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Abstract

In this paper we extend earlier work on the economics of shallow
lakes by Mäler, Xepapadeas and de Zeeuw (2003) to the case where two
communities have incommensurable preferences about lake eutrophi-
cation. In the case of incommensurable preferences interest group be-
havior arises, we therefore consider the case where society is divided
into two interest groups and is thus unable to agree on a single manage-
ment objective. In particular, the communities that share the use of
the lake disagree on the relative importance of the shallow lake acting
as a waste sink for phosphorus run-off as opposed to other ecosystem
services. A dynamic game in which communities maximize their use of
the lake results in a Nash equilibrium where the lake is in a eutrophic
state when in fact the Pareto optimum would be for the lake to be in
an oligotrophic state. Our paper differs from previous work by con-
sidering two communities or interest groups with different preferences
for environmental services. The tax that would induce, in a noncoop-
erative context, all of society’s members to behave in such a way as
to achieve a Pareto optimal outcome is derived under the assumption
that a social planner does not favor one community or another. We
then ask whether or not such a tax rate would in fact be implemented
if each community were able to bear political pressure on the social
planner and the social planner were a public representative seeking re-
election. In this case both types of communities lobby to have their
preferred level of tax applied based on their relative preferences for a
clean lake and phosphorus loading. The effects of the lobbying on the
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application of the optimal tax are investigated numerically for partic-
ular values of relative preferences and the relative size of each group.
The representative seeking election proposes a different tax rate in or-
der to maximize their probability of electoral success. This problem is
solved numerically assuming that the lake is in a eutrophic equilibrium.
It is shown that political representatives have an incentive to propose
tax rates that are insufficient to achieve a return to an oligotrophic
steady-state

Key words: Pollution of shallow lakes; optimal eco-taxation; dynamic
rent seeking. JEL classification codes: D72; H23; Q25.

1 Introduction

Certain bodies of water, and in particular shallow lakes, present a hysteresis
in their response to phosphorus loading. That is, the shallow lake, subject to
gradual increases in phosphorous concentration, will remain in a relatively
pristine state or oligotrophic state over long periods of time until a point at
which it will suddenly flip to a turbid or eutrophic state. Once the trans-
formation has occurred, the lake remains eutrophic despite following even
reductions in phosphorus loading below those levels that preceded the flip
to the eutrophied state. The unique threshold point at which the lake flips
between alternative basins of attraction represents society’s point of indif-
ference between the two states and it is known as a Skiba point (Wagener,
2003). For the shallow lake, the Skiba point identifies the point at which
the lake changes from a clear habitat providing a high level of ecosystem
services into turbid waters that contain an overabundance of aquatic plant
life, which often leads to the development of toxic algal blooms.

Several authors have applied economics to resolving the eutrophication
problem while taking into account the shallow lake dynamics. 1 In par-
ticular, Dechert and Brock (2000) were the first to pose the problem as a

1Carpenter et al. (1999) were first to integrate the dynamics of the shallow lake into
economic analysis. They pose a lake dynamic equation with respect to phosphorous such
that it can be used for economic analysis. Dechert and Brock (2000) first posed the
problem as a dynamic game of communities each maximizing its welfare in its use of the
lake and identified the presence of Skiba points when more than two communities share
the use of the lake. They provide a solution to the open-loop problem, while Mäler et al.
(2003) propose a tax as the optimal policy to induce a Pareto-optimal solution to the
game. Grüne et al. (2005) use dynamic programming to solve the problem for the closed
loop Nash equilibrium. A stochastic version of this problem has also been formulated by
O’Donnell and Dechert (2004),Dechert and O’Donnell (2005) to account for the possibility
that the phosphorous loading into the lake is subject to rainfall as a random shock.
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dynamic game between communities sharing the use of the lake. In their
model they assume that society as a whole benefits from the lake not only
acting as a waste-sink for agriculture, but also providing clean water for
other uses, including consumption and recreation. Hence, communities that
share the lake will attribute the same relative preferences to alternative uses
of the lake. This means that each community will have the same welfare
function derived from the benefits of the lake.

As shown by Mäler et al. (2003) in their analysis, a tax on phosphorus
loading can achieve a Pareto-optimal state for the lake when each commu-
nity seeks to maximize its welfare non-cooperatively. They assume that all
communities have the same relative preferences towards the benefits of the
lake and hence every community has an identical welfare function.

