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Abstract

The local level model with stochastic volatility, recently proposed for U.S. by Stock and

Watson (Why Has U.S. Inflation Become Harder to Forecast?, Journal of Money, Credit and

Banking, Supplement to Vol. 39, No. 1, February 2007), provides a simple yet sufficiently

rich framework for characterizing the evolution of the main stylized facts concerning the U.S.

inflation. The model decomposes inflation into a core component, evolving as a random walk,

and a transitory component. The volatility of the disturbances driving both components is

allowed to vary over time. The paper provides a full Bayesian analysis of this model and

readdresses some of the main issues that were raised by the literature concerning the evolution

of persistence and predictability and the extent and timing of the great moderation. The

assessment of various nested models of inflation volatility and systematic model selection provide

strong evidence in favor of a model with heteroscedastic disturbances in the core component,

whereas the transitory component has time invariant size. The main evidence is that the great

moderation is over, and that volatility, persistence and predictability of inflation underwent a

turning point in the late 1990s. During the last decade volatility and persistence have been

increasing and predictability has been going down.
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1 Introduction

Inflation’s volatility has attracted a good deal of attention recently; the interest has been sparked

by the debate on the Great Moderation that has been documented for real economic aggregates.

Inflation stabilization is indeed a possible source of the reduction in the volatility of macroeconomic

aggregates. The issue is also closely bound up with inflation persistence and predictability. In an

influential paper Stock and Watson (2007), using a local level model with stochastic volatility,

document that inflation is less volatile now than it was in the 1970s and early 1980s; moreover,

persistence, which measure the long run effect of a shock, has declined, and predictability has

increased.

There is still an ongoing debate about the statistical significance of inflation persistence and its

stability over time, see Pivetta and Reis (2007), Cogley, Primicieri and Sargent (2008), Cecchetti et

al. (2007), among others. Recently Bos, Koopman and Ooms (2008) analyzed a U.S. core inflation

series (excluding food and energy) as a long memory process subject to heteroscedastic shocks and

documented remarkable changes, taking place about at the time of the Great Moderation (1984),

in the variance of the series and that of the volatility process, the fractional integration parameter

(which is the measure of persistence adopted in that paper), in the short memory characteristics

of the series.

In this paper we consider the simple unobserved components model of U.S. inflation considered

in Stock and Watson (2007), referred to as the local level model with stochastic volatility (UC-

SV). The model provides a simple but yet sufficiently rich framework for discussing the main

stylized facts concerning inflation, such as the changes in persistence and predictability. The model

postulates the decomposition of observed inflation into two components: the core component (or

underlying inflation) which captures the trend in inflation, and the transitory component, which

captures the deviations of inflation from its trend value. We will start from a specification such

that both components are driven by disturbances whose variance evolves over time according to a

stationary stochastic volatility process, and will attempt to assess the significance of the changing

volatility in each of the components.

The contributions of this paper are the following: we provide a full Bayesian analysis, so that

unlike the current literature, we do not assume that some of the parameters, namely the variances of

the stochastic volatility components, are known. Secondly, we carry out systematic model selection

by comparing the marginal likelihood implied by the different models of inflation volatility. The
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marginal likelihood is estimated according to the Chib and Jeliazkov (2001) algorithm.

The interesting final result is that we find strong support for the specification with stochastic

volatility in the core component but not in both. We document that persistence is higher than

in previous studies and is subject to a significant reduction only at the beginning of the 2000s,

whereas predictability has increased somewhat at about the same time.

This paper is organized as follows. In Section 2 we present the local level model with stochastic

volatility. Section 3 illustrates the Monte Carlo Markov Chain (MCMC) sampling scheme used

to perform Bayesian inference for this model. In Section 4 we present and discuss the estimation

results. In Section 5 we describe the Chib and Jeliazkov (2001) approach to the evaluation of the

marginal likelihood. The results are used to select the final model among four competitors. In

Section 6 we conclude the paper.

2 The UC-SV model

The paper focuses on the quarterly inflation rate constructed from the Consumer Price Index (All

Urban Consumers, seasonally adjusted), made available by the U.S. Bureau of Labor Statistics.

