cost of settling the claims and the fixed costs of running the insurance 

business should themselves be aggregated with the expected payoffs. As equation (1.12) shows, an 

increase in expected profit reduces the probability of insolvency but at a decreasing rate.  

 
( ) ( )

( ) ( )
2

2

2
0

2
0

K

E VarE

K

VarEE

π π

ππ

∂Ψ −= ⋅Ψ <
∂       

∂ Ψ −= ⋅Ψ <
 ∂     

 (1.12) 

 Contrary to capital and expected profits, an increase in the variance of the expected profit, 

[ ]( )arV E π , which is itself a function of the variance of expected losses, [ ]( )arV E Ω , and the total 

quantity of policies, Y,  leads to an increase in the probability of insolvency but at a decreasing rate as 

shown by equation (1.13).  

 

[ ]
[ ]( )
[ ]

[ ]
( )

[ ]

2

222

2 5

2
0

( ) ( )

8
0

( ) ( )

K E

Var E Var E

K E

Var E Var E

π
π π

π

π π

∂Ψ = ⋅Ψ >
 ∂     

−  ∂ Ψ  = ⋅Ψ <
   ∂    

 (1.13) 

 As noted above, the variance of expected profit can actually be rewritten as a function of total 

policies underwritten and the variance of expected losses, [ ]( )var E π = [ ]( )2 varY E Ω . If we break 

down the impact that these individual variables have on the probability of insolvency, we see stronger 

results for the impact that expected losses have on the probability of insolvency and opposite results for 

the impact that quantity has on the probability of insolvency. Equation (1.14) shows that an increase in 

the variance of expected losses has an increasing effect on the probability of insolvency but at a 

decreasing rate.  

 

[ ]
( )
[ ]

[ ]
[ ]
[ ]

22

222

2 4

2
0

( ) ( )

8
0

( )( )

KE

Var E Y Var E

K E

Y Var EVar E

π

π

∂Ψ = ⋅Ψ >
 ∂ Ω  Ω   

 −∂ Ψ  = ⋅Ψ <
Ω ∂ Ω 

 (1.14) 
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Note, however, by equation (1.15) that the variance of expected losses has a greater impact on 

increasing the probability of insolvency than the variance of expected profit. This is because the variance 

of expected profit is also a function of quantity of policies, Y, which has a negative impact on the 

probability of insolvency as shown in equation (1.16). It is assumed that the policies, Y, are independent 

from each other.  

 [ ] [ ]( ) ( )Var E Var E π
∂Ψ ∂Ψ>

∂ Ω ∂
 (1.15) 

 

 Equation (1.16) confirms the assumption that an increase in quantity of insured risks which are 

similar but independent from each other reduces solvency risk. It reduces solvency risk, but it does so at a 

decreasing rate when the cost of capital, r, is held constant. Assuming that expected loss, capital, marginal 

costs, the cost of capital, and capital are all held constant, there exists a relationship where quantity of 

insurance is a function of prices and a given level of probability of insolvency, ( , )Y P Ψ . 

 

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

2

3

22

2 3 2

0

2 2 2 4
0

2 2 2 4 2 2 2
0

3
r

KYP KY KYE rK

Y Y VarE

KYP KY KYE rK KP K KE

Y Y VarE Y Y VarE

β

β β

=

− − Ω −∂Ψ = ⋅Ψ <
∂ Ω

− − Ω − − − − Ω∂ Ψ ∂Ψ= ⋅ + ⋅Ψ <
∂ Ω ∂ Ω

 (1.16) 

 Note that quantity can be written as a function of prices and the probability of insolvency as in 

equation (1.17) when the other variables are held constant. 

 
[ ]( )

[ ]( )
[ ]2

( , )
ln var

K P E P E
Y P

rKE

β β− − Ω − − Ω −
Ψ = +

Ψ Ω
 (1.17) 

To further elaborate and extend our model, we can consider the fact that an insurer has some sort 

of cost structure, β , which we assume to be the marginal cost of transactions (underwriting/ adjusting/ 

administration) per policy. Equation (1.18) confirms the known fact that an increase/ decrease in marginal 

costs leads to an increase/ decrease in the probability of insolvency.  

 
[ ]

[ ]

2

2

2 2

2
0

( )

2
0

( )

KY

Y Var E

KY

Y Var E

β

β

∂Ψ = ⋅Ψ >
∂  Ω 

∂ Ψ = ⋅Ψ >
∂  Ω 

 (1.18) 

 The most challenging part to model is the cost of capital. If the cost of capital was zero, insurers 

would hold an infinite quantity of capital to ensure that they never went bankrupt
12

. The cost of capital 

does not have to be the same for each borrower. The cost of capital issue is also complicated because the 

                                                           
12

 Note that the cost of capital is modeled here as the difference between the cost of borrowing money and the return 

from investing it. It is assumed that insurers have some cost of capital. This can be because of the requirement of 

regulators that capital be invested in “safe” investments or because of the transaction costs of borrowing and 

investing money.  
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capital is simply held to ensure against bankruptcy and so the money can be re-invested by the insurer. 

This adds another dimension to the model because regulators often place restrictions on where the capital 

can be invested. Equation (1.19) shows the impact that the cost of capital, r, has on the probability of 

insolvency. As the cost of capital increases, the probability of insolvency increases at an increasing rate. 
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 (1.19) 

 Lastly, equation (1.20) shows the obvious relationship between prices and the probability of 

insolvency where an increase in the price of insurance, P, leads to an increase in the probability of 

insolvency but at a decreasing rate.  
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 If an insurer prices insurance actuarially fair and is able to borrow money at an effective cost of 

capital rate of zero, r=0, then the insurer borrows an infinite amount of capital, will never go bankrupt, 

and will break even in the long run
13

. We’ve noted however that consumers are willing to make their 

insurance purchases based on the insolvency level of an insurer in addition to price: the financial quality 

hypothesis.
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 This follows straightforward from the fact that the expected losses are best estimates and that they equal actual 

losses in the long run.  
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