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Abstract

There are a number of cases in which individuals do not expect to find out which
outcome occurs. The standard von Neumann-Morgenstern Expected Utility model
cannot be used in these cases, since it does not distinguish between lotteries for which
the outcomes are observed by the agent and lotteries for which they are not. This
paper provides an axiomatic model that makes this distinction. A representation
theorem is then obtained. This framework admits preferences for observing the out-
come, and preferences for remaining in doubt. Doubt-proneness and doubt-aversion
are defined, and the relation between risk-aversion, caution and doubt-attitude is
explored. The model builds on the standard vNM framework, but other frameworks
can also be extended to allow for preferences for observing the outcomes and pref-
erences for remaining in doubt. A methodology for this extension is also provided.
This framework can accommodate behavioral patterns that are inconsistent with the
vNM model, and which have let to significantly different models. In particular, this
framework accommodates self-handicapping, in which an agent chooses to impair
his own performance. It also admits a status-quo bias, even though it does not allow
for framing effects. In a political economy setting, voters have incentive to remain
ignorant even if information is costless.

1 Introduction

Models of decision-making usually assume that the agents expect to observe the reso-
lution of uncertainty ex-post. However, there are many situations in which individuals
never find out which outcome occurs. In addition to preferring some outcomes to others,
individuals may not be indifferent between remaining in doubt and observing the resolu-
tion of uncertainty. For instance, many people do not want to know whether the goods
they buy have been made by children. Consider also the classical example of genetic
diseases. As Pinker (2007) discusses, “the children of parents with Huntington’s disease
[HD] usually refuse to take the test that would tell them whether they carry the gene
for it”. HD is a neurodegenerative disease with severe physical and cognitive symptoms.
It reduces life expectancy significantly, and there is currently no known cure. A person
can take a predictive test to determine whether he himself has HD. A prenatal test can
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also be done to determine whether his unborn child will have the disease as well.1 In an
experimental study, Adam et al. (1993) find low demand for prenatal testing for HD.
This is supported by a number of other studies as well, and Simpson et al. (2002) find
that the demand for prenatal testing is significantly lower than the demand for predictive
tests. That is, individuals who are willing to know their own HD status are unwilling to
find out their unborn child’s status. The prenatal test is done at a stage in which parents
can still terminate the pregnancy, hence observing the result is an important decision.
As for parents who do not consider pregnancy termination to be an option, the infor-
mation could still impact the way they decide to raise their child. For example, if they
know that their child has HD, then they might choose to prepare him psychologically
for the difficult choices he himself would one day have to make. On the other hand, if
they know that he does not have HD, then they would have no such considerations.
The parents’ preferences to avoid the test may seem puzzling; “given the technical fea-
sibility of prenatal testing in HD, and the severity of the disorder, it might be expected
that prenatal diagnosis would be frequently requested” (Simpson (2002)). It may appear
particularly puzzling that a person who prefers to know now rather than later whether he
himself is affected with HD also chooses not to find out whether his unborn child has the
disease.2 But note that the average age of onset for HD is high enough that the subjects
who do not see the result of the prenatal test may never find out whether their children
are affected. That is, while choosing the predictive test mostly reveals a preference for
temporal resolution, choosing (or refusing) the prenatal test mainly reveals a preference
for observing an outcome (or remaining in doubt). It is precisely this type of preference
that is the focus of this paper.3

The standard von Neumann-Morgenstern (vNM) expected utility model cannot accom-
modate preferences for knowing which outcome occurs or preferences for remaining in
doubt, since it does not make a distinction between lotteries for which the final out-
comes are observed and lotteries for which they are not. Redefining the outcome space
to include whether the prize is observed does not resolve the issue, as is shown in the
appendix. The argument rests on the notion that observability should not affect the
value of a prize; if the agent expects an outcome z to occur with probability 1, then his
utility should be the same whether he observes it or not, for he is certain that it occurs.
Hence, his utility is simply uz, as opposed to uzo (observed) or uzu (unobserved). Since
the outcome z has the same value to the agent whether it is labeled as ‘z, observed’ or ‘z,
unobserved’, there is no degree of freedom in the standard vNM model for expanding the
outcome space to include the observability of z. In addition, it would be difficult to inter-
pret the meaning of receiving prize ‘z, unobserved’, since the agent cannot know he has
received the prize without observing it. The observability of an outcome is fundamentally
connected to the uncertainty of receiving the prize, and not just to the value of the prize.

This paper provides an axiomatic model that accommodates preferences for remaining
in doubt or observing the resolution of uncertainty. The agent’s primitive preferences are

1An affected individual has a 50% chance of passing the disease to each child. The average age of
onsets varies between ages 35 and 55. See Tyler et al. (1990) for details.

2The prenatal test is not costless, as the procedure does involve a small chance of miscarriage. How-
ever, this cost appears small, compared to the severity of the disease.

3In particular, this paper does not consider other factors that are present in the HD example, such
as parents’ concern that their child will be treated differently if it is known that he has HD, as discussed
in Simpson (2002).
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taken over general lotteries that lead either to outcomes that he observes or to lotteries
that never resolve (denoted unresolved lotteries), from his frame of reference, in the sense
that he never observes which outcome occurs.4

This framework extends the standard vNM model, and for that reason makes similar
assumptions. In particular, a version of the independence axiom is taken to hold. While
the standard independence axiom is taken over lotteries that lead only to outcomes, the
independence axiom in this framework is taken over more general lotteries which lead to
either observed outcomes or to unresolved lotteries. The justification for assuming the
independence axiom in this richer space is that both observed outcomes and unresolved
lotteries are final prizes that the agent receives, the only difference being that one prize
is an outcome and the other is a lottery. It is also assumed that the agent is indifferent
between receiving an unresolved lottery that places probability 1 on a specific outcome
and a general lottery that places probability 1 on that same outcome, since he is certain
of the outcome’s occurrence. The observation in itself has no effect on the value of the
outcome in this model. This property restricts the agent’s allowable preferences over
unresolved lotteries, as is demonstrated in section 2.
The central result of this paper is a representation theorem that separates the agent’s
risk attitude over lotteries whose outcomes he observes from his risk attitude over unre-
solved lotteries. These two attitudes are distinct, and need not coincide. Henceforth, the
term ‘caution’ is used instead of ‘risk-aversion’ for unresolved lotteries, since the agent
is not taking any risks per se if he does not observe the outcome. That is, there is no
‘risk’ that the agent will obtain the worse outcome rather than the better outcome for an
unresolved lottery, since he observes neither outcome. His final prize is the unresolved
lottery itself, not the outcome that ensues without his knowledge. There is no formal
justification for having his valuation of these unresolved lotteries be dictated by his risk-
attitude. For that reason, his caution and his risk-aversion need not be identical, and
his caution must be elicited directly from his preferences over unresolved lotteries.
The difference between the agent’s risk-aversion and his caution induce his doubt-attitude.
An agent who is always more risk-averse than he is cautious is demonstrated to be doubt-
prone, while an agent who is relatively more cautious is doubt-averse. These terms are
defined formally in section 2, and the exact relation between risk-aversion, caution and
doubt-attitude is characterized in theorem 4.
Since this model is an extension of the standard vNM framework, the assumptions made
are closely related to the vNM axioms. But note that the distinction between whether an
agent expects to observe the final outcome or not is also ignored in alternative models,
such as models of non-expected utility and cumulative prospect theory. These frame-
works therefore do not take into account the agent’s doubt-attitude. However, it is
possible to extend different classes of models to make the distinction between resolved
and unresolved lotteries, and to obtain a corresponding representation theorem. Section
4 provides a method for extending alternative models to incorporate unresolved lotteries.
A new axiom is presented, since these alternative models typically do not assume the
vNM independence axiom.

4Throughout this paper, probabilities are taken to be objective. With subjective probabilities, there
are cases in which it may seem more natural to interpret the preferences as state-dependent. For a person
who does not know whether he is talented, for instance, it is unclear whether talent is better viewed as
a state of the world or a consequence.
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The model presented here can accommodate seemingly unrelated behavioral patterns
that are inconsistent with the standard vNM model, and that have given rise to frame-
works that are significantly different. Two important examples are self-handicapping
and the status quo bias.
Consider first self-handicapping, in which individuals choose to reduce their chances of
succeeding at a task. As discussed in Benabou and Tirole (2002), people may “choose
to remain ignorant about their own abilities, and [...] they sometimes deliberately im-
pair their own performance or choose overambitious tasks in which they are sure to fail
(self-handicapping).” This behavior has been studied extensively, and seems difficult
to reconcile with the standard EU theory.5 For that reason, models that study self-
handicapping make a substantial departure from the standard vNM assumptions. Some
models follow Akerlof and Dickens’ (1982) approach of endowing the agents with manip-
ulable beliefs or selective memory. Alternatively, Carillo and Mariotti (2000) consider
a model of temporal-inconsistency, in which a game is played between the selves, and
Benabou and Tirole (2002) use both manipulable beliefs and time-inconsistent agents.6

The frameworks mentioned above capture a notion of self-deception, which involves ei-
ther a hard-wired form of selective memory (or perhaps a rule of thumb), or some form
of conflict between distinct selves. Note that these models are typically not axiomatized.
In contrast, this paper simply extends the vNM framework, and so the agents cannot
manipulate their beliefs (in fact, all probabilities are objective), and do not have access
to any other means for deceiving themselves. Yet it can still accommodate the decision
to self-handicap, as is shown in section 3. Intuitively, a doubt-prone agent prefers doing
worse in a task if this allows him to avoid information concerning his own ability. This
is essentially a formalization of the colloquial ‘fear of failure’; an agent makes less effort
so as to obtain a coarser signal.

This model can also accommodate a status quo bias in some circumstances. The status
quo bias refers to a well-known tendency individuals have to prefer their current endow-
ment or decision to other alternatives. This phenomenon is often seen as a behavioral
anomaly that cannot be explained using the vNM model. On the other hand, it can
be accommodated using loss aversion, which refers to the agent being more averse to
avoiding a loss than to making a gain (Kahneman, Knetch and Thaler (1991)). The
status quo bias is therefore an immediate consequence of the agent taking the status
quo to be the reference point for gains versus losses. The vNM model does not allow
an agent to evaluate a bundle differently based on whether it is a gain or a loss, and
hence cannot accommodate a status quo bias. Arguably, this is an important systematic
violation of the vNM model, and is one of the reasons cited by Kahneman, Knetch and
Thaler (1991) for suggesting “a revised version of preference theory that would assign a

5Berglass and Jones (1978) conduct an experiment in which they find that males take performance-
inhibiting drugs, and argue that they do so precisely because it interferes with their performance.

6See also Compte and Postlewaite (2004), who focus on the positive welfare implications of having
a degree of selective memory (assuming such technology exists) in the case where performance depends
on emotions. Benabou (2008) and Benabou and Tirole (2006a, 2006b) explore further implications
of belief manipulation, particularly in political economic settings, in which multiple equilibria emerge.
Brunnermeier and Parker (2005) treat a general-equilbrium model in which beliefs are essentially choice
variables in the first period; an agent manipulates his beliefs about the future to maximize his felicity,
which depends on future utility flow. Caplin and Leahy (2001) present an axiomatic model where agents
have ‘anticipatory feelings’ prior to resolution of uncertainty, which may lead to time inconsistency.
Koszegi (2006) considers an application of Caplin and Leahy (2001).
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special role to the status quo”.
However, in some settings, the model presented here also admits a status quo bias, even
without having recourse to the notion of reference point, gains or losses.7 In the cases
where the choices also have an informational component on the agent’s ability to per-
form a task well, a doubt-prone agent has incentive to choose the bundle that is less
informative. This leads to a status quo bias when it is reasonable to assume that holding
to the status quo, or inaction, is a less informative indicator of the agent’s ability than
other actions.
In addition, since this model does not make use of the reference point notion, there is no
arbitrariness in defining what constitutes a gain and what constitutes a loss. The bias of
a doubt-prone agent is always towards the least-informative signal of his ability. In fact,
in instances where the status quo provides the most informative signal, the bias would
be against the status quo. For example, an individual could have incentive to change
hobbies frequently rather than obtaining a sharp signal of his ability in one particular
field.

