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Abstract
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1 Introduction

The nature of dependence between returns in �nancial markets has been a heatedly-

debated issue among �nancial economists in both academia and the investment industry.

Understanding the dependence structure will help the investors to identify the opportuni-

ties for international portfolio management in terms of asset allocation and pricing. (see

Bartram and Dufey (2001) among others) The widely used linear dependence measure is

too simple to correctly characterize �nancial return distributions under certain conditions.

As Jondeau and Rockinger (2006) point out, when �nancial returns are non-normal, it

is impossible to specify the multivariate distribution relating two or more return series.

The copula may be one possible way to overcome the drawbacks of linear dependence

measures like the correlation coe¢cient.

Previous research has investigated how the correlation between stock market returns

varies over time. There exists signi�cant asymmetric dependence. For example, Longin

and Solnik (1995) examine correlations between stock markets over a long time period

using the constant conditional correlation (CCC) model proposed by Bollerslev (1990).

They �nd that correlations are generally higher during more volatile periods and depend

upon several economic variables, such as the dividend yield and interest rate. However,

tail dependence is not of interest in their paper. After that, Longin and Solnik (2001)

�nd that international stock markets are more correlated in bear markets, using extreme

value theory. They �nd that the multivariate normality of the joint distributions can be

rejected in a statistical test. Ang and Chen (2002) propose a test for asymmetric corre-

lation by comparing empirical and model-based conditional correlations. Patton (2004)

�nds dependence asymmetry of �nancial returns both in the marginal distributions and

in the dependence structure. Patton (2006a, 2006b) develops a theory of conditional

copulas and employs time-varying copula models to analyze two foreign exchange rate

series. Compared to previous approaches in estimating correlation, the conditional copula

model does not require normality in the marginal distributions and can take advantage

of the two-step maximum likelihood method, which makes estimation more feasible. Jon-

deau and Rockinger (2006) model �nancial returns with time-varying skewed-t GARCH
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models and then use a time-varying or a switching Gaussian or Student�s t copula for

the dependence between countries. Okimoto (2007) estimates regime-switching copulas

for pairs of US-UK and other G7 countries. Rodriguez (2007) adopts the copula model

with Markov switching parameters and �nds evidence of changing dependence structures

during periods of �nancial turmoil. Increased tail dependence and asymmetry in times

of high volatility characterize Asian countries within a relatively short time period.

As the largest emerging market in the world, China has been experiencing rapid

economic growth in last two decades, which has led to a fast growing Chinese stock

market. Unfortunately, Chinese �nancial markets attract less academic attention. In late

1997, Asian countries experienced a signi�cant �nancial crisis. This �nancial crisis focused

more attention on the study of the dependence between �nancial markets. Kim (2005)

�nds that some di¤erences exist in the time path of dependence among Asian countries.

The question is whether the degree of dependence between China and other countries is

lower than that between other countries, so that Chinese market can be thought to be

insulated from future crises. It is also interesting to compare the dependence structure in

the largest emerging market, i.e. Chinese stock market with that in the largest developed

market, i.e. the U.S. stock market.

This study is devoted to the Chinese and U.S. stock markets. The objectives of this

study are as follows: First, we investigate the di¤erent dependence structures between the

Chinese stock market and other major stock markets using constant conditional copula

models. For comparison purposes, we analyze the dependence structures between the

U.S. stock market and others. It is, to my knowledge, the �rst attempt to examine the

dependence structures between the Chinese �nancial market and other major markets.

Second, we try to examine the dynamics of general dependence and tail dependence

using time-varying conditional copula models. Finally, a comparative analysis between

China-related models and U.S.-related models is conducted and some suggestions for

practitioners are given.

There are three main �ndings: First, the time-varying-dependence model does not

always perform better than constant-dependence model. This result has not previously
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been reported in the literature. Second, we �nd that the upper tail dependence can

be much higher than the lower tail dependence in some short periods, which has not

been documented in the �nancial contagion literature. Finally, Chinese �nancial market

is relatively separate from other international �nancial markets in contrast to the U.S.

market. The tail dependence with other �nancial markets is lower in China than in

the U.S. Additionally, we �nd that the dependence is negatively correlated with physical

distance between �nancial centers. There may be a general level of the dependence among

�nancial markets in developed countries and the dependence among western �nancial

markets have a more groupwise �avor.

This paper is organized as follows. The next section provides a brief review of copulas

and conditional copulas. In section 3, we discuss the model speci�cation, including the

choice of estimation strategy and speci�c marginal and copula models. Section 4 presents

estimation results for both marginal and copula models. Section 5 concludes.

2 Theory of Conditional Copula

2.1 Copula

It is necessary to understand what a copula is before we can discuss conditional copula.

For simplicity, we will focus on only bivariate copulas even though the extension to the

multivariate case is straightforward. Suppose we have two random variables Y1 and Y2.

Then the joint distribution function can be written as:

F (y1; y2) = Pr(Y1 � y1; Y2 � y2) (1)

where y1 and y2 denote the realizations of random variables Y1 and Y2, respectively.

A copula is actually a multivariate joint distribution. It allows the decomposition

of a joint distribution into its marginal distributions and its dependence function, i.e.

copula function.1 We may construct the copula function by transforming the random

1A complete and formal de�nition of copulas can be found in Nelsen (2006). Also, Joe(1997) provided
many nice properties of various copula families.
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variables Y1 and Y2 to their uniform marginal distributions (CDFs) denoted as F1 and

F2, respectively. Formally,

F (y1; y2) = Pr(F1(Y1) � F1(y1); F2(Y2) � F2(y2)) (2)

= C(F1(y1); F2(y2))

2.2 Conditional Copula

Patton (2006a) summarizes the conditional copula theory. We give a brief review here.

Similar to the unconditional case, we have two random variables Y1 and Y2. We introduce

a conditioning vectorW . Let FY1Y2jW denote the conditional distribution of (Y1; Y2) given

W , and let the conditional marginal distributions of Y1jW and Y2jW be denoted FY1jW

and FY2jW , respectively. We assume that FY1jW , FY2jW and FY1Y2jW are all continuous for

simplicity.2 Theorem 1 on conditional copulas in Patton (2006a) is reproduced below:

Theorem 1 Let FY1jW (�jw), FY2jW (�jw) be the conditional distribution of Y1jW = w and

Y2jW = w, respectively, FY1Y2jW (�j!) be the joint conditional distribution of (Y1; Y2)jW =

w and ! be the support of W . Assume that FY1jW (�jw) and FY2jW (�jw) are continuous in

y1 and y2 for all w 2 !. Then there exists a unique conditional copula C(�j!) such that

FY1Y2jW (y1;y2j!) = C(FY1jW j(y1jw); FY2jW (y2jw)jw)

= C(u; v) (3)

8(y1;y2) 2 �R� �R and w 2 ! (4)

where u = FY1jW (y1jw) and v = FY2jW (y2jw) are realizations of U � FY1jW (Y1jw) and

V � FY2jW (Y2jw) given W = w.

Theorem 1 is virtually an extension of Sklar�s Theorem (1959). U and V are the

conditional "probability integral transforms" of Y1 and Y2, respectively. Fisher (1932) and

Rosenblatt (1952) prove that U and V follow the Unif(0; 1) distribution, regardless of the

2This assumption is not necessary for the properties of copulas to hold. See Nelsen (2006).
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original distributions. Most nice properties of copulas come from this probability integral

transformation. Patton (2002) shows that a conditional copula has all the properties of

an unconditional copula. There are many copula families. In the next section, we will

discuss the speci�c copula functions used in our analysis.

3 Model Speci�cation

3.1 Estimation Strategy

It has been widely accepted that �nancial time series are generally non-normal and fol-

low Student�s t distribution. Moreover, in each marginal distribution, we model serial

correlation and heteroskedasticity via the AR(p)�GARCH(1; 1)� t model. After esti-

mating the marginal distributions, we will estimate copula dependence parameters using

maximum likelihood method. Let u � FY1jW (y1jw; �1) and v � FY2jW (y2jw; �2), where �1

and �2 are the vectors of parameters of each margins (or the coe¢cients of conditioning

vector W ). Given C(u; v; �) = C(FY1jW (y1jw; �1); FY2jW (y2jw; �2); �), the copula density

is:

c(u; v; �) =
@2C(u; v; �)

@u@v
(5)

Hence the joint density of an observation (y1;t; y2;t) is:

c(y1;t; y2;t; �) =
@2C(ut; vt; �)

@ut@vt
�
@ut
@y1;t

�
@vt
@y2;t

= c(ut; vt; �) � fY1jW (y1;tjw; �1) � fY2jW (y2;tjw; �2) (6)

Therefore, the log-likelihood of a sample can be written as:

L(y1;t; y2;t; �; �1; �2) =
T
X

t=1

ln[c(ut; vt; �) � fY1jW (y1;tjw; �1) � fY2jW (y2;tjw; �2)]

=

T
X

t=1

ln[c(FY1jW (y1;tjw; �1); FY2jW (y2;tjw; �2); �)

�fY1jW (y1;tjw; �1) � fY2jW (y2;tjw; �2)] (7)

= LC + LY1 + LY2 (8)
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where LC(y1;t; y2;t; �; �1; �2) =
T
P

t=1

ln c(FY1jW (y1;tjw; �1); FY2jW (y2;tjw; �2); �), LY1(y1;t; �1) =

T
P

t=1

ln fY1jW (y1;tjw; �1), and LY2(y2;t; �2) =
T
P

t=1

ln fY2jW (y2;tjw; �2) are the individual log-

likelihood functions of the copula and its two margins.