As noted by Mäler et al., it is possible that different interest groups may
not be able to agree on a common welfare function. Indeed, when com-
munities benefit in different proportions from polluting the lake relative to
other uses, it is not possible to attribute the same welfare function to all
communities. In this case, each community acting to maximize its specific
welfare function will constitute a new game with a different Nash equilib-
rium, which in turn will require a new tax to induce the Pareto-optimal level
of phosphorus loading. Our paper considers this scenario: the communities
that share the lake are divided into two interest groups, each with a different
welfare function charactizing the group’s collective preferences for the use of
the lake. Each group can be thought of as a type of community where one
type is predominantly agricultural and benefits more from the lake acting
as a waste sink for phosphorus loading possibly leading to eutrophication,
and the other type, a green community, with a higher preference for an olig-
otrophic lake. The green communities have a preference for an oligotrophic
lake and consider that the current tax rate is too low. The n communities
face an election to elect a single politician. The politician favoured by the
green communities promises to implement a higher tax on phosphorus that
will bring phosphorus loading down so as to reverse the lake to an olig-
otrophic state. The farming communities favour a politician who promises
to maintain the tax at its current low level.

Our paper is structured as follows. In section 2, we review the shallow
lake mode. In section 3 we solve the dynamic game for the Pareto-optimal
outcome induced by means of a tax on phosphorus loading and the open-loop
Nah equilibrium of the lake game with two interest groups. In section 4, we
explore the consequences of lobbying and rent-seeking on the Pareto-optimal
tax and on the state of the lake. We show that as a result of lobbying, the
optimal tax policy may not be implemented and that, due to the hysteretic
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nature of the shallow lake, a tax only slightly below the optimal policy
may result in cumulative effects that precipitate the lake into a potentially
irreversible eutrophic state. Section 5 concludes.

2 The Lake Game with Two Interest Groups

This section presents the model of a shallow lake provided by Carpenter et al.
(1999). The lake equation they propose will be used as the state equation
in the economic analysis that follows. In this model, the limiting factor for
eutrophication is phosphorus. Lake eutrophication dynamics are based on
total available phosphorus as the state variable, and phosphorus input as
the control variable. Although nitrogen is also known to stimulate plant
growth, phosphorus is thought to be the limiting nutrient of plant growth in
many cases (Ricklefs, 1979). In addition, cyanobacteria, that are contained
in eutrophied lakes, have the ability to fix nitrogen from the atmosphere, and
therefore their growth will be limited by the available phosphorus (Alaouze,
1995).

When the nutrient level of the lake is low, the plants tend to be small
and the water clear. Increases in nutrient loading, however, encourage the
development of larger plants and of phytoplankton. These plants and the
surface layer of phytoplankton create shade and turbidity, which leads to
the collapse of the vegetation that does not tolerate shade. This further
favours the development of phytoplankton, and can result in the emergence
of toxic algal blooms, consisting of cyanobacteria, which are shade tolerant
(Scheffer, 1998).

Shallow lakes are observed to be different from deep lakes because they
tend to be polymictic, i.e. have a mixed water column most of the year,
as opposed to deep lakes where layers of water with different temperatures
form in the summer months, thus hindering the recycling of nutrients from
the sediments on the bottom of the lake into the water column. In addition,
the larger proportion of a shallow lake’s water, compared to that of a deep
lake, that is in contact with the lake bed increases the rate of recycling
of nutrients into the water column. This means that more nutrients are
available to consumers, including plants and algae. As a result, contrary to
deep lakes, where vegetation is sparse and more present around the edges,
shallow lakes are often filled with aquatic plants (Scheffer, 1998). The higher
rate of recycing of nutrients into the water column tends to make shallow
lakes hysteretic or irreversible in their response to phosphorus loading.

We thus consider the following initial value problem to model the lake’s
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response to phosphorus stock and loading.

dP

dt
= L(t) − sP (t) +

rP q(t)

mq + P q(t)
, P (0) = P0 (1)

where the variables P (t) and L(t) are, respectively, the stock of phosphorus
and the external input of phosphorus at time t. Model parameter are given as
follows: s is the rate of loss of phosphorus from the stock, r is the maxiumum
rate of recycling of P , m is the value of P at which recycling reaches half
the maxiumum rate r and q is the parameter that provides the steepness of
the recycling response to the stock of phosphorus.

To make the problem scale invariant, the following substitutions are
made:2 P = x/m,L = ar and s = br/m. Further, by changing the time
scale to tr/m, one obtains the following equations for the shallow lake dy-
namics:

ẋ(t) = a(t) − bx(t) +
x2

x2 + 1
, x(0) = x0 (2)

It can be seen that in the steady state that the external loading of phos-
phorus is a function of the stock of phosphorus. it may seem at first sight
strange from a biological point of view to present loading as a function of
the stock of phosphorus. However, the objective of policy is to manage
phosphorus content in the lake and, as pointed out by Grüne et al. (2005),
“[t]he management can measure the stock and can control the loading as a
function of the stock”.