The framework presented here admits other instances of seemingly paradoxical behavior.
In one example, an individual pays a firm to invest for him, even though he does not
expect that firm to have superior expertise. In other words, the agent’s utility not only
depends on the outcome, but also on who makes the decision. This result is not due to
a cost of effort, but rather to the amount of information acquired by the decision-maker.
This framework can also be used in a political economy setting, as there are many gov-
ernment decisions that are never observed by voters. As shown in section 3, voters may
have strong incentives to remain ignorant over these issues, even if information is free.
This is in line with the well-known observation that there has been a consistently high
level of political ignorance amongst voters in the US (see Bartels (1996) for details).
Finally, this framework can also be adapted to provide an alternative theoretical founda-
tion for anticipated regret.8 However, this discussion is outside the scope of this paper,
and is deferred to future research.

The approach used in this paper is related to the recursive expected Utility (REU) frame-
work introduced by Kreps and Porteus (1978), and extended by Segal (1990) and Grant,
Kajii and Polak (1998, 2000).9 These papers address the issue of temporal resolution, in
which an agent has a preference for knowing now versus knowing later. While the REU
framework treats the issue of the timing of the resolution, this paper treats the case of no
resolution. The agent is eventually confronted with the truth in the REU model, and so
there is a dynamic component to his decision. The axioms (the independence axiom in
particular) are therefore considered period by period, and dynamic consistency must be
addressed. On the other hand, the model in this paper is static, and there is no notion of
dynamic consistency. An agent either receives an outcome as his final prize or a lottery
that never resolves. Since an unresolved lottery is also taken to be a prize, the main
independence axiom is taken over the general lotteries that lead either to a final outcome

7There are, however, examples of the status quo bias for which this model does not seem to provide
as natural an explanation as loss-aversion does.

8See Loomes and Sugden (1982) for a theoretical model of anticipated regret, and Zeelenberg (1999)
for a review.

9See also Dillenberger (2008). Selden’s (1978) framework is closely related to the Recursive EU model.
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or to an unresolved lottery. This axiom is logically distinct from the period by period
independence axiom used in REU. As for the preferences over unresolved lotteries, this
paper uses a rank-dependent utility axiomatization, for reasons explained in section 2.
This leads to a different representation from the Kreps-Porteus model. In addition to the
formal differences between the two frameworks, there are also interpretational ones. The
REU model captures a notion of ‘anxiety’ (wanting to know sooner) which is distinct
from the notion of doubt-aversion (wanting to know) addressed here.

This paper is structured as follows. Section 2 introduces the model and derives the
representation theorem. Doubt-proneness and doubt-aversion are then defined, and im-
plications of the doubt-attitude of agents on the representation are discussed. Section
3 presents applications of this model. Section 4 relaxes the main independence axiom
of the framework, and introduces an axiom that allows different classes of models to
incorporate outcomes that are never observed. Section 5 concludes.

2 Model

2.1 General Structure and Representation Theorem Template

This section derives a template for a representation theorem, which is then made precise
in the following subsections. The following objects are used:

• Z = [z, z̄] ⊂ ℜ is the outcome space.

• L0 is the set of simple probability measures on Z, i.e. L0 = {(z1, p1; z2, p2; ...; zm, pm) :

z1, ..., zm ∈ [z, z̄], p1, p2, ..., pm ≥ 0,
∑

pi = 1}. For f = (z1, p1; z2, p2; ...; zm, pm) ∈
L0, zi occurs with probability pi. The notation f(zi) is also used to mean the prob-
ability pi (in lottery f) that zi occurs.

• L1 is the set of simple lotteries over Z ∪ L0. For X ∈ L1, the notation X =
(z1, q

I
1 ; z2, q

I
2 ; ...; zn, q

I
n; f1, q

N
1 ; f2, q

N
2 ; ...; fm, q

N
m) is used. Here, zi occurs with prob-

ability qIi , and lottery fj occurs with probability qNj . Note that
n
∑

i=1

qIi +
m
∑

i=1

qNi = 1.

The reason for using this notation, rather than the simpler enumeration q1, q2, ..., qn
is explained below.

• � denotes the agent’s preferences over L1. ≻, ∼ are defined in the usual manner.

For any X = (z1, q
I
1 ; z2, q

I
2 ; ...; zn, q

I
n; f1, q

N
1 ; f2, q

N
2 ; ...; fm, q

N
m), the agent expects to ob-

serve the outcome of the first-stage lottery. He knows, for instance, that with probability
qIi , outcome zi occurs, and furthermore he knows that he will observe it. Similarly, he
knows that with probability qNi , lottery fi occurs. However, although he does observe
that he is now faced with lottery fi, he does not observe the outcome of fi. Lottery fi
is referred to as an ‘unresolved’ lottery. The qIi ’s, q

N
i ’s are used to distinguish between

the probabilities that lead to prizes where he is fully informed of the outcome (since
he directly observes which z occurs), and the probabilities that lead to prizes where he
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is not informed (since he only observes the ensuing lottery).10 The superscript I in qIi
stands for ‘Informed’, and N in qNi for ‘Not informed’.
Denote the degenerate one-stage lottery that leads to zi ∈ Z with certainty δzi

=
(zi, 1) ∈ L0. The degenerate lottery that leads to fi ∈ L0 with certainty is denoted
δfi

= (fi, 1) ∈ L1. Note that all lotteries of form X = f , where f ∈ L0, are purely
resolved (or ‘informed’) lotteries, in the sense that the agent expects to observe what-
ever outcome occurs. Similarly, all lotteries of form X = δf , where f ∈ L0, are purely
unresolved lotteries. With slight abuse, the notation f � f ′ (or δf � δf ′) is used, where
f, f ′ ∈ L0. In addition, f � δf (or δf � f) indicates the agent’s preference between
observing and not observing the outcome of lottery f .

Assumptions are now made to allow the agent’s preferences � to be represented by
functions u : Z → ℜ, and an H : L0 → Z in the following way: for X,Y ∈ L1, X ≻ Y if
and only if W (X) > W (Y ), where W is of the form:

W (X) =

n
∑

i=1

qIi u(zi) +

m
∑

i=1

qNi u (H(fzi
))

This is essentially a standard vNM EU representation, where receiving lottery fzi
as a

prize has the same value to the agent as receiving the outcome H(fzi
) ∈ Z. The con-

ditions for obtaining this representation are presented in this subsection, and the next
subsections consider assumptions that further qualify H.

The following two axioms are standard.

AXIOM A.1 (Weak Order): � is complete and transitive.

AXIOM A.2 (Continuity): � is continuous in the weak convergence topology. That
is, for each X ∈ L1, the sets {X ′ ∈ L1 : X ′ � X} and {X ′ ∈ L1 : X � X ′} are both
closed in the weak convergence topology.

The continuity axiom A.2 is required to guarantee the existence of a certainty equivalent
for any lottery. It also implies that the functions considered in the representation theorem
are continuous. Axiom A.3 is assumed throughout:

AXIOM A.3 (Certainty) Take any zi ∈ Z, and let X = δzi
= (zi, 1) and X ′ = (δzi

, 1).
Then X ∼ X ′.

The certainty axiom A.3 concerns the case in which an agent is certain that an outcome
zi occurs. In that case, it makes no difference whether he is presented with a resolved
lottery that leads to zi for sure or an unresolved lottery that leads to zi for sure. He is
indifferent between the two lotteries. Hence axiom A.3 does not allow the agent to have

10Note that it would be straightforward to extend the model to allowing for subsequent resolved
lotteries. However, it would make the notation more cumbersome. For 3 periods, for instance, the
preferences would be taken over L2 , where L2 is the set of simple lotteries over Z ∪L1 . In this case, the
second-stage lottery could also lead either to an outcome that he observes, or to a lottery whose outcome
he does not observe. For more periods, the notation would make use of recursion, i.e. Lt is the set of
simple lotteries over Z ∪ Lt−1 .
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X

fN
1

qI
2 = 1

4

1
3

2
3

z1

z3

z4

qN
1 = 1

4

qI
1 = 1

2

z2

Figure 1: Lottery X = (z1,
1
2 ; z2,

1
4 ; f1,

1
4),where f1 = (z3,

1
3 ; z4,

2
3)

a preference for being informed of something that he already knows for sure.

Consider the following independence axiom:

AXIOM A.4 (Independence): For all X,Y, Z ∈ L1 and α ∈ (0, 1], X ≻ Y implies
αX + (1 − α)Z ≻ αY + (1 − α)Z.

It is noteworthy that the agent’s preferences � are on a bigger space than in the standard
framework. The independence axiom in the standard vNM model is taken on preferences
over lotteries over outcomes, since all lotteries lead to outcomes that are eventually ob-
served. In this paper, the agent’s prize is not always an outcome zi, and can instead be
an unresolved lottery fi. It is assumed, however, that there is no axiomatic difference
between receiving an outcome zi as a prize and obtaining an unresolved lottery fi as
a prize. Under this approach, the rationale for using the independence axiom in the
standard model holds in this case as well. Since this section aims to depart as little as
possible from the vNM Expected Utility model, the independence axiom A.4 is assumed
throughout. Assumption A.4 is relaxed in section 4, and replaced with a weaker axiom.

Note that the axiom of reduction, under which only the ex-ante probability of reaching
each outcome matters, is not taken to hold in this setting.11 Under reduction, the se-
quential aspect of the lottery does not affect the agent’s preferences, which is arguably

11Formally, reduction holds if, for all X = (z1, q
I
1 ; z2, q

I
2 ; ...; zn, qI

n; f1, q
N
1 ; f2, q

N
2 ; ...; fm, qN

m), X ′ =

(z′

1, q
′I

1; z
′

2, q
′I

2; ...; z
′

n, q′
I

n′ ; f ′

1, q
′N

1 ; f ′

2, q
′N

2 ; ...; f ′

m′ , q
′N

m′) ∈ L1 such that: qI(z) +
∑

qN (z)f(z) = q′I(z) +∑
q′N (z)f ′(z) ∀z, X ∼ X ′.
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X ′ = δf1

1
2

z1

z2

f1

1

1
2

X = f1

1
2

1
2

z1

z2

Figure 2: Lotteries X = f1 = (z1,
1
2 ; z2,

1
2), X ′ = δf1 with the same reduction.

the case if the delay between the lotteries is insignificant. But if an agent receives the
lottery fi as a prize, then from his frame of reference the uncertainty never resolves.
The delay before observing the final outcome is not short or insignificant, as it is in fact
infinite.
If the reduction axiom were to hold, it would immediately imply that the agent is al-
ways indifferent between receiving a resolved and an unresolved lottery. To illustrate
this point, consider the two lotteries X = (z1,

1
2 ; z2,

1
2) = f1 and X ′ = δf1 (see figure 2).

Note that in both lotteries X and X ′, there is a 1
2 probability of reaching z1, and a 1

2
of reaching z2. However, for lottery X, the agent observes the final outcome, while for
lottery X ′ he does not. If he were to be indifferent between X and X ′, then he would
also be indifferent between observing and not observing the outcome. The reduction
axiom essentially removes the distinction between lotteries whose outcomes are observed
and the ones whose outcomes are not, and therefore does not allow the agent to judge
them differently.12

All the axioms required for a general template of the representation theorem are now in
place. Before proceeding, conditions for obtaining doubt-neutrality (indifference between
observing and not observing the outcome) are provided. This demonstrates that assum-
ing doubt-neutrality has strong implications on the agent’s allowable preferences. It is
noteworthy that the independence axiom A.4 is not required for the following lemma.
Recall that for lotteries f, f ′ ∈ L0, the notation f ≻ f ′ denotes a comparison between
lotteries that the agent expects to observe; while δf ≻ δf ′ denotes a comparison between
the same lotteries, but that the agent will not observe them.