There are two parametric estimation methods available for copula modeling. One is

a one-step procedure, the other is a two-step procedure. The one-step procedure is to

estimate all parameters of the marginals and the copula at one time. Maximum likelihood

estimation yields �̂ = (�̂; �̂1; �̂2), such that

�̂ = argmaxL(y1;t; y2;t; �; �1; �2) (9)

However, in some situations, the maximum likelihood estimation may be di¢cult to

conduct due to too many parameters or just the complexity of the model. As Jondeau and

Rockinger (2006) point out, the time-varying dependence parameter may be a convoluted

expression of many parameters, hence an analytical expression of the gradient of the

likelihood might not exist. Therefore, only numerical gradients may be computable,

implying a dramatic slowing down of the numerical procedure. In such a case, a two-step

maximum likelihood estimation procedure, also known as Inference Functions for Margins

method (IFM) is necessary. In this paper, we use an AR(p) � GARCH(1; 1) � t model

to estimate the margins, which leads to many parameters. We also allow the dependence

parameters to vary over time, hence the number of parameters increases further. Due

to the large number of parameters and the complexity of our model, we choose the two-

step estimation strategy. This approach, proposed by Shih and Louis (1995) and Joe

and Xu (1996), is the maximum likelihood estimation of the dependence parameter given

the estimated marginal distributions. In the �rst step, the parameters in the marginal

distributions are estimated as follows:

~�k = argmaxLYk(yk;t; �k) for k=1,2 (10)
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In the second step, copula parameter is estimated given ~�1 and ~�2 from the �rst step:

~� = argmaxLC(y1;t; y2;t; �; ~�1; ~�2) (11)

Note that the density estimation of each margin does not a¤ect the estimation of the

copula parameter in the second step because each margin is actually estimated in the

�rst step and hence constant in the second step. Therefore, we only need to maximize

LC(y1;t; y2;t; �; ~�1; ~�2) to get the estimate of copula parameter.
3 Patton (2006b) has proved

that this two-step estimation produces normal and asymptotically e¢cient parameter

estimates.

3.2 Marginal Model

To estimate a bivariate distribution, we need to make an assumption about each uni-

variate marginal distribution �rst. In this study, we assume each marginal distribution

follows an AR(p) � GARCH(1; 1) � t process.4 This is a standard model for �nan-

cial returns introduced by Bollerslev (1987), and which is widely used in the literature;

see Patton (2002, 2006a) Jondeau and Rockinger (2006) and Hu (2006) among others.

Mathematically,

yi;t = �i +

p
X

j=1

�jyi;t�j + "i;t for i=1,2 (12)

r

�

�2i;t(� � 2)
� "i;tjIt�1 � t(�) (13)

�2i;t = ai + bi�
2
i;t�1 + ci"

2
i;t�1 (14)

where yi;t represents univariate stock index return series, �i is the conditional mean for

ith series, "i;t is error term in conditional mean equation, �2i;t is variance, � is the degree

of freedom of Student�s t distribution, It�1 is the information set at time t � 1. We can

consider this information set as the conditioning vector W . The standardized residuals

3All estimation in this study is conducted using S-Plus (Finmetrics) and MATLAB.
4This stands for autoregressive mean with lag order of p (AR(p)) and generalized autoregressive

conditional heteroscedesticity (GARCH) variance with Student�s t residuals.
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are assumed to follow Student�s t distribution with degree of freedom �.

3.3 Copula Model

We will mainly focus on the Normal (Gaussian) and Generalized Joe-Clayton copula

(GJC)5 since the former one is a good model to measure general dependence and the

latter one is good at modeling both upper and lower tail dependences. These two types

of copula models will give us a full picture of dependence structures for �nancial returns.

These results will be discussed in next section.

3.3.1 Normal (Gaussian) Copula

The �rst copula of interest is the Normal copula, which has the dependence function

associated with bivariate normality. It can be written as:

CN(u; v; �) =

Z ��1(u)

�1

Z ��1(v)

�1

1

2�
p

(1� �2)
exp

�

�(r2 � 2�rs+ s2)

2(1� �2)

�

dr ds (15)

where ��1 is the inverse of the standard normal CDF, � is the general dependence para-

meter.6

In this paper, we assume that the functional form of the copula is �xed throughout the

sample period while the dependence parameter is time-varying following some evolution

equation. We follow Patton (2006a) and assume the following evolution dynamics for �t:

�t = �

 

!� + �� � �t�1 + �� �
1

10

10
X

j=1

[��1(ut�j) � �
�1(vt�j)]

!

(16)

where �(x) =
(1� e�x)

(1 + e�x)
is the modi�ed logistic transformation, aiming to keep �t within

(�1; 1) interval. Here we assume that the copula dependence parameter follows an

ARMA(1; 10)-type process, in which the autoregressive term (�� � �t�1) captures the

5This is also called "Symmetrized Joe-Clayton copula" in the literature (see Patton (2006b)). We
use "Generalized" to emphasize that this copula provides more �exibility than the regular Joe-Clayton
copula in the sense that it is generalized to allow tail dependece to be either symmetric or asymmetric
while the regular one contains only asymmetric tail dependence by construction.

6Dependence parameter refers to the measure of correlation in copula function. In normal copula,
this is �.
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persistence e¤ect and the last term (�� �
1
10

10
P

j=1

[��1(ut�j) ��
�1(vt�j)]) captures the varia-

tion e¤ect in dependence. The functional form of this evolution equation can be changed

since is hard to know what the dynamics of the dependence looks like. Here we follow

Patton (2006a) to make our results comparable to previous research.7

3.3.2 Generalized Joe-Clayton (GJC) Copula

The second copula used in our study is Generalized Joe-Clayton (GJC) copula proposed

by Patton (2006a), which is basically a slight modi�cation of original Joe-Clayton (JC)

copula.8 Joe-Clayton copula proposed by Joe (1997) is a Laplace transformation of

Clayton�s copula . It is de�ned as:

CJC(u; v; �U ; �L) = 1� (1�
�

[1� (1� u)�]�
 + [1� (1� v)�]�
 � 1
	�1=


)1=� (17)

where � = 1= log2(2� �
U), 
 = �1= log2(�

L) and �U 2 (0; 1], �L 2 (0; 1].

Unlike the normal copula, there are two tail dependence parameters, �U and �L, in

this copula function. The upper tail dependence is de�ned as:

�U = lim
"!1

Pr[U > "jV > "] = lim
"!1

Pr[V > "jU > "] = lim
"!1
(1� 2"+ C("; ")=(1� ") (18)

If this limit exists, the copula shows upper tail dependence when �U 2 (0; 1] and no tail

dependence when �U = 0. Similarly, we can de�ne lower tail dependence as:

�L = lim
"!0

Pr[U 6 "jV 6 "] = lim
"!0

Pr[V 6 "jU 6 "] = lim
"!0

PrC("; ")=" (19)

If this limit exists, the copula shows lower tail dependence when �L 2 (0; 1] and no tail

dependence when �L = 0.

By construction, the Joe-Clayton copula always gives asymmetric tail dependence

even if two tail dependence measures are in fact equal. In order to overcome this short-

7Actually, we have tried several di¤erent evolution equations here, such as including a lag 2 autore-
gressive term or replacing 10 with 20 in the last term. These modi�cations did not o¤er signi�cant
improvement in our maximum likelihood estimation, however.

8Joe-Clayton copula is also known as the "BB7" copula.
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coming, we will use Generalized Joe-Clayton copula, which is given by

CGJC(u; v; �U ; �L) = 0:5 � (CJC(u; v; �U ; �L)+CJC(1�u; 1� v; �U ; �L)+u+ v� 1) (20)

where CJC represents the Joe-Clayton copula. The advantage of the GJC copula is

that it can be symmetric when �U = �L, whereas the original Joe-Clayton copula still

allows asymmetry even though tail dependence is actually symmetric, i.e. �U = �L.

Consequently, the GJC copula is virtually a generalized version of the Joe-Clayton copula

allowing tail dependence to be either asymmetric or symmetric. This property makes the

GJC copula more attractive for empirical work because of its generality. The Gumbel

and Clayton copulas also capture tail dependence. However, empirical research shows

that estimating Gumbel or Clayton copula separately does not produce much di¤erent

results from estimating the Joe-Clayton copula alone, as reported by Kim (2005).

Tail dependence refers to the level of dependence in the upper-right-quadrant tail and

lower-left-quadrant tail of a multivariate distribution, hence it is an appropriate measure

of the dependence of extreme events. This nice property makes it very useful to examine

the joint extreme events in �nancial returns during high volatility or market crash periods.

One explanation of tail dependence in our paper is a probability measure of joint extreme

values in two �nancial markets given one extreme value in one of the two markets.

Similar to the dynamics of �t in the Normal copula, we propose the following evolution

equations for �U and �L, respectively (See Patton (2006) for a more detailed explanation.)

�Ut = �

 

!U + �U � �
U
t�1 + �U �

1

10

10
X

j=1

jut�j � vt�jj

!

(21)

�Lt = �

 

!L + �L � �
L
t�1 + �L �

1

10

10
X

j=1

jut�j � vt�jj

!

(22)

where � is the logistic transformation, used to keep �U and �L within the (0; 1) inter-

val. These dynamics follow an ARMA(1; 10)-type process with an autoregressive term

(� � � t�1) and a forcing variable (� �
1
10

10
P

j=1

jut�j � vt�jj), where the autoregressive term

represents the persistence e¤ect and the forcing variable captures the variation in depen-
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dence. Note that we assume �U and �L evolve in the same pattern even though it is

possible that they follow di¤erent dynamics. We use 10 lags in the forcing variable to

make the evolution equation comparable with that of the Normal copula.

4 Empirical Results

4.1 Data Description

We examine the interaction between Chinese/U.S. stock indices and each of six other

stock indices. The labels are "CHN" for the Shanghai Stock Exchange Composite from

China, "DEU" for the DAX from Germany, "FRA" for the CAC 40 from France, "GBR"

for the FTSE 100 from the United Kingdom, "HKG" for the Hang Seng Stock Exchange

Index from Hong Kong, "JPN" for the Nikkei 225 from Japan and "USA" for the S&P500

from the United States. Daily stock indices are obtained from Datastream from January

2nd, 1991 to December 31st, 2007. The sample consists of 17 years of daily data covering

4434 data points. Table 1 gives summary statistics on all of the stock market returns.