Carpenter et al. (1999) identify three categories of lakes based on their
response to increases and decreases of phosphorus input once they are eutro-
phied: fully reversible, hysteretic and irreversible. Our focus is an economic
model of which the goal is to address eutrophication through policy aimed
at mitigating phosphorus input alone. By analyzing equation 2, we find, as
do Mäler et al. (2003), that for q = 2 and 1

2 ≤ b ≤ 3
8

√
3, the lake displays

a reversible hysteresis in its response to phosphorus loading3. Hence, these
are the parameters that will be used to model the shallow lake that can be
reversed from a eutrophic back to an oligotrophic state for the remainder of
our analysis. Note that in this case, eutrophication is reversible by simple
control of external phosphorus input. All that is needed to keep the lake

2Refer to Murray (1989) pp. 5 and 652 for a more detailed description of this technique.
Carpenter et al. (1999) also make use of it in Appendix A of their article, as do Mäler
et al. (2003)

3Refer to Mäler et al. (2003) for the derivation of these parameters.
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in an oligotrophic state is to manage levels of external phosphorus load-
ing without any requirement for more costly measures to alter the rates of
phosphorus sedimentation or recycling.

3 Pareto-optimal Phosphorus Loading with Two

Interest Groups

We consider that society is made up of two groups: agricultural commu-
nitites and green communities. The agricultural communities are predomi-
nantly made up of farmers who privately benefit from applying fertilizer and,
by proxy, from phosphorus loading into the lake. The green communities
are predominantly made up of people who, although they benefit from the
application of fertilizer to crops because they consume agricultural products,
have a high preference for an oligotrophic lake.

To capture the differing preferences for these two benefits, we adopt the
welfare function used by Mäler et al. (2003) and modify it to create two
welfare functions that each represents the preferences of the two groups. In
this scenario, the farmers attach very low importance c1 to the ecosystem
services provided by the lake, and the green communities attach a rela-
tively high importance c2 to ecosystem services and so c1 < c2. The total n
communities previously considered can be divided into n1 agricultural com-
munities and n2 green communities.
Each agricultural community i’s welfare function is thus given by

Wi = ln ai − c1x
2, i = 1, . . . , n1 (3)

while each green community j’s welfare function is given by

Wj = ln aj − c2x
2 j = 1, . . . , n2 (4)

3.1 Pareto-optimal Phosphorus Loading

A social planner acting on behalf of citizens will want to optimize social
welfare. To achieve this Pareto-optimal solution, the planner needs to first
find the total amount of phosphorus loading a that will maximize the sum
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of the communities’ welfare functions:

max

∫

∞

0
e−ρt





n1
∑

i=1

ln ai(t) − n1c1x
2(t) +

n2
∑

j=1

ln aj(t) − n2c2x
2(t)



 dt,

s.t ẋ(t) = a(t) − bx(t) +
x2(t)

x2(t) + 1
;x(0) = x0

where a(t) =

n1
∑

i=1

ai(t) +

n2
∑

j=2

aj(t). (5)

The current value Hamiltonian for this equation is given by:

Hc(t) =

n1
∑

i=1

ln ai(t)−c1n1x
2(t)+

n2
∑

j=1

ln aj(t)−c2n2x
2(t)+λ(t)

[

a(t) − bx(t) +
x2(t)

x2(t) + 1

]

, 0 ≤ t < ∞,

where λ(t) = eρtµ(t).
The first order conditions for the optimal control problem are as follows:

dHc

dai(t)
=

1

ai(t)
+ λ(t) = 0, i = 1, . . . , n1 (6)

dHc

daj(t)
=

1

aj(t)
+ λ(t) = 0, j = 1, . . . , n2 (7)

dHc

dλ(t)
= a(t) − bx(t) +

x2(t)

(x2(t) + 1)2
, (8)

from which we also obtain the co-state equation:

λ̇(t) = 2x(t)(n1c1 + n2c2) + λ(t)

[

b + ρ − 2x(t)

(x2(t) + 1)2

]

, 0 ≤ t < ∞ (9)

Together with equation (9) and the transversality conditions for equa-
tions (9) and (8), equations (6) and (7) imply that

λ(t) = − 1

ai(t)
= − 1

aj(t)
, i = 1, . . . , n1, j = 1, . . . , n2 (10)

This further implies that ai(t) = aj(t) for all i = 1, . . . , n1 and j = 1, . . . , n2

and hence,

λ(t) = −(n1 + n2)

a(t)
and λ̇(t) =

(n1 + n2)ȧ(t)

a2(t)
, 0 ≤ t < ∞ (11)
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When the above two equations are substitued into the co-state equation,
choosing loading to be constant over time, we obtain the following relation-
ship between phosphorus loading and the internal phosphorus input:

ā =
(n1 + n2)

2x(t) (c1n1 + n2c2)

[

b + ρ − 2x(t)

(x2(t) + 1)2

]

(12)

This solution, which represents the Pareto-optimal constant loading path,
can be plotted in the (x, a)-plane together with the phase plot for the steady-
states of the lake when dx/dt = 0, given by equation (2). The intersection
of the two curves provides society’s optimal phosphorus loading quantity.
Using the hysteretic lake value b = 0.6, ρ = 0.03, n1 = 2, n2 = 2, c1 = 0.2
and c2 = 2, the curves intersect at (x∗, a∗) = (0.3472, 0.1007), as shown in
Figure 1 below. Note that this point lies below the point at which the lake
flips to a eutrophic state, that is, for the selected parameters, society prefers
an oligotrophic lake.