12See Grant,Kajii and Polak (1998) for a similar discussion in the case of early and late resolution of
uncertainty. See Segal (1990) for a discussion of the related notion of time-neutrality.
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Lemma 1 (Doubt neutrality). Suppose axioms A.1 through A.3 hold. Then the fol-
lowing three conditions are equivalent:

(i) f ∼ δf for all f ∈ L0

(ii) f ≻ f ′ ⇒ δf ≻ δf ′ for all f, f ′ ∈ L0

(iii) δf ≻ δf ′ ⇒ f ≻ f ′ for all f, f ′ ∈ L0

Proof. See appendix. •

In words, suppose that an agent has a choice between observing and not observing the
outcome of a lottery. Then he is always indifferent, for this type of choice, if and only
if the order between any lotteries f, f ′ ∈ L0 is always strictly preserved. That is, if he
strictly prefers f to f ′ when he expects to observe the outcome, then he also strictly
prefers f to f ′ if he does not expect to see the outcome.13

Arguably, this condition is often violated. Consider the example of an individual who has
performed a task, and how well he has done depends on whether he has high, mediocre
or low ability. He may prefer living with a 1

2 probability of having done well and a 1
2

probability of having done badly rather than the certainty of being mediocre, so long as
he never has to observe the outcome. On the other hand, if he must observe his actual
performance, then he may prefer being mediocre for sure rather than having the more
risky lottery occur.14

The next lemma paves the way for the general template that will be used for the repre-
sentation theorem that follows.

Lemma 2 (Informed Certainty Equivalent). Suppose axioms A.1 through A.3 hold.
There exists an H: L0 → Z such that for all f ∈ L0,

δH(f) ∼ δf

Proof. By the certainty axiom A.3, it suffices to show that there exists an H such that
δδH(f)

∼ δf , since δH(f) ∼ δδH(f)
. But this follows directly from continuity. •

For any lottery f that the agent knows he will not observe, there exists an informed
certainty equivalent H(f): the agent is indifferent between his prize being an unresolved
lottery f and obtaining an outcome H(f).15 One interpretation is that if he does not
expect the uncertainty to resolve, then it is as though the outcome H(f) occurs. Since

13Note that without the continuity axiom A.2, this lemma would not necessarily hold.
14This example could be problematic if his performance ability is in fact a primitive in the same sense

as his preferences, in which case the lottery becomes an ambiguous hypothetical. Note, however, that
in a setting where an agent acquires partial information, he may in fact have to contend with different
lotteries on his performance, as is considered in the applications section. A clearer example may be a
donor to a charity, who does not know whether his donation is being put to the best possible use.

15H(f) is not necessarily unique, but the agent must be indifferent between the possible outcomes.
That is, if H(f) = z and H(f) = z′ can both occur, then δz ∼ δz′ ∼ δf . Hence either outcome can be
chosen arbitrarily in the representation that follows.
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it is not necessarily the case that this aggregation is identical to his attitude towards
risk (or his marginal utility) for the informed lotteries, it is conceivable that for some
lotteries, he prefers to remain (or not) in doubt. The theorem below follows naturally
from the existence of H and from the assumptions made so far.

Representation Theorem. Suppose axioms A.1 through A.4 hold. Then there exist
a continuous and bounded function u : Z → ℜ, and an H : L0 → Z such that for all
X,Y ∈ L1,

X ≻ Y if and only if W (X) > W (Y )

where W is defined to be: for all X = (z1, q
I
1 ; ...; zn, q

I
n; f1, q

N
1 ; ...; fm, q

N
m),

W (X) =

n
∑

i=1

qIi u(zi) +

m
∑

i=1

qNi u (H(fzi
))

Moreover u is unique up to positive affine transformation. If H(f) has more than one
element, then any element can be chosen arbitrarily.

Proof. See appendix. •

Under this representation, preferences over the resolved part of lotteries are of the stan-
dard EU form, with utility function u. Take a lottery X ∈ L1, in which the agent obtains
outcome zi with probability qIi . In this case, u(zi) enters his W (X) functional linearly,
weighted by qIi . As for an unresolved lottery fj that he obtains with probability qNj , it
has an informed certainty equivalent H(fi). Hence u(H(fi)) also enters his functional
linearly, weighted by qNj . In that sense, the representation is an EU representation,
where obtaining an unresolved lottery fj as a prize is equivalent to obtaining a final
outcome H(fj). The task now becomes of finding a suitable representation of H.

2.2 Representations of H

The discussion that follows considers axioms on the unresolved lotteries, that is, only
lotteries of the form X = δf . As there is a natural isomorphism between these lotteries
and one-stage lotteries, the preference relation �N is defined in this way, for convenience:
δf � δf ′ implies f �N f ′ (and similarly for ∼N , ≻N ).
Since this model is an extension of the standard vNM framework, it might seem that the
preferences over the unresolved lotteries should also have an Expected Utility form. The
only additional axiom required for this representation is the independence axiom over
�N . However, this does not admit preferences which appear natural, as will be shown.
A weaker axiom is then assumed, and it is shown that under certain restrictions over
risk-aversion and doubt-attitude, the stronger independence axiom must in fact hold.

As a useful first step, the EU representation is first obtained. Since reduction has not
been assumed, the independence axiom over the uninformed preference relation �N is

11



not implied by the independence axiom A.4. It must therefore be explicitly assumed.

AXIOM H.1 (Independence for �N): For all f, f ′, f ′′ ∈ L0 and α ∈ (0, 1], f ≻N f ′

implies αf + (1 − α)f ′′ ≻N αf ′ + (1 − α)f ′′.

All the axioms required for an EU representation of �N now hold.

Theorem 2 (EU Representation for Purely Unresolved Lotteries). Suppose ax-
ioms A.1-A.4 and axiom H.1 hold. Then there exists a continuous and bounded function
v : Z → ℜ such that for any f, f ′ ∈ L0,

f ≻N f ′ if and only if
∑

z∈Z

v(z)f(z) >
∑

z∈Z

v(z)f ′(z)

Moreover, v is unique up to positive affine transformation. Furthermore, the following
holds for H (where Ev denotes the expectation of v):

H(f) = v−1 (Ev) = v−1

(

∑

z∈Z

v(z)f(z)

)

Proof. See appendix. •

Note that v is the utility function associated with resolved lotteries, and u remains the
utility function associated with the general lotteries (and final outcomes).16 In this
setting, the preferences over �, represented by W (X) (defined in the representation the-
orem), are essentially reduced to a two-stage Kreps-Porteus Recursive EU form, with a
different interpretation. Instead of u being associated with an ‘earlier’ stage and v with
a ‘later’ stage, in this representation u is associated with the lotteries that are resolved
and v with the lotteries that are unresolved.17

Limitations of the independence axiom

In the Recursive EU setting with delay in resolution, it could be argued that the agent
has a different risk-attitude in the second stage than in the first stage. This in turn
drives his preference for acquiring information sooner or later, and determines his ‘anx-
iety’ factor. But this argument faces a greater challenge in the context of this model,
where the agent never observes the second stage, and hence is not taking any risks, in
the usual sense of the term. Instead, one could focus on the interpretation that v(z)
represents the weight of each outcome z, and that the agent’s attitude towards doubt is
induced by the difference in his relative weighting of the outcomes, when the uncertainty
does not resolve.
The function v, therefore, contains different notions which cannot be disentangled. It
incorporates the agent’s valuation of each outcome as well as a notion of caution. In
addition, v fully captures the way he forms his perception of the unresolved lotteries,

16It is also case that u(z) > u(z′) ⇔ v(z) > v(z′), as is shown in the appendix.
17If v is a positive affine transformation of u, then this collapses to a standard EU representation.
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since v−1(Ev) is his informed certainty equivalent. The relation between v and u, in
turn, determines his attitude towards doubt.
To illustrate this point, consider again the case of the agent who has had a bad per-
formance (tb), a mediocre one (tm), or a good one (tg). There are three lotteries over
outcomes: f = (tb,

1
3 ; tm,

1
3 ; tg,

1
3), f ′ = (tb,

1
2 ; tg,

1
2) and δm = (1, tm). Assume that if he

expects to observe the outcome, a risk-averse agent has a preference for being certain his
performance was mediocre rather than having the lottery f , and might prefer the less
risk lottery f to lottery f ′: δm ≻ f ≻ δf ′ . Furthermore, suppose that f ≻N f ′ ≻N δm.
For instance, the agent might prefer to remain in doubt and obtain f ′ rather than ob-
taining δm and being certain his performance was mediocre, because of the way he forms
his perception if he does not see the outcome. Since he is risk-averse when he expects
to observe the outcome, then perhaps he is also cautious when he does not expect to
observe the outcome, and prefers f to f ′. f is better for a cautious agent, and has the
benefit, for a doubt-prone agent, of also being similarly uninformative.
The plausibility of these preferences depends on the interaction between the notions of
risk, caution and doubt-attitude. He is cautious and prefers lottery f to f ′, and he
also prefers to stay in doubt rather than knowing that he is mediocre. Note, however,
that these preferences violate independence. In fact they violate the stronger axiom of
betweenness, and so do not fall in the Dekel (1986) class of preferences.18

This example highlights the possible conflicting attitudes that are merged together in
the function v. In particular, an agent can be optimistic about his perception of the
unobserved outcome and still be cautious. The number of different notions merged to-
gether suggests that a more flexible representation should be allowed for the preferences
over unresolved lotteries, even while choosing to stay within the standard framework for
the general lotteries.

It appears natural then to consider preferences for which an agent reweighs not only the
outcome, but also the probability of each outcome. In a different context, this is what
rank-dependent utility sets out to achieve. The next part of the discussion considers the
axioms of RDU, and justifies their use this setting as well.

Rank Dependent Utility

Although this section considers RDU axioms for the preference relation associated with
uninformed lotteries, note that for the general preference relation, �, the independence
axiom A.4 still holds. For that reason, the overall representation will consist of a com-
bination of the EU and the RDU frameworks. The representation theorem template
presented earlier still holds, but the H function will no longer have the form v−1(Ev).
Note that if the independence axiom A.4 were to be relaxed as well, it would not be
equivalent to relaxing the independence axiom in each stage of the Recursive EU model.
This is briefly discussed in section 4 and further explained in the appendix.
Hereafter it is assumed, for simplicity, that higher outcomes are strictly preferred to
lower outcomes, i.e. z ≻N z′ ⇔ z > z′.19 The following notation is used: for lottery
f = (z1, p1; z2, p2; ...; zm, pm) ∈ L0, the z′is are rank-ordered; i.e. zm ≻N ... ≻N z1.

18Note that f = 2
3
f ′ + 1

3
δc. Hence this is a violation of independence (and betweenness) since the

following does not hold: f ′
≻N

2
3
f ′ + 1

3
δm ≻N δm. More specifically, this violates quasi-convexity.

19It follows from the certainty axiom A.3 that δz ≻ δz′ ⇔ z > z′.
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In addition, p∗i denotes the probability of reaching outcome zi or an outcome that is
weakly preferred to zi. That is, p∗i =

∑m
j=i pj . Note that for the least-preferred outcome

z1, p
∗
1 = 1. Probabilities p∗i are referred to here as ‘decumulative’ probabilities. For

convenience the notation f∗ = (z1, 1; z2, p
∗
2; ...; zm, p

∗
m) is also sometimes used to denote

f = (z1, p1; z2, p2; ...; zm, pm), with the probabilities pi’s replaced by the decumulative
probabilities p∗i ’s. Following Abdellaoui (2002), the rank-dependent utility form is de-
fined in this manner:

Definition (RDU) Rank-dependent utility holds if there exists a strictly increasing
continuous probability weighting function w : [0, 1] → [0, 1] with w(0) = 0 and w(1) = 1
and a strictly increasing utility function v : Z → ℜ such that for all f, f ′ ∈ L0,

f ≻N f ′ if and only if VRDU (f) > VRDU (f ′)

where VRDU is defined to be: for all f = (z1, p1; z2, p2; ...; zm, pm),

VRDU (f) = v(z1) +

m
∑

i=2

[v(zi) − v(zi−1)]w(p∗i )

Moreover, v is unique up to positive affine transformation.

If RDU holds, then the function H is represented as follows, as shown in the ap-
pendix:

H(f) = v−1 (VRDU (f))

Note that if the weighting function w is linear, then VRDU reduces to the standard EU
form.20 The standard motivation for rank-dependent utility is to separate the notion
of diminishing marginal utility from that of probabilistic risk aversion, which expected
utility does not do. The aim here is different; in fact the standard EU form still holds
for the ‘resolved’ setting. Instead, this model separates the notion of caution (which
remains identical to diminishing marginal unresolved utility) from his perception of the
outcome. The weight of the probability of an unresolved lottery need not be linear. An
agent may be optimistic or pessimistic in the way he forms his perception of the conse-
quence that he does not observe. This has a different interpretation from the notions of
optimism and pessimism in the typical rank-dependent utility sense, but the rationale for
the rank-dependent axioms presented below apply to this setting as well, as is now shown.