The quarterly index is obtained from the monthly index by computing the average of the three

months that make up each quarter; if we denote the quarterly CPI by Pt, the annualized quarterly

inflation rate is then computed as 400∆ lnPt and is denoted yt, t = 1, ..., n. The series is plotted in

figure 1 and is available for the sample sample period 1960:1 –2008:3.

The most general specification of the UC-SV model with stochastic volatility represents inflation

as the sum of an underlying level, denoted here by αt, which evolves as a random walk, and a

transitory component

yt = αt + σεtεt, εt ∼ N(0, 1)

αt = αt−1 + σηtηt, ηt ∼ N(0, 1)
(1)

where εt and ηt are independent standard normal Gaussian disturbances and their size, σηt and

σεt, respectively evolve over time according to a SV process. Denoting h1t = lnσηt and h2t = lnσεt

h1,t = µ1 + φ1h1,t−1 + κ1,t, h1,0 ∼ N

(

0,
σ2

κ1

1 − φ2
1

)

, κ1 ∼ N(0, 1)

h2,t = µ2 + φ2h2,t−1 + κ2,t, h2,0 ∼ N

(

0,
σ2

κ2

1 − φ2
2

)

, κ2 ∼ N(0, 1)

(2)

The model encompasses the traditional stochastic volatility model that is widely used in finance

(see for instance Shephard, 2006), which arises when the process αt degenerates to a constant. The
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specification of the stochastic volatility processes differ from Stock and Watson (2007) and Cecchetti

et al. (2008), who assume a random walk process for the log-variances hit, i = 1, 2. When both

standard deviations σεt and σηt do not vary with time, the model reduces to the the traditional

local level model. The latter has a IMA(1,1) reduced form ∆yt = ξt + ϑξt−1 with parameter

ϑ =
[

(q2 + 4q)
1

2 − 2 − q]/2
]

, where q = σ2
η/σ2

ǫ denotes the signal to noise ratio.

The local level model has a long tradition and a well-established role in the analysis of economic

time series, since it provides the model-based interpretation for the popular forecasting technique

known as exponential smoothing, which is widely used in applied economic forecasting and fares re-

markably well in forecast competitions; see Muth (1960) and the comprehensive reviews by Gardner

(1985, 2006). In the sequel we shall also consider the cases when either σεt or σηt is constant.

The UC-SV model can be considered as a IMA(1,1) with time-varying moving average para-

meter. Hence, the local measure of persistence that we consider is obtained as (1 + ϑt), where

ϑt varies with time according to the values of the time-varying signal to noise ratio qt = σ2
ηt/σ2

ǫt

Cecchetti et al. (2007) use the implied time varying first order autocorrelation of ∆yt, as a measure

of persistence.

Predictability can be defined in terms of the Granger and Newbold (1986, p. 310) forecastability

index

Predt = 1 −
Var(ξt|hit)

Var(∆yt|hit)
(3)

In terms of the parameters of the UC-SV, the prediction error variance equals Var(ξt|hit) =
σ2

ηt

(1+ϑ2)
,

whereas the variance Var(∆yt|hit) = σ2
ηt + 2σ2

ǫt.

3 Bayesian Estimation

This section provides an overview of the MCMC methodology adopted for the estimation of the

UC-SV model. All inferences are based on a Gibbs sampling scheme, according to which samples

are drawn componentwise from the full conditionals; for the components which cannot be sampled

directly a Metropolis-Hasting sub-chain is used within the Gibbs sampling cycle. In particular,

the posterior of the AR parameters φ1, φ2, is not available in closed form, see Bos and Shepard

(2006) and Kim et al. (1998). More details on the specification of the prior distributions, the full

conditionals and the Metropolis-within Gibbs steps are provided in Appendix A.

Let θ = (µ1, µ2, φ1, φ2, σ
2
κ1

, σ2
κ2

) denote the vector of hyperparameters, hi, i = 1, 2, be the

collection of the values of the latent stochastic volatility processes for i = 1, 2 and α and y denote
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the stack of core inflation and values of yt.