Figure 1: Pareto-optimal Loading with Two Welfare Functions
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3.2 Open-loop Nash Equilibria

In the absence of management, however, each community maximizes its own
utility according to its welfare function. This leads to an infinite-horizon dy-
namic game between the agricultural and green communities. This dynamic
game is characterized by the following set of equations:

max
a

∫

∞

0
e−ρt

[

ln ai(t) − c1x
2(t)
]

dt, i = 1, . . . , n1 (13)

max
a

∫

∞

0
e−ρt

[

ln aj(t) − c2x
2(t)
]

dt, j = 1, . . . , n2 (14)

s.t.ẋ(t) = a(t) − bx(t) +
x2(t)

x2(t) + 1
, x(0) = x0, (15)

a(t) =

n1
∑

i=1

ai(t) +

n2
∑

j=1

aj(t). (16)

Setting up a current value Hamiltonian and solving first order conditions
yields the following co-state equations:

ȧi(t) = 2ai
2(t)n1c1x(t) − n1ai(t)

[

b + ρ − 2x(t)

(x2(t) + 1)2

]

, i = 1, . . . , n1

and

ȧj(t) = 2aj
2(t)n2c2x(t) − n2aj(t)

[

b + ρ − 2x(t)

(x2(t) + 1)2

]

, j = 1, . . . , n2

When aggregated, these two equations can be used to derive the following
equation describing the dynamics of total phosphorus input:

ȧ(t) = 2x(t)



c1

n1
∑

i=1

ai
2(t) +

n2
∑

j=1

aj
2(t)



−a(t)

[

b + ρ − 2x(t)

(x2(t) + 1)2

]

, 0 ≤ t < ∞

(17)
Solving for constant phosphorus loading, da/dt = 0, one obtains the steady-
state open-loop Nash equilibrium for total loading ã:

ã =
1

2x(t)

[

n1

c1
+

n2

c2

] [

b + ρ − 2x(t)

(x2(t) + 1)2

]

. (18)

Again, this solution is plotted in the (x, a)-plane together with the phase
plot for the steady-states of the lake when ẋ = 0. The intersection of the
two curves gives the Nash equilibrium phosphorus loading solutions. Using
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the hysteretic lake value b = 0.6, ρ = 0.03 and n1 = 2, n2 = 2, c1 = 0.2
and c2 = 2, the curves intersect at (0.4485, 0.1016), (0.7402, 0.0902) and
(3.1832, 0.9976), as show in Figure 2. Point (0.7402, 0.0902) is an unstable
skiba point, i.e., a small variation in loading will cause the equilibrium to
shift to either the lower equilibrium at (0.4485, 0.1016) or the higher equi-
librium at (0.7402, 0.0902). Note that both of these points are above the
point at which the lake flips to a eutrophic state. This means that when the
green communities and agricultural communities do not cooperate, the lake
will be in a eutrophic state.

Figure 2: Nash Equilibrium Loading with Two Welfare Functions

3.3 Optimal Taxation with Two Interest Groups

A social planner will therefore want to find the tax rate that will achieve the
optimal social welfare outcome derived in section 3.1 without the need for
direct management of phosphorus loading. The effect of the tax will be to
modify each community’s welfare function and induce each one to modify its
phosphorus loading accordingly. With the tax, the agricultural and green
communities will each

max
ai

∫

∞

0
e−ρt

[

ln ai(t) − τ(t)ai(t) − c1x
2(t)
]

dt, i = 1, . . . , n1
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and

max
aj

∫

∞

0
e−ρt

[

ln aj(t) − τ(t)aj(t) − c2x
2(t)
]

dt, j = 1, . . . , n2 (19)

s.t.ẋ(t) = a(t) − bx(t) +
x2(t)

x2(t) + 1
, x(0) = x0,

a(t) =

n1
∑

i=1

ai(t) +

n2
∑

j=1

aj(t)

Setting up a current value Hamiltonian and solving first order conditions for
each of these two problems yields:

τ(t) =
1

ai(t)
+ λi(t) =

1

aj(t)
+ λj(t), ∀i = 1, . . . , n1, j = 1, . . . , n2 (20)

This implies that the following holds:

(n1 + n2)τ(t) =

n1
∑

i=1

1

ai(t)
+

n2
∑

j=1

1

aj(t)
+

n1
∑

i=1

λi(t) +

n2
∑

j=1

λj(t)

From Section 3.1, the first two terms on the right hand side are equal to
−(n1 + n2)λ(t), and so the optimal rate of taxation can be expressed as
follows:

τ(t) = −λ(t) +
1

(n1 + n2)





n1
∑

i=1

λi(t) +

n2
∑

j=1

λj(t)



 (21)

Note that this is in parallel with Mäler et al.’s result for the single welfare
function case. This result implies that the optimal ecotax must bridge the
gap between the aggregate shadow cost of phosphorus loading and each
community’s private cost, expressed in terms of each community’s shadow
price.