Focusing first on caution, suppose that

fα = (z1, p1; ...;α, pi; ...; zm, pm) �N (z′1, p1; ...;β, pi; ...; z
′
m, pm) = f ′β

f ′κ = (z′1, p1; ...;κ, pi; ...; z
′
m, pm) �N (z1, p1; ...; γ, pi; ...; zm, pm) = fγ

where α, β, γ, κ ∈ Z.
Comparing lotteries fα and fγ , the only difference is in whether α or γ is reached with

20This is not the most common form of RDU. Given the rank-ordering above, the typical form would
be VRDU =

∑n−1
i=1 [w(p∗

i )− w(pi+1)
∗]v(zi) + w(pn)v(z∗

n). It is easy to check that the two representations
are identical.
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probability pi. Since all the other outcomes are the same in both lotteries and are reached
with the same probabilities, the difference is in the value of outcome α compared to the
value of outcome γ (and similarly for f ′β,f

′
κ and β, κ). In the comparison of fα �N f ′β

and f ′κ �N fγ , all the probabilities of reaching the (rank-preserved) outcomes are the
same. For that reason, it is assumed in this model that the switch in preference is due
to a difference in the value of outcomes α and β relative to γ and κ, and not in the
way the probabilities are aggregated. It is precisely this property that RDU provides: if
fα �N f ′β and f ′κ �N , fγ , and if �N is of the RDU form, then v(α)− v(β) ≥ v(γ)− v(κ).
Note that this does not depend on the choice of z′s and p′s, and so the following axiom,
adapted from Wakker (1994), must hold:

AXIOM H.1RA (Wakker tradeoff consistency for �N): Let fα = (z1, p1; ...;α, pi; ...; zm, pm),
fγ = (z1, p1; ...; γ, pi; ...; zm, pm), f ′β = (z′1, p1; ...;β, pi; ...; z

′
m, pm) and f ′κ = (z′1, p1; ...;κ, pi; ...; z

′
m, pm).

If:

fα �N f ′β
f ′κ �N fγ

then for any lotteries gα = (ẑ1, p̂1; ...;α, p̂i; ...; ẑm̂, p̂m̂), gγ = (ẑ1, p̂1; ...; γ, p̂i; ...; ẑm̂, p̂m̂),
g′β = (ẑ′1, p̂1; ...;β, p̂i; ...; ẑ

′
m̂, p̂m̂), g′κ = (ẑ′1, p̂1; ...;κ, pi; ...; ẑ

′
m̂, pm̂) such that gγ �N g′κ,

it must be that gα �N g′β.

Under this axiom, only the values of α,β,γ and κ are relevant to the ordering of the
agent’s preferences when all the probabilities of reaching all other outcomes are the
same across the four lotteries.

Focusing now on probability-aggregation, suppose that

f∗ζ = (z1, 1; ...; zi, ζ; ...; zm, p
∗
m) �N (z1, 1; ...; zi, ξ; ...; zm, p

′∗
m) = fξ

′∗
f

′∗
χ = (z1, 1; ...; zi, χ; ...; zm, p

′∗
m) �N (z1, 1; ...zi, ψ; ...; zm, p

∗
m) = f∗ψ

where ζ, ψ, ζ and χ are the decumulative probabilities of reaching zi in each lottery.
The previous reasoning is now repeated, although it is noteworthy that it is the decumu-
lative probabilities p∗j ’s that are taken as fixed (for j 6= i), and not the probabilities of

reaching each outcome j 6= i. 21 Comparing f∗ζ to f∗ψ, all the outcomes and decumulative
probabilities p∗j of reaching them are the same, except for outcome zi, which is reached
with probability ζ−p∗i+1 in lottery f∗ζ and ψ−p∗i+1 in lottery f∗ψ. The difference between
f∗ζ and f∗ψ is therefore in the weighting of the probabilities ζ compared to ψ. In the

comparison of f∗ζ �N f
′∗
ξ and f

′∗
χ �N f∗ψ, all the outcomes that are reached are the same,

and so it is assumed that the difference is not in their utilities, but in the probability
aggregation. This property also holds in RDU: if f∗ζ �N f ′∗ξ and f

′∗
χ �N , f

∗
ψ, and if �N

is of the RDU form, then w(ζ)− q(ψ) ≥ wξ)− v(χ). Note that this does not depend on

21See Abdellaoui (2002) for a more thorough discussion on using decumulative probabilities as the
measuring rod.
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the choice of p∗’s and q∗’s, and so the following axiom, adapted from Abdellaoui(2002)
holds:

AXIOM H.1RB (Abdellaoui tradeoff consistency for �N): Let
f∗ζ = (z1, 1; ...; zi, ζ; ...; zm, p

∗
m), f∗ψ = (z1, 1; ...zi, ψ; ...; zm, p

∗
m), fξ

′∗ = (z1, 1; ...; zi, ξ; ...; zm, p
′∗
m)

and f
′∗
χ = (z1, 1; ...; zi, χ; ...; zm, p

′∗
m).

If:

f∗ζ �N f
′∗
ξ

f
′∗
χ �N f∗ψ

then for any lotteries
g∗ζ = (ẑ1, 1; ...; ẑi, ζ; ...; ẑm̂, p̂

∗
m̂), g∗ψ = (ẑ1, 1; ...; ẑi, ψ; ...; ẑm̂, p̂

∗
m̂), g

′∗
ξ = (ẑ1, 1; ...; ẑi, ξ; ...; ẑm̂, p̂

′∗
m̂)

and g
′∗
χ = (ẑ1, 1; ...; ẑi, χ; ...; ẑm̂, p̂

′∗
m̂) such that g∗ψ �N g

′∗
χ ,

it must be that g∗ζ �N g
′∗
ξ .

In brief, axioms H.1RA and H.1RB are both desirable. Axiom H.1RA allows for a
comparison between the values of the outcomes while holding the probability-aggregation
aspect fixed, and H.1Rb allows for a comparison between probability-aggregations while
holding the caution side fixed. In fact, as shown in Wakker (1994) and Abdellaoui (2002),
either of these axioms is sufficient, along with stochastic dominance and continuity, for
the RDU representation to hold.

Theorem 3 (RDU Representation for Purely Uninformed Lotteries). Suppose
axioms A.1-A.4. In addition, suppose that �N satisfies stochastic dominance. Then
the following three statements are equivalent:

(i) Axiom H.1RA (Wakker tradeoff-consistency) holds.

(ii) Axiom H.1RB (Abdellaoui tradeoff-consistency) holds.

(iii) RDU holds for �N . Furthermore, H(f) = v−1 (VRDU (f)).

Proof. Axioms A.1-A.4 imply that �N is a weak order and that Jensen-continuity holds.
The proof then follows from Wakker (1994) and Abdellaoui (2002). The proof for the
representation for H(·) is provided in the appendix. •

Consider now the notion of pessimism (optimism) in an RDU setting, which corresponds
to the convexity (concavity) of the weighting function w. Here, with a slightly different
interpretation, the same term can be used, and disentangled from the shape of v, which
itself corresponds to a notion of caution. Extensive research has been done on the shape
that seems to hold, empirically, on w in the usual RDU setting.22 As this a different
setting, assumptions over the shape of w are not made. In particular, while it is common
to assume that w is S-shaped (concave on the initial interval and convex beyond that,
see Prelec (1998) for an axiomatic treatment of w), an empirical discussion of w for the

22see Karni and Safra (1990), Prelec (1998).
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uninformed lotteries is outside the scope of this paper. Instead, it is shown that the in-
duced preferences to remain in doubt or not to remain in doubt have strong implications
on the weighting function w. In particular, under certain conditions described below, the
weighting function is constrained, and under strong enough restrictions it must be linear.

Implications of doubt-aversion and doubt-proneness

Doubt-aversion and doubt-proneness are defined in the following way:

Definition (Doubt-attitude)

• An agent is doubt-prone if: (i) there exists no f ∈ L0 such that f ≻ δf and (ii)
there exists some f such that δf ≻ f .

• An agent is doubt-averse if (i) there exists no f ∈ L0 such that δf ≻ f and (ii)
there exists some f such that f ≻ δf .

• For two agents A and Ã with associated preference relations � and �̃, agent A is
at least as doubt-prone than agent Ã if, for all f ∈ L0, (i) f≻̃δf =⇒ f ≻ δf , and
(ii) δf ≻ f =⇒ δf ≻̃f .

In other words, an agent who (weakly, and strictly for one lottery) prefers not to ob-
serve than to observe the outcome of a lottery is doubt-prone, and an agent who always
prefers to observe the outcome is doubt-averse. No strong stance is taken in this pa-
per concerning whether attention should be restricted mostly to doubt-proneness or to
doubt-aversion, or indeed, to doubt-proneness in some range and doubt-aversion in an-
other. The result below connects the assumptions on doubt-proneness to properties of
the probability weighting function w(p); a similar result hold for doubt-aversion, and is
provided in the appendix.

Theorem 4. Suppose that axioms A.1 through A.4 and the RDU axioms hold, and
let u and v be the utility functions associated with the resolved and unresolved lotteries,
respectively, and w be the decision weight associated with the unresolved lotteries. In
addition, suppose that u, v are both differentiable. Then:
(i) If there exists a p ∈ (0, 1) such that p < w(p), then there exists an f ∈ L0 such that
δf ≻ f . Similarly, if there exists p′ ∈ (0, 1) such that p′ > w(p′), then there exists an
f ′ ∈ L0 such that f ′ ≻ δ′f .
(ii) If � exhibits doubt-proneness, then p ≤ w(p) for all p ∈ (0, 1). Moreover, if v exhibits
stronger diminishing marginal utility than u, then �N violates quasi-convexity. (that is,
there exists some f ′, f ′′ ∈ L0, and α ∈ (0, 1) such that f ′ ≻ f ′′ and αf ′+(1−α)f ′′ ≻N f ′).

Proof. See appendix. •

The differentiability assumption, though common, may seem bothersome as it is not
taken over the primitives. However, an assumption could be made over the primitives
that guarantees (for instance) strict diminishing marginal utility for u and v, which in
turn guarantees differentiability.23 Given the results above, an assumption or deduction

23For a discussion of the differentiability assumption, see Chew, Karni and Safra (1987).
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over the attitude towards doubt has testable implications over the attitude towards the
aggregation of probabilities, and vice-versa. In addition, these implications can be disen-
tangled from the attitude towards diminishing marginal utility. Since it is not necessary
that w satisfies the same empirical properties as for the typical case considered under
rank-dependent utility, an experimental study would be useful for a better sense of the
shape of w.
If, in addition to doubt-proneness, mean-preserving risk-aversion (in the standard sense)
of �N is assumed, then the RDU representation collapses to the recursive EU represen-
tation:

Corollary. Suppose that axioms A.1 through A.4 and the RDU axioms hold, and let
u and v be the utility functions associated with the informed and uninformed lotteries,
respectively, and w be the decision weight associated with the uninformed lotteries. In
addition, suppose that u, v are both differentiable. Then:
If � displays doubt-proneness and �N displays mean-preserving risk-aversion, then VRDU
must be of the EU form. That is, w(p) = p for all p ∈ L0. It also follows that both u
and v are concave, and that u = λ ◦ v for some continuous, concave, and increasing λ.

Proof. See appendix. •

This result further shows that attitude toward risk and attitude towards doubt constrain
the probability weighting function, and can in fact completely characterize it.24

Returning to the task example, note that if the assumption of mean-preserving risk aver-
sion is to be maintained, then it cannot be that the agent is doubt-prone everywhere,
as this would imply by the last result that the uninformed lotteries satisfy the expected
utility axioms. However, this is not consistent with these preferences’ violation of inde-
pendence. Hence f̃ ≻ δf̃ for some f̃ ∈ L0. The agent is therefore doubt-prone in some

region and doubt-averse in others, since he also prefers f = (tb,
1
3 ; tm,

1
3 ; tg,

1
3) to δf ≻ f .