As usual, returns are de�ned as 100 times the log-di¤erence of index values, where Pt is

the value of the index at time t. This reduces the sample by one record, yielding 4433

observations. That is,

Rt = 100� log(Pt=Pt�1) (23)

We have the following �ndings: First, in Panel A of Table 1, the average return of

Chinese stock market is the highest one followed by the Hong Kong market. In particu-

lar, the Japanese stock market shows bad performance considering the negative average

return. According to the standard deviation, the most volatile stock market is the Chi-

nese market and the next one is the Hong Kong market, while the less volatile market

is the U.S. market. Means of each series are very small relative to their standard de-

viations. Most of markets exhibit slight negative skewness (i.e. left-skewed) except for

China and Japan. China even reaches 6.05, which implies that the distribution is highly

right-skewed. All of these results show that the empirical distributions of returns exhibit
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non-normal pattern. We also �nd signi�cant kurtosis in each return series. China dis-

plays extremely high kurtosis. This high kurtosis means more of the variance is due to

infrequent extreme deviations.

Second, in Panel B of Table 1, results of the Jarque-Bera test strongly reject the null

hypothesis of normality, indicating the non-normality of the unconditional distribution

of each series. This is one of the reasons why the multivariate normal distribution would

be inappropriate. We perform the LM test to examine whether the squared return is

serially correlated up to lags 1, 5 and 10. This statistic clearly indicates that ARCH

e¤ects are likely to be found in all market returns.9 Even if there is one insigni�cant

statistic of ARCH LM(1) test for Chinese stock market, it is statistically signi�cant at

the 5% level using lags 5 and 10. Ljung-Box autocorrelation test with correction for

heteroskedesticity is also implemented at lags 1, 5 and 10, implying most of return series

are serially correlated, at least at one of the lag orders.10

Finally, in Panel C of Table 1, the unconditional correlation matrix indicates that

there exists a rather high dependence between geographically close countries as ex-

pected. The correlations between DEU, FRA and GBR are relatively higher than those

of other pairs. There are some extra �ndings on the relationship between distance

and stock market correlation in this paper. We will discuss this issue in the copula

result and further research sections. Unconditional correlations between China and

other countries are small, but whether conditional correlations are small or not is still

unknown. The linear unconditional correlations in China-related pairs range from -

0.0158 to 0.0511. The ranking from the highest to the lowest is CHN/HKG, CHN/JPN,

CHN/DEU, CHN/FRA, CHN/GBR, CHN/USA. The ranking of Spearman correlations

remains the same as that of linear correlations. Most of Spearman correlations are less

than the linear correlations except CHN/HKG, which actually increases by 53% (from

0.051 to 0.078). For the U.S.-related pairs, the linear correlations range from -0.016 to

0.455. The ranking of linear correlations in descending order is USA/DEU, USA/FRA,

9Other lag orders are also used to perform this test, almost all of them show signi�cant ARCH e¤ect.
The results are available upon request.
10Other lag orders are also used to perform this test, most of them show statistically signi�cant serial

correlation at 5% signi�cance level. The results are available upon request.
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USA/GBR, USA/HKG, USA/JPN, USA/CHN. However, the ranking of Spearman corre-

lation changes into USA/FRA, USA/GBR, USA/DEU, USA/JPN, USA/HKG, USA/CHN

in descending order. Most of Spearman correlations are less than their linear correlations

except USA/JPN, which actually increases 7.3% (from 0.109 to 0.117). We can see similar

results for Kendall�s � .

The linear correlation is only one way to measure dependence. In order to use it

correctly, two conditions must be satis�ed: (1) the data in the pairs both come from

normal distributions and (2) the data are at least in the same frequency. The �rst

condition is evidently violated in our case, so linear correlation is not e¤ective way to

evaluate dependence. Another possibility is to use the Spearman�s � (Rank) correlation

coe¢cient or Kendall�s � .11 The copula dependence parameter is easily transformed to

these rank correlation measures. According to Table 1, Spearman�s �0s and Kendall�s � �s

are a little less than the linear correlations for most pairs.

[Table 1]

4.2 Estimation of the Marginal Models

We use the two-step estimation method in this paper due to the large number of parame-

ters in the time-varying models. First, we select di¤erent lag order models for the mean

equations based on Akaike Information Criterion (AIC), keeping the conditional variance

equation as GARCH(1,1) for each country. We choose AR(17) for CHN, AR(6) for DEU,

AR(7) for FRA, AR(6) for GBR, AR(3) for HKG, AR(1) for JPN, and AR(7) for USA.

The results for the marginal distributions are reported in Table 2. All coe¢cients in

conditional variance equations are statistically signi�cant at 1% level, indicating strong

11As measures of concordance, Spearman�s � and Kendall�s � can be written with copulas (see Schweizer
and Wol¤ (1981)):

� = 12

Z Z

I2

C(u; v)dC(u; v)� 3

� = 4

Z Z

I2

C(u; v)dC(u; v)� 1
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ARCH e¤ects in all of the countries.

[Table 2]

We then conduct model misspeci�cation test as suggested by Diebold, Gunther and

Tay (1998). They examined the correlograms of (e��e); (e��e)2; (e��e)3; and (e��e)4, where

e is the probability integral transforms (u and v in our study). Each moment reveals

dependence operative through the conditional mean, conditional variance, conditional

skewness, and conditional kurtosis. Figure 1 presents the test results. In the AR �

GARCH � t case, the correlograms show that there is no serial correlation in the �rst

four moments with few exceptions. So we can conclude that our marginal distribution

models for all countries are correctly speci�ed. Put di¤erently, our marginal models are

adequate for �nancial returns.

[Figure 1]

4.3 Estimation of the Copula Models

4.3.1 Results for China-related Copula Models

Table 3 reports China-related Normal and Generalized Joe-Clayton (GJC) copula para-

meter estimates of both constant and time-varying cases for the purpose of comparison.

Normal Copula In Table 3 Panel A1, the constant dependence measures are signi�-

cantly di¤erent from linear correlations reported in Table 1 Panel C. Speci�cally, in the

CHN/DEU pair it decreases by 29% from 0.007 to 0.005; in the CHN/FRA pair it de-

creases from 0.002 to -0.004 with the change of sign; in the CHN/GBR pair it is less

negative (from -0.002 to -0.001); in the CHN/HKG pair it increases by 69% from 0.051

to 0.086; in the CHN/JPN pair it increases by 38% from 0.029 to 0.04; in the CHN/USA

pair it is less negative (from -0.016 to -0.006). These results show that the linear cor-

relation is highly biased due to the inappropriate normality assumption. One of them

even changes its sign from positive to negative. We compare these constant-dependence
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estimates across pairs and �nd that the highest constant dependence comes from the

CHN/HKG pair, followed by the CHN/JPN and CHN/DEU pairs with all positive signs.

This is reasonable since China and Hong Kong have a very close economic relationship.

However, all constant dependence levels are relatively low since the highest one is only

0.086, which implies that the returns in the Chinese �nancial market have not exhibited

a high level of dependence. It is noticed that the signs and magnitude of dependence in

Normal copula are more consistent with those of Spearman�s � and Kendall�s � than with

linear correlations in Table 1. This again veri�es the argument that the linear correlation

is inappropriate in certain conditions.

Since the constant case can be considered as a restricted version of the time-varying

evolution equation with two restrictions of � = 0 and � = 0, we then perform a formal

likelihood ratio test to check which model is preferred. The null is that the restricted

version with constant dependence of the model is not rejected as one moves to unrestricted

model with time-varying dependence. According to test statistics presented in Panel A2,

the null is rejected only in the CHN/HKG pair at the 5% signi�cance level, hence the

time-varying model is preferred only in this pair. The constant normal copula models

are preferred in all other �ve pairs at the 5% signi�cance level. We should conclude that

the time path of dependence in the CHN/HKG pair derived from the time-varying model

would be more informative than others due to a better �t. However, given the fact that

the null can be rejected at the 10% signi�cance level in the CHN/DEU and CHN/GBR

pairs, the time-varying models of these two pairs could potentially provide some insights

on the changes of dependence over time. The dynamics of dependence are captured by

the coe¢cients in the evolution equations. The time path of dependence parameters are

presented in Figure 2-7. It can be seen that most of the time paths are close to white noise,

but in the CHN/GBR and CHN/HKG pairs they seem to be informative. (see Figure 4

and 5) This is shown in the estimates of evolution equation as the persistence coe¢cient

�0s are relatively high compared to variation coe¢cients �0s, indicating that the time-

variation e¤ects dominate in these two pairs. In Figure 1, for the CHN/DEU pair, the

dependence is very volatile over time and reaches an extremely high level on March 2007.
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In Figure 4, for the CHN/GBR pair, the time path of dependence is relatively clear. It is

clear that dependence was increasing throughout last three months of 2007. In Figure 5,

for the CHN/HKG pair, we can not �nd any dramatic change in the dependence level in

July 1997 when Hong Kong left British rule though the dependence went up a little bit

after July 1st, 1997. One explanation could be that this event was well-anticipated, and

thus, is not considered an economic shock. Moreover, we fail to �nd a signi�cant increase

in the dependence level in 1997 and 1998 during Asian �nancial crisis. This is because

China was relatively independent of other �nancial markets in Asia like Hong Kong, hence

the CHN/HKG dependence did not change much during that period. Interestingly, we

can not �nd any signi�cant change for all pairs in December 2002 when A shares were

initially open to quali�ed foreign institutional investors (QFII). In 2007, the dependence

was increasing in general. The CHN/USA pair does not exhibit an informative time path

though it reaches an extreme peak in March 2007.