3.4 Private Equilibrium with Constant Tax Rate

As noted by Mäler et al., it is not practical to implement a time-variable tax
and a constant tax is preferable, that is, a tax such that τ̇ = 0. Using this
condition and combining with equation (21) leads to the following equation:

λ̇(t) =
1

(n1 + n2)





n1
∑

i=1

λ̇i(t) +

n2
∑

j=1

λ̇j(t)



, 0 ≤ t < ∞ (22)
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From the Hamiltonian’s first order conditions for this problem, the following
two co-state equations can be derived:

λ̇i(t) = 2c1x(t) + λi(t)

[

b + ρ − 2x(t)

(x2(t) + 1)2

]

, i = 1, . . . , n1 (23)

and

λ̇j(t) = 2c2x(t) + λj(t)

[

b + ρ − 2x(t)

(x2(t) + 1)2

]

, j = 1, . . . , n2 (24)

Substituting (21), (23) and (24) back into (22), we obtain:

λ̇(t) = 2x(t)
(c1n1 + c2n2)

n1 + n2
+ (λ(t) + τ(t))

[

b + ρ − 2x(t)

(x2(t) + 1)2

]

, (25)

Recall equations (11) from Section 3.1:

λ(t) = −(n1 + n2)

a(t)
and λ̇(t) =

(n1 + n2)ȧ(t)

a2(t)
, 0 ≤ t < ∞. (26)

Substituting equations (11) and (26) into (21), we obtain the steady-
state optimal constant tax that will achieve the Pareto-optimal amount of
phosphorus loading when each community acts to maximize its welfare non-
cooperatively:

τ∗ =
(n1 + n2 − 1)

a∗
(27)

This aggregate Pareto-optimal amount of phosphorus loading is determined
by substituting equations (11) and (26) into (22, and with a constant tax
over time:

ȧ(t) =
a2(t)

(n1 + n2)2

[[

b + ρ − 2x(t)

(x2(t) + 1)2

]

[a(t)τ∗ − (n1 + n2)]−2x(t)(n1c1+n2c2)

]

(28)

Assuming constant loading, i.e. ȧ(t) = 0 and solving for a∗, we obtain the
Nash-equilibrium phosphorus loading with constant tax:

12



a∗ =

[

b + ρ − 2x(t)

(x2(t)+1)2

]

2x(t) (c1n1+c2n2)
(n1+n2)2

+ τ∗

(n1+n2)

[

b + ρ − 2x(t)

(x2(t)+1)2

] (29)

The plot of the solution is overlayed onto the Pareto-optimal steady-
state loading curve from section 3.1 and shown in Figure 3. Note that when
the optimal tax is applied, the Nash equilibrium loading intersects the lake
dynamics in exactly the same point (x∗, a∗) = (0.3472, 0.1007) as the Pareto-
optimal loading. Moreover, there is now only one Nash equilibrium, and it is
oligotrophic in accordance with society’s preferences. This is not surprising
given that the objective of the tax is to bring phosphorus loading to the
same level as that which would be achieved under optimal management.
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Figure 3: Nash Equilibrium Loading with Two Welfare Functions and Tax

4 The Impact of Rent-seeking and Political Am-

bition on the Optimal Tax

Consider the case where the lake is in a eutrophic state in spite of a current
tax on phosphorus loading. The green communities have a preference for
an oligotrophic lake and consider that the current tax rate is too low. The
n communities face an election to elect a single politician. The politician
favoured by the green communities promises to implement a higher tax on
phosphorus that will bring phosphorus loading down so as to reverse the
lake to an oligotrophic state. The farming communities favour a politician
who promises to maintain the tax at its current low level.