If the assumption of mean-preserving risk-aversion is discarded, then it is possible for
him to be doubt-prone everywhere. Note that this entails that quasi-convexity is vio-
lated, which corresponds precisely to the violation discussed in motivating the use of this
framework. Finally, in the typical case of a regressive S-shaped w function, it must be
that the agent is doubt-prone for some lotteries and doubt-averse for others, by theorem
4.

3 Applications

Two applications are considered in this section. In the first, an agent’s choice of effort
affects his probability of success. He does not choose the highest effort level, even when
it is costless. This setup accommodates self-handicapping, since the agent deliberately

24This last corollary is similar to a result in Grant, Kajii and Polak (2000) but with a notion of doubt-
proneness that is considerably weaker than the preference for late-resolution that would be required in
the framework they use; the difference in assumptions is due to the difference in settings. It is also of
note that under Grant, Kajii and Polak (2000)’s restriction, there is no need to assume differentiability,
as it is in fact implied.
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chooses to reduce his chances of success so as to avoid acquiring information concerning
his ability. Different uses of this setup are discussed. In particular, one version of this
setup yields a status quo bias. In another version, a risk-neutral agent appears exces-
sively risk-averse in his choice of investment portfolio.
In the second application, an economy consists of voters who all have the same prefer-
ences. They do not know who the better candidate is, but they can acquire this infor-
mation at no cost. Even though all the voters have the same preferences over the policy
and information is free, there are equilibria in which they choose to remain ignorant,
and the wrong candidate is as likely to win as the right candidate.25

3.1 Preservation of self-image

A general setup is first introduced, before discussing the different contexts in which it
can be used. The agent is assumed to place direct value on his ability (or talent), in-
dependently of the effect it has on outcomes. Arguably, individuals care about their
self-image, and would rather think of themselves as talented than untalented. Although
they may never fully observe their talent, the feedback they receive allows them to make
deductions.
Suppose then that the agent is endowed with talent t ∈ [t, t] ∈ ℜ. He does not know
what he is, but it is distributed according to Υ. The agent chooses effort e ∈ [e, e] ∈ ℜ,
to obtain a reward m ∈ [m,m] ∈ ℜ, which he will observe. The reward m has a dis-
tribution Ψ(e, t).26. His reward therefore depends on his talent, the effort he puts in,
and an intrinsic uncertainty. The expected reward is higher if he puts in more effort
at any given talent, and it is higher if he is more talented at any given effort level:
Em(e, t) > Em(e, t′) ⇔ t > t′, and Em(e, t) > Em(e′, t) ⇔ e > e′. For notational
convenience, let p(t) be the probability that he has talent t, p(t|m, e) be the probability
of t given that he has put in effort e and obtained reward m (given Υ and Ψ), and so
forth.
The agent cares both about his reward m and his intrinsic talent t. Assume that his
utility for m is linear; more precisely, his expected utility over m is Em(e)). In addition,
it is linearly separable from his utility over t. He is weakly risk-averse over t (for both
resolved and unresolved lotteries) as well as doubt-prone.27 As in the theory section, let
u be his resolved utility, and let v be his unresolved utility. W is his overall value function.

If the agent expects to observe both his talent t and his reward m, then his value function
is:

W (e) = Em(e) + Eu(t)

Since effort is costless, it is immediate that he should put in the highest level of effort,
e = e. But now suppose that he does not necessarily observe his talent ex-post. In this

25In some cases, ‘disappointment’ may seem an appropriate notion in the circumstances described
below. A person’s fear of failure may stem from not wanting to be disappointed by what he finds out
about himself, or not wanting to be disappointed by the outcome. This terms is not used in this paper
to avoid confusion, as it has a distinct meaning in other settings. Disappointment aversion is typically
used in discussions of the Allais Paradox, as a possible explanation for the common ratios effect (see Gul
(1991) for a theoretical model).

26Υ and Ψ(e, t) have finite support.
27Note that by the corollary of theorem 4, the weighting function here is linear, w(p) = p.
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case, when he receives his monetary reward, he simply updates his probability on his
talent, given m and his chosen effort level e. His value function is therefore:

W (e) = Em(e) +
∑

m

p(m|e)u ◦ v−1(Ev(t|m, e))

Depending on the functional form, the agent might not put in effort e = e. His effort
level also depends on his incentive to obtain the least information concerning his talent,
since he is doubt-prone. In other words, he takes into account what the combination
of his effort and the reward he obtains allow him to deduce about his talent. Suppose
that there is an effort level eo (the ‘ostrich’ effort) that is entirely uninformative, i.e.
p(t|m, eo) = p(t) for all t ∈ [t, t] and for all m ∈ [m,m]. Note that eo provides the agent
with the highest expected utility of talent. That is, define

C(e) ≡ u ◦ v−1(Ev(t)) −
∑

m

p(m|e)u ◦ v−1(Ev(t|m, e))

As shown in the appendix, it is always the case that C(e) ≥ 0 for a doubt-prone agent,
with C(eo) = 0. Redefining the value function to be W̃ (e) = W (e)− u ◦ v−1(Ev(t)), the
agent maximizes

W̃ (e) = Em(e) − C(e)

Hence C(e) is effectively the ‘shadow’ cost of effort due to acquiring information that he
would rather ignore. The optimal effort level depends on the importance of the expected
reward Em(e) relative to the agent’s disutility of acquiring information concerning his
talent, as is captured by C(e). As an illustration, a simple example is provided.

Numerical Example
Let e = t = 0, e = t = 1, p(t = 0) = 1

2 and p(t = 1) = 1
2 . The agent’s reward m only

takes value $0 and $100. The probability of obtaining reward m = $100 given e and t
are:

p(m = $100|t = 1, e) = e

p(m = $100|t = 0, e) = 0

and p(m = $0|t, e) = 1 − p(m = $100|t, e). The utility functions are u = a
√
t for some

a > 0, and v = t.
Note that in this example, the completely uninformative effort eo is equal to 0. At effort
e = 0, he is sure to obtain $0, and his posterior on his talent is the same as his prior. As
he puts in more effort, he obtains a sharper signal of his talent. If he puts in maximum
effort e = 1, then he will fully deduce his talent ex-post: if he obtains $100 then he
knows he has talent t = 1, and if he obtains $0 then he knows he has talent t = 0. His
value function is now:

W̃ (e) = 50 − C(e)

where C(e) = a
2 (
√

2 − e−
√

2 − 3e+ e2).

The optimal level of effort e∗ is in the full range [0, 1], depending on a. More precisely,
for interior solutions, e∗ is the smaller root of the equation e2 − 3e + 2d−9

d−4 = 0, where

d =
(

200
a + 2

)2
. As a increases, the monetary reward m becomes less significant, and e∗
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decreases. As a decreases, the utility of talent becomes less significant, and the effort
level increases (see appendix for details).

Self-handicapping
The setup presented here can be applied to several different contexts, the most imme-
diate of which is self-handicapping. There is strong anecdotal evidence that people are
sometimes restrained by a ‘fear of failure’, and will not put in as much effort as they
could. Berglas and Jones (1978) find in an experiment that individuals deliberately
impede their own chances of success, and attribute this behavior to people’s desire to
protect the image of the self.28 The amount of optimal self-handicapping depends on the
doubt-attitude of the agent, and how good of a signal he expects to obtain. As discussed
above, choosing a higher effort level leads to a tradeoff between the improved reward
Em(e) and the incurred cost C(e) of learning more about one’s actual talent. Akerlof
and Dickens’ (1982) observation that people will remain ignorant so as to protect their
ego can be explained in the same manner.

Status quo bias
The endowment effect and status quo bias are analyzed by Kahneman, Knetch and
Thaler (1991), and are explained using framing effects and loss aversion. The agent’s
preference for avoiding a loss is taken to be stronger than his preference for making
a gain, and the reference point for what constitutes a gain or a loss is assumed to be
the status quo. However, Samuelson and Zeckhausser (1988) do not view the status
quo bias to be solely a consequence of loss-aversion: “Our results show the presence of
status quo bias even when there are no explicit gain/loss framing effects.... Thus, we
conclude that status quo bias is a general experimental finding – consistent with, but
not solely prompted by, loss aversion.” The framework discussed here can be applied to
some settings in which a status quo bias is present.
Suppose that e now represents a choice over different bundles rather than effort. In
addition, suppose that acquiring a bundle also carries information concerning prizes
that the individual may never observe. In this case, rather than representing a cost of
effort, C(e) represents the cost of deviating from the bundle over which one has the most
bias. Since C(e) is smallest when e = eo (the ostrich effort), the bias here is towards
what is least informative. If the assumption holds that the agent is acquiring the least
possible information through inaction (keeping the same bundle), then this result is in
fact consistent with the status quo bias. Note, however, that keeping the status quo
bundle were more informative than obtaining other bundles, then in fact a doubt-prone
agent would be biased against the status quo.
The key difference between the model presented here and the standard vNM model is
that this model allows for an asymmetry in the value of acquiring a bundle compared
to losing that bundle. The bundle itself does not change value based on whether the
agent is endowed with it or not, and in that sense there is no framing effect. Instead,
acquiring a new bundle in itself has different informational implications than selling it.
In the case where the unobserved prize is the agent’s ability, then acquiring a new bundle
may provide him with more information on his ability than keeping the one he currently
has.

28See Benabou and Tirole (2002) for an explanation that uses manipulable beliefs.
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Bonds, stocks and paternity
Consider the case in which e represents an investment decision rather than effort. A
higher e represents a more risky investment, but in expectation it leads to a higher
monetary reward. As before, t corresponds to a notion of talent. A more talented
individual makes a wiser investment choice and therefore obtains a higher expected
monetary reward, given the chosen risk level. For instance, e might be a portfolio
consisting solely of bonds, while e consists solely of higher-risk stocks. Assume also that
eo = e. In other words, the riskless option is also least informative concerning the agent’s
potential as an investor.
In this setting, although the agent is risk-neutral in money, his chosen bundle e∗ may
still consist of more bonds than it would if the reward were purely monetary, as there
is a bias towards e.29 In addition, suppose that a firm exists which offers to invest the
agent’s money in his place. Even if the agent puts the same prior on his ability as an
investor as he does on the firm’s, he still agrees to pay. Since the optimal level of risk in
this case is e, he is willing to pay up to Em(e) − Em(e∗) + C(e∗). In fact, even if the
firm were to choose the suboptimal level e∗, he would be willing to pay up to C(e∗).
In the standard EU model, the agent’s choice would only depend on the monetary reward
he expects to obtain. In contrast, the framework presented here allows the agent’s choice
to depend on on the decision-making process as well as on the reward he expects to
receive. That is, the agent bases his choice on the manner in which he expects to obtain
the monetary reward.

3.2 Political Ignorance

The high degree of political ignorance of voters has been thoroughly researched, particu-
larly in the US(see Bartels (1996)). Given the length of electoral campaigns in American
politics, the amount of media coverage and the accessibility of informational sources, it
seems that the cost of acquiring information should not be prohibitive for voters. Note
that there are political issues whose resolution the voters may never observe. For in-
stance, the voters may choose not to observe the amount of foreign aid given, the degree
of nepotism, or the government stance on interrogation methods. For those issues, a
doubt-prone agent may have incentive to ignore information even if information is free.
In other words, making information more accessible would not necessarily have a strong
impact on the individual’s informativeness on these issues. Since voters affect the election
result as a group, each individual’s decision to acquire information has an externality
on other voters and on their decision to acquire information. This section discusses a
very simple example in which voters’ information acquisition plays a dominant role on
the other voters’ decision to acquire information. Although voting is sincere, there is a
strategic aspect to the decision to acquire information.
Consider an economy in which N citizens care about issue γ ∈ [0, 1], which is determined
by a politician that they vote for. They can choose never to observe what the politician
does. Suppose that there are two candidates, A and B. One of the two will choose policy
γ = 0 if elected, and the other will choose γ = 1. The voters do not know which one is
which, and place probability 1

2 that A will choose γ = 0, and 1
2 that A will choose γ = 1

(and similarly for B). However, they can acquire that information at no cost, if they

29Of course, no claim is made concerning the empirical significance of this effect.
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choose to do so. Let pi be the ex-post probability that the ith agent places on the winner
being the candidate who implements γ = 1, where i ∈ {1, .., N} . The timing is as follows:

1) Each voter decides whether or not to observe where candidates A and B stand. A
voter cannot force another voter to acquire information.

