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This paper presents hedging strategies for European and exotic options in a Lévy

market. By applying Taylor’s theorem, dynamic hedging portfolios are constructed

under different market assumptions, such as the existence of power jump assets or

moment swaps. In the case of European options or baskets of European options,

static hedging is implemented. It is shown that perfect hedging can be achieved.

Delta and gamma hedging strategies are extended to higher moment hedging by

investing in other traded derivatives depending on the same underlying asset. This

development is of practical importance as such other derivatives might be readily

available. Moment swaps or power jump assets are not typically liquidly traded.

It is shown how minimal variance portfolios can be used to hedge the higher order

terms in a Taylor expansion of the pricing function, investing only in a risk-free

bank account, the underlying asset and potentially variance swaps. The numerical

algorithms and performance of the hedging strategies are presented, showing the

practical utility of the derived results.
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1 Introduction

This paper provides perfect hedging strategies and minimal variance portfolios for European

and exotic options in a Lévy market. It is well known, see Schoutens (2000, p.71), that Brownian

motion has the Chaotic Representation Property (CRP), which states that every square integrable

random variable adapted to the filtration generated by a Brownian motion can be represented as

a sum of its mean and an infinite sum of iterated stochastic integrals with respect to the Brownian

motion, with deterministic integrands. A consequence of this is the so-called Predictable Rep-

resentation Property (PRP) for Brownian motion. The PRP states that every square integrable
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random variable adapted to the filtration generated by a Brownian motion can be represented

as a sum of its mean and a stochastic integral with respect to the Brownian motion, where the

integrand is a predictable process. The PRP implies the completeness of the Black-Scholes option

pricing model and gives the admissible self-financing strategy of replicating a contingent claim

whose price only depends on the time to maturity and the current stock price.

Unfortunately, this kind of PRP, where the stochastic integral is with respect to the underlying

process only, is a property which is only possessed by a few martingales, including Brownian

motion, the compensated Poisson process, and the Azéma martingale (see Schoutens (2003) or

Dritschel & Protter (1999)). When the underlying asset is driven by a Lévy process, perfect

hedging using only a risk-free bank account and the underlying asset is not in general possible.

The market is therefore said to be incomplete. However, even in this case, further developments are

possible. There are two different types of chaos expansions for Lévy processes: Itô (1956) proved

a Chaotic Representation Property (CRP) for any square integrable functional of a general Lévy

process. This CRP is written in terms of multiple integrals with respect to a two-parameter random

measure associated with the Lévy process. Nualart & Schoutens (2000) proved the existence of

a new version of the CRP for Lévy processes which satisfy some exponential moment conditions.

This new version states that every square integrable random variable adapted to the filtration

generated by a Lévy process can be represented as an infinite sum of iterated stochastic integrals

with respect to the orthogonalised compensated power jump processes of the underlying Lévy

process. The market can be completed by allowing trades in these processes while risks due to

jumps and fat tails are considered. In light of the new version of the PRP, Corcuera et al. (2005)

suggested that the market should be enlarged with power jump assets so that perfect hedging

could still be implemented. Corcuera et al. (2006) used this completeness to solve the portfolio

optimisation problem using the martingale method. Another form of commonly traded financial

derivative is the variance swap which depends functionally on the volatility of the underlying

asset. Since variance swaps are already traded commonly in the over-the-counter (OTC) markets,

Schoutens (2005) suggested trading in moment swaps, which are a generalisation of variance swaps.

Based on the CRP derived by Itô (1956), Benth et al. (2003) derived a minimal variance portfolio

for hedging contingent claims in a Lévy market.

Inspired by these papers, we derive practical and implementable hedging strategies based on

the PRP derived from Taylor approximations to the option pricing formulae. We apply Taylor’s

theorem directly to the option pricing formulae and derive perfect hedging strategies by investing

in power jump assets, moment swaps or some traded derivatives depending on the same underlying

asset. The hedging of the higher moments terms in the Taylor expansion of a contingent claim

using other contingent claims in a Lévy market is a technique introduced by this paper. When

these financial derivatives are not available, we demonstrate how to use the minimal variance

portfolios derived by Benth et al. (2003) to hedge the higher order terms in the Taylor expansion.

While we apply Taylor expansions to decompose the pricing formula into an infinite sum of higher
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moment terms, Corcuera et al. (2005) applied the Itô’s formula to obtain the PRP of a contingent

claim. Note that the Itô’s formula is derived as a result of the elementary Taylor expansion,

see Kijima (2002). In practice, when implementing a hedging strategy numerically, we have to

discretise the time variable. Hence, it is more natural to work directly from Taylor’s theorem as

this discretisation can be acknowledged explicitly. In fact, the delta and gamma hedges commonly

used by traders in the market, given in Section 3.2.4, are derived using a Taylor expansion. We

construct dynamic hedging strategies for European and exotic options in a Lévy market. Although

static hedging is only applied to European options, exotic options can be decomposed into a

basket of European options so that static hedging can be achieved; in this case see for example

Derman et al. (1995). It is practically important to be able to statically hedge since static hedging

has several advantages over dynamic hedging. Static hedging is less sensitive to the assumption

of zero transaction costs (both commissions and the cost of paying individuals to monitor the

positions). Moreover, dynamic hedging tends to fail when liquidity dries up or when the market

makes large moves, but especially in these situations effective hedging is needed.

We discuss how hedging can be implemented by applying Taylor’s theorem to a pricing for-

mula. We investigate the approximation of the derivatives of the pricing formula and present the

numerical procedures used to construct the hedging strategies. Performance of the hedging is

assessed and the difficulties encountered are discussed. Thus, this paper constitutes a practical

development for the hedging of contingent claims in a Lévy market.

The rest of the paper is arranged as follows: Section 2 gives the background about Lévy

processes and the CRPs in terms of power jump processes and Poisson random measures. Section

3 gives hedging strategies by investing in variance swaps, moment swaps or power jump assets

and extend the delta and gamma hedging strategies to higher moment hedging. Section 4 gives

the minimal variance portfolios in the case where perfect hedging is not possible. Section 5 gives

the approximation procedures of the hedging strategies and Section 6 gives the performance of

the hedging strategies implemented on a set of different types of options as illustration of the

performance of the proposed method. An example of static hedge of a one year European option

on real life data is given. In Section 7, some concluding remarks are provided. Proofs and tables

are included in the appendices at the end.

2 Background

In this section, we give a brief introduction to Lévy processes and the two versions of the CRP

discussed in the introduction. We discuss Taylor expansions which will later be used to derive the

hedging portfolios of exotic options.

Let X = {Xt, t ≥ 0} be a Lévy process in a complete probability space (Ω,F , P ) on R
d, where

F is the filtration generated by X : Ft = σ {Xt, 0 ≤ s ≤ t}, where σ denotes the sigma-algebra

generated by X. A detailed account of Lévy process can be found in Sato (1999). Denote the
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left limit process by Xt− = lims→t,s<tXs, t > 0, and the jump size at time t by ∆Xt = Xt −Xt−.

Let ν be the Lévy measure of X. In the rest of the paper, we assume that all Lévy measures

concerned satisfy, for some ε > 0 and λ > 0,
∫
(−ε,ε)c exp (λ |x|) ν (dx) <∞. This condition implies

that for i ≥ 2,
∫ +∞

−∞
|x|i ν (dx) <∞, and that the characteristic function E [exp (iuXt)] is analytic

in a neighborhood of 0. Denote the i-th power jump process by X
(i)
t =

∑
0<s≤t(∆Xs)

i, i ≥ 2, and

for completeness let X
(1)
t = Xt. Clearly E[Xt] = E[X

(1)
t ] = m1t, where m1 < ∞ is a constant

and by Protter (2004, p.32), we have

(2.1) E[X
(i)
t ] = E[

∑

0<s≤t

(∆Xs)
i] = t

∫ ∞

−∞

xiν(dx) = mit <∞, for i ≥ 2,

thus defining the moments mi. Nualart & Schoutens (2000) introduced the compensated power

jump process (or Teugels martingale) of order i, Y (i) =
{
Y

(i)
t , t ≥ 0

}
, defined by

(2.2) Y
(i)
t = X

(i)
t − E[X

(i)
t ] = X

(i)
t −mit for i = 1, 2, 3, ....

Y (i) is constructed to have a zero mean. It was shown by Nualart & Schoutens (2000, Section 2)

that there exist constants ai,1, ai,2, ..., ai,i−1 such that the processes defined by

(2.3) H
(i)
t = Y

(i)
t + ai,i−1Y

(i−1)
t + · · · + ai,1Y

(1)
t ,

for i ≥ 1 are a set of pairwise strongly orthogonal martingales. Nualart & Schoutens (2000) proved

the CRP and PRP in terms of these orthogonalised compensated power jump processes, H(i)′s.

Theorem 1 (Chaotic Representation Property (CRP)) Every random variable F in

L2(Ω,F) has a representation of the form

(2.4) F = E(F ) +
∞∑

j=1

∑

i1,...,ij≥1

∫ ∞

0

∫ t1−

0
· · ·

∫ tj−1−

0
f(i1,...,ij)(t1, ..., tj)dH

(ij)
tj

...dH
(i2)
t2 dH

(i1)
t1 ,

where the f(i1,...,ij)’s are functions in L2(Rj
+) and H’s are defined in equation (2.3).

Theorem 2 (Predictable Representation Property (PRP)) The CRP stated above

implies that every random variable F in L2 (Ω,F) has a representation of the form

(2.5) F = E [F ] +
∞∑

i=1

∫ ∞

0
φ(i)
s dH(i)

s ,

where φ
(i)
s ’s are predictable, that is, they are Fs−-measurable.