The Gibbs sampling scheme can be sketched as follows:

1. Initialize hi, θ

2. Draw a sample from θ, α|y, hi

a) Sample θ from θ|y, α, hi (see Appendix A).

b) Sample α from α|y, θ, hi using the simulation smoother of Durbin and Koopman (2002).

3. Sample hi, i = 1, 2, from hi|α, y, θ using an Independent Metropolis-Hastings algorithm;

4. Go to 2.

The most complex part of the algorithm deals with the stochastic volatility processes; we use a

single move sampler based on the density:

hit|hi,t+1, hi,t−1, yt, αt−1, αt, (4)

we implement a Independent Metropolis-Hastings algorithm, for a detailed description refer to

Cappé et. al.(2007) and the Appendix. In order to sample from the full conditional we use the

following results:

f(hi,t|hi,t−1, hi,t+1, yt, αt, αt−1) ∝ f(hi,t|hi,t−1)f(yt|αt, h1,t)f(αt|αt−1, h2,t) (5)

In the Appendix A the necessary steps to implement the Independent Metropolis-Hastings are

explained.

4 Estimation Results

We report the results of the Bayesian estimation for the model presented in section 2. We inizialized

the MCMC sampler by setting all hi,t = 0 and φi = 0.86, σ2
i = 0.07 and µ = 0.6. We iterated the

algorithm on the log-volatilities for 1000 iterations and then the parameters and the log-volatilities

for 15000 more times before recording the draws from a subsequent 25000 iterations. The programm

is written in Ox v. 5.10 console (Doornik (2007)) using our source code. The time needed for all

calculations (including the additional simulations required to evaluate the marginal likelihood with

the Chib and Jeliazkov method) is about 35 minutes.
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Figure 2 shows the inflation series with the posterior mean of the core component, and the two

stochastic volatilities components for the irregular and the core. The second and third panels show

that the volatility of the core component is increasing from 1960 to 1982, and it is slowly decreasing

until 2000. After the year 2000 there an increase in the volatility of both components.

Figure 3 displays the evolution of the Signal to Noise Ratio, the Persistence parameter, defined

as in section 2, the Prediction error variance and the Predictability measure. The graph reveals

that the size of the random walk component increases during the 70s and it is lower in the 80s and

is subject to a sharp fall around the year 2000. Persistence is roughly constant at values well below

1 and there is evidence for the presence of a break again around 2000. The robustness of these

results will be discussed later. As far as predictability is concerned, the prediction error variance

undergoes a decline after 1982 (this is consistent with the results of Bos, Koopman and Ooms,

2008), but has been increasing after the year 2000. In relative terms, the forecastability index

shows only an increase in the recent years.

Table I reports some summary statistics concerning the posterior distribution of the parameters and

some convergence diagnostics. We notice that the volatility of the core component is higher than

the irregular one. The convergence properties of the chain are satisfactory, although the Geweke

statistic for the parameter µ1 is significant.

Table 1: Posterior, Median, Geweke statistic and Inefficiency factor for UC-SV model

Parameters Mean Median Geweke statistic Inefficinecy factor (taper 0.05)

µ1 -0.0193 -0.0188 2.52 1.41

µ2 -0.0209 -0.0204 0.98 3.32

φ1 0.9883 0.9890 -0.09 5.92

φ2 0.9856 0.9864 1.12 6.07

σ2
κ1

0.0442 0.0436 -0.07 55.26

σ2
κ2

0.0515 0.0507 1.35 11.66

5 Model Selection

Thus far the literature has focused on fitting the UC-SV model (sometimes with arbitrary restric-

tions on the parameters σ2
κi) and describing the statistical evidence. There is a potential danger

5



that the UC-SV model could be overfitting the data, but little or no attention has been devoted to

careful model selection.

In this paper we perform Bayesian model selection; the models under comparison are the fol-

lowing four variants of the local level model:

• M1: the Local Level Model without SV disturbances (UC);

• M2: the Local Level Model with a SV disturbance only on the transitory component (UC-

SVt);

• M3: the Local Level Model with a SV disturbance only on the core component (UC-SVc);

• M4: the Local Level Model with two SV disturbances (UC-SV).