2) Each voter votes sincerely, i.e. he votes for the candidate on whom he places a
higher probability of implementing policy γ that he prefers. If he is indifferent or if
he places equal probability on either candidate implementing his preferred policy,
then he tosses a fair coin and votes accordingly.

3) The candidate who obtains the majority wins the election. In case of a tie, a coin
toss determines the winner. The winner then implements the policy he prefers,
and there is no possibility of reelection.

Now suppose that every voter prefers γ to be higher. In addition, every voter is also
strictly doubt-prone. Let his value function be WI if he acquires information and WN

if he does not. Even though every voter prefers the candidate who implements γ = 1,
and even though information is free, there is still an equilibrium in which no one ac-
quires information, and the candidate who implements γ = 0 wins with probability 1

2 .
This equilibrium is Pareto-dominated (in expectation) by the other equilibria, in which
at least a strict majority of agents acquires information, and the candidate who imple-
ments γ = 1 wins with probability 1. This is briefly shown below.

1) Equilibrium in which no voter is informed:

If no other voter is informed, then voter i does not acquire information either. Since
pi ∈ (0, 1) if no one else is informed, it follows that WI < WN (on his own he cannot
force pi ∈ {0, 1}). Unless agent i is certain that either the right candidate or the wrong
candidate always wins the election, i.e. that pi = 1 or that pi = 0, he does not acquire
information.
Note that there is no equilibrium in which a minority of voters acquires information,
since each voter in the minority has incentive to deviate.

2) Equilibrium in which at least a strict majority is informed:

If at least a strict majority is informed, then the right candidate wins with probability 1.
Hence pi = 1 for each agent i, and so he is indifferent, since WI = WN . Note, however,
that this equilibrium does not survive if each voter i places an arbitrarily small proba-
bility δ > 0 that each of the other voters does not acquire information.

The externality of information plays an excessive role in this simple example, however
it may still have an impact in a more realistic model. In particular, as the difference
between the agent’s utility of the good policy and the bad policy increases, this example
suggests that a doubt-prone agent has less incentive to acquire information.
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4 Extensions

This section considers the implications of relaxing the independence axiom A.4. The
aim here is not to provide an alternative representation with a weaker set of axioms.
Rather, an axiom is presented which allows different classes of models to be extended
and make the distinction between resolved and unresolved lotteries. This axiom is weak
enough to accommodate different types of preferences (provided they satisfy continuity),
including a strict preference for randomization.
The independence axiom A.4 serves two purposes in this setting. In addition to leading
to the linearity in probabilities in the expected utility representation, it also does not
distinguish between the agent receiving, as a final prize, an outcome z̃ and an unresolved
lottery f . That is, suppose that an agent is indifferent between receiving lottery δf and
lottery δz̃. In this case, the agent is always indifferent between receiving a lottery that
has f as a final prize with probability q and a lottery that has z̃ as a final prize with
probability q. If the agent’s valuation of f is the same as his valuation of z̃, then he
makes no preferential distinction between receiving one or the other in any circumstance.
This property is summarized in the following axiom.

AXIOM E.1 (Unresolved lottery equivalent): For all f ∈ L0 such that
δf ∼ δH(f), and for all X, X̃ ∈ L1 such that X = (z1, q

I
1 ; ...; zn, q

I
n; f, q; f2, q

N
2 ; ...; fm, q

N
m)

and X̃ = (z1, q
I
1 ; ...; zn, q

I
n;H(f), q; f2, q

N
2 ; ...; fm, q

N
m), the following holds: X ∼ X̃.

Recall that H(f) ∈ Z is well-defined for all f ∈ L0 (by lemma 2), and that this does
not require independence. If the interpretation that the agent ‘perceives’ an unresolved
lottery f as equivalent to some outcome z̃, the axiom E.1 appears reasonable. Under this
interpretation, this valuation of the unresolved lottery does not depend on the probability
of reaching it, or on the other branches of the lottery.
The reason for not assuming this axiom explicitly in the main model of this paper is that
it is trivially implied.

Lemma 3. Suppose axioms A.1 through A.4 hold. Then axiom E.1 holds.

Without the independence axiom A.4, it is no longer the case that E.1 necessarily holds.
If it is explicitly assumed, however, then any lottery
X = (z1, q

I
1 ; z2, q

I
2 ; ...; zn, q

I
n; f1, q

N
1 ; f2, q

N
2 ; ...; fm, q

N
m) ∈ L1 can be replaced with a lot-

tery X̂ = (z1, q
I
1 ; z2, q

I
2 ; ...; zn, q

I
n; H(f1), q

N
1 ;H(f2), q

N
2 ; ...;H(fm), qNm) ∈ L0. Note that

X ∼ X̂, by a repeated application of axiom E.1. This property essentially reduces
two-stage lotteries to one-stage lotteries. It therefore allows a straightforward extension
of different types of frameworks, so as to distinguish between resolved and unresolved
lotteries. To emphasize this point, suppose that a ‘simple model’ is loosely defined as
follows:

Definition (Simple Model) A simple model 〈�̂,W, T 〉 consists of :

• A preference relation �̂ over one-stage lotteries in L0.

• A representation W : L0 → ℜ for which x �̂ x′ ⇔W (x) ≥W (x′) for all x, x′ ∈ L0.
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• A set of axioms T that allow �̂ to be closed in the weak convergence topology, and
that are sufficient for representation W to hold.

Then, any simple model can be expanded to accommodate the distinction between re-
solved and unresolved lotteries, in the following way. Take a simple model 〈�̂,W, T 〉.
Since it is usually implicitly assumed that the agent will observe the outcome of a lottery,
suppose that for all x, x′ ∈ L0, x �̂ x′ ⇔ x � x′. That is, the set of axioms T is taken
to hold for all resolved lotteries. If in addition, axioms A.1 through A.3 and axiom E.1
hold, then � is represented as follows: for anyX,X ′ ∈ L1, X ≻ X ′ ⇔W (X̂) > W (X̂ ′).30

As for a representation of H, note that the set of axioms for unresolved lotteries consid-
ered in the paper can also be replaced by a second simple model 〈�̂N ,WN , TN 〉.
Finally, note that it is straightforward to extend models which have a sequential com-
ponent, such as the Kreps-Porteus framework, to allow for these preferences, using the
method above, conducted at every stage. This discussion is deferred to the appendix as
well.

5 Closing remarks

This paper provides a representation for preferences over outcomes that may never be
observed. The way in which an agent forms his perception of the unobserved out-
come, relative to his risk-aversion, induces his attitude towards doubt. This relation is
captured by his informed utility function u, his uninformed utility function v and his
uninformed decision weighting function w. The model presented here can be applied to
a variety of applications. For instance, doubt-prone individuals have a tendency towards
self-handicapping and towards keeping the status quo. In addition, an agent who is risk-
neutral in money can still favor less risky investments, and would prefer to allow a firm
to invest for him, even if it does not have superior expertise. In a political economics
context, doubt-proneness encourages political ignorance. Conducting experimental stud-
ies would be helpful for taking a more informed stance on the shape of v relative to u,
as their relative concavities determine the strength of an agent’s doubt-proneness.
It may also be useful to analyze these preferences in a setting with interactive utilities,
although this is beyond the scope of this paper. For example, experimental behavior in
the two-player ultimatum game is often explained by a preference for fairness, in which
an agent has utility over the other agent’s utility. However, an agent does not necessarily
observe the other player’s preferences or deduce the final allocation he obtains. Suppose
that in one game, the agent expects to see the final outcome of the other player, and in
the other he does not. It is not necessary that the agent behave the same way in both
these games, as is demonstrated in the framework presented here. In particular, he may
be willing to pay not to observe the payoff of the other player. This variation of the
ultimatum game is very similar to experiments conducted by Zeelenberg (1999) with the
purpose of addressing the impact of anticipated regret. Future research could therefore
make use of the experimental work that has already been done in other fields to further
characterize individuals’ doubt-attitude.

30Where, as before, for X = (z1, q
I
1 ; z2, q

I
2 ; ...; zn, qI

n; f1, q
N
1 ; f2, q

N
2 ; ...; fm, qN

m),
X̂ = (z1, q

I
1 ; z2, q

I
2 ; ...; zn, qI

n; H(f1), q
N
1 ; H(f2), q

N
2 ; ...; H(fm), qN

m) ∈ L0 , and similarly for X ′ and X̂ ′.
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Appendix

Motivating Example

This example illustrates the problem with using the standard vNM EU model when
there are outcomes that the agent never expects to observe. Consider the simple case
of an agent who has performed a task and does not know how well he has done. There
are no future decisions that depend on his performance. For example, as a simple
adaptation of Savage’s omelet, suppose that the agent does not know whether he has fed
his guests a good omelet or a bad one. With probability pt, he has done well (t), and
with probability (1 − pt) he has done badly (t). He prefers having done well to having
done badly, although this will have no future repercussions. Given the choice between
remaining forever in doubt (D) and perfectly resolving the uncertainty, (ND), it might
appear that he compares:

UD = ptu(t) + (1 − pt)u(t)

to
UND = ptu(t) + (1 − pt)u(t)

and that since UD = UND, he is indifferent. But UD is not necessarily the right function
to use if he chooses to remain in doubt, because from his frame of reference the final
outcome will not be t or t. That is, he does not expect to ‘obtain’ ex-post utility u(t)
or u(t) because he does not expect to observe either t or t. As it is not clear what his
perception of the consequence is if he does not expect the uncertainty to be resolved (from
his viewpoint), his expected utility is undetermined. In its current form, the standard
EU model does not offer a method for evaluating this choice. Using UD effectively ignores
that the relevant frame of reference is the agent’s, not the modeler’s.31

Redefining the outcome space to include the observation itself does not eliminate the
problem. Suppose that the outcome space is taken to be Z = {tD, tD, tND, tND} where
tD represents the outcome that he did well but doubts it, tND that he did well and does
not doubt it, and so forth. He therefore compares the following:

UD = ptu(tD) + (1 − pt)u(tD)

to
UND = ptu(tND) + (1 − pt)u(tND)

It is difficult to interpret the meaning of the consequence ‘did well, but doubts it’ from
his frame of reference, since it is not clear what it means to be in doubt if he knows
that he has done well. In addition, his preferences over tD and tD are completely pinned
down. Consider the two extremes, pt = 1 and pt = 0. When pt = 1, there is no intrinsic
difference between UD and UND, since he knows that he has done well. Hence, u(tD) =
u(tND). Similarly, when pt = 0, he knows he has done badly, and so u(tD) = u(tND). It

31This issue is not resolved by starting with preferences over lotteries as primitives. In the standard
framework, the agent has primitive preferences over lotteries over outcomes, and he is not allowed to
choose between lotteries whose resolution he observes and lotteries whose resolution he does not observe.
He is therefore not given the option to express those preferences.
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then follows that UD = UND for any pt ∈ [0, 1]. This definition of the outcome space is
essentially the same as simply Z = {t, t}. His indifference between remaining in doubt
and not remaining in doubt is a consequence of following this approach, it is not implicit
from the standard EU model.
Redefining the outcome space so that his utility is constant if he remains in doubt is
even more problematic. Suppose that Z = {tND, tND, D}, with tND to be the outcome
‘talented and he does not remain in doubt (he observes the outcome)’, TND to be the
outcome ‘untalented and he observes it’, and D to mean that he does not observe the
outcome, hence remaining in doubt. He now compares:

UD = u(D)

to
UND = ptu(tND) + (1 − pt)u(tND)

However, in the limit pt → 1, UD should approach UND, which only occurs if u(D) =
u(tND). But in that case, as pt → 0, UD does not approach UND, and so there is an
unavoidable discontinuity.

Proofs

Lemma 1 (Doubt neutrality). Suppose axioms A.1 through A.3 hold. Then the fol-
lowing three conditions are equivalent:

(i) f ∼ δf for all f ∈ L0

(ii) f ≻ f ′ ⇒ δf ≻ δf ′ for all f, f ′ ∈ L0

(iii) δf ≻ δf ′ ⇒ f ≻ f ′ for all f, f ′ ∈ L0

Proof. If (i) holds, then it is trivial that (ii) and (iii) hold as well.