In contrasts, Itô (1956) proved a chaos expansion for general Lévy processes in terms of mul-

tiple integrals with respect to the compensated Poisson random measure. One may convert the
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representation to one involving iterated integrals (see Løkka (2004)). The stochastic integrals are

in terms of both Brownian motion, W , and the compensated Poisson measure Ñ ,

(2.6) Ñ (dt,dx) = N (dt,dx) − ν (dx) dt,

where ν (dx) is the Lévy measure of the underlying Lévy process, and

N (B) = # {t : (t,∆Xt) ∈ B} , B ∈ B ([0, T ] × R0) ,

is the Poisson random measure of the Lévy process where B ([0, T ] × R0) is the Borel σ-algebra

of [0, T ] × R0 and R0 = R−{0}. The compensator of N (dt,dx) is known to be E [N (dt,dx)] =

ν (dx) dt. Benth et al. (2003) derived relations between the two chaos expansions. When the

underlying Lévy process is a pure jump process, the compensated power jump process defined in

(2.2) satisfies

(2.7) Y
(i)
t =

∫ t

0

∫

R

xiÑ (ds,dx) , 0 ≤ t ≤ T, i = 1, 2, ....

This relationship is very important in the development of the chaotic representation of Lévy

processes. Since the introduction of the chaos expansion by Itô (1956), the development of

representations in the literature has been focused on expansions with respect to the Poisson random

measure. Unfortunately, we cannot trade in the Poisson random measure. Note that trading in a

finite set of power jump assets is possible because the i-th power jump asset contains information

of the i-th moment of the Lévy process, given that i is finite. Therefore, it is theoretically possible

to construct a financial product which contains information of the i-th moment of the underlying

process. For example, if we want to hedge the risk introduced by the variance of the underlying

process, we can trade in the variance swaps or the second power jump asset. However, the Poisson

random measure contains all the information of the moments up to infinity and hence it is not

clear how to construct such a financial product unless information of all the higher moments are

obtained. This limits the application of the CRP in terms of Poisson random measures and also the

application of Lévy processes in finance. The equation (2.7) links the two important expansions

together and hence the results derived for expansions in terms of Poisson random measures can be

applied to the expansions in terms of power jump processes.

To unify notation, Benth et al. (2003) defined the following notation:

U1 = [0, T ] , U2 = [0, T ] × R,dQ1 (·) = dW (·) , Q2 (·) = Ñ (·, ·) ,

∫

U1

g
(
u(1)

)
Q1

(
du(1)

)
=

∫ t

0
g (s)W (ds) ,

∫

U2

g
(
u(2)

)
Q2

(
du(2)

)
=

∫ t

0

∫

R

g (s, x) Ñ (ds,dx) .

The CRP in terms of Brownian motion and Poisson random measures is given by:
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Theorem 3 (Chaos expansion for general Lévy process by Itô (1956)) Let F be a

square integrable random variable adapted to the underlying Lévy process, X. We have

(2.8) F = E [F ] +
∞∑

n=1

∑

j1,...,jn=1,2

J̃n

(
g(j1,...,jn)
n

)
,

for a unique sequence g
(j1,...,jn)
n (j1, ..., jn = 1, 2; n = 1, 2, ...) of deterministic functions in the

corresponding L2-space, L2 (Gn) , where

(2.9) Gn =
{(
u

(j1)
1 , ..., u(jn)

n

)
∈ Πn

i=1Uji : 0 ≤ t1 ≤ · · · ≤ tn ≤ T
}

with u(ji) = t if ji = 1, and u(ji) = (t, x) if ji = 2, and

J̃n

(
g(j1,...,jn)
n

)

=

∫

Πn
i=1Uji

g(j1,...,jn)
n

(
u

(j1)
1 , ..., u(jn)

n

)
1Gn

(
u

(j1)
1 , ..., u(jn)

n

)
Qj1

(
du

(j1)
1

)
· · ·Qjn

(
du(jn)

n

)
.

So far we have given the theoretical results on the chaotic representations. We now discuss

their financial applications. Under the Black-Scholes model, the PRP of Brownian motions allows

perfect hedging of European options. Unfortunately, the derivation of hedging strategies of options

in an incomplete market is not as simple and has been the focus of considerable study in the

literature, see for example Carr et al. (2001), He et al. (2005) and Cont et al. (2005). In this

paper, by extending the ideas of Corcuera et al. (2005), Schoutens (2005) and Benth et al. (2003),

we derive and implement some hedging strategies for European and exotic options. Numerical

procedures are provided and performance of the hedging strategies is discussed.

As mentioned above, the PRP is useful in option hedging. For option pricing functions which

are infinitely differentiable in the stock price, we can simply apply the Itô’s formula to obtain such a

predictable representation. Assuming power jump assets are traded in the market, Corcuera et al.

(2005) derived a self-financing replicating portfolio for a contingent claim whose payoff function

only depends on the stock price at maturity. Their hedging formula is derived from the Itô’s

formula and given in terms of an infinite sum of stochastic integrals. In this paper, we use a

different approach to determine a self-financing replicating portfolio, which, in some cases, can be

used in both static and dynamic hedging with a flexible ∆t, where ∆t denotes the time change

during the hedging period. We discuss this in more detail in Section 3. We apply Taylor’s theorem

directly to the option pricing formulae to obtain the hedging portfolios. In the literature, the

results on option hedging using CRP of Lévy processes, has previously focused on the theoretical

aspects of the problem, see, for example, Corcuera et al. (2005) and Løkka (2004). We aim to

investigate the problem from a practical point of view by providing methods to obtain the hedging

portfolios explicitly using numerical methods and shall discuss the difficulties encountered. Our
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approach can be applied to a range of exotic options in the case of dynamic hedging, for example,

barrier options, lookback options and Asian options.

3 The perfect hedging strategies

In this section, we derive hedging strategies using Taylor’s theorem. Firstly, we specify the

model of the underlying asset, St. Following Corcuera et al. (2005, Theorem 3), we assume

(3.1) dSt = bSt−dt+ St−dXt,

where X = {Xt, t ≥ 0} is a general Lévy process. Let the risk-free bank account be Bt = exp (rt) ,

where r is the continuously compounded risk-free rate. Let F (t, x) be the option pricing function

at time t < T and stock price equal to x, where T is the maturity of the option. Let Di
1F (t, x)

be the i-th derivative of F (t, x) with respect to the first variable (time), and Di
2F (t, x) be the

i-th derivative of F (t, x) with respect to the second variable (stock price). Suppose F (t, x) is

continuous and infinitely differentiable in the second variable and satisfies

sup
x<K,t≤t0

∞∑

n=2

|Dn
2F (t, x)|Rn <∞ for all K,R > 0, t0 > 0.

Let ∆t be the time change during the hedging period and ∆St = St+∆t − St. Applying Taylor’s

theorem twice to the option pricing formula, F (t, St), we obtain

(3.2) F (t+ ∆t, St + ∆St) − F (t, St) =

∞∑

i=1

Di
2F (t+ ∆t, St)

i!
(∆St)

i +

∞∑

i=1

Di
1F (t, St)

i!
(∆t)i ,

which is true as long as Di
2F (t+ ∆t, St) and Di

1F (t, St) exist for i = 1, 2, 3, .... Note that it is

not necessary to apply the multivariate Taylor’s theorem since the value of ∆t is known at time t.

Let M (q) (t, x) be the price of a financial derivative such that M (q) (0, S0) = F (0, S0) and

(3.3) M (q) (t+ ∆t, St + ∆St)−M
(q) (t, St) =

q∑

i=1

Di
2F (t+ ∆t, St)

i!
(∆St)

i+

∞∑

i=1

Di
1F (t, St)

i!
(∆t)i ,

where q is a positive integer. Therefore, we have limq→∞M (q) (T, ST ) = F (T, ST ) , that is, the

value of the financial derivative M (q) converges to F as q goes to infinity. Our aim is to construct

a self-financing hedging portfolio for M (q). Note that the hedging error at time ∆t,

[F (t+ ∆t, St + ∆St) − F (t, St)] −
[
M (q) (t+ ∆t, St + ∆St) −M (q) (t, St)

]

=
∞∑

i=q+1

Di
2F (t+ ∆t, St)

i!
(∆St)

i ,
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can be approximated using standard techniques in calculating the remainder terms in a Taylor

expansion. Let P
(i)
t be the value of a basket of financial derivatives such as the risk-free bank

account, the underlying stock, variance swaps, moment swaps, power jump assets or other financial

derivatives depending on the same underlying stock such that (∆St)
i = ∆P

(i)
t = P

(i)
t+∆t − P

(i)
t .

Note that P
(i)
t is a basket of assets that would not lead to arbitrage opportunities. We will show

later how to construct such a basket of tradable assets. Therefore, we have

M (q) (t+ ∆t, St + ∆St) −M (q) (t, St) =
∞∑

i=1

Di
1F (t, St)

i!
(∆t)i +D1

2F (t+ ∆t, St)∆St

+

q∑

i=2

Di
2F (t+ ∆t, St)

i!
∆P

(i)
t .(3.4)

The self-financing portfolio to hedge M (q) (t+ ∆t, St + ∆St) −M (q) (t, St) is then

(i) Invest

(3.5)
1

(exp (r∆t) − 1)

∞∑

i=1

Di
1F (t, St) (∆t)i /i!

in a riskless bank account such that at time t+ ∆t, the deposit is worth

1

(exp (r∆t) − 1)

∞∑

i=1

Di
1F (t, St) (∆t)i exp (r∆t) /i!

and the change of value of the investment is
∑∞

i=1
Di

1F (t,St)
i! (∆t)i.

(ii) Invest D1
2F (t+ ∆t, St) in the underlying stock;

(iii) Invest
Di

2F (t+ ∆t, St)

i!
in P

(i)
t for i = 2, 3, ..., q.

In real life application, we have to find a reasonable value for q and we discuss methods of

choosing q in Section 6. Note that the approximation in (3.3) requires the existence of Di
1F (t, St)

for i = 1, 2, 3, ... and Di
2F (t+ ∆t, St) only for i = 1, 2, 3, ..., q. The value of q determines how many

different financial derivatives needed to hedge the option up to a pre-specified level of accuracy.