GJC Copula According to Table 3 Panel B1, in the constant tail dependence case,

most of the upper and lower tail dependences are close to zero except the CHN/HKG

pair. This indicates that China and Hong Kong exhibited some degree of dependence

in extreme events as might be expected. In particular, lower tail dependence is slightly

higher than upper one, hence there is higher probability of joint extreme events during

bear market than during bull market. This is also true for the CHN/JPN pair, even

though the magnitude of the tail dependence is less than that of the CHN/HKG pair.

For other pairs, there is no observable tail dependence, hence joint extreme events were

less likely to happen in these paired countries. Therefore, China was not signi�cantly

a¤ected by the extreme events in western stock markets in general. In other words, if

western stock markets experience extreme market downturns or upturns, then we should

not expect it would happen to China simultaneously if this data is representative.

In Figure 5, for the CHN/HKG pair, even if the constant upper tail dependence

is smaller than lower tail dependence, the time path of lower tail dependence is more

informative than that of upper tail dependence. We can see that there exists several

peaks with the highest one approaching 0.3. This shows that the time-varying model can
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give us further insights on changes in the dependence structure throughout the sample

period. There is no strong evidence of asymmetric tail dependence in all pairs except the

CHN/HKG pair, in which the lower tail dependence is 1.5 times upper tail dependence.

We also conduct likelihood ratio tests with four restrictions since we have two separate

evolution equations for �U and �L. The results can be found in Table 3 Panel B2. It

turns out that the time-varying models are preferred in the CHN/DEU, CHN/FRA,

CHN/GBR and CHN/USA pairs while the constant models �t better in the CHN/HKG

and CHN/JPN pairs.

[Table 3]

4.3.2 Results for U.S.-related Copula Models

Table 4 reports US-related Normal and Generalized Joe-Clayton (GJC) copula parameter

estimates for both constant and time-varying cases.

Normal Copula In Table 4 Panel A1, we �nd that the dependence estimates are

revised by Normal copula models compared to linear correlations. Speci�cally, in the

USA/DEU pair it decreases by 17% from 0.455 to 0.378; in the USA/FRA pair it decreases

by 9% from 0.428 to 0.391; in the USA/GBR pair it decreases by 4% from 0.413 to

0.396. However, in the USA/HKG pair it increases by 6% from 0.110 to 0.117 and in

the USA/JPN pair it increases by 8% from 0.109 to 0.118. Just like the China-related

pairs, these revisions again show that the linear correlations are biased in non-normal

situations. Most constant dependence estimates are closer to the Spearman�s correlations

and Kendall�s � than linear correlations. Another interesting �nding is that the constant

dependences are quite close to 0.39 in the �rst three pairs and close to 0.12 in next two

pairs. There may be a general level of dependence within a certain group of countries.

Similarly, we then implement likelihood ratio tests to compare constant and time-

varying models. The time-varying models are preferred in the USA/DEU and USA/FRA

pairs, given that the null hypotheses are strongly rejected at the 5% signi�cance level.

For other pairs, the constant models are preferred. Taking a look at coe¢cients in time-

varying equations, the persistence coe¢cient �0s are signi�cantly higher than variation

17



coe¢cients �0s in the USA/DEU and USA/FRA pairs. So persistence e¤ects dominate.

In Figure 2 and 3, the USA/DEU and USA/FRA pairs show very clear and similar time-

varying paths with signi�cantly increasing dependence in the long run while others do not

exhibit this pattern. In the USA/DEU pair, the dependence goes down until November

1993 and goes up thereafter. After September 1997, the dependence was consistently

above the constant level at 0.378 with few exceptions and exhibits a more volatile pattern.

The time-varying dependence reaches a low of 0 and a high of 0.6. Interestingly, on and

shortly after September 11th 2001, there exists some increase in dependence but not as

dramatic as we initially expected. Compared to the USA/DEU pair, the USA/FRA pair

displays a similar pattern but a smoother time path of dependence. The path reaches

two troughs in August 1994 and July 1996 and was gradually increasing during the last

two years. The time-varying dependence ranges from 0.34 to 0.46. This interval is 0.12

and hence less than the interval 0.6 of the USA/DEU pair. This smaller range of the

USA/FRA pair shows a more stable dependence structure than that of the USA/DEU

pair. Beginning from October 1996, the dependence is consistently above its constant

level 0.391 with no single exception and becomes even more stable than before considering

that the range further reduces to 0.06 (from 0.4 to 0.46). Moreover, the time path of the

USA/FRA pair is less volatile than the USA/DEU pair. In the USA/GBR pair, unlike

what we expected, the time path is not very informative and moves around the constant

level of 0.396. It ranges from -0.15 to 0.15 and reaches the highest peak in March 2007.

In the USA/HKG pair, the dependence ranges from 0.06 to 0.2. It also exhibits large

variations in relatively short period (within one year). In the USA/JPN pair, the time

path is the most volatile one in the U.S.-related pairs, ranging from -0.02 to 0.25. This

time path is less informative than others.

GJC Copula According to Panel B, in the constant case, the upper and lower tail

dependences are slightly di¤erent in levels for the USA/DEU, USA/FRA and USA/GBR

pairs. Speci�cally, in these three pairs, the lower tail dependence are higher than up-

per tail dependence by 0.016, 0.03, 0.043, respectively. This implies that the limiting

probability of U.S. stock market crash, given that German stock market has crashed, is
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about 8% greater than the joint probability of a market boom, meaning that the stock

market is more dependent during market downturns than during market upturns. These

�ndings are consistent with previous research, for example, Longin and Solnik (2001),

Patton (2004). In the USA/FRA and USA/GBR pairs, the probabilities of market crash

are about 15% and 23% greater than that of market boom, respectively. Therefore, the

USA/GBR pair has the most asymmetric tail dependence, followed by the USA/FRA

pair, and the USA/DEU pair is less asymmetric. In USA/HKG pair, the lower tail de-

pendence is 900 times upper tail dependence, meaning that the probability of U.S. market

downturns, given Hong Kong market downturns, is about 900 times the joint probability

of market upturns. This implies that the USA/HKG pair is much more dependent during

bear markets than during bull markets, which is an extremely strong asymmetry. In the

USA/JPN pair, the lower tail dependence is present while the upper tail dependence is

very small. The lower tail dependence is about 40 times upper tail dependence, a strong

asymmetry, meaning the probability of joint negative extreme events, given Japanese

market has crashed, is 40 times the probability of joint market boom. These tail de-

pendences in USA/HKG and USA/JPN are much more asymmetric than those in other

pairs.

For comparison purposes, we perform the likelihood ratio tests with four restrictions.

It turns out that all time-varying models are strongly preferred except the USA/HKG

pair. In general, the evolutions of time-varying dependence parameters follow di¤erent

patterns for upper and lower tail dependences. In Figure 2, for the USA/DEU pair, the

time path of the upper tail dependence is informative but that of the lower tail dependence

is quite noisy. In the plot of the upper tail dependence, we �nd that its time path is closer

to its constant level before August 2000 than after that time. After August 2000, there are

�ve signi�cant peaks. In particular, there is a signi�cant adjustment period for the upper

tail dependence from December 2002 though August 2003 when it goes up �rst and goes

back to its constant level. We have similar �ndings for the USA/FRA pair (see Figure

3). Namely, the time path of the upper tail dependence seems to be informative and

very volatile while the time path of the lower tail dependence is close to white noise. In
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the time path of upper tail dependence, we also �nd that there are more deviations from

the constant level after August 2000 than before. Interestingly, there are four signi�cant

peaks after August 2000, among which there are three peaks that happened at the same

periods as those in the upper tail dependence of the USA/DEU pair. Surprisingly, in

USA/FRA pair, the upper tail dependence could be much higher than the lower tail

dependence in some short period, for example, from December 2002 to January 2003.

Therefore, although the lower tail dependence is generally higher than the upper tail

dependence in constant case, the time-varying-dependence model shows that the joint

probability of market upturns (upper tail dependence) could be higher than the joint

probability of market downturns (lower tail dependence) in a short time period. This

result, to our knowledge, has not previously been documented in the literature.

These two pairs exhibit similar patterns of upper tail dependence, meaning that the

upturns in U.S. stock market may have similar e¤ects on German and French stock

markets in terms of probability. Also, it is clear that the upper tail dependences are

relatively high in several periods in these two pairs, including 9/11 event in 2001, but

interestingly it is not the highest peak in dependence path for each pair. In the USA/GBR

pair (see Figure 4), the time paths of the lower and upper tail dependences display similar

patterns, indicating the symmetric property. There is no signi�cant change in both upper

and lower tail dependence. In the USA/HKG pair (see Figure 5), upper tail dependence

is very close to zero and lower tail dependence moves around its constant level. In the

USA/JPN pair (see Figure 6), lower tail dependence is volatile with three extreme peaks

in September 1992, August and October 2005, respectively.

[Table 4]

[Figure 2-7]
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4.3.3 Comparative Analysis of Dependence Structures of Chinese and U.S.

Financial Markets

First, in general, Chinese �nancial markets have not been quite as dependent upon other

�nancial markets as measured by both general dependence and tail dependence. The fact

that most tail dependence parameters are close to zero implies a low possibility of an

extreme event in China, given an extreme event in another country. However, the U.S.

market is much more correlated with other countries. This is not surprising since the

index we are using is from A share market denominated in Chinese yuan which has not

allowed to be traded by foreign investors until 2002.12 After 2002, only quali�ed foreign

institutional investors (QFII) were permitted to trade in A share market. Consequently,

although trade �ows between China and western countries increased, the �nancial market

in China is relatively separate from international �nancial markets. However, we might

expect that the dependence will increase in the future as it becomes more open to foreign

investors. Moreover, the western markets are all developed economies whereas China is

thought of as an "emerging" market, hence portfolio managers tend to think of emerging

markets as a separate asset class in which to invest, which may explain this low depen-

dence. Another interesting �nding is that the Hong Kong market, which traditionally

has had a closer economic relationship with mainland China, has higher dependence with

U.S. market than with Chinese market. This is because western portfolio managers con-

sidered Hong Kong to be "investable" over the entire sample period and were, perhaps,

more likely to set their exposure to the Chinese economy through the Hong Kong market

rather than investing directly in mainland China.