Bayesian model comparison entails the computation of posterior model probabilities, see Geweke

(2005) for more details. If the models have the same prior probability, the ratio of the posterior

mode probabilities is the Bayes factor, which is the ratio of the marginal likelihoods of two rival

specifications. The main difficulty lies with the evaluation of the marginal likelihood. For this

purpose we adopt the method proposed by Chib and Jeliazkov (2001), which is based on the

MCMC output, and additional draws from given partial full conditionals.

Denoting by p(y|θk,Mk) the density function of the data under model Mk, with parameter

vector θk, and by p(θk|Mk) the priors densities, the Chib and Jeliazkov(2001) approach is based on

the following basic marginal likelihood identity:

m(y|Mk) =
f(y|Mk, θk)π(θk|Mk)

π(θk|y, Mk)
, k = 1, 2, 3, 4. (6)

The formal Bayesian approach for comparing model M1, M2, M3 and M4, is through the

pairwise Bayes factor, defined as the ratio of marginal likelihoods:

B1,2 =
m(y|M1)

m(y|M2)
B2,3 =

m(y|M2)

m(y|M3)
B3,4 =

m(y|M3)

m(y|M4)

which can also be interpreted as the posterior probability of model M1,model M2 , model M3, and

model M4, when both models are, a priori, equally likely.

Taking the logarithms of (6) and evaluating this function at some hight density point θ∗k we

have:

log m(y|Mk) = log f(y|Mk, θ
∗

k) + log π(θ∗k|Mk) − log π(θ∗k|y, Mk) (7)
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The first terms of the RHS of equation (16) have a closed form expression, and can be evaluated,

for the four models, by the Kalman filter; the second component is simply the product of the prior

distribution for the parameters of each model. The last component, i.e. the normalized posterior

density of the parameters, requires a specialized treatment. In Appendix B we provide the relevant

details for its estimation, for the UC-SV more general specification.

The estimates of the marginal likelihood for our particular application are reported in the

following table. The results clearly point out that the model that performs best is the local level

Table 2: Marginal likelihood for UC models of U.S. inflation

Models log f(y|Mk, θ
∗

k) log π(θ∗k|Mk) π(θ∗k|y, Mk) Total

UC -629.80 1.529 -18.298 -609.98

UC-SVt -471.65 -10.396 9.612 -491.67

UC-SVc -400.39 -14.556 11.777 -426.72

UC-SV -372.21 -44.394 33.328 -449.94

model with stochastic volatility in the core component. The variation in the transitory one is by and

large insignificant. The UC-SV has the highest conditional likelihood, but receives a high ‘penalty”

from the term log π(θk|Mk). As a result the posterior odds of model UC-SV against UC-SVc are

close to zero. Hence, we conclude that the model with two stochastic volatility components is likely

to overfit the data.

Thus, our preferred model is the UC-SVc specification; table 3 and figures 4-6 report the main

estimation results for this model. In particular, figure 4 displays the posterior mean of the core

component and the mean, median, and 2.5% and 97.5% percentiles of the posterior distribution of

the the volatility of the core component.
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Table 3: Posterior, Median, Geweke statistic and Inefficinecy factor for LLM with SV in the core

component

Parameters Mean Median Geweke statistic Inefficinecy factor (taper 0.05)

µ2 -0.0199 -0.0196 1.1185 1.67

φ2 0.9806 0.9817 -1.28412 16.77

σ2
κ2

0.0410 0.0397 0.8093 14.73

σ2
ǫ 0.5904 0.5911 0.8762 43.54

6 Conclusion

Using a model that provides a simple yet effective decomposition of U.S. inflation into a core

component and a transitory one, with stochastic volatility in the disturbances driving the two

components, Bayesian model selection enabled us to conclude that inflation’s volatility is subject

to significant changes over time, but the volatility affects only the core disturbances, not the

transitory component.

The volatility of the core has been decreasing substantially after 1982, reaching a very low level

during the 1990s, but has been subject to an increase since the end of the 1990s. The estimated

volatility pattern support the view that a turning point took place and the great moderation is over.