If q = 1, we only need to hedge the deterministic term that appears as the first term in equation

(3.4) by investing in a risk-free bank account, and the term D1
2F (t+ ∆t, St)∆St by investing in

the underlying stock, which is a simple extension to the delta hedging discussed in Section 3.2.4.

If q = 2, we can hedge by investing in a risk-free bank account, the underlying stock and the

variance swaps currently traded in the market, which is discussed in Section 3.2.1. If q ≥ 3, we

can consider perfect hedging in three cases: (a) trading in moment swaps, discussed in Section

3.2.2, (b) trading in power jump assets, discussed in Section 3.2.3 and (c) trading in some financial
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derivatives depending on the same underlying assets, discussed in Section 3.2.4. Note that (a) and

(b) are not liquidly traded in the market while (c) might be more readily available. If all of these

financial derivatives are not available for trading, we can employ the minimal variance portfolios

derived in Section 4.

The approximation in (3.3) can be used in both static and dynamic hedging for European

options by just changing ∆t. The reason why static hedging may not be applicable to exotic

options is because if during the hedging period, ∆t, the value of the St+∆s, where ∆s < ∆t is

explicitly occurring in the formulae, then this must be used in the calculation of the option price.

In this case, we have to apply Taylor’s theorem with respect to both ∆St = (St+∆t − St) and

(St+∆s − St). In the case of dynamic hedging, we can assume that the minimum time period for

a change of value of S to take place is equal to ∆t , the hedging period. Although static hedging

can only be applied to European options, some exotic options can be decomposed into a basket

of European options such that static hedging can still be achieved, see for example Derman et al.

(1995). In Section 6, we show the approximation results for both static hedging (∆t equals to 3

months) and dynamic hedging (∆t equals to 5 minutes) for European options and dynamic hedging

for barrier options. The advantage of static hedging over dynamic hedging is that in real life,

transaction costs and bid-ask spreads of option prices are not negligible. The replicating portfolio

is not truly self-financing since extra investment must be made to pay for these additional costs.

Hence, it is preferable to hedge statically rather than dynamically as the costs involved will be

less and constant rebalancing is not required. In the literature and in practice, it is common to

assume that ∆St is very small such that the approximation in (3.3) can be truncated without loss

of accuracy; this is the main assumption behind the delta and gamma hedges commonly used by

traders in the market. However, in real life, the price of every traded asset in the market moves

by a tick size, such as 0.5 or 1. After a very short period of time, the price of the traded asset

either stays unchanged or moves by a multiple of the tick size. Hence, the assumption of ∆St

being very small in hedging is not sufficiently accurate. It would not in general be reasonable to

assume that ∆St is small when modelling S as a process with jumps. Thus, we consider ∆St ≥ 1

for both static and dynamic hedging in our simulation analysis in Section 6.

3.1 Hedging instruments

In this section, we consider the use of moment swaps (including variance swaps) and power jump

assets in our hedging strategies. Recall the PRP for Lévy processes involves stochastic integrals

with respect to power jump processes, which are related to the higher moments of the underlying

Lévy process. In equation (3.3), they are represented through the terms
Di

2F (t+∆t,St)
i! (∆St)

i .

To hedge these terms, we need to invest in some financial derivatives related to these higher

moments. We show how moment swaps introduced by Schoutens (2005) and power jump assets

by Corcuera et al. (2005) can be used to construct P
(i)
t used in the hedging portfolio given in

(3.4). Variance swaps, introduced by Demeterfi et al. (1999), are commonly traded over-the-
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counter (OTC) derivatives. Schoutens (2005) generalised variance swaps to moment swaps, which

are not liquidly traded in the market. Windcliff et al. (2006) gave a detailed discussion on

volatility swaps. There are two common contractual definitions of returns of stock price. Let

{s1, s2, ..., sn} be the sampling points of the contract, where the s’s are equally spaced with length

∆s. The actual return and the log return are defined to be

(3.6) Ractual,i =
(
Ssi+1 − Ssi

)
/Ssi

and Rlog,i = log
(
Ssi+1/Ssi

)
.

The annualised realised variance, σ2
realised, is defined by σ2

realised = 1
∆s(n−2)

∑n−1
i=1 R

2
i where Ri is

either the actual return or log return of the stock price. In the case of log return, Ri = Rlog,i,

Schoutens (2005) generalised variance swaps to moment swaps. The annualised realised k-th

moment is defined by M
(k)
realised = 1

∆s(n−2)

∑n−1
i=1 R

k
i . This definition can be easily extended to the

case where Ri = Ractual,i. We can now give the definition of the k-th moment swap.

Definition 1 A k-th moment swap is a forward contract on annualised realised k-th moment,

M
(k)
realised

. Its payoff to the holder at expiration is equal to
(
M

(k)
realised

−M
(k)
strike

)
N, where M

(k)
realised

is the realised k-th moment (quoted in annual terms) over the life of the contract, M
(k)
strike

is the

pre-defined delivery price for the k-th moment, and N is the notional amount of the swap. The

annualised realised k-th moment is calculated based on the pre-specified set of sampling points

over the period, {s1, s2, ..., sn}.

Corcuera et al. (2005) suggested enlarging the Lévy market with power jump assets, where the

i-th power jump asset is defined by

(3.7) T
(i)
t = exp (rt)Y

(i)
t , i ≥ 2,

and Y
(i)
t is defined in (2.2). The authors derived the dynamic hedging portfolio trading in these

assets using the Itô’s formula and noted that the 2nd power jump process is related to the realised

variance. However, the 2nd power jump asset is not the same as a variance swap and we consider

their usages separately in Section 3.2.

3.2 Hedging strategies

In the last section, we introduce two different kinds of financial derivatives involving higher

moments, namely, the moment swaps and the power jump assets. In this section, we explain

how to use them to construct the basket of financial derivatives, P
(i)
t , in order to hedge the terms

in equation (3.3). We also discuss the delta and gamma hedges in the literature and we extend

them in order to obtain perfect hedging by trading in certain financial derivatives depending on

the same underlying asset, which may be available in the market.
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3.2.1 Hedging with variance swaps

To hedge the term (∆St)
2 in equation (3.3), we construct P

(2)
t which invest in a risk-free bank

account and variance swaps. If ∆t is negligible compared to ∆St, from (3.1), we have

(3.8) (∆St)
2 = S2

t (∆Xt)
2 .

We cannot use the variance swaps using log return, Rlog,i defined in (3.6) to hedge. We have

[
log

(
St+∆t

St

)]2

≏ [log (1 + ∆Xt)]
2

since we assume ∆t to be negligible. From (3.8), we need (∆Xt)
2 rather than [log (1 + ∆Xt)]

2

to hedge, therefore the variance swaps using log returns are not useful in this case. Even if we

use the model St+∆t = St exp (∆Xt) such that log (St+∆t/St) = ∆Xt, we then have (∆St)
2 =

(St+∆t − St)
2 = S2

t [exp (∆Xt) − 1]2 , which still can not be hedged by the variance swaps using

log returns. Therefore, in our case where we apply Taylor’s theorem with respect to ∆St, we

should invest in the variance swaps using absolute returns, Ractual,i, as defined in (3.6).

Recall in Section 3.1 that there is a set of sampling points, {s1, s2, ..., sn}, for each contract.

We invest in the variance swap at time t where the last two sampling points are equal to t and

t+∆t: sn−1 = t and sn = t+∆t and maturity equal to t+∆t. At maturity, we receive the payoff

σ2
realised − σ2

strike, where

σ2
realised =

1

∆s (n− 2)

n−1∑

i=1

(
Sti+1 − Sti

Sti

)2

=
1

∆s (n− 2)

[(
∆St
St

)2

+

n−2∑

i=1

(
Sti+1 − Sti

Sti

)2
]

and the value of
n−2∑
i=1

[
(Sti+1 − Sti)/Sti

]2
is known at time t. In the following, we give the hedging

strategy to hedge the term

(3.9) Q2 =
D2

2F (t+ ∆t, St)

2
(∆St)

2 = C2 (∆St)
2

in equation (3.3) by constructing P
(2)
t .

Proposition 1 To hedge the term Q2 in equation (3.9) we invest in C2 units of P
(2)
t at time t,

consisting of ∆s (n− 2)S2
t units of the variance swap with sampling points

{..., sn−1 = t, sn = t+ ∆t} , maturity t+ ∆t, strike σ2
strike

and

S2
t ∆s (n− 2)

[exp (r∆t) − 1]

[
σ2

strike −
1

∆s (n− 2)

n−2∑

i=1

(
Sti+1 − Sti

Sti

)2
]

+
PV ∆s (n− 2)S2

t

[exp (r∆t) − 1]
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units of cash in a risk-free bank account, where PV is the price of one unit of the variance swap.

Proof. Let

(3.10) Sn,2 =
1

∆s (n− 2)

n−2∑

i=1

(
Sti+1 − Sti

Sti

)2

=
1

∆s (n− 2)
S̃n,2.

The initial investment at time t equals the price of the variance swap plus the deposit into the

risk-free bank account, which is equal to

C2∆s (n− 2)S2
t PV

[
1 +

1

er∆t − 1

]
+
C2S

2
t∆s (n− 2)

[exp (r∆t) − 1]

[
σ2

strike − Sn,2
]
.

At maturity, the portfolio is worth

C2 (∆St)
2 + C2S

2
t∆s (n− 2)

[
σ2

strike − Sn,2
]
/
[(
er∆t − 1

)]
+ C2PV

∆s (n− 2)S2
t e
r∆t

er∆t − 1
.