Figure 4 shows the Nash equilibrium loading with a low tax, τ = 1,
together with the curve of the Nash equilibrium loading with the optimal
tax τ∗ = 29.78, as given by equation (27). Note that in the context of a low
tax, the high eutrophic Nash equilibrium could prevail, whereas in the case
of the optimal tax, only one Nash equilibrium is possible.
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Figure 4: Nash Equilibrium Loading Low Tax and Optimal Tax

4.1 Lobbying to Influence Policy Outcomes

We now apply the Tullock model of rent-seeking (Tullock, 1980) to obtain
the probability of each group’s lobbying efforts being successful at having
their desired policy applied. The simplest, linear, form of the model is ap-
plied where the expected payoff of each player is defined as the ratio of his
investment divided by the sum of the investments of all the players, multi-
plied by the reward if he wins. Here, the investments are the lobbying efforts
and the rewards are the communities’ net benefit of having their desired pol-
icy applied, that is, their welfare function with their preferred tax rate. Note
that the probability of having their preferred policy implemented is synony-
mous with the probability of having their preferred politician elected.

Each group applies lobbying effort to influence the policy outcome. The
green communities lobby in favour of a high tax and the farmers lobby for
a low tax on phosphorus loading. The lobbying effort of each agricultural
community i is denoted by li and the lobbying effort of each green commu-
nity j is denoted by mj . The probability of the agricultural communities
having their preferred policy applied is given by the following contest success
function:

Pf =

∑n1

i=1 li
∑n1

i=1 li +
∑n2

i=j mj
, (30)

while the probability of the green communities having their preferred policy

15



applied is given by:

Pg =

∑n2

j=1 mj
∑n1

i=1 li +
∑n2

i=j mj
(31)

The expected payoff of each community is the probability of having its pre-
ferred policy applied, plus the probability of it not being applied, minus its
own initial lobbying investment. The problem thus becomes for each com-
munity to maximize its expected return by applying the correct amount of
lobbying effort, i.e.

max
l

E {ΠF } =

∑n1

i=1 li
∑n1

i=1 li +
∑n2

i=j mj

(

ln aL τ − c1x
2
L τ

)

(32)

+

(

1 −
∑n1

i=1 li
∑n1

i=1 li +
∑n2

j=1 mj

)

(

ln aH τ − c1x
2
H τ

)

− li

and

max
m

E {ΠG} =

∑n2

j=1 mj
∑n1

i=1 li +
∑n2

i=j mj

(

ln aH τ − c2x
2
H τ

)

(33)

+

(

1 −
∑n2

j=1 mj
∑n1

i=1 li +
∑n2

j=1 mj

)

(

ln aL τ − c2x
2
L τ

)

− mj

where τ is the tax applied to phosphorus loading and the indices Lτ and
Hτ denote actions and states of the world associated with the low tax and
the high tax, respectively. The lobbying effort of farmers in favor of a low
tax and greens in favour of a a high tax are denoted by l and m, respectively.

To find the optimum lobbying efforts l∗i and m∗

j , one finds the values of li
and mj for which the first derivative is equal to zero, i.e. dE {ΠF } /dli = 0
and dE {ΠG} /dmj = 0. (These values will maximize the expected pay-offs
provided the profit functions are concave, i.e. if their second derivatives are
negative).

For simplicity, we assume symmetry amongst members of the same com-
munity that is, they contribute an equal amount of lobbying effort, so that
∑n1

i=1 li = n1l and
∑n2

j=1 mj = n2m. Equations (32) and (33) can then be
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expressed as:

max
l

E {ΠF } =
n1l

n1l + n2m

(

ln aL τ − c1x
2
L τ

)

+

(

1 − n1l

n1l + n2m

)

(

ln aH τ − c1x
2
H τ

)

− l

(34)

and

max
m

E {ΠG} =
n2m

n1l + n2m
(

ln aH τ − c2x2
H τ

)

(35)

+

(

1 − n2m

n1l + n2m

)

(

ln aL τ − c2x
2
L τ

)

− m

(36)

The first order conditions for the game described by equations (34) and
(36) give the following two second-order polynomials:

n1n2m
(

ln aL τ − c1x
2
L τ − ln aH τ + c1x

2
H τ

)

= (n1l + n2m)2 (37)

and
n2n1l

(

ln aH τ − c2x
2
H τ − ln aL τ + x2

L τ

)

= (n1l + n2m)2 , (38)

Solving for the positive real root in equations (37) and(38), gives the optimal
level of lobbying expenditure for the farming and green communities:

l =
−n2m

n1
+

1

n1

√

n1n2m
(

ln aL τ − c1x2
L τ − ln aH τ + c1x2

H τ

)

(39)

and

m =
−n1l

n2
+

1

n2

√

n2n1l
(

ln aH τ − c2x2
H τ − ln aL τ + c2x2

L τ

)

(40)

We note from equations (39) and (40) that l and m are dependent on each
other and that the following implied relationship between the lobbying ef-
forts of the two communities can be derived:

l = m

(

ln al τ − c1x
2
L τ − ln aH τ + c1x

2
H τ

)

(

ln aH τ − c2x2
H τ − ln aL τ + c2x2

L τ

) . (41)
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By substituting this equation into equations (39) and (40), we can express
the respective optimal lobbying effort l∗ and m∗ of farmers and ‘greens’, as:

l∗ =
n1n2

(

ln aL τ − c1x
2
L τ − ln aH τ + c1x

2
H τ

)2 (
ln ah τ − c2x

2
H τ − ln aL τ + c2x

2
L τ

)