Second, in the Figure 2 Normal case, the dependence is increasing in the long run

for the USA/DEU pair, whereas the dependence in the CHN/DEU pair is close to white

noise with an exception of a signi�cant peak in early 2007. In Figure 3 Normal case, the

USA/FRA pair shows a very clear dependence path (similar pattern to USA/DEU), but

the CHN/FRA pair shows just noise. In Figure 4-6, both China-related and U.S.-related

12There is another B share market denominated in U.S. dollars. We don�t use the index from the
B share market since it is not a good representative index of Chinese �nancial market for two reasons:
1) it is very small in terms of market value compared to A share market and 2) domestic residents in
mainland China were not allowed to invest in the B share market until 2001.
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pairs show very volatile dependence without smooth paths. In Figure 7, the USA/CHN

pair shows a very low dependence level with a volatile time path. Therefore, there is

no much comovement between Chinese and U.S. stock markets. To sum up, the time

paths of dependence in the USA/DEU and USA/FRA pairs are smoother than those

in the China-related pairs. So U.S. market comovement with these two countries will

be more traceable than China. In contrast, for Britain, Hong Kong, and Japan-related

pairs, China exhibits smoother time paths of dependence. In general, one may expect

that the closer is the economic relationship between two countries, the clearer and more

traceable the time paths. This clear and smooth time path will be useful in forecasting

future dependence structure.

Last, Table 5 reports results of model comparisons. We can see that in Panel A, for

the China-related pairs, constant models dominate in normal copula though time-varying

models are preferred for three pairs each in GJC copula. In Panel B, for the U.S.-related

pairs, constant models got four checks in normal copula while time-varying GJC copula

models got �ve checks out of six. It seems that, in general, constant models dominate in

the China-related pairs whereas time-varying models dominate in the U.S.-related pairs.

However, strictly speaking, model preference varies across di¤erent pairs and there is no

general preference on model selection between constant and time-varying models. This

implies that we have to analyze dependence structures on a case by case basis. There is

no common preference in copula models.

[Table 5]

In addition to these empirical �ndings above, we also �nd that there exists a neg-

ative relationship between physical distance and �nancial market dependence with few

exceptions, i.e. the greater the air distance between �nancial centers, the lower the de-

pendence or correlation between �nancial markets. These results are reported in Table 6

and Figure 8. The distance measure is de�ned as the air distance in statute miles between

�nancial centers in these countries. We scale it down by dividing the original values by

105 in order to make it comparable with dependence values in terms of magnitude. The
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�nancial centers are Shanghai in China, Frankfurt in Germany, Paris in France, London

in Britain, Hong Kong, Tokyo in Japan and New York in U.S. Panel A reports this nega-

tive relationship between dependence and distance in China-related pairs while Panel B

describes the negative association between them in U.S.-related pairs.

One signi�cant exception is the comparison between USA/CHN and USA/HKG pairs

since greater distance between New York, U.S. and Hong Kong (compared to the distance

between New York, U.S. and Shanghai, China) is associated with higher depndence be-

tween U.S. and Hong Kong markets. This exception implies that other factors apart from

the air distance may dominate the e¤ect of distance on dependence, such as the market

capital size or gross domestic product (GDP), etc. Therefore, we de�neMi andMj as the

�nancial market capital size (or country GDP) in each country i and j and assume that

they are positively correlated with �nancial market dependence DEPij (such as linear

correlation, Spearman�s �, Kendall�s � , and copula dependence estimates) in absolute

terms, and also de�ne Sij as the physical distance between �nancial centers of country i

and j. It is natural to propose a gravity model of �nancial market as follows:

DEPij = G
MiMj

Sij
(24)

where G is a constant. This model is in line with the spirit of the trade gravity model

�rst proposed by Isard (1954). We can test the model by OLS regression. After log-

linearization, the regression equation should be log(DEPij) = �0+�1 logMi+�2 logMj+

�3 logSij + ", where �0 = logG. We expect that �1 and �2 are both positive and �3 is

negative. Table 6 Panel C reports the regression results. All coe¢cients show the correct

signs as we expected. This result is consistent with the �ndings by Flavin et al. (2002)

and Huang et al. (2006). F-statistics indicate that all coe¢cients are jointly signi�cant

at 1% level in all of the four regressions. Moreover, we fail to reject the null hypothesis

that the coe¢cient of air distance is -1 in all of the four regressions. This implies that the

perfectly negative correlation between dependence and distance is present. R2 is reported

in the last row. The regression with copula dependence �ts best. If our gravity model is

correctly speci�ed, than copula dependence estimate should be the most desirable measure
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of dependence. In further research, it can be tested by more extensive cross-section data.

[Table 6]

[Figure 8]

5 Concluding Remarks

Dependence structure is an important issue in �nancial contagion. Linear correlation,

though it provides an easy and convenient way to describe comovement between two ran-

dom variables, is not an appropriate dependence measure and may be highly biased in

certain non-normal situations. In particular, the multivariate distributions with complex

dynamic features make linear correlation be an improper measure. In addition, asym-

metric dependence in equity markets and foreign exchange markets is also documented in

recent papers, such as Longin and Solnik (2001), Ang and Chen (2002), Patton (2006a)

and Rodriguez (2007). These features can be easily captured in copula models with tail

dependence parameters. Therefore, the copula is a powerful and attractive tool to analyze

the dependence between margins since it does not require the assumption of normality in

the marginals. Recently, copula theory has been extended to a time-varying conditional

copula model by Patton (2006a), which contains a conditioning vector and allows the

dependence parameter to vary over time. This model provides insights into the dynamics

of the dependence structure, which can help us to better understand the �uctuations in

dependence structure.

In this study, we used the time-varying conditional copula model to study depen-

dence structures in Chinese versus U.S. stock markets. In order to use the copula, we

needed to correctly model marginal distribution for each series. The standard AR(p) �

GARCH(1; 1)�t model is employed to estimate these conditional marginal distributions.

The test suggested by Diebold, Gunther and Tay (1998) is implemented to examine the

model misspeci�cation of conditional marginal distributions. After that, two di¤erent

copulas are considered: Normal copula with general dependence and Generalized Joe-
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Clayton copula with upper and lower tail dependence. Moreover, the dependence para-

meters are allowed to vary over time and ARMA-type evolution equations are proposed

for each dependence parameter. The time paths of dependence for each pair are showed

and analyzed. The following conclusions and implications can be reached:

First, after examining dependence structures in Chinese versus U.S. �nancial mar-

kets, we have three empirical �ndings as follows: 1) Due to the low general dependence

between Chinese and U.S. �nancial markets, the downturns in the U.S. �nancial markets

will less likely a¤ect Chinese stock market than other countries. Moreover, given the very

low tail dependence, extreme events in the U.S. �nancial markets will not in�uence Chi-

nese �nancial markets either. This is also true for the e¤ects of other western countries

(for example, Germany, France, Britain, and Japan) on China. However, Hong Kong

has some impact on Chinese market at both general and tail dependence levels. 2) U.S.

stock market is closely associated with European markets, such as Germany, France and

Britain, in terms of the general dependence and tail dependence. This implies that there

is high probability that the downside in U.S. �nancial markets and the downside in other

European markets will happen simultaneously. Hence we would expect strong comove-

ment in Europe during U.S. recessions and downturns in �nancial markets. An interesting

�nding is that the USA/HKG and USA/JPN pairs display similar dependence patterns

in terms of general dependence, upper and lower tail dependence. In addition, we �nd

that there may be a general level of dependence (say 0.39 for the USA/DEU, USA/FRA,

USA/GBR pairs and 0.118 for the USA/HKG and USA/JPN pairs) among �nancial

markets in developed countries. The dependence among western �nancial markets have

a more groupwise �avor, for example,. the USA/DEU and USA/FRA pairs demonstrate

similar patterns of time-varying dependence. 3) Compared to U.S. stock market, Chinese

market is relatively independent of other major international �nancial markets, except

Hong Kong. This suggests that we should consider Chinese market as a good candidate

in our portfolio to reduce risk when western markets experience downturns. During the

ongoing global �nancial crisis, we would suggest investors to increase weights on �nancial

assets from Chinese �nancial markets in their portfolio for diversi�cation purpose. This
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will help them to diversify away risk or at least reduce their loss. This model can be

used in conditional asset allocation and Value-at-Risk contexts in a non-normal �nancial

world. The conditional tail dependence may provide some useful information for portfo-

lio weighting hence reduce exposure to downside risk. It also provide some insights on

international portfolio management for global hedge fund.

Second, the time-varying model provides very important information on the time path

of dependence. It shows us that the dependence could be quite volatile and deviates from

its constant level frequently, hence the constant model may not be correctly describe the

�uctuations in dependence. Notwithstanding the fact that time-varying model is, loosely

speaking, more informative than constant model in terms of explaining the changes in

the dependence, the time-varying model does not always perform better than constant

model. In some situations, the constant model is adequate enough to fully disclose the

dependence structure, such as USA/HKG pair in our research.

Third, the asymmetric behavior in tail dependence does not mean that the lower

tail dependence is always higher than upper tail dependence. It could be the other way

around. In this paper, we �nd that the upper tail dependence is much higher than the

lower tail dependence from December 2002 to January 2003 in the USA/FRA pair. This

�nding, to our knowledge, has not been documented in previous research.