Hence, the change of value of the hedging portfolio is equal to

C2 (∆St)
2 + C2∆s (n− 2)S2

t PV

[
er∆t

er∆t − 1
− 1 −

1

er∆t − 1

]
= C2 (∆St)

2 ,

as desired. �

3.2.2 Hedging with moment swaps

In the last section, we explained how to hedge the term Q2 in equation (3.9) using variance swaps.

The idea can be extended easily to moment swaps to hedge the term

Qi =
Di

2F (t+ ∆t, St)

i!
(∆St)

i = Ci (∆St)
i

for i = 3, 4, 5, ..., which can be done by investing in the i-th moment swap at time t with sampling

points sn−1 = t and sn = t+ ∆t and maturity equal to t+ ∆t. At maturity, we receive the payoff

M
(i)
realised −M

(i)
strike, where

M
(i)
realised =

1

∆s (n− 2)

[(
∆St
St

)i

+
n−2∑

i=1

(
Sti+1 − Sti

Sti

)i
]

=
1

∆s (n− 2)

[(
∆St
St

)i

+ S̃n,i

]
,

and the value of S̃n,i is known at time t. In the following, we give the hedging strategy to hedge

the term Qi by constructing P
(i)
t .

Proposition 2 To hedge the terms Qi we invest in Ci units of P
(i)
t at time t, consisting of

∆s (n− 2)Sit units of the i-th moment swap with sampling points {..., sn−1 = t, sn = t+ ∆t} ,
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maturity t+ ∆t and strike M
(i)
strike

, and

Sit∆s (n− 2)

[exp (r∆t) − 1]

[
M

(i)
strike

−
1

∆s (n− 2)
S̃n,i

]
+

∆s (n− 2)SitPM
[exp (r∆t) − 1]

units of cash in a risk-free bank account where PM is the price of one unit of the moment swap.

Proof. The proof follows in the same fashion as for Proposition 1.

�

3.2.3 Hedging with power jump processes of higher orders

In the last two sections, we discuss how to hedge the term
∑q

i=1Qi for q ≥ 2 using variance swaps

and moment swaps. We can instead hedge using power jump assets, discussed in Section 3.1, if

we allow trading of them. Using Itô’s formula, see Corcuera et al. (2005, Section 2.3), equation

(3.1) has the solution

(3.11) St = S0 exp
(
Xt +

(
b− σ2/2

)
t
) ∏

0<s≤t

(1 + ∆Ls) exp (−∆Ls) ,

where b is defined in (3.1), σ2 is the Brownian variance parameter and L is the pure jump part of

the Lévy process X, see Corcuera et al. (2005, Section 2) for details. In the following, we consider

the simplified case where there is at most one jump of X between t and t + ∆t, and the general

case where there can be infinite number of jumps. Note that the latter case might not be realistic

because in reality, we only observe a discrete series of the underlying stock S, while the power

jump processes of the Lévy process with infinite activity are not observable. Therefore, it appears

to be more practical to consider trading in moment swaps rather than power jump processes. We

consider both assets for completeness and theoretical interest.

The simplified case If ∆t is negligible compared to ∆St, from (3.1), (3.7) and assuming there

is at most one jump of X between t and t+ ∆t, we have

(3.12) (∆St)
i = Sit

[
exp (−r (t+ ∆t))T

(i)
t+∆t − exp (−rt)T

(i)
t +mi∆t

]
.

Therefore, we can hedge the term Qi by constructing P
(i)
t :

Proposition 3 If ∆t is negligible compared to ∆St, to hedge Qi, we invest in Ci units of P
(i)
t ,

consisting of Sit exp (−r (t+ ∆t)) units of T
(i)
t and

Sit

{
e−r(t+∆t)T

(i)
t − e−rtT

(i)
t +mi∆t

}
/
[
er∆t − 1

]
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units of cash in a risk-free bank account.

Proof. The proof is included in Appendix A.1. �

If ∆t is not negligible compared to ∆St, assuming σ = 0 and there is only one jump of X

between times t and t+ ∆t as before, we have from (3.11)

(3.13) ∆St = St [exp (b∆t) (1 + ∆Xt) − 1] .

Note that if ∆t → 0, exp (b∆t) → 1, we have ∆St = St (∆Xt), as in the case above. Squaring

both sides, we have

(∆St)
2 = S2

t

{
e2b∆t (∆Xt)

2 + 2eb∆t
[
eb∆t − 1

]
∆Xt +

[
eb∆t − 1

]2
}
.

Substituting ∆Xt by
[

∆St

St
+ 1

]
exp (−b∆t) − 1, we have

(∆St)
2 = 2St [exp (b∆t) − 1] ∆St + S2

t exp (2b∆t) (∆Xt)
2 − S2

t [exp (b∆t) − 1]2 .

Similarly to (3.12) above,

(3.14)

(∆St)
2 = −S2

t

[
eb∆t − 1

]2
+ 2St

[
eb∆t − 1

]
∆St + S2

t e
2b∆t

[
e−r(t+∆t)T

(2)
t+∆t − e−rtT

(2)
t +m2∆t

]
.

We can then hedge the term Q2 by constructing P
(2)
t :

Proposition 4 If ∆t is not negligible compared to ∆St, to hedge the term Q2, we invest in C2

units of P
(2)
t , consisting of S2

t e
2b∆te−r(t+∆t) units of T

(2)
t and

{
S2
t e

2b∆t−r(t+∆t)T
(2)
t − S2

t

[
eb∆t − 1

]2
+ 2St

[
eb∆t − 1

]
∆St

+ S2
t e

2b∆t
[
−e−rtT

(2)
t +m2∆t

]}
/
[
er∆t − 1

]

units of cash in a risk-free bank account.

Proof. The proof is similar to that of Proposition 3. �

To hedge Ci for i > 2 if ∆t is not negligible compared to ∆St, we start from (3.13),

(∆St)
i = Sit





i∑

j=0

(
i

j

)
(−1)i−j exp (jb∆t)

[
1 + j∆Xt +

j∑

k=2

(
j

k

)
(∆Xt)

k

]

 .
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Substituting ∆Xt by
[

∆St

St
+ 1

]
exp (−b∆t) − 1, we have

(∆St)
i = Sit

i∑

j=0

(
i

j

)
(−1)i−j ejb∆t

{
1 + j

(
e−b∆t − 1

)
+ je−b∆t

∆St
St

+

j∑

k=2

(
j

k

)
(∆Xt)

k

}
.

Let

c
(i,j)
0 = Sit

(
i

j

)
(−1)i−j exp (jb∆t) {1 + j (exp (−b∆t)− 1)}(3.15)

c
(i,j)
1 = Si−1

t

(
i

j

)
(−1)i−j j exp ((j − 1) b∆t)(3.16)

c
(i,j)
k = Sit

(
i

j

)
(−1)i−j exp (jb∆t)

(
j

k

)
for k = 2, 3, ..., j ,(3.17)

we have

(∆St)
i =

i∑

j=0

[
c
(i,j)
1 ∆St +

j∑

k=2

c
(i,j)
k (∆Xt)

k + c
(i,j)
0

]
.

Similar to (3.12) above,

(∆St)
i =

i∑

j=0

[
c
(i,j)
1 ∆St +

j∑

k=2

c
(i,j)
k

[
exp (−r (t+ ∆t))T

(k)
t+∆t − exp (−rt)T

(k)
t +mk∆t

]
+ c

(i,j)
0

]
.

Therefore, we can hedge the term Qi by constructing P
(i)
t :

Proposition 5 To hedge Qi for i > 2 if ∆t is not negligible compared to ∆St, we invest in Ci

units of P
(i)
t , consisting of

∑i
j=k c

(i,j)
k exp (−r (t+ ∆t)) units of T

(k)
t for k = 2, 3, ...i, and

1

[exp (r∆t) − 1]

i∑

j=0

{
j∑

k=2

c
(i,j)
k exp (−r (t+ ∆t))T

(k)
t

+ c
(i,j)
1 ∆St +

j∑

k=2

c
(i,j)
k

[
− exp (−rt)T

(k)
t +mk∆t

]
+ c

(i,j)
0

}

units of cash in a risk-free bank account, where c
(i,j)
0 , c

(i,j)
1 and c

(i,j)
k are defined in (3.15)-(3.17).

Proof. The proof is similar to that of Proposition 3. �

The general case In the case where there are infinite number of jumps from t to t + ∆t, we

need the following results on explicit formulae of CRP proved by Yip et al. (2007). Let

(3.18) Ik =



(i1, i2, ..., il) | l ∈ {1, 2, ..., k} , iq ∈ {1, 2, ..., k} and

l∑

q=1

iq ≤ k




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and

(3.19) Lk =



(i1, i2, ..., il) |l ∈ {1, 2, ..., k} , iq ∈ {1, 2, ..., k} , i1 ≥ i2 ≥ · · · ≥ il,

l∑

q=1

iq = k



 .

The number of distinct values in a tuple φk =
(
i
(k)
1 , i

(k)
2 , ..., i

(k)
l

)
in Lk is less than or equal to l.

When it is less than l, it means some of the value(s) in the tuple are repeated. Let the number

of times r ∈ {1, 2, 3, .., k} appears in the tuple φk =
(
i
(k)
1 , i

(k)
2 , ..., i

(k)
l

)
be pφk

r . Denote the terms

which do not contain any stochastic integral in (Xt+∆t −Xt)
k by C

(k)
∆t,σ.

Proposition 6

(3.20) C
(k)
∆t,σ =

∑

φk=
“

i
(k)
1 ,i

(k)
2 ,...,i

(k)
l

”

∈Lk

1

l!

(
i
(k)
1 , i

(k)
2 , ..., i

(k)
l

)
!
(
pφk

1 , pφk

2 , ..., pφk

k

)
!