[

n1

(

ln aL τ − c1x2
L τ − ln aH τ + c1x2

H τ

)

+ n2

(

ln aH τ − c2x2
H τ − ln aL τ + c2x2

L τ

)]2

(42)

and

m∗ =
n1n2

(

ln aL τ − c1x
2
L τ − ln aH τ + c1x

2
H τ

) (

ln aH τ − c2x
2
H τ − ln aL τ + c2x

2
L τ

)2

[

n1

(

ln aL τ − c1x2
L τ − ln aH τ + c1x2

H τ

)

+ n2

(

ln ah τ − c2x2
H τ − ln aL τ + c2x2

L τ

)]2

(43)

In the following section, we use these results to study the impact of the lob-
bying efforts on the optimal tax policy derived in section 3.4 and depicted
in Figure 3.

4.2 Probability of the Optimal Tax Being Implemented

In the following section, we use these results to study the impact of the
lobbying efforts on the optimal tax policy derived in section 3.4 and depicted
in Figure 3. Recall that in our scenario, the lake is in a eutrophic state in
spite of an existing tax on phosphorus loading. Either the current state of
the lake reflects the preferences of all of the communities around the lake
or the tax is too low to keep it in an oligotrophic state. Knowing that the
Pareto-optimal state of the lake is as shown in Section 3.1, a benevolent
politician promises if he is elected to implement the optimal tax rate.

What is the likelihood of the optimal tax policy being implemented,
that is, of this politician being elected, given the relative preferences of the
green communities and farming communities and their resulting lobbying
efforts? To address this question we study the sensitivity of the contest
success function to different parameter values.

The following constant values are used in the Nash equilibrium with tax
equation (29) and evaluated for values of x between 0 and 3.5.

• b = 0.6 - this is the phosphorus recycling value that gave rise to a
hysteresis in the lake dynamics.
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• c1 = 0.2 - denotes the farming communities’ low relative preference
for lake ecosystem services.

• c2 = 2 - thus denoting the green communities’ high relative preference
for a clean lake.

• L τ = 1 - is selected as the current taxation that results in high phos-
phorus loading and thus a eutrophic state of the lake.

The dynamic socially optimal equilibrium level of phosphorus loading is
given by the intersection of the optimal a∗ equation (12) and the lake dy-
namics equation (2), as depicted in Figure 1. The optimal tax is such that
the dynamic non-cooperative equilibrium intersects the lake dynamics equa-
tion for the same optimal (x∗, a∗) coordinates, as shown in Figure 3.

Varying values of n1 and n2 results in different (x∗, a∗) coordinates and
affects the amount of lobbying applied by the different communities to ob-
tain their desired outcome with respect to the proposed tax increase versus
keeping the current low tax. This in turn affects the probability of the
benevolent politician being elected and thus of the optimal tax policy be-
ing implemented. Substituting these values back into the equations derived
earlier in the chapter, namely, equations (42), (43), (30) and (31) gives us
the lobbying efforts of the green and agricultural communities as well as the
probabilities of the optimal tax policy being implemented.

The results are summarized in Table 1 below.

Table 1: Summary of Results.

We interpret these results as follows. For the selected preference ratios,
even with as little as 1 in 6 communities with a high preference for a clean
lake, the Pareto-optimal outcome is for a level of phosphorus loading that
results in an oligotrophic lake. And yet, for these same preferences, when
the ratio of n2 to n1 is less than or equal to one to five, the probability of
the green politician being elected is 0.

On the other hand, when n2 to n1 is one to four or greater, the probability
of the politician being elected increases to very high levels, i.e. relatively
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close to 1. This means that a relatively small proportion of the population
can gain enough power to influence policy when their preferences are strong
enough. This result can be attributed to the amount of lobbying effort that
is expended when communities attach a relatively high value to ecosystem
services. Moreover, as the proportion of green communities increases, the tax
rate required to bring the lake back to oligotrophic levels is lower, which also
explains a lower lobbying effort against a higher tax by farming communities.

The reason for this result can be seen by comparing the elctoral proba-
bilities tho the steady-state level of phosphorus x∗ and the level of loading
a∗. As the composition of the comunities varies in terms of their preferences,
i.e. as n1 and n − 2 change the steady-state changes, however in a highly
non-linear manner. As a result of this the election probabilities also change.
Notice that as the level of pollution in the lake increases the electoral chances
of a green politician increase compared to a pro-agricultural politician.

In the next section we discuss computational issues associated with deter-
mining the tax rate in a politco-economic equilibrium along with numerical
results.