The persistence implied by the model has been decreasing during the years of the great moderation

and it stayed at historical lows in the mid nineties. Recently, persistence has been increasing

again. Correspondingly, the predictability of inflation increased during the great moderation up to

maximum that took place in the mid 1990s and has been going down ever since.

7 APPENDIX A The Metropolis- within- Gibbs sampling scheme

This Appendix illustrates the prior and posterior distributions used in our analysis. For the prior

distribution we assume an independent structure between each block of variables and and within

each block so that π(θ, α, h1, h2) = π(θ)π(α)π(h1)π(h2), and, for instance,

π(θ) = π(µ1|c1, d1)π(µ2|c2, d2)π(φ1|a1, b1)π(φ2|a2, b2)π(σ2
κ1
|γ1, β1)π(σ2

κ2
|γ2, β2).

The prior distributions and their hyperparameters are reported in table 4.

The posterior densities are available in closed form for the core level of inflation (for which
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Table 4: Specification of the prior distributions

θ Prior Hyperparameters

µi N(ci, d
2
i ) ci = 0.00 di = 10.00

φi Beta(ai, bi) ai = 20.50 bi = 1.50

σ2
κ1

IG(γ1, β1) γ1 = 20 β1 = 0.20

σ2
κ2

IG(γ2, β2) γ2 = 20 β2 = 0.20

samples are drawn by a multimove sampler known as the simulation smoother, here implemented

according to the algorithms presented in Durbin and Koopman (2002)), and for some elements of

the vector θ for which we can exploit conditional conjugacy.

1. Given the choice of the prior distribution, the full conditional density of the parameter φ1

(and similarly φ2) is not available in closed form; therefore, to sample from the full conditional

we employ a random walk Metropolis-Hastings sampling algorithm, which has the merit of

enforcing the stationarity of the stochastic volatility process. If φ
(j−1)
i denotes the current

value of the chain at the j-th iteration, we sample a new proposal φ
(j)
i = φ

(j−1)
i + wj , where

wj is drawn a normal distribution with mean 0 and variance 1. If the proposal is within the

stationary region then it is accepted with probability min{1, g(φ
(j)
i )/g(φ

(j−1)
i ) where

g(φi) = π(φi)f(hi|µi, φi, σ
2
κi

)

and, apart from a constant term,

log f(hi|µi, φi, σ
2
κi

) = −
h2

i,0

2σ2
κi

+
1

2
log(1 − φ2

i ) −

∑n−1
t=1 (hi,t+1 − φihi,t − µi)

2

2σ2
κi

. (8)

Different sampling schemes, illustrated in Kim, Shephard and Chib (1998), were also adopted

for comparison, but the results were unaffected.

2. Using a Normal prior, the full conditional distribution of the parameters µi is N(Ĉi, D̂i)

where:

Ĉi = D̂i

(

Ci

D2
i

+
1

σ2
κi

T
∑

t=1

(hi,t − φihi,t−1)

)

D̂i =

(

1

d2
i

+
T

σ2
κi

)

−1

(9)
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3. Using a conjugate Inverse Gamma prior, the full conditional of the variances of volatility

processes are:

σ2
κi
|y, α, hi, φi, µi ∼ IG

{

n

2
+ αi, βi +

h2
i,0 +

∑n−1
t=1 (hi,t+1 − µi − φihi,t)

2

2

}

4. To sample from h1t|h1,t−1, h1,t+1, yt, αt, θ, we adopt the single move Metropolis-Hastings sim-

ulation step, based on the factorization:

f(h1t|h1,t−1, h1,t+1, yt, αt, θ) ∝ f(h1t|h1,t−1, h1,t+1, θ)f(yt|αt, h1t). (10)

It can be shown that

f(h1t|h1,t−1, h1,t+1, θ) = f(h1t|h1,t−1, θ)f(h1,t+1|h1t, θ) (11)

is a Gassian density with mean

h∗

1t =
µ(1 − φ) + φ(h1,t−1 + h1,t+1)

(1 + φ2
i )

and variance

v2
i =

σ2
κi

1 + φ2
i

(see Jacquier, Polson and Rossi, 1994). Independent proposals h
(j)
1t can be made from this