∏

q∈φk

m′
q


 tl,

where i
(k)
1 , ..., i

(k)
l are the elements of φk, p

φk

j ’s are defined above and
(
i
(k)
1 , i

(k)
2 , ..., i

(k)
l

)
! is the

multinomial coefficient:
(
i
(k)
1 , i

(k)
2 , ..., i

(k)
l

)
! =

“

Pl
j=1 i

(k)
j

”

!

i
(k)
1 !i

(k)
2 !···i

(k)
l

!
, m′

q = mq for q 6= 2 and m′
2 = m2 + σ2.

Denote the coefficient of the stochastic integral
∫ t+∆t
t

∫ t1−
t · · ·

∫ tj−1−

t dY
(i1)
tj

· · · dY
(ij−1)
t2 dY

(ij)
t1 in

(Xt+∆t −Xt)
k by Π

(k)
(i1,i2,...,ij),∆t,σ

. We then have the following result.

Proposition 7

(3.21) Π
(k)
(i1,i2,...,ij),∆t,σ

= (i1, i2, ..., ij , n)!C
(n)
∆t,σ where n = k −

j∑

p=1

ip.

Theorem 4 For any Lévy process X, the representation of (Xt+∆t −Xt)
n is given by

(Xt+∆t −Xt)
n =

∑

θn∈In

Π
(n)
θn,∆t,σ

S ′
θn,∆t,t + C

(n)
∆t,σ,

where In is defined in (3.18), Π
(n)
θn,∆t,σ

and C
(n)
∆t,σ are defined above and S ′

(i1,i2,...,ij),∆t,t
is defined

to be the integral

S ′
(i1,i2,...,ij),∆t,t

=

∫ t+∆t

t

∫ t1−

t
· · ·

∫ tj−1−

t
dY

(i1)
tj

· · · dY
(ij−1)
t2 dY

(ij)
t1 .

If ∆t is negligible compared to ∆St, from (3.1) and Theorem 4, we have

(3.22) (∆St)
n = Snt (∆Xt)

n = Snt (Xt+∆t −Xt)
n = Snt




∑

θn∈In

Π
(n)
θn,∆t,σ

S ′
θn,∆t,t + C

(n)
∆t,σ


 .
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In order to hedge (∆St)
n, we can invest in the power jump integral process:

U(i1,i2,...,ij),∆t,t = exp (r∆t)S ′
(i1,i2,...,ij),∆t,t

.

Note that since Y (i)’s are martingales,
{
S ′

(i1,i2,...,ij),∆t,t
, t ≥ 0

}
’s are also martingales. Therefore,

the discounted versions of the U(i1,i2,...,ij),∆t,t are Q-martingales:

EQ

[
exp (−r∆t)U(i1,i2,...,ij),∆t,t|Fs

]
= EQ

[
S ′

(i1,i2,...,ij),∆t,t
|Fs

]
= S ′

(i1,i2,...,ij),s−t,t
, t ≤ s ≤ t+ ∆t.

Hence the market allowing trade in the bond, the stock and the power jump integral assets remains

arbitrage-free. From (3.22), we have (∆St)
n = Snt

[∑
θn∈In

Π
(n)
θn,∆t,σ

exp (−r∆t)Uθn,∆t,t + C
(n)
∆t,σ

]
.

Proposition 8 If ∆t is negligible compared to ∆St, to hedge Qi, we invest in Ci units of P
(i)
t ,

consisting of SitΠ
(i)
θi,∆t,σ

exp (−r∆t) units of Uθi,∆t,t for θi ∈ Ii and
Si

tC
(i)
∆t,σ

(exp(r∆t)−1) units of cash in a

risk-free bank account.

Remark 1 In this general case, we can only derive simple hedging strategy when ∆t is negligible.

Note that both power jump assets introduced by Corcuera et al. (2005) and power jump integral

assets introduced here are imaginary assets. In reality, we only observe a discrete series of stock

price, S, while there are an infinite number of jumps between any finite time interval if the

underlying Lévy process has infinite activity. In other words, the values of these assets cannot be

observed in the market and hence cannot be traded. The moment swaps introduced by Schoutens

(2005) depend on the increment of the underlying stock, ∆S, and can hence be observed and

traded in reality. We include the discussion on power jump assets for theoretical interest.

Alternatively, note that in S ′
(i1,i2,...,ij),∆t,t

, the integrand
∫ t1−
t · · ·

∫ tj−1−

t dY
(i1)
tj

· · · dY
(ij−1)
t2 is a

predictable function. Since we assume ∆t to be very small, we can hedge (∆St)
n by investing in

the power jump assets. Let φ
(n)
j,s be the predictable function such that

(3.23) (∆St)
n = Snt




∑

θn∈In

Π
(n)
θn,∆t,σ

S ′
θn,∆t,t + C

(n)
∆t,σ


 =

n∑

j=1

∫ t+∆t

t
φ

(n)
j,s dY (j)

s + Snt C
(n)
∆t,σ,

where φ
(n)
j,s ’s can be calculated by rearranging the terms in Snt

∑
θn∈In

Π
(n)
θn,∆t,σ

S ′
θn,∆t,t

’s. We then

have

(∆St)
n =

∫ t+∆t

t

n∑

j=1

−e−2rsT (j)
s φ

(n)
j,s ders + Snt C

(n)
∆t,σ +

n∑

j=1

∫ t+∆t

t
φ

(n)
j,s e

−rsdT (j)
s .

Hence, to hedge (∆St)
n, we invest

∑n
j=1 −e

−2r∆tT
(j)
t φ

(n)
j,t +

Sn
t C

(n)
∆t,σ

exp(r∆t)−1 in a riskless bank account

and invest φ
(n)
j,t e

−r∆t units of T
(i)
t for j = 1, 2, ..., n.
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3.2.4 Extension of delta and gamma hedges

So far we have discussed the hedging strategies using moment swaps and power jump assets. In

this section, we give a brief introduction to delta and gamma hedging strategies and extend it to

obtain perfect hedging in a Lévy market. Let Π be the value of the portfolio under consideration.

The delta and gamma dynamic hedging strategies are constructed using a Taylor expansion:

(3.24) δΠ =
∂Π

∂S
δS +

∂Π

∂t
δt+

1

2

∂2Π

∂S2
δS2 +

1

2

∂2Π

∂t2
δt2 +

∂2Π

∂S∂t
δSδt + ...,

where δΠ and δS are the changes in Π and S in a small time interval δt. Hull (2003, Chapter 14)

gave detailed descriptions of the strategies in finance. The delta of a portfolio is defined as ∂Π
∂S .

Delta hedging eliminates the first term on the right-hand side of (3.24). The gamma of a portfolio

is defined as ∂2Π
∂S2 . Gamma hedging eliminates the third term on the right-hand side of (3.24).

Below we extend the gamma hedge in order to obtain a perfect hedging strategy in a Lévy

market. Note that equation (3.24) is a multivariate Taylor expansion and it is assumed that all

the cross derivative terms are negligible. In equation (3.3), we applied Taylor expansions twice

to avoid the cross derivative terms, since the value of ∆t is deterministic and known at time t.

Hence, for fixed n, the approximation by:

(3.25) F (t+ ∆t, St + ∆St) − F (t, St) =

∞∑

i=1

Di
1F (t, St)

i!
(∆t)i +

n∑

i=1

Di
2F (t+ ∆t, St)

i!
(∆St)

i

is more accurate than

F (t+ ∆t, St + ∆St) − F (t, St) =

∞∑

i=1

Di
1F (t, St)

i!
(∆t)i +

n∑

i=1

Di
2F (t, St)

i!
(∆St)

i .

Moreover, in the literature, ∆t and ∆S are assumed to be very small (such that the cross terms

and higher terms are negligible). We provide the flexibility of specifying the values of ∆t and ∆St

such that static hedging is possible in some cases.

It is natural to extend the delta and gamma hedging strategies to the n-th derivative of the

portfolio with respect to the underlying asset using the approximation of equation (3.25). Let

F be the value of our portfolio to be hedged and there are n − 1 traded financial derivatives,

Fi, i = 2, ..., n, which are linearly independent of each other. Suppose we add wi number of

Fi into our portfolio, i = 2, ..., n and add w1 number of the underlying asset, which is denoted

by F1. We assume that Dj
2Fi (t+ ∆t, St) are nonzero for j = i and can be zero, or not, for

j = 1, 2, ..., i−1, i+1, ..., n. In general, to make the portfolio k-th moment neutral for k = 1, ..., n,

we need Dk
2F (t+ ∆t, St) +

∑n
i=1wiD

k
2Fi (t+ ∆t, St) = 0 for k = 1, 2, ..., n. Therefore, we have n

equations for n unknown, wi’s. Note that whether the system of equations is solvable depends on

the values of Dk
2Fi (t+ ∆t, St), i, k = 1, 2, ..., n. Therefore, the traded financial derivatives have
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to be chosen such that the system of equations are solvable.

4 Minimal variance portfolios in a Lévy market

In Section 3, we gave the perfect hedging portfolios, given that the moment swaps, power jump

assets and certain financial derivatives that depend on the same underlying asset, are available in

the market. In this section, we demonstrate how to use the minimal variance portfolios derived

by Benth et al. (2003) to hedge the higher order terms in the Taylor expansion, investing only in

a risk-free bank account, the underlying asset and, if possible, variance swaps.

Benth et al. (2003) derived the minimal variance hedging portfolio of a contingent claim in a

market such that the stock prices are independent Lévy martingales in terms of Malliavin deriva-

tives. We demonstrate how to use their results to hedge the terms Qi. Following Benth et al.

(2003), to derive the minimal variance portfolio, we need to confine ourselves to the case of Lévy

processes, η = {η (t) , 0 ≤ t ≤ T}, which are martingales on the filtered probability space under

consideration. That is, E [η (t)] = 0 and E
[
η2 (t)

]
=

(
σ2 +

∫
R
x2ν (dx)

)
t. Benth et al. (2003)

called such processes Lévy martingales of the second order. From Benth et al. (2003, equation

(2.1)), η (t) has the following representation formula:

(4.1) η (t) = σW (t) +

∫ t

0

∫

R

xÑ (ds,dx) , for 0 ≤ t ≤ T,

where σ ∈ R
+, W (t) is the standard Brownian motion and Ñ (dt,dx) is defined in (2.6).