4.3 Determining the tax policy in a politico-economic equi-

librium

An ambitious politician will want to implement the policy that will ensure
that he is elected. To do this he will propose a tax so as to maximize the
probability of being elected, that is he will solve the following:

max
τ

Pg =

∑n2

j=1 mj
∑n1

i=1 li +
∑n2

i=j mj

This problem cannot be solved analytically however a numerical solu-
tion is possible.We solve this problem numerically using a generalized re-
duced gradient method. The generalized reduced gradient method general-
izes Wolfe’s reduced gradient method (not to be confused with gradient de-
scent) to allow for non-linear constraints and arbitray bounds. The reduced
gradient methiood is discussed briefly in Judd (Judd, 1998, p.126-127).We
describe the method here briefly but in somewhat more detail than Judd.
Consider the following optimization problem

max f(x), x ∈ [L,U ] and h(x) = 0 (44)

The algorithm also works in the unconstrained case, i.e. there is no
h(x). The generalized reduced gradient method works by partitioning x
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into basic and non-basic variables x = (v, w). Binding constraints are used
to eliminate v. Consequently, a reduced form of the maximization problem
is defined in which

max F (w) = f(v(w), w) subject to h(v(w), w) = 0, v ∈ (Lv, Uv) (45)

A reduced gradient is then computed as follows

∇wF (w)) = ∇wf(v(w), w)−∇vh(v(w), w)−1∇wh(v(w), w)h(v(w), w) (46)

For the case where x is a vector a search direction d also needs to be
determined from the gradient Lasdon et al. (1978). For a maximization
problem if the gradient is positive d will be positive and if it is negtive d
will be negative. In our case x = τ which is a scalar and is unconstrained
so that the problem reduces to one of solving

max
α

F (τ0 + αd), α > 0 (47)

for given initial τ = τ0 and solving for step-size α using a quasi-Newton’s
method where d = df(τ)

dτ
. This is done to ensure that the Wolfe conditions

for linesearch are fulfilled4. The derivative d is evaluated here using finite
differences. Reduced gradient methods are both robust and efficient. In
principle any non-linear solver could have been used. So for example New-
ton’s method could have been used for optimization directly, However this
would have required computation of partial derivatives. In practice these
methods also employ step-size and search direction techniques so that for
this problem one method or another has little advantage in terms of effi-
ciency.

After solving we find that for n1 = 2 and n2 = 2, to maximize his
probability of being elected, the benevolent politician would have to set the
tax rate at τ = 11.40. This tax increases the probability of election to one,
that is, by proposing this tax he is certain of being elected. Unfortunately,
this tax will result in an insufficient reduction in phosphorus loading levels
and the lake will remain in its eutrophic state. Recall that the skiba point
is at (xF1, aF1) = (0.4084, 0.1021), c.f. Mäler et al. (2003). For n1 = 2
and n2 = 2, the optimal levels of phosphorus are (x∗, a∗) = (0.3472, 0.1007),
which denotes an oligotrophic state of the lake. To achieve the optimal
level of phosphorus loading, the required tax rate is τ∗ = 29.78. Therefore

4For a discussion of the Wolfe conditions see (Bartholomew-Biggs, 2005, pp.58-59)
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a proposed tax policy of τ = 11.40 would be far inferior to that required
to achieve the socially desirable level of phosphorus loading. This may be
an example that illustrates the observation by Lee (1985) that “political
objectives can be realized by establishing “acceptable” pollution standards
and many of them have little to do with protecting the environment.”

5 Conclusion

In summary, we have found that lobbying and the composition of the elec-
torate have an effect on the implementation of the socially optimal tax policy.
When a portion of the communities have a strong preference for a clean lake,
as little as one fifth, the probability of the politician being elected increases
to very high levels, i.e. relatively close to 1. This is an interesting result
because it implies that the number of green communities need not be very
high, only sufficiently high, for the environmental policy to have a very high
chance of being implemented.

A perhaps more interesting result is that by proposing a tax level below
the one required to bring the lake back to a socially optimal oligotrophic
state, a politician can ensure that he is elected. This shows that political am-
bition can indeed prevent socially desirable policy from being implemented.
It would also be interesting to discover whether this result is time-consistent,
i.e., whether this kind of political behaviour is sustainable in the face of en-
vironmetnal change and responses of the lake communities to this change.

Some work in this direction has been carried out by Dockner and Wa-
gener (2006) who study Markov-perfect Nash equilibria for the lake game
and Kossioris et al. (2008), who have derived a feedback Nash equilibrium
for a shallow lake. However, as far as we are aware, no attempt has been
made to find an optimal time-consistent and political acceptable ecotax for
shallow lake pollution. Such a tax (if one exists) would remove the possibil-
ity of a rent-seeking game such as the one described in our paper and would
have the potential to be an important contribution to this literature. We
will leave this as an area for future research.
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