Last, but not least, an interesting �nding is that the greater is the physical distance,

the lower the dependence, at least in China-related pairs. This is, in spirit, similar to the

intuition suggested by the gravity model of trade. This model can be tested empirically by

more extensive cross-section regression. Also, it could be asked how can the time-varying

copula model add values to Value-at-Risk calculation in contrast to the currently-used

constant copula model. Moreover, one could also include time dummies to check whether

or not dependence level has signi�cantly changed before and after some signi�cant events,

for example, the 9/11 event in 2001. In addition, one can employ Monte Carlo simulation

method to examine the sensitivity of dependence estimates to di¤erent copula models.

We leave these topics for further research.

26



References

[1] "Air Distances between World Cities in Statute Miles," www.infoplease.com, Re-

trieved on 10/21/2008 at http://www.infoplease.com/ipa/A0759496.html.

[2] Ang, A. and Chen, J. (2002), "Asymmetric correlations of equity portfolios", Journal

of Financial Economics 63(3), 443-94.

[3] Bartram, S. M. and Dufey, G. (2001). �International portfolio investment: theory,

evidence, and institutional framework,� Financial Markets, Institutions and Instru-

ments 10 (3), 85-155

[4] Bollerslev, T. (1987), "A conditional heteroskedastic time series model for speculative

prices and rates of return", Review of Economics and Statistics 69, 542-547.

[5] Bollerslev, T. (1990), "Modelling the coherence in short-run nominal exchange rates:

A multivariate generalized arch model", Review of Economics and Statistics 72(3),

498-505.

[6] Fisher, R. A. (1932), Statistical Methods for Research Workers (Edinburgh: Oliver

and Boyd).

[7] Flavin, T., Hurley, M. and Rousseau, F., (2002) "Explaining stock market correla-

tion: A gravity model approach," The Manchester School 70, 87-106.

[8] Hu, L. (2006), "Dependence patterns across �nancial markets: a mixed copula ap-

proach", Applied Financial Economics 16, 717-729

[9] Huang, J., Ates, A., and Brahmasrene, T. (2006), "Measuring emerging stock mar-

ket correlations utilizing the gravity model," (2006), Journal of Economics and Eco-

nomic Education Research September 1, 2006.

[10] Isard, W. (1954), "Location theory and trade theory: short-run analysis". Quarterly

Journal of Economics 68, 305- 322.

27



[11] Joe, H. (1997), Multivariate models and dependence concepts. London: Chapman

& Hall.

[12] Joe, H., Xu, J.J., (1996). "The estimation method of inference functions for margins

for multivariate models," Technical Report 166, Department of Statistics, University

of British Columbia.

[13] Jondeau, E. and Rockinger, M. (2006), "The Copula-GARCH model of conditional

dependencies: An international stock market application," Journal of International

Money and Finance 25 827-853.

[14] Kim, Y. (2005). "Dependence structure in international �nancial markets: evidence

from Asian stock markets," UCSD Working paper

[15] Longin, F. and Solnik, B. (1995), "Is the correlation in international equity returns

constant:1960-1990?", Journal of International Money and Finance 14(1), 3-26.

[16] Longin, F., Solnik, B., (2001), "Extreme correlation of international equity markets,"

Journal of Finance 56 (2), 649-676.

[17] Nelsen, R. B. (2006), An Introduction to Copulas. 2nd edition. New York: Springer.

[18] Okimoto, T. (2007), "New evidence of asymmetric dependence structures in interna-

tional equity markets", Journal of Financial and Quantitative Analysis, forthcoming.

[19] Rodriguez, J. (2007), "Measuring �nancial contagion: A copula approach", Journal

of Empirical Finance 14, 401-423.

[20] Rosenblatt, M. (1952), "Remarks on a multivariate transformation," The Annals of

Mathematical Statistics 23 470�72.

[21] Patton, A. J., (2002), "Applications of copula theory in �nancial econometrics,"

Unpublished Ph.D. dissertation, University of California, San Diego.

[22] Patton, A.J., (2006a), "Modelling asymmetric exchange rate dependence", Interna-

tional Economics Review 47 (2), 527-556

28



[23] Patton, A.J., (2006b), "Estimation of copula models for time series of possibly dif-

ferent lengths," Journal of Applied Econometrics 21 (2), 147-173.

[24] Schweizer and Wol¤ (1981), "On nonparametric measures of dependence for random

variables," Annuals of Statistics, 9, 879-885.

[25] Shih, J.H., Louis, T.A., (1995). "Inferences on the association parameter in copula

models for bivariate survival data," Biometrics 51, 1384-1399.

[26] Sklar, A. (1959), �Fonctions de repartition �a n dimensions et leurs marges,� Publi-

cations de l� Institut Statistique de l�Universite de Paris 8 , 229�31.

[27] "World Economic Outlook Database (October 2008)," In-

ternational Monetary Fund, Retrieved on 10/26/2008 at

http://www.imf.org/external/pubs/ft/weo/2008/02/index.htm.

29



30 
 

 Table 1 Summary Statistics on Daily Returns
Panel A: Descriptive Statistics 

  China  Ge y rman F  rance B  ritain Ho ng ng Ko Japan  Unit tes ed Sta

Mean  0.084  0.040  0.030  0.025  0.050  ‐0.010  0.034 
Std. Dev.  2.548  1.365 ‐0.299  1.281 ‐0.118  1.008  1.557  1.377  0.978 ‐0.121 Skewness  6.051 159.462  ‐0.143 6.324  ‐0.032 13.157  0.047 5.457 Kurtosis  7.504  6.136  7.204 

P ia nosticanel B: D g  Tests 

Jarque­Bera Stat. 

 

4548766.627*** (  0.000) 38  13.035*** (0.000) 18 ** 26.877* (0.000) 20 ** 55.549* (0.000) 19 *** 054.878 (0.000) 11  16.843***) (0.000 32  75.759*** (0.000)
ARCH LM Stat. (1) 

 

2.036 ) (0.15419.546  
1 * 81.129** (0.000)6 * 

1 * 33.535** (0.000)5 * 
2  26.405*** (0.000)7  

5 * 47.448** (0.000)7 * 
42.367  ***(0.000) 20  

1 * 72.264** (0.000)3 * ARCH LM Stat. (5) 

 

*** (0.002) 41.582** (0.000)7 * 
11.811** (0.000)6 * 

19.364*** (0.000)8  
62.275** (0.000)7 * 

8.2944*** (0.000)2 * 
90.054** (0.000)4 * ARCH LM Stat. (10) 

 

22.467** (0.013)  61.826**(  0.000) 64.791**(  0.000) 28.381***(  0.000) 79.087**(  0.000) 62.870**(0.000)  76.975**(  0.000)
QW Stat. (1) 

 

8.853*** ) (0.00334.731  
1.155 (  0.283) 0.376 ) (0.5402

0.021 ) (0.88629.908
2.450 ) (0.11843.109  

4.437** (0.035)  2.217 (  0.137)
QW Stat. (5) 

 

***) (0.00042.805  
8.414 ) (0.1352  

3.000*** ) (0.0003
*** ) (0.00047.157

***) (0.00051.434  
10.809 (0.055)  9.632 ) (0.08621.779QW Stat. (10) 

 

***(0.000)  0.795***(0.023)  1.524*** (0.001)  *** (  0.000)4433 
***(0.000)  12.528 (0.251)  ** (0.016) 

Number of Obs. 

Panel C: Correlations 

Linear Corr.  China  Germany  Fra ce n Britain  Hong Kong  Jap n a

Germany  0.007 (  0.664)          
France  0.002 (0.900)  0.767*** )(0.000          
Britain  ‐0.002 ) (0.911 0.684*** )(0.000   0.780*** )(0.000        

Hong Kong  0.051*** (0.001)  0.319*** (0.000)  0.290*** (0.000)  0.305*** (0.000)     
Japan  0.030* (0.051)  0.230*** (0.000)  0.240*** (0.000)  0.242*** (0.000)  0.372*** (0.000)   

United States  ‐0.016 (0.294)  0.455*** (0.000)  0.428*** (0.000)  0.413*** (0.000)  0.110*** (0.000)  0.109*** (0.000) 
Spearman Corr.  China  Germany  Fra ce n Britain  Hong Kong  Jap n a

Germany  0.001 (0.965)           
France  ‐0.004 (0.790)  0.710*** ) (0.000        
Britain  ‐0.006 (0.680)  0.628*** (0.000)  0.731*** (0.000)       

Hong Kong  0.078*** (0.000)  0.293*** ) (0.000 0.259*** ) (0.000 0.277*** ) (0.000    
Japan  0.028* (0.065) ‐0.009 

0.232*** ) (0.0000.367*** 
0.221*** ) (0.0000.373*** 

0.220*** ) (0.0000.371*** 
0.347*** ) (0.0000.108*** 

 
United States  0.117*** 
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(0.544)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000) 
Kendall’s Tau  China  Germany  Fra ce n Britain  Hong Kong  Jap n a

Germany  0.0001 (0.991)           
France  ‐0.003 (0.767)  0.539*** )(0.000          
Britain  ‐0.004 ) (0.682 0.461*** )(0.000   0.552*** )(0.000        

Hong Kong  0.053*** (0.000)  0.202*** (0.000)  0.178*** (0.000)  0.190*** (0.000)     
Japan  0.019* (0.065)  0.160*** (0.000)  0.151*** (0.000)  0.151*** (0.000)  0.240*** (0.000)   