To show that (ii) ⇒ (i):
Suppose not. Then there exists an f ∈ L0 such that either f ≻ δf or δf ≻ f . Suppose
f ≻ δf . Then by lemma 2 (proven in the text), there exists an H(f) ∈ Z such that
δf ∼ δH(f). By transitivity, f ≻ δf ⇔ f ≻ δH(f), and so by (ii), δf ≻ δδH(f)

. By tran-
sitivity again, δH(f) ≻ δδH(f)

, but this violates the certainty axiom A.3. Now suppose
that δf ≻ f . Then δH(f) ≻ f , and by (ii), δδH(f)

≻ δf ⇔ δδH(f)
≻ δH(f), which violates

A.3.

To show that (iii) ⇒ (i):
Suppose not. Then there exists an f ∈ L0 such that either f ≻ δf or δf ≻ f . Suppose
that f ≻ δf . Note that by continuity, it is also the case that there exists an H̃ ∈ Z such
that f ∼ δH̃(f). By the certainty axiom A.3, δH̃(f) ∼ δδ

H̃(f)
. By transitivity, δδ

H̃(f)
≻ δf ,

and by (iii), δH̃(f) ≻ f . But this is a contradiction. Now suppose that δf ≻ f . Then
δf ≻ δδ

H̃(f)
⇔ f ≻ δH̃(f) which is a contradiction. •
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Representation Theorem. Suppose axioms A.1 through A.4 hold. Then there exist
a continuous and bounded function u : Z → ℜ, and an H : L0 → Z such that for all
X,Y ∈ L1,

X ≻ Y if and only if W (X) > W (Y )

where W is defined to be: for all X = (z1, q
I
1 ; ...; zn, q

I
n; f1, q

N
1 ; ...; fm, q

N
m),

W (X) =
n
∑

i=1

qIi u(zi) +
m
∑

i=1

qNi u (H(fzi
))

Moreover u is unique up to positive affine transformation. If H(f) has more than one
element, then any element can be chosen arbitrarily.

Proof. Let X = (z1, q
I
1 ; z2, q

I
2 ; ...; zn, q

I
n; f1, q

N
1 ; f2, q

N
2 ; ...; fm, q

N
m). By lemma 2, δf ∼

δH(f) for any f ∈ L0. Hence, by a well-known implication of the independence axiom

A.4, X ∼ X̃, where X̃ = (z1, q
I
1 ; z2, q

I
2 ; ...; zn, q

I
n; H(f1), q

N
1 ;H(f2), q

N
2 ; ...;H(fm), qNm),

and so X ∼ X̃. Defining Ỹ similarly, Y ∼ Ỹ . By transitivity, X ≻ Y ⇒ X̃ ≻ Ỹ . Note
that all lotteries X̃ and Ỹ are one-stage lotteries, with final outcomes as prizes. Define
the preference relation ≻I in the following way: X ≻ Y ⇒ X̃ ≻I Ỹ . All the EU axioms
hold on ≻I , and so X̃ ≻ Ỹ if and only if W (X̃) > W (Ỹ ), where

W (X̃) =
n
∑

i=1

qIi u(zi) +
m
∑

i=1

qNi u (H(fzi
))

and W is unique up to positive affine transformation. But since X ≻ Y ⇒ X̃ ≻ Ỹ , it
follows that X ≻ Y if and only if W (X̃) > W (Ỹ ), which completes the proof. •

Theorem 4. Suppose that axioms A.1 through A.4 and the RDU axioms hold, and
let u and v be the utility functions associated with the resolved and unresolved lotteries,
respectively, and w be the decision weight associated with the uninformed lotteries. In
addition, suppose that u, v are both differentiable. Then:
(i) If there exists p ∈ (0, 1) such that p < w(p), then there exists an f ∈ L0 such that
δf ≻ f . Similarly, if there exists p′ ∈ (0, 1) such that p′ > w(p′), then there exists an
f ′ ∈ L0 such that f ′ ≻ δ′f .
(ii) If � exhibits doubt-aversion, then p ≥ w(p) for all p ∈ (0, 1). Moreover, if u exhibits
stronger diminishing marginal utility than v (i.e. u = λ ◦ v for some continuous, weakly
concave, and increasing λ on v([z, z̄])), then �N violates quasi-concavity. (that is, there
exists some f ′, f ′′ ∈ L0, and α ∈ (0, 1) such that f ′ ≻ f ′′ and f ′′ ≻N αf ′ + (1 − α)f ′′).
Similarly, if � exhibits doubt-proneness, then p ≤ w(p) for all p ∈ (0, 1). Moreover, if v
exhibits stronger diminishing marginal utility than u , then �N violates quasi-convexity.
(that is, there exists some f ′, f ′′ ∈ L0, and α ∈ (0, 1) such that f ′ ≻ f ′′ and αf ′ + (1 −
α)f ′′ ≻N f ′).

Proof. (i) Suppose not, i.e. suppose that there exists p ∈ (0, 1) such that p < w(p),
and that f � δf for all f ∈ L0. Let fǫ = (z; 1 − p; z + ǫ, p) for some z ∈ Z, p ∈ L0,
0 < ǫ < z̄ − z. Since f � δf , by continuity (and using the certainty axiom), there exists
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a z̃ǫ ∈ (z, z + ǫ) such that f �
[

δz̃ǫ ∼ δδz̃ǫ

]

� δf . Hence:

(1 − p)u(z) + pu(z + ǫ) ≥ u(z̃ǫ)

w(p) (v(z + ǫ) − v(z)) + v(z) ≤ v(z̃ǫ)

Rearranging:

p ≥ u(z̃ǫ) − u(z)

u(z + ǫ) − u(z)

w(p) ≤ v(z̃ǫ) − v(z)

v(z + ǫ) − v(z)

Hence:

u(z̃ǫ) − u(z)

u(z + ǫ) − u(z)
− v(z̃ǫ) − v(z)

v(z + ǫ) − v(z)
≤ p− w(p)

But as ǫ→ 0, u(z̃ǫ)−u(z)
u(z+ǫ)−u(z) → u′(z)

u′(z) , and v(z̃ǫ)−v(z)
v(z+ǫ)−v(z) → v′(z)

v′(z) , by differentiability. Since the
left-hand-side goes to 1 − 1 = 0 in the limit, while the right-hand-side does not change,
it must be that 0 ≤ p− w(p). But this is a contradiction, since p < w(p).
The second part of the result can be proved in a similar manner, for the case p′ > w(p′).

(ii) The result is only shown for doubt-aversion; a similar reasoning holds for doubt-
proneness. By the contrapositive of (i), it is immediate that if f � δf for all f ∈ L0,
then w(p) ≤ p for all p ∈ (0, 1). Now suppose that f ≻ δf for some f, and that u is a
(weakly) concave transformation of v. If w is not concave, then �N cannot be quasi-
concave, by Wakker (1994) theorem 25. Since w(0) = 0, w(1) = 1, w(p) ≥ p for a concave
function. We have that w(p) ≤ p, and so it suffices to show that w(p) < p for some p.
Suppose not. That is, w(p) = p for all p. Since u is more concave than v, it must be
that u−1(EU(f)) ≤ v−1(EV (f))(that is, the certainty equivalent of f for the informed
lotteries is not bigger than the certainty equivalent of f for the uninformed lotteries,
by a well known result). However, since f ≻ δf , it must also be that u−1(EU(f)) >
v−1(EV (f)), which is a contradiction.
Note that if f ∼ δf for all f ∈ L0, than trivially, u is a linear transformation of v, and
w(p) = p.

•
Corollary. Suppose that axioms A.1 through A.4 and the RDU axioms hold, and let
u and v be the utility functions associated with the informed and uninformed lotteries,
respectively, and w be the decision weight associated with the uninformed lotteries. In
addition, suppose that u, v are both differentiable. Then:
If � displays doubt-proneness and �N mean-preserving risk-aversion, then VRDU must
be of the EU form. That is, w(p) = p for all p ∈ L0. It also follows that both u and v
are concave, and that u = λ ◦ v for some continuous, concave, and increasing λ.

Proof. If �N displays mean-preserving risk-aversion, then w(p) is convex, by Chew,
Epstein and Safra (1986) or Grant, Kajii and Polak (2000). Since w(0) = 0, w(1) = 1,
it must be that p ≥ w(p). Since δf � f , it follows from result (ii) that p ≤ w(p. Hence
w(p) = p, implying that �N satisfies expected utility.
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Since δf � f , and both u and v are of EU form, u must be a concave transformation of v.
This is immediate (and well-known, see Kreps-Porteus (1978) for instance): if δf � δf ,
the certainty equivalent of f is never bigger for u than for v, and so u is a concave
transformation of v. •

Preservation of Self-Image
For an agent who is doubt-prone and risk-averse for both resolved and unresolved lotteries,
the following holds:

C(e) ≡ u ◦ v−1(Ev(t)) −
∑

m

p(m|e)u ◦ v−1(Ev(t|m, e)) ≥ 0

Proof. Note that u ◦ v−1(·) is concave. Hence

∑

m

p(m|e)u ◦ v−1(Ev(t|m, e)) ≤ u ◦ v−1

(

∑

m

p(m|e)(Ev(t|m, e))
)

≤ u ◦ v−1

(

∑

m

p(m|e)
∑

t

p(m|t, e)p(t)
p(m|e) v(t)

)

≤ u ◦ v−1

(

∑

m

∑

t

p(m|t, e)p(t)v(t)
)

≤ u ◦ v−1

(

∑

t

∑

m

p(m|t, e)p(t)v(t)
)

≤ u ◦ v−1

(

∑

t

p(t)v(t)

)

= u ◦ v−1(Ev(t))

•

Applications

Numerical Example (Preservation of Self-image)

The following is a more general version of the numerical example provided in the main
body of the paper. Suppose he puts in effort e ∈ [0, 1], and obtains reward m ∈ [0, 100].
He also has an unobserved talent t ∈ [0, 1] . The agent is doubt-prone and risk-averse for
both resolved and unresolved lotteries on talent. Specifically, u = at1/2 for some a > 0,
and v = t. His expected utility of money is linearly separable from his utility of talent,
and is equal to his expected reward Em. He therefore maximizes:

W̃ (e) = Em(e) − C(e)

where C(e) ≡ u ◦ v−1(Ev(t)) −
∑

m

p(m|e)u ◦ v−1(Ev(t|m, e))
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The agent’s prior is q that talent t = 0, and 1 − q that talent t = 1. He can put in
level e ∈ [e, e]. Given that he has talent t = 1 or t = 0 and puts in effort e, his respec-
tive probabilities of obtaining monetary reward m = 100 are p(100|t = 1, e) = e and
p(100|t = 0, e) = be, for b ∈ [0, 1).

Note that the ostrich effort e0 in this example is e = 0, since he is certain to obtain
m = 0, independently of his talent. It follows from the probabilities given above that:

p($0|1, e) = 1 − e

p($0|0, e) = 1 − be

p(100|e) = e(q + b(1 − q)

p($0|e) = 1 − e(q + b(1 − q))

p(1|100, e) =
q

q + b(1 − q)

Solving:

W (e) = 100 ∗ p(100|e) + a
(

p(0|e)p(t)p(0|t, e)
)1/2

+ a
(

p(100|e)p(t)p(100|t, e)
)1/2

= e(100β + a(βq)1/2) + aq1/2
(

1 − e(1 + β) + βe2
)1/2

where β = q + b(1 − q). Let γ = 100β + a(βq)1/2, and D = 4γ2

a2q
. Then, from the first

order conditions, we obtain:

e2(βC − 4β2) + e(4β − C)(1 + β) + C − (1 + β)2 = 0

The example in the text corresponds to the case b = 0, q = 1/2, and so β = 1/2,

γ = 50 + a
2 , and d = 2D =

(

200
a + 2

)2
.

Numerical Example 2

As a different example, consider the case in which an individual can use different levels
of effort to raise his probability of obtaining an outcome that he observes. In addition,
his choice affects the probability of a separate outcome that he may never observe. For
instance, he may be applying to switch jobs or careers, and while he obtains a job and
a salary, he may also learn more about his true potential, which he cares about intrin-
sically. Depending on his preferences, he may attempt to sabotage his prospects for
different reasons. He may not put in the optimal effort level to avoid learning too much,
and remain in the current situation, hence leading to a status quo bias. At the other
extreme, he may avoid the optimal effort level so as to learn as much as he can about
the unobserved outcome.