Based on the methodology developed by Benth et al. (2003), we modify their results to express

the minimal variance portfolio for independent securities without referring to Malliavin calculus.

Benth et al. (2003) assumed the underlying asset is directly represented by the Lévy martingale,

that is, St = η (t). We find it more natural to employ an exponential model and allow a drift

term in the model of the underlying asset since the mean of η (t) is zero. By extending (3.1), we

suppose there are k independent securities prices S1, ..., Sk, modeled as follows:

(4.2) dSj (t) = bjSj (t−) dt+ Sj (t−) dηj (t) , j = 1, ..., k,

where bj ∈ R. Let L2 (Ω) = L2 (Ω,F , P ) and ξ ∈ L2 (Ω) be a random variable to be hedged. Let

A be the set of all admissible portfolios. The minimal variance portfolio is an admissible portfolio,

ϕ ∈ A such that

(4.3)

E





ξ − E [ξ] −

k∑

j=1

∫ T

0
ϕj (s) dSj (s)




2
 = inf

ψ∈A
E




ξ − E [ξ] −

k∑

j=1

∫ T

0
ψj (s) dSj (s)




2
 .

This is known as the minimal variance hedging for incomplete markets. Define a measure of

the length of ξ by ‖ξ‖ =
(∫

Ω |ξ (ω)|2 P (dω)
)1/2

=
(
E

[
|ξ|2

])1/2
. Following Benth et al. (2003,
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Definition 3.10 (a)), let D1,2 be the set of all ξ ∈ L2 (Ω) such that the chaos expansion defined in

(2.8) satisfies the condition

‖ξ‖2
D1,2

= E
[
ξ2

]
+

∞∑

n=1

∑

j1,...,jn=1,2

∫

Ujn

∥∥∥g(j1,...,jn)
n

(
·, u(jn)

n

)∥∥∥
2

L2(Gn−1)
d 〈Qjn〉

(
u(jn)
n

)
<∞,

where Gn is defined in (2.9). The chaotic representation derived by Benth et al. (2003) implies

that every ξ satisfying some moment conditions can be expressed in the form

(4.4) ξ = E [ξ] +

k∑

j=1

∫ T

0
f1 (ξ; s, j) dWj (s) +

k∑

j=1

∫ T

0

∫

R

f2 (ξ; s, x, j) Ñj (ds,dx) ,

where f1 (ξ; s, j) and f2 (ξ; s, x, j) are predictable functions. Yip et al. (2007) derived the com-

putationally explicit representation formula for f1 (ξ; s, j) and f2 (ξ; s, x, j) when ξ is the power

of increments of a Lévy process, see Theorem 4. The minimal variance portfolio consisting of

independent securities driven by (4.2), can be obtained by modifying Theorem 4.1 in Benth et al.

(2003):

Proposition 9 For any ξ ∈ D1,2, the minimal variance portfolio ϕ = (ϕ1, ..., ϕk) in (4.3),

ξ̂ = E [ξ] +
k∑

j=1

∫ T

0
ϕj (s) dSj (s) ,

admits the following representation:

ϕj (s) =
f1 (ξ; s, j) σj +

∫
R
xf2 (ξ; s, x, j) νj (dx){

σ2
j +

∫
R
x2νj (dx)

}
Sj (s)

,

where f1 (ξ; s, j) and f2 (ξ; s, x, j) are predictable functions defined in (4.4).

Proof. The proof is included in Appendix A.2. �

Although variance swaps are traded in OTC markets, there might be times that the appropriate

variance swaps needed are not available. Hence, we firstly discuss how to use a minimal variance

portfolio to hedge
∑q

i=2Qi using only a risk-free bank account and the underlying stock. As in

Section 3.2.3, we consider the simplified case where there is at most one jump of X between t and

t+ ∆t, and the general case where there can be infinite number of jumps.

4.1 The simplified case

If ∆t is negligible compared to ∆St, from (3.12),

(4.5)

q∑

i=2

Qi =

q∑

i=2

CiS
i
t

[∫ t+∆t

t
dY (i)

s +mi∆t

]
.
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Proposition 10 If ∆t is negligible compared to ∆St, the minimal variance portfolio to hedge
∑q

i=2Qi using only a risk-free bank account and the underlying asset is to

1) invest
∑q

i=2
Ci

(exp(r∆t)−1)S
i
tmi∆t in a risk-free bank account, and

2) buy 1
[σ2+m2]

∑q
i=2 CiS

i−1
t mi+1 units of the underlying stock, St, where mi is defined in (2.1).

Proof. The proof is included in Appendix A.3. �

In the following, we discuss how to hedge the terms
∑q

i=3Qi using a risk-free bank account, the

underlying stock and variance swaps. If ∆t is negligible compared to ∆St, from (3.12),

(4.6)

q∑

i=3

Qi =

q∑

i=3

CiS
i
t

[∫ t+∆t

t
dY (i)

s +mi∆t

]
.

Therefore, we have the following hedging portfolio.

Proposition 11 If ∆t is negligible compared to ∆St, the minimal variance portfolio to hedge
∑q

i=3Qi by investing in a risk-free bank account, the underlying asset and variance swaps is

given by:

1) buy φ∆s (n− 2)S2
t units of the variance swap at time t with sampling points

{..., sn−1 = t, sn = t+ ∆t} , maturity t+ ∆t and strike σ2
strike

, where

φ =

∑q
i=3 CiS

i−2
t

∫
R
xiν (dx)∫

R
x2ν (dx)

=

∑q
i=3CiS

i−2
t mi

m2
,

mi are defined in (2.1) and PV is the price of one unit of the variance swap.

2) invest nothing in the underlying asset, St,

3) invest

1

er∆t − 1

{
q∑

i=3

CiS
i
tmi∆t+ φS2

t

{
∆s (n− 2)

[
σ2

strike − Sn,2
]
+ PV ∆s (n− 2) −m2∆t

}
}

in a risk-free bank account, where Sn,2 is defined in (3.10).

Proof. The proof is similar to those of Propositions 9 and 10. �

4.2 The general case

If ∆t is negligible compared to ∆St, from (3.22),

(∆St)
n = Snt

∑

θn∈In

Π
(n)
θn,∆t,σ

S ′
θn,∆t,t + Snt C

(n)
∆t,σ,
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where the expression can be calculated explicitly using Theorem 4. Let

q∑

i=2

Qi =

q∑

j=1

Ci

∫ t+∆t

t
φ

(q)
j,sdY

(j)
s +

q∑

i=2

CiS
i
tC

(i)
∆t,σ,

where φ
(q)
j,s is defined in (3.23).

Proposition 12 If ∆t is negligible compared to ∆St, the minimal variance portfolio to hedge
∑q

i=2Qi using only a risk-free bank account and the underlying asset is to

1) invest
∑q

i=2
Ci

exp(r∆t)−1S
i
tC

(i)
∆t,σ in a risk-free bank account, and

2) buy 1
[σ2+m2]

∑q
j=1Ciφ

(q)
j,sS

−1
t mi+1 units of the underlying stock, St, where mi is defined in (2.1).

Proof. The proof is similar to that of Proposition 10. �

In the following, we discuss how to hedge the terms
∑q

i=3Qi using a risk-free bank account, the

underlying stock and variance swaps.

Proposition 13 If ∆t is negligible compared to ∆St, the minimal variance portfolio to hedge
∑q

i=3Qi by investing in a risk-free bank account, the underlying asset and variance swaps is

given by:

1) buy φ∆s (n− 2)S2
t units of the variance swap at time t with sampling points

{..., sn−1 = t, sn = t+ ∆t} , maturity t+ ∆t and strike σ2
strike

, where

φ =

∑q
i=1 Ciφ

(q)
j,sS

−2
t

∫
R
xiν (dx)∫

R
x2ν (dx)

=

∑q
i=1Ciφ

(q)
j,sS

−2
t mi

m2
,

mi are defined in (2.1) and PV is the price of one unit of the variance swap.

2) invest nothing in the underlying asset, St,

3) invest

1

er∆t − 1

{
q∑

i=2

CiS
i
tC

(i)
∆t,σ + φS2

t

{
∆s (n− 2)

[
σ2

strike − Sn,2
]
+ PV ∆s (n− 2) −m2∆t

}
}

in a risk-free bank account, where Sn,2 is defined in (3.10).

Proof. The proof is similar to that of Proposition 10. �

5 Simulation algorithm

In this section, we discuss the approximation of the derivatives, Di
2F (t+ ∆t, St), and compu-

tational implementation of the hedging strategies. Assuming that the terms
∑∞

i=2
Di

1F (t,St)
i! (∆t)i

do not contribute to the approximation significantly and can be ignored (which is found to be true



HEDGING STRATEGIES AND MINIMAL VARIANCE PORTFOLIOS 23

in our simulation study), we have

F (t+ ∆t, St + ∆St) − F (t, St) = D1
1F (t, St) ∆t+

q∑

i=1

Di
2F (t+ ∆t, St)

i!
(∆St)

i ,

which is true as long as D1
1F (t, St) and Di

2F (t+ ∆t, St) exist for i = 1, 2, 3, .... Note that the

assumption
∑∞

i=2
Di

1F (t,St)
i! (∆t)i ≈ 0 is only for simplicity here since we are more interested in

finding ways to hedge
∑q

i=1
Di

2F (t+∆t,St)
i! (∆St)

i. The deterministic terms
∑∞

i=2
Di

1F (t,St)
i! (∆t)i

can be hedged by investing in a risk-free bank account, as in equation (3.5). Since the pricing

formulae for options with underlying driven by Lévy processes are in general not analytic, we

need to approximate the derivatives of the pricing formulae, Di
2F (t+ ∆t, St), for i = 1, 2, 3, ....