United States  ‐0.006 (0.559)  0.258*** (0.000)  0.261*** (0.000)  0.260*** (0.000)  0.073*** (0.000)  0.079*** (0.000) Notes:   1. This  table presents summary statistics of each  index series. The data are daily percentage return,  i.e. 100  times  the  log‐differences of daily stock  index returns. The sample period runs 17 years from January 2nd, 1991 to December 31st, 2007, yielding 4433 observations in total. Panel A presents descriptive statistics. 2.  Panel  B  reports  test  results.  Under  the  null  hypothesis  of  normality,  the  Jarque‐Bera  test  statistics  has  a  Chi‐square  distribution with  fixed  degree  of freedom 2. The ARCH LM test of Engle (1982) with null hypothesis of no ARCH effect is conducted using 1, 5 and 10 lags with 1, 5 and 10 degree of freedom, respectively.  Tests  using  other  number  of  lags  give  the  same  results.  QW  statistic  is  the  Ljung‐Box  statistics  for  serial  correlation,  corrected  for heteroscedesticity, computed at 1, 5 and 10 lags, respectively. The asterisks, (*) (**) and (***) indicate a rejection of the null hypothesis at the 1%, 5% and 10% levels, respectively. P‐values are reported in parentheses in Panel B.   3. Panel C reports the linear, Spearman’s rho and Kendall’s tau correlations between two country index returns. P‐values are reported in parentheses in Panel C. The asterisks, (*) (**) and (***) indicate a rejection of the null hypothesis of no correlation at the 1%, 5% and 10% levels, respectively. 
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 Table 2 Results for Marginal Models
  China  Germany  France  Britain  H  ong Kong Japan  Un  ited States

Cond. Mean (αi)  0.029*** (0.015)  0.085*** (0.014)  0.074** (0.015)  0.056*** (  0.016) 0.073*** (0.016)  0.016 (0.017)  0  .071***(0.011) 
AR(1) (β1)  0.049*** (0.015) 0.041*** 

‐0.013 (  0.016) ‐0.003 (0.016)  0.000 (0.016) ‐0.028** 
0.031** (0.015)  ‐0.040*** (0.016)  ‐0.022*** (0.015) ‐  AR(2) (β2)  (0.015) 0.103*** 

0.001 (0.015)  ‐0.024* (0.015) ‐0.044***  (0.016) ‐0.029** 
‐0.007 (0.015) ‐0.034*** 

  0.036***(0.015) ‐  AR(3) (β3)  (0.014) 0.058*** 
‐0.023* (0.015)  (0.015)  (0.015)  (0.014)    0.040***(0.015) ‐0.025*** AR(4) (β4)  (0.014) 0.047*** 
0.021* (0.015)  ‐0.000 (0.015) ‐0.046*** 

‐0.007 (0.016) ‐0.039*** 
    (0.014) ‐0.030*** AR(5) (β5)  (0.014)  ‐0.027** (0.015) ‐0.042***  (0.015)  (0.015) ‐0.033*** 
    (0.014) ‐0.034*** AR(6) (β6)  ‐0.009 (0.014) 0.031***  (0.015)  ‐0.012 (0.015) ‐   (0.015)      (0.015) ‐0.042*** AR(7) (β7)  (0.013) 0.030*** 

  0.046***(0.015)        (0.015) 
AR(8) (β8)  (0.013) 0.029*** 

           
AR(9) (β9)  (0.012) 0.040*** 

           
AR(10) (β10)  (0.012)             
AR(11) (β11)  0.026** (0.012) 0.034*** 

           
AR(12) (β12)  (0.011)             
AR(13) (β13)  0.021** (0.011) 0.038*** 

           
AR(14) (β14)  (0.011) 0.032*** 

           
AR(15) (β15)  (  0.011)            
AR(16) (β16)  0.004 (0.011) 0.023*** 

           
AR(17) (β17)  (0.011) 0.094*** 

           
Cond. Variance (ai)  (0.017)  0.014*** (0.004)  0.016*** (0.004)  0.010*** (0.003)  0.014*** (0.004)  0.019*** (0.005)  0  .003***(0.001) 

ARCH(1) (ci)  0.347*** (0.040) 0.758*** 
0.081*** (0.009) 0.913*** 

0.065*** (0.007) 0.925*** 
0.076*** (0.008) 0.915*** 

0.058*** (0.007) 0.939*** 
0.064*** (0.007) 0.929*** 

0  .050***(0.006) 0  GARCH(1) (bi)  (0.014)  (0.009)  (0.008)  (0.009)  (0.007)  (0.008)  (0.006) .949***
Notes: We report maximum likelihood estimates, with standard errors in parentheses, of the parameters of the marginal distribution models for each stock ndex return series. The asterisks, (*) (**) and (***) indicate a rejection of the null hypothesis at the 1%, 5% and 10% levels, respectively. i 
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 Table 3 Results for China‐related Copula Models
  CHN/DEU  CHN/FRA  CHN/GBR  CHN/HKG  CHN/JPN  CHN/USA 

Panel A1: Nor pula with Const endence P eter mal Co ant Dep aramૉഥ  0.005  ‐0.004  ‐0.001  0.086  0.040  ‐0.006 
Copula Li lihood 

el A2: Norm la with Time  Dependen eter 

ke ‐0.057  ‐0.029  ‐0.001  ‐16.435  ‐3.597  ‐0.079 
AIC  ‐0.058 

Pan

‐0.057 
al Copu

‐0.001 
­Varying

‐32.869 
ce Param

‐7.194  ‐0.158 
Constant(૑)  0.029  ‐0.008  0.0002  0.011  0.046  ‐0.021 હ 

Copula Likelihood  ‐22.588 
AI ‐45.175 

Likelihood Ratio (2) Stat.  ‐12.306*** 

0.345  ‐0.013  0.044  0.045  0.115  0.153 ‐1.987 ઺  ‐1.905 ‐3.039  ‐0.014 ‐0.037  1.750 ‐2.721  1.844  0.835 ‐5.632  ‐0.639 
C  ‐5.733 ‐5.964*  ‐0.073 ‐0.016  ‐5.441 ‐5.440*  ‐11.262 ‐4.070  ‐1.276 ‐1.120 (0.051)  (0.992)  (0.066)  (0.002)  (0.131)  (0.571) 

Pa Generalized yton Copula nstant Dep Parameternel B1:   Joe­Cla  with Co endence   ૌത܃   0.000  0.000  0.000  0.002  0.000  0.000 ૌതۺ   0.000 0.835  0.000 3.196  0.000 2.973  0.003 ‐18.547  0.0003 ‐5.615 ‐11.230 
0.000 3.597 Copula Likelihood 

AIC 

Pane eneralized Jo on Copula w e­Varying De ce Paramete

2.193 
l B2: G

6.393 
e­Clayt

5.947 
ith Tim

‐  37.092
penden

7.194 
r 

Consta U  ‐13.865  ‐13.865 nt ‐13.865  ‐13.865  ‐9.317  ‐23.599 હ܃  ‐23.839  ‐઺܃ 0 0 ‐0.0000003  0  ‐12.960  ‐13.865 ‐0.0006 ઺ۺ 
Cop od 

AIC 

Likelihood Ra o (4) Stat.  14.556*** 

‐0.001  ‐0.001  ‐0.0007   0.00015  0.0007 
  0.0003  .00003  .00003 ‐0.011  .00004

ConstantL  ‐13.864 ‐0.0005  ‐13.864 ‐0.0004  2.277 ‐25  ‐13.689 ‐2.443 હۺ  ‐0.001 ‐0.00002  ‐0.00003  0.00003  11.505  ‐0.007  0.00003 
ula Likeliho 8.113 17.246  12.473 24.949  12.137 24.277  ‐20.368 ‐37.092  ‐2.542 ‐5.081  13.540 27.083 

ti (0.006)  18.554*** (0.001)  18.328*** (0.001)  ‐3.642 (0.457)  6.146 (0.189)  19.886*** (0.001) Notes: This tab eports copula con endence es d time‐var ndence esti pula log‐l  AIC are a ed. The Likeliho  Statistic test t hesis th vers  constant de ce) of a mo  rejected as es  from restricted model to unrestricted mo  time‐varyi ence) whe ameter p is  ber of restr der the nul ave two restrictions in  ormal copula and f tions in GJ values are in parenth asterisks, (*  (***) indi ction of the null hypothesis at the 1%, 5% a els, respec

le r stant‐deph ypotd h
t nimates a ying‐depe m oates. Cp enth m

ike ndlihood ad tic n
lso reportod Ratio (p) e null hel (wit at the restricted ng depend ion (withre the par ende nu el  is notions u  one movl. So we hN our restricnd 10% lev C copula. P‐tively.   reported  eses. The  ) (**) and cate a reje
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 Table 4 Results for U.S.‐related Copula Models
  USA/DEU  USA/FRA  USA/GBR  USA/HKG  USA/JPN  USA/CHN 

Panel A1: Nor pula with Con Dependence P eter mal Co stant  aramૉഥ  0.378  0.391  0.396  0.117  0.118  ‐0.006 
Copula Li lihood 

l A2: Nor with Tim Dependen eter 

ke ‐342.585  ‐368.355  ‐377.028  ‐30.613  ‐31.008  ‐0.079 
AIC  ‐691.262 

Pane

‐736.7133 
mal Copula 

‐754.059 
e­Varying 

‐61.226 
ce Param

‐62.017  ‐0.158 
Constant(૑)  ‐0.012  ‐0.101  0.677  0.033  0.513  ‐0.021 હ ઺

Copula Likelihood  ‐381.980  ‐374.840  ‐377.575  ‐31.546 
AI ‐769.881  ‐754.926  ‐755.153  ‐63.092 

Likelihood Ratio (2) Stat.  ‐78.790***  ‐12.970*** 

0.073  0.008  0.059  0.028  ‐0.231  0.153 ‐1.987   2.088  2.368  0.378  1.711  ‐2.022 ‐32.428  ‐0.639 
C  ‐64.857 ‐2.840  ‐1.276 ‐1.120 (0.000)  (0.002)  ‐0.986 (0.611)  ‐1.866 (0.393)  (0.242)  (0.571) 

P neralize ton Copu ant Dep Parameteranel B1: Ge d Joe­Clay la with Const endence   ૌത܃   0.191  0.201  0.188  0  .00004 0.0007  0.000 ૌതۺ   0.207  0.231  0.231 ‐388.734  0.036 ‐35.926  0.028 ‐33.941  0.000 3.597 Copula Likelihood 