Formally, suppose that the agent can conduct a task which requires effort e ∈ {el, em, eh} ⊂
ℜ, with el < em < eh. The more effort he puts in, the more likely he is to succeed at
his task. In the case of the career, his task may be the job interview, and he does better
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if he is more prepared. In addition, he also has a talent t ∈ [tb, tg]. He does not know
what t is and he cannot observe it. He can receive either $0 or $100, and his success
depends on a combination of talent, effort and chance. Table 1 summarizes his ex-ante
probability of obtaining each outcome for each effort level.

Effort e p(0) p(100)

el
2
3

1
3

em
1
2

1
2

eh
1
3

2
3

Table 1: Effort Example

Now suppose that the agent is Bayesian. Ex-ante, he places probability 1
2 that his talent

is t = tb and 1
2 that t = tg. In addition, if he put in effort e = el and obtains $100

then he must be very talented (t = tg), i.e. p(tg|100, el) = 1. If he receives $0, then
p(tg|0, el) = 1

4 , and p(tb|0, el) = 3
4 . Under effort em, his talent is irrelevant and he learns

nothing about his talent, p(tg|100, em) = p(tg|0, em) = 1
2 . If e = eh and he receives $0,

then he deduces that he is very untalented, p(tg|0, eh) = 0. If he receives $100, then
p(tg|100, eh) = 3

4 . Using Bayes’ rule, this is summarized in table 2 below.

Effort e p(0) p(100) p(100|tg) p(0|tg) p(tg|100) p(tg|0)

el
2
3

1
3

2
3

1
3 1 1

4

em
1
2

1
2

1
2

1
2

1
2

1
2

eh
1
3

2
3 1 0 3

4 0

Table 2: Effort Example with Talent

Suppose that he strictly prefers more money to less, and that effort is costless. If he does
not care directly about how talented he is, then EU(eh) > EU(em) > EU(el). Assume
instead that he cares about his talent for its own sake and not only for its instrumental
value. Furthermore, suppose that his preferences are such that his utility over his talent
is linearly separable from his utility over money. Then, focusing on his preferences over
talent, table 2 can also be described by lotteries of the type shown in figure 3.

Let his utility of $0 be 0, and his utility of $100 be 100. Then:

EU(el) = 1
3 [100 + u(tg)] + 2

3

[

u
(

v−1
(

3
4v(tb) + 1

4v(tg)
))]

EU(em) = 50 + u
(

v−1
(

1
2v(tb) + 1

2v(tg)
))

EU(eh) = 1
3u(tb) + 2

3

[

100 + u
(

v−1
(

1
4v(tb) + 3

4v(tg)
))]

It is no longer immediate that he prefers to put in effort eh to em to el. An agent who
is afraid to learn that he is untalented might prefer em to eh to el, while an agent who
wants as much information concerning his talent as he can obtain might prefer eh to el
to em. If the importance he places on learning that he is talented is high enough, he
prefers el to eh to em. Functional examples are shown below.

(Doubt-Proneness) Suppose tb = 0, tg = 100, and u(t) = a
√
t, for some parameter

a > 0. The agent is therefore risk-averse over the informed lotteries. If he does not
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el

$0 (Talent unobserved)

2
3

3
4

tg + $0

tb + $0

1
4

1
3

tg + $100$100 (talent observed)

Effort el

Outcome (Talent + Prize)

em

1
2

tg + $0

tb + $0

1
2

1
2

tg + $100

Effort em

Outcome (Talent + Prize)

1
2

tb + $100

1
2

1
2$100

$0

eh

$100 (Talent unobserved)

2
3

1
4

tg + $100

tb + $100

3
4

1
3

tb + $0$0 (talent observed)

Effort eh

Outcome (Talent + Prize)

Figure 3: Lotteries for efforts el, em and eh

observe the outcome, then he is caution-neutral, i.e. v(t) = t. It follows that he is
strictly doubt-prone. Solving the equations above, if (approximately) 37 > a > 13,
then EU(em) > EU(eh) > EU(el).

32 This agent is willing to sabotage his chances of
obtaining a higher monetary reward, because of a fear of failure (or, more precisely,
because of a fear of the implications of failure).

If instead a > 37, then EU(em) > EU(el) > EU(eh), and if a < 13 the monotonically
decreasing EU(eh) > EU(em) > EU(el) holds, as in the standard case.

(Doubt-aversion) As before, tb = 0 and tg = 100, but now suppose that the agent is risk-
neutral when he observes the outcome, i.e. u(t) = at, for some parameter a > 0. If he
does not observe the outcome, then he is cautious, specifically: v(t) = 3

√
t . In this case

he is also doubt-averse. Solving, if 16
3 > a > .76, then EU(eh) > EU(el) > EU(em). If

a > 16
3 then EU(el) > EU(eh) > EU(em). Here, an agent has so much stake in learning

that he is talented that he is willing to put in the worst effort possible and hope that his
talent reveals itself.
If a < .76, EU(eh) > EU(em) > EU(el), as in the standard case.

References

[1] M. Abdellaoui. A genuine rank-dependent generalization of the von Neumann-
Morgenstern expected utility theorem. Econometrica, 70(2):717–736, 2002.

32More precisely, 37.32 > a > 12.84.

33



[2] S. Adam, S. Wiggins, P Whyte, M. Bloch, M. Shokeir, H. Soltan, W. Meschino,
A. Summers, O. Suchowersky, J. Welch, M. Huggins, J. Theilmann, and M. Hayden.
Five year study of prenatal testing for huntington’s disease: demand, attitudes, and
psychological assessment. Journal of Medical Genetics, 30:549–556, 1993.

[3] G. Akerlof and W. Dickens. The economic consequences of cognitive dissonance.
American Economic Review, 72(3):307–319, 1982.

[4] M. Allais. Le comportement de l’homme rationnel devant le risque: Critique des
postulats de l’ecole americaine. Econometrica, 21(4):503–546, 1953.

[5] L. Bartels. Uninformed votes: Informational effects in presidential elections. Amer-
ican Journal of Political Science, 40(1):194–230, 1996.

[6] D. Bell. Regret in decision making under uncertainty. Operations Research, 30:961–
981, 1982.

[7] D. Bell and P. Fishburn. Probability weights in rank-dependent utility with binary
even-chance independence. Journal of Mathematical Psychology, 47:244–258, 2003.

[8] R. Benabou. Ideology. Journal of the European Economic Association (Forthcom-
ing), 2008.

[9] R. Benabou and J. Tirole. Self-confidence and personal motivation. Quartely Jour-
nal of Economics, 117(3):871–915, 2002.

[10] R. Benabou and J. Tirole. Belief in a just world and redistributive politics. Quartely
Journal of Economics, 121(2):699–746, 2006.

[11] R. Benabou and J. Tirole. Identity, dignity and taboos: Beliefs as assets. 2006.

[12] S. Berglas and E. Jones. Drug choice as a self-handicapping strategy in response to
noncontingent success. Journal of Personality and Social Psychology, 36(4):405–417,
1978.

[13] M. Brunnermeier and J. Parker. Optimal expectations. American Economic Review,
95(4):1092–1118, 2005.

[14] A. Caplin and J. Leahy. Psychological expected utility theory and anticipatory
feelings. Quartely Journal of Economics, 116(1):55–79, 2001.

[15] J. Carrillo and T. Mariotti. Strategic ignorance as a self-disciplining device. Review
of Economic Studies, 67:529–544, 2000.

[16] S. H. Chew, E. Karni, and Z. Safra. Risk aversion in the theory of expected utility
with rank dependent probabilities. Journal of Economic Theory, 42:370–381, 1986.

[17] O. Compte and A. Postlewaite. Confidence-enhanced performance. American Eco-
nomic Review, 94(5):1536–1557, 2004.

[18] E. Dekel. An axiomatic characterization of preferences under uncertainty: Weaken-
ing the independence axiom. Journal of Economic Theory, 40:304–318, 1986.

[19] E. Diecidue and P. Wakker. On the intuition of rank-dependent utility. Journal of
Risk and Uncertainty, 23(3):281–298, 2001.

34



[20] D. Dillenberger. Preferences for one-shot resolution of uncertainty and allais-type
behavior. Working paper, 2008.

[21] R. Dudley. Real Analysis and Probability. Cambridge University Press, New York
NY, 2002.

[22] D. Ellsberg. Risk, ambiguity, and the savage axioms. Quarterly Journal of Eco-
nomics, 75(4):643–669, 1961.

[23] D. Ellsberg. Risk, Ambiguity and Decision. Garland Publishing, New York NY,
2001.

[24] I. Good. Good Thinking: The Foundations of Probability and Its Applications.
University of Minnesota Press, 1983.

[25] S. Grant, A. Kajii, and B. Polak. Intrinsic preference for information. Journal of
Economic Theory, 83:233–259, 1998.

[26] S. Grant, A. Kajii, and B. Polak. Temporal resolution of uncertainty and recursive
non-expected utility models. Econometrica, 68(2):425–434, 2000.

[27] F. Gul. A theory of disappointment aversion. Econometrica, 59(3):667–686, 1991.

[28] M. Hemphill. Pretesting for huntington’s disease: An overview. Hastings Center
Report, 3(3):12–13, 1973.

[29] D. Kahneman, J. Knetsch, and R. Thaler. Anomalies: The endowment effect, loss
aversion, and status quo bias. Journal of Economic Perspectives, 5(1):193–206,
1991.

[30] E. Karni. Decision Making Under Uncertainty. Harvard University Press, Cam-
bridge MA, 1985.

[31] E. Karni and Z. Safra. Rank-dependent probabilities. Economic Journal,
100(401):487–495, 1990.

[32] B. Koszegi. Ego utility, overconfidence, and task choice. Journal of the European
Economic Association, 4(4):673–707, 2006.

[33] D. Kreps. Notes on the Theory of Choice. Westview Press, Boulder CO, 1988.

[34] D. Kreps and E. Porteus. Temporal resolution of uncertainty and dynamic choice
theory. Econometrica, 46(1):185–200, 1978.

[35] G. Loomes and Sugden R. Regret theory: An alternative theory of rational choice
under uncertainty. The Economic Journal, 92(368):805–824, 1982.

[36] M. Machina. Choice under uncertainty: Problems solved and unsolved. Economic
Perspectives, 1(1):121–154, 1987.

[37] M. Machina. Dynamic consistency and non-expected utility models of choice under
uncertainty. Journal of Economic Literature, XXVII:1622–1668, 1989.

[38] S. Pinker. The Stuff of Thought. Penguin Group, New York NY, 2007.

[39] D. Prelec. The probability weighting function. Econometrica, 66(3):497–527, 1998.

35



[40] J. Quiggin. A theory of anticipated utility. Journal of Economic Behavior and
Organization, 3:323–343, 1982.

[41] W. Samuelson and R. Zeckhauser. Status quo bias in decision making. Journal of
Risk and Uncertainty, 1:7–59, 1988.

[42] L. Savage. The Foundations of Statistics. Dover Publications, New York NY, 1972.

[43] U. Segal. Two-stage lotteries without the reduction axiom. Econometrica,
58(2):349–377, 1990.

[44] L. Selden. A new representation of preferences over ”certain x uncertain” con-
sumption pairs: The ”ordinal certainty equivalent” hypothesis. Econometrica,
46(5):1045–1060, 1978.

[45] R. Sugden. An axiomatic foundation for regret theory. Journal of Economic Theory,
60:159–180, 1993.

[46] A Tyler, O. Quarrell, L. Lazarou, A. Meredith, and P. Harper. Exclusion testing in
pregnancy for huntington’s disease. Journal of Medical Genetics, 27:488–495, 1990.

[47] P. Wakker. Separating marginal utility and probabilistic risk aversion. Theory and
Decision, 36:1–44, 1994.

[48] M. Yaari. The dual theory of choice under risk. Econometrica, 55(1):95–115, 1987.

[49] M. Zeelenberg. Anticipated regret, expected feedback and behavioral decision mak-
ing. Journal of Behavioral Decision Making, 12:93–106, 1999.

36