We employ the Taylor’s series based central difference approximation of arbitrary p-th degree

derivatives introduced by Khan & Ohba (2003, Section 1), which is quoted in Appendix B.

In the following, we discuss how to calculate the derivatives of the option prices. We note that

the most time consuming step in the approximation procedures is the calculation of
∑

i
1

X(i)2
in

finding d
(p)
k in equation (B.2) in the central difference approximation of derivatives. It is because

the vector X contains the product of all the possible combinations of length c in Y , where Y

contains all integers from 1 to N except |k| . For example, if we want to approximate the 31st

derivative and setN = 33 (the accuracy of the approximation increases with the value of N), c = 15

and k = 1, the number of values in Y is 32 and the number of possible combinations of length

c in Y is C32
15 = 32!

15!(32−15)! = 565, 722, 720, which takes quite a while to calculate. Nevertheless,

this calculation is the same for all functions f (t). Therefore, we can build up a look-up table

to store values of CN,k
∑

i
1

X(i)2
for different N , c and k and use it for all options. Although the

calculation for large N can take a very long time, we only need to do this once.

Algorithm

1. Construct the look-up table of CN,k
∑

i
1

X(i)2
defined in equation (B.2).

2. Calculate sample paths of S with different values of the current stock

price, St.

3. Use Monte Carlo simulation to calculate the option prices with respect

to different values of the current stock price.

4. Calculate the derivatives with respect to the underlying, Di
2F (t+ ∆t, St).

5. Calculate the first derivative with respect to time, D1
1F (t, St) .

Table 5.1: The simulation algorithm to calculate the derivatives in Taylor expansions.

Step 1 For a fixed N , construct the look-up table of CN,k
∑

i
1

X(i)2
, where k = 0,1,2,...,N

and c = 3, 4, ..., cmax , where cmax = N − 1 (since 2N > p and c is the largest integer less than or

equal to p−1
2 ). Therefore, the maximum derivative obtainable is (2N − 1)-th.
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Note that we should loop through c and then k. For each value of c, we use a vector to save the

intermediate values of
∑

i
1

X(i)2
for each k. Therefore, we only need to calculate the combination

of choosing c from Y once for each c.

Step 2 Calculate sample paths of S with different values of the current stock price, St.

Step 3 Use Monte Carlo simulation to calculate the option prices with respect to different

values of the current stock price, using the sample paths of S generated in Step 2.

Step 4 Using the finite different method given in Appendix B, calculate the derivatives with

respect to the underlying, Di
2F (t+ ∆t, St), using the look-up table produced in Step 1.

Step 5 Similar to Step 4, calculate the first derivative with respect to time, D1
1F (t, St) .

After calculating the derivatives, we show the performance of the proposed hedging strategies

in the next section.

6 Performance of the hedging strategies

In this section, we investigate the performance of the hedging strategies given in Section 3

on European options and barrier options. We also give an example of static hedging of an

one year European option on real life data. We truncate the infinite sum in (3.2) and calculate
∑p

i=1
Di

2F (t+∆t,St)
i! (∆St)

i+D1
1F (t, St) ∆t for some fixed p. By comparing the values on the L.H.S.

and R.H.S. of (3.2), it may be noted that for some q ∈ N, the terms
Di

2F (t+∆t,St)
i! (∆St)

i ≃ 0 for

i > q. This approximation is very useful, since in practice it is ideal to hedge by investing in

as few kinds of products as possible, due to cost of transaction and administration. By fixing a

tolerance level, αtol, we can find the smallest value of p such that

(6.1)∣∣∣∣∣[F (t+ ∆t, St + ∆St) − F (t, St)] −

[
D1

1F (t, St) ∆t+

p∑

i=1

Di
2F (t+ ∆t, St)

i!
(∆St)

i

]∣∣∣∣∣ ≤ αtol

and we call it q. For a given tolerance level, αtol, the following approximation is then assumed

satisfactory:

(6.2) F (t+ ∆t, St + ∆St) − F (t, St) = D1
1F (t, St)∆t+

q∑

i=1

Di
2F (t+ ∆t, St)

i!
(∆St)

i .

Thus the magnitude of αtol determines the number of terms required for a Taylor expansion to

obtain a satisfactory approximation. In option hedging, we want the number of terms to be as

small as possible since we have to invest in an additional financial derivative to hedge each term.

In practice as we noted before, transaction costs, bid-ask spreads and the cost of administration

make the trades of a large number of different financial derivatives not preferable. Therefore,

there is a trade-off between the accuracy of the hedging and the additional costs involved.
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Figure 6.1: The approximation errors in static hedging of European options, dynamic hedging

of European options and dynamic hedging of up-and-out options. The x -axis gives the value of q

and the y-axis gives ∆S. The area of the graph is coloured in light purple when the approximation

error ≤ 0.01 and in deep purple when the approximation error is between 0.01 and 0.02.

In the following, we give the performance of the static and dynamic hedging strategies on

European, up-and-out, up-and-in, down-and-out and down-and-in options. We investigate how

many terms in the Taylor expansions are needed to obtain a satisfactory approximation, that is, we

determine the value of q for a given αtol, defined in (6.1). In our simulations, we set αtol = 0.01.

It is because in practice, we are hedging the prices of the options, the lowest price change is 0.01.

We assume the current stock price, S0, is 5000 and the strike price of the options, K, are 5000.

Note that our strategies work for all values of K. We consider the cases where the change in the
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price of the stock price ∆St is equal to 10, 20, ..., 70. For static hedging, we assume ∆t = 1,

and the options are expiring in 1 year as well, that is, T = 1. For dynamic hedging, we set

∆t = 9.5129 × 10−6, approximately 5 minutes, and T = 1.1416 × 10−4, approximately 1 hour.

Figure 6.2: The approximation error in dynamic hedging of up-and-in options, down-and-out

options and down-and-in options. The x -axis gives the value of q and the y-axis gives ∆S.

The performance of static and dynamic hedging of European options is given in Figure 6.1. We

can see that the values of q required are the same in the cases of static and dynamic hedging. The

value of q, that is, the number of terms required in the Taylor approximation, such that the error

≤ αtol increases gradually as the value of ∆St increases. This verifies the discussion given in the

beginning of this section, that is, for a given tolerance level, the number of terms required in the

Taylor expansions is finite. The values of q for different values of ∆St is also given in Table 6.1.

The performance of dynamically hedging of up-and-out options is given in Figure 6.1. We
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assume the barrier is given by H = 5050. The values of q required are bigger than the ones for

European options due to the more complicated payoff function. The values of q for different

values of ∆St is also given in Table 6.1. Similarly, the hedging performance of up-and-in options,

down-and-out and down-and-in options are given in Figure 6.2 and Table 6.1.

In static hedging of European options

in Figure 6.1,

∆St 10 20 30 40 50 60 70

q 8 14 20 26 32 36 38

In dynamic hedging of European options

in Figure 6.1,

∆St 10 20 30 40 50 60 70

q 8 14 20 26 32 36 38

In dynamic hedging of up-and-out options

in Figure 6.1,

∆St 10 20 30 40 50 60 70

q 9 15 22 27 32 36 39

In dynamic hedging of up-and-in options

in Figure 6.2,

∆St 10 20 30 40 50 60 70

q 9 16 22 28 32 36 39

In dynamic hedging of down-and-out options

in Figure 6.2,

∆St 10 20 30 40 50 60 70

q 8 14 20 26 32 36 38

In dynamic hedging of down-and-in options

in Figure 6.2,

∆St 10 20 30 40 50 60 70

q 9 16 22 28 32 36 39

Table 6.1: The values of q for given ∆St in static hedging of European options, dynamic hedging

of European, up-and-out, up-and-in, down-and-out and down-and-in options.

The performance of hedging some other exotic options, such as lookback options and Asian

options, can be obtained similarly since we employ Monte Carlo simulation in calculating the

option prices. Recall in Section 5, as N increases, the number of derivatives that can be calculated

increases. The results show that q increases rapidly with increasing ∆St. Note that the bigger

the value of ∆St, the slower the convergence rate of Taylor expansion and this is why dynamic

hedging is more popular in the literature. From our simulation results, we note that
Di

2F (t+∆t,St)
i

become very small as i increases, but the value of (∆St)
i increases very rapidly. Therefore, we

cannot ignore the terms
Di

2F (t+∆t,St)
i! (∆St)

i. To enable perfect hedging using moment swaps,

power jump assets or some other traded derivatives depending on the same underlying asset, the

market has to allow trading in these financial derivatives in a unit as small as
Di

2F (t+∆t,St)
i .

In summary, as long as we can find the q such that the Taylor approximations are accurate for

all possible values of ∆St under consideration, the perfect hedging using moment swaps, power

jump assets or other traded derivatives depending on the same underlying asset works very well.

To show the trading strategy is applicable to real life data, we fit the VG model to European

option price on FTSE index and derive a static hedging strategy on a one year European option.

On 4th January 2007 and 4th January 2008, the spot FTSE 100 index are 6287 and 6348.5,

respectively. The change in value of the underlying, ∆S, is therefore 61.5. We apply our hedging

strategy to the one year European option on 4th January 2007 and show how hedging can be
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achieved. The option with strike 6287 is worth 410.3 on 4th January 2007, where the risk-free

interest rate is 5.43%, the dividend on the FTSE 100 index is 3.51% and the implied volatility is

14.65%. We fit these data using the VG model and obtain the parameter values: θ = −0.2721, ν =

0.3032 and σ = 3.02%. The Monte Carlo (MC) simulated option price using these parameters

is 410.914. The pricing error due to calibration and simulation is then 0.614. At maturity,

the option is in the money and the payoff is (6348.5 − 6287) = 61.5. Therefore, the change of

value of the option is 61.5 − 410.914 = −349.414 according to the MC calculation. The hedging

performance is given in Table 6.2. The first column shows the number of terms used in the Taylor

expansion, the second column shows the value of the derivative, D
(i)
2 (t+ ∆t,∆S) and the third

column shows the approximated price. We see that 12 terms are needed to obtain the change in

option price, −349.414. Perfect hedging is achieved according to the MC price. It shows that the

hedging strategy works very well in replicating the MC price and the hedging error in this example

is entirely due to calibration and simulation of the VG model, which is out of the scope of this

paper. We note that the contributions of the odd number terms except the first term are almost

negligible and can be ignored. Therefore we can reduce the number of instruments invested in

this case.