AIC 

Pane eneralized Jo on Copula w e­Varying D e Paramet

‐357.871  ‐391.591 ‐723.3297  ‐783.185  ‐777.471  ‐71.853 
ependenc

‐67.882 
er 

7.194 
l B2: G e­Clayt ith Tim

Consta U  ‐13.865 nt ‐1.813  ‐1.654  0.002  ‐  10.930 ‐11.332 હ܃  ‐0.0007 ઺܃ 0.00004 ‐13.865 ‐0.0006 ઺ۺ 
Cop od  ‐403.619  ‐405.521  ‐399.265 

AIC  ‐811.448  ‐811.043  ‐798.532 
Likelihood Ra o (4) Stat.  ‐91.496***  ‐27.86***  ‐21.062***  ‐9.782** 

‐1.674  ‐2.240  ‐5.250  ‐0.473  ‐1.878 
  4.126  3.900  ‐0.748  0.000  ‐0.009 

ConstantL  0.839 ‐9.963  ‐0.717 ‐3.007  0.055 ‐5.029  ‐1.338 ‐7.338  ‐5.741 6.520 હۺ  0.387  1.033  ‐0.144  ‐0.040 ‐36.079 ‐72.156 
6.768 ‐38.832 ‐77.665 

0.00003 
ula Likeliho 13.540 27.083 

ti (0.000)  (0.000)  (0.000)  ‐0.306 (0.989)  (0.044)  19.886*** (0.001) Notes: This tab eports copula cons pendence est  time‐vary ndence esti pula log‐like nd AIC are a ed. The Likeliho  Statistic test th ypothesis th stricted vers constant d ce) of a mod  rejected as es  from restricted model to unrestricted mo  time‐varyin dence) wher rameter p is ber of restri der the nul ave two restrictions in  ormal copula and fo ctions in GJC  P‐values are  in parenthe  asterisks, (*  (***) indi ction of the null hypothesis at the 1%, 5% an evels, respecti  

le r tant‐de imates and i eng‐dep mates. Co lihood ae tc n
lso reportod Ratio (p) e null hdel (withu i
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 Table 5 Model Comparison: Constant vs. Time‐varying Models
Panel A: China­related Models 

Model Specification  CHN EU /D CHN RA /F CHN BR /G CHN/HKG  CHN PN /J CHN SA /U

Normal 
Constant  C  C  C    C  C 

Time­varying  V*    V*  V C   C   C 
GJC 

Constant       
Time­varying  V  V  V       

Panel B: U.S.­related Models 
    USA/DEU  USA/FRA  USA/GBR  USA/HKG  USA/JPN  USA HN /C

Normal 
Constant      C  C  C  C 

Time­varying  V  V     C     
GJC 

Constant           
Time­varying  V  V  V    V  V Notes: This  table  is based on  the  results  from  likelihood ratio  tests  at 5% significance  level  for  competing models  in Table 3 and 4, where  “C” means  the constant model is preferred while “V” indicates the time‐varying model is preferred. The asterisks indicate a rejection of the null hypothesis at the 10% level. 

 



Table 6 Dependence Measures and Air Distance 
Country 
Pairs  Pearson's 

Correlation  Spearman's 
Rho  Kendall's 

Tau  Copula 
Dependence  Air Distance  Scaled­down 

Air Distance  Average 
GDPi 

Average 
GDPj 

Panel A: Chi ated Pairs ne­rel

CHN/HKG  0.051  0.078  0.053  0  .086 764  0.00764  3175.656  177.436 
CHN/JPN  0.029  0.028  0.019  0.04  1097  0.01097  3175.656  3202.834 
CHN/DEU  0.007 | |  0.001  0.0001  0.005 |   5218  0.05218  3175.656  2095.840 
CHN/GBR  ‐0.002 |‐0.006|  |‐0.004|  ‐0.0006| 5715  0.05715  3175.656  1475.989 
CHN/FRA  0.002 |‐0.016|  |‐0.004| |‐0.009|  |‐0.003| |‐0.006|  |‐0.004| |‐0.006|  5754 7371  0.05754 0.07371  3175.656 3175.656  1486.709 9415.675 CHN/USA 

Panel B: U. ted Pairs S.­rela

USA/GBR  0.413  0.371  0.260  0.396  3458  0.3458  9415.675  1475.989 
USA/FRA  0.428  0.373  0.261  0.391  3624  0.3624 0   9415.675  1486.709 
USA/DEU  0.455  0.367  0.258  0.378  3965  .3965 9415.675  2095.840 
USA/JPN  0.109 | |  0.117 | |  0.079 | |  0.118 |   6740  0.674  9415.675  3202.834 3USA/CHN  ‐0.0160.110  ‐0.0090.108  ‐0.0060.073  ‐0.006|0.117  7371 8054  0.7371 0.8054  9415.675 9415.675  175.656 177.436 USA/HKG 

Panel C: Regression Results of Stock Market Gravity Model 
Regression Equation:  ൯࢐࢏ࡼࡱࡰ൫ࢍ࢕࢒ ൌ ૙ࢼ ൅ ሻ࢏ࡼࡰࡳሺࢍ࢕࢒૚ࢼ ൅ ࡼࡰࡳ൫ࢍ࢕࢒૛ࢼ ൯ ൅ ൯࢐࢏ࡿ൫ࢍ࢕࢒૜ࢼ ൅ ࢐ ࢿ

Independent  Dependent Variable 

Variables  Pearson's Correlation  Spearman's R ndall's Tau  Copula Dependence ho  Ke

Log(GDPi) 
 (૚ࢼ) 3.602 *** (0.426)  3.539*** (0.453)  3.911*** (0.811)  3.810*** (0.450) 

Log(GDPj) ࢼ૛  
Lo ) 

 (૜ࢼ)
F­stat. 

36 
 

Note1.  In Ta , we  reproduce Pe rrelations,  Spearman’s  all’s  taus, and Normal c pendence estimates, as  distances  for comparison purpose. Panel A re a for China‐related pairs   B reports data for U.S.‐ airs. istance data comes f .infoplease.com
s:   ble 6 arso on’s cp tr w

r dhos, Kenw nel opula der p w r ell as aiorts daom  hile Pa elated 

( )

0.256 (  0.206) 0.065 (  0.219) 0.075 (  0.392) 0.120 (  0.218)
g(Distanceij ‐1.307*** (0.325)  ‐1.346*** (0.346)  ‐1.525** (0.620)  ‐1.637*** (0.344) 24.88***  22.55***  8.62***   ૜=­1ࢼ ***26.97 0.89 (0.376)  1.00 (0.351)  0.72 (0.425)  3.43 (0.106) 

R2  0.914  0.906  0.787  0.920 

2. The air d ww . The dis sure is defined as the air  in statute miles between   centers and it ta eance mair dist  d eistancnce.  f alinanciis scaled down after dividing it by n general, the greater is the  ance, the lower the depende3.  The  average  GDP  data  comes  from  International Monetary  Fund, World  Economic  Outlook Database,  October  2008.  It  is  defined  as  the  average  Gross  105. I
domestic product over 17 years (from 1991 to 2007, the same as our sample period) based on purchasing‐power‐parity (PPP) valuation in billions of current international dollars. (http://www.imf.org/external/pubs/ft/weo/2008/02/index.htm) 4.  Panel  C  presents  regression  results  of  stock market  gravity model, where  the  regression  equation  is  ܧܦ൫݃݋݈ ௜ܲ௝൯ ൌ ଴ߚ ൅ ܦܩሺ݃݋ଵ݈ߚ ௜ܲሻ ൅ ߚଶ݈݃݋൫ܦܩ ௝ܲ൯ ൅ߚଷ݈݃݋൫ ௜ܵ௝൯ ൅  Standard errors are reported under the parameter estimates. F‐statistics show that the three explanatory variables are jointly significant in all four regressions. We also .ߝ test  the null hypothesis of  the coefficient of distance being  ‐1 and we cannot reject  the null at 10% significance  level  in all  four regressions. P‐values are reported in parenthesis. R‐square is reported in the last row. 

http://www.infoplease.com/
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Figure 1 Estimates of the Autocorrelation Functions of Powers of e of AR‐GARCH‐t Models (Diebold‐Gunther‐Tay Test)
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Notes:  z  is  the  probability  integral  transform  of  residuals  from  each  country’s  marginal  model.  These  figures  show  sample  autocorrelations  of  ), ሺe െ eതሻଶ, ሺe െ eതሻଷ  and  ሺe െ eതሻସ  for each country. This test is suggested by Diebold, Gunther and Tay (1998).  ሺe െ eത
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Figure 2 Time Path of Dependence Parameters for USA/DEU and CHN/DEU Pairs 
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Figure 3 Time Path of Dependence Parameters for USA/FRA and CHN/FRA Pairs 
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Figure 4 Time Path of Dependence Parameters for USA/GBR and CHN/GBR Pairs 
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Figure 5 Time Path of Dependence Parameters for USA/HKG and CHN/HKG Pairs 
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Figure 6 Time Path of Dependence Parameters for USA/JPN and CHN/JPN Pairs 
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Figure 7 Time Path of Dependence Parameters for USA/CHN Pair 
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 Figure 8 Dependence Measures and Air Distance between Financial Markets
Panel A 

 

Panel B 

 Notes:  These  two  graphs  exhibit  the  negative  relationship  between  air  distance  and  dependence  measures.    The  air  distance  data  comes from www.infoplease.com. The distance measure is defined as the air distance in statute miles between financial centers and it is scaled down after dividing it by 105. The dependence measures are defined as  the absolute values of original dependence. Panel A describes China‐related pairs while Panel B  reports U.S.‐related  pairs.  Red  dotted  line  represents  air  distance  while  solid  lines  represent  various  dependence  measures,  including  Pearson’s  correlation, Spearman’s rho, Kendall’s tau, and the copula dependence estimates from our normal copula models.   
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