1 0.5 -380.164

2 0.01107 -338.294

3 -8.97421e-015 -338.294

4 -9.39954e-007 -351.741

5 9.30204e-019 -351.741

6 4.80557e-011 -349.141

7 -4.05377e-023 -349.141

8 -1.4317e-015 -349.434

9 9.58199e-028 -349.434

10 2.6928e-020 -349.413

11 -1.39873e-032 -349.413

12 -3.40129e-025 -349.414

13 1.36317e-037 -349.414

14 3.01623e-030 -349.414

15 -9.35744e-043 -349.414

Table 6.2: The performance of the hedging strategy on a one year European option price on

FTSE 100 index on 4th January 2007.

7 Conclusion

In this paper, we provided some perfect hedging strategies and minimal variance portfolios

in a Lévy market. Many financial institutions hold derivative securities in their portfolios, and

frequently these securities need to be hedged for extended periods of time. Failure to hedge properly

can expose an institution to sudden swings in the values of derivatives, such as options, resulting

from large, unanticipated changes in the levels or volatilities of the underlying asset. Research

in the techniques employed for hedging derivative securities is therefore of crucial importance.

Under the assumption of the famous Black-Scholes model, the market is complete and an European

option can be hedged perfectly by investing in a risk-free bank account and the underlying stock.

However, there is statistical evidence, such as the volatility smile, that the Black-Scholes model

is not sufficiently flexible to model the price process. As a result, the study of Lévy process,

which is a generalisation of Brownian motion with jumps, has become increasingly important in

mathematical finance. If the underlying asset is driven by a Lévy process, the market is not

complete, that is, a contingent claim cannot be hedged using only a risk-free bank account and the
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underlying asset. By applying a Taylor expansion to the pricing formulae, we derived dynamic

perfect hedging strategies of European and some exotic options by trading in moment swaps, power

jump assets or certain traded derivatives depending on the same underlying asset. In the case

of European options, static hedging can also be achieved. We extended the delta and gamma

hedging strategies to higher moment hedging by investing in other traded derivatives depending on

the same underlying asset. We demonstrated how to use the minimal variance portfolios derived

by Benth et al. (2003) to hedge the higher order terms in the Taylor expansion, investing only

in a risk-free bank account, the underlying asset and, potentially, variance swaps. We explicitly

addressed numerical issues in the procedures, such as the approximation of the derivatives in

the Taylor expansion, as well as investigated the performance of the hedging strategies. If as

many derivatives as the Taylor expansion needed for accuracy can be determined and the financial

derivatives required to hedge are available in the specified amounts, perfect hedging is possible.

APPENDICES

A Proof of Propositions and Lemma

A.1 Proof of Proposition 3

The initial investment at time t is

Ci



S

i
te
−r(t+∆t)T

(i)
t +

Si
te
−r(t+∆t)T

(i)
t

er∆t − 1
+
Si

t

[
−e−rtT

(i)
t +mi∆t

]

er∆t − 1



 .

At maturity, the value of the portfolio is equal to

CiS
i
t

{
e−r(t+∆t)T

(i)
t+∆t +

er∆t

er∆t − 1

{
e−r(t+∆t)T

(i)
t − e−rtT

(i)
t +mi∆t

}}
.

Hence, by equation (3.12), the change of value of the portfolio equals

Ci

{
Si

te
−r(t+∆t)T

(i)
t+∆t + Si

t

[
−e−rtT

(i)
t +mi∆t

]}
.

A.2 Proof of Proposition 9

Let

(A.1) ξ = ξ0 +

k∑

j=1

∫ T

0

ϕj (s) dSj (s) .

where ξ0 denotes the difference of value between ξ and
∑k

j=1

∫ T

0 ϕj (s) dSj (s) for the portfolio ϕ =

(ϕ1, ..., ϕk). By the results of Monat & Stricker (1995, Section 4.2), the Hilbert space argument in

Benth et al. (2003, Theorem 2.3) and equation (4.1), the following orthogonality condition is satisfied:
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E
[(
ξ − ξ̂

)
Θ

]
= E

[{
ξ0 − E [ξ]

}
Θ

]
= E

[
ξ0Θ

]
− E [ξ]E [Θ] = 0, where

(A.2) Θ =
k∑

j=1

∫ T

0

θj (s)σjSj (s
−

) dWj (s) +
k∑

j=1

∫ T

0

∫

R

xθj (s)Sj (s
−

) Ñj (ds, dx)

for all θ = (θ1, ..., θk) ∈ A. Since E [Θ] = 0, we have E
[
ξ0Θ

]
= 0. From (4.1) and (4.2),

k∑

j=1

∫ T

0

ϕj (s) dSj (s) =
k∑

j=1

∫ T

0

ϕj (s)Sj (s
−

) bjds+
k∑

j=1

∫ T

0

ϕj (s)σjSj (s
−

) dWj (s)

+

k∑

j=1

∫ T

0

∫

R

xϕj (s)Sj (s
−

) Ñj (ds, dx) .

Hence, from (4.4) and (A.1),

ξ0 = E [ξ] −

k∑

j=1

∫ T

0

ϕj (s)Sj (s
−
) bjds+

k∑

j=1

∫ T

0

(
1

σj

f1 (ξ; s, j) − ϕj (s)Sj (s
−

)

)
σjdWj (s)

+

k∑

j=1

∫ T

0

∫

R

(f2 (ξ; s, x, j) − xϕj (s)Sj (s
−

)) Ñj (ds, dx) .

Hence, from (A.2) and the well-known isometry, see Ikeda & Watanabe (1989), we have

E
[
ξ0Θ

]
=

k∑

j=1

E

[∫ T

0

θj (s)Sj (s
−

) {(f1 (ξ; s, j) − σjϕj (s)Sj (s
−

))σj

+

∫

R

x (f2 (ξ; s, x, j) − xϕj (s)Sj (s
−

)) νj (dx)

}
ds

]
= 0.

⇒ f1 (ξ; s, j)σj +

∫

R

xf2 (ξ; s, x, j) νj (dx) = ϕj (s)Sj (s)

{
σ2

j +

∫

R

x2νj (dx)

}

ϕj (s) =

[
f1 (ξ; s, j)σj +

∫

R

xf2 (ξ; s, x, j) νj (dx)

]
/

[{
σ2

j +

∫

R

x2νj (dx)

}
Sj (s)

]
.

A.3 Proof of Proposition 10

From equation (4.5), the term
∑q

i=2 CiS
i
tmi∆t can be hedged by investing

q∑

i=2

CiS
i
tmi∆t

exp (r∆t) − 1

in a risk-free bank account. To hedge the term
∑q

i=2 CiS
i
t

∫ t+∆t

t
dY

(i)
s , we let

ξ =

q∑

i=2

∫ t+∆t

t

CiS
i
tdY

(i)
s =

q∑

i=2

∫ t+∆t

t

∫

R

CiS
i
tx

iÑ (ds, dx)

by (2.7) and let the minimal variance portfolio to hedge ξ be ξ̂ = E [ξ] +
∫ t+∆t

t
ϕsdSs =

∫ t+∆t

t
ϕsdSs since

E [ξ] = 0. Hence, using Proposition 9 and equation (4.4) by putting f1 (ξ; s, j) = 0 and f2 (ξ; s, x, j) =
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∑q

i=2 CiS
i
tx

i, we have

ϕs =

∫
R

∑q

i=2 CiS
i
tx

i+1ν (dx)[
σ2 +

∫
R
x2ν (dx)

]
Ss

.

Hence, to hedge the terms
∑q

i=2Qi by minimal variance portfolio, we need to invest the amount

q∑

i=2

CiS
i
tmi∆t

exp (r∆t) − 1

in a risk-free bank account and buy

∫
R

∑q

i=2 CiS
i
tx

i+1ν (dx)[
σ2 +

∫
R
x2ν (dx)

]
St

=

∑q

i=2 CiS
i−1
t mi+1

[σ2 +m2]

amount of the underlying stock, St, where mi are defined in (2.1).

B Central difference approximation of arbitrary degree

Khan & Ohba (2003, Section 1) showed that Taylor’s series based central difference approximation of

arbitrary p-th degree derivative of a function f (t) at t = t0 can be written for an order 2N as

(B.1) f
(p)
0 =

1

T p

N∑

k=−N

d
(p)
k fk,

where T is the sampling period, 2N + 1 is the number of nodes used in the approximation, fk denotes the

value of function f (t) at t = t0 + kT , 2N is an integer bigger than p and d
(p)
0 = 0 if p is odd, otherwise

d
(p)
0 = −2

∑N

k=1 d
(p)
k , and

(B.2) d
(p)
k = (−1)k+c1

p!

k1+c2

CN,k

∑

i

1

X (i)2
, for k = −N,−N + 1, ...,−1, 1, ..., N − 1, N,

CN,k = N !2

(N−k)!(N+k)! , c = largest integer less than or equal to (p− 1) /2, c1 = 1 if c is even, otherwise

c1 = 0, c2 = 1 if p is even, otherwise c2 = 0, and the vector X is generated in the following way:

1. Take a vector Y containing all integers from 1 to N except |k| (in Khan & Ohba (2003, p. 121), it

was except k, but from the derivation of the formula, it should be |k|).

2. The vector X contains the product of all the possible combinations of length c in Y .
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