Gaussian density; their acceptance probability is min{1, g(h
(j)
1t )/g(h

(j−1)
1t )}, where

g(h1t) = exp

[

−

{

(h1,t+1 − µ1 − φ1h1,t)
2

2σ2
κ1

+
(h1,t − µ1 − φ1h1,t−1)

2

2σ2
κ1

}]

1

exp(h1/2)
exp

[

−
(yt − αt)

2

2 exp(h1)

]

(12)

for t = 1, . . . , n, whereas

g(h1,0) = exp

{

−
(h1,1 − µ1 − φ1h1,0)

2

2σ2
κ1

−
(1 − φ2

1)h
2
1,0

2σ2
κ1

}

and for t = n

g(h1,n) = exp

{

−
(h1,n − µ1 − φ1h1,n−1)

2

2σ2
κ1

}

A similar sampling scheme is adopted for h2.
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8 APPENDIX B The Chib and Jeliazkov algorithm

This Appendix illustrates the steps of the Chib and Jeliazkov (2001) algorithm that are necessary

to estimate the posterior density π(θ|y) for the UC-SV model at a high density point θ∗. The latter

is the component of the basic marginal likelihood identity that is not automatically available from

the MCMC output.

The estimate

π̂(θ∗|y) =

K
∏

k=1

π̂(θ∗k|y, θ∗1, . . . , θ
∗

k−1)

where the elements of the vector θ are {µ1, φ1, σ
2
κ1

, µ2, φ2, σ
2
κ1
}.

Let z = (h1, h2, α). The algorithm goes as follows:

• From the MCMC sample evaluate the posterior mean of µ1 and set µ∗

1 equal to this value. A

Monte Carlo estimate of the first multiplicative factor, π(θ∗1|y) = π(µ∗

1|y), is obtained from

the output of the MCMC sampling scheme by the technique known as Rao-Blackwellization.

• For estimating π(θ∗2|y, θ∗1) = π(φ∗

1|y, µ∗

1) run a reduced Metropolis-Hastings within Gibbs

chain for the following subset of parameters {φ1, σ
2
κ1

, µ2, φ2, σ
2
κ2

, z}, where the value of µ1 is

kept fixed at µ∗

1.

• Estimate the value of the density π(θ∗2|y, θ∗1) = π(φ∗

1|y, µ∗

1), using the following steps:

1. Simulate G draws from the posterior of {φ
(g)
1 , σ

2,(g)
κ1

, µ
(g)
2 , φ

(g)
2 , σ

2,(g)
κ2

, z(g)}, g = 1, . . . , G,

by the same MCMC methods presented in appendix A, conditional on µ∗

1.

2. Compute the posterior mean of φ1 by averaging across the draws φ
(g)
1 and denote it φ∗

1.

3. Include φ∗

1 in the conditioning set and sample J draws from the conditional distibutions:

π(σ2
κ1
|y, z, φ∗

1, µ
∗

1, µ2, σ
2
κ2

, φ2), π(z|y, σ2
κ1

, µ∗

1, φ
∗

1, µ2, φ2, σ
2
κ2

),

π(µ2|y, z, µ∗

1, φ
∗

1, σ
2
κ1

, φ2, σ
2
κ2

), π(φ2|y, z, µ∗

1, φ
∗

1, σ
2
κ1

, µ2, σ
2
κ2

),

π(σ2
κ2
|y, z, µ∗

1, φ
∗

1, σ
2
κ1

, µ2, φ2).

These iterations provide the sample {σ
2(j)
κ1

, µ
(j)
2 , φ

(j)
2 , σ

2(j)
κ2

, z(j)}J
j=1. Furthermore, at each

iteration we generate

φ
(j)
1 ∼ q(φ∗

1, φ1|y, z(j), µ∗

1, σ
2,(j)
κ1

, µ
(j)
2 , φ

(j)
2 , σ2,(j)

κ2
)
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where q(θj , θ
′

j |u) is the proposal density for the transition from θj to θ′j conditional on u.

As a result, the collection {φ
(j)
1 , σ

2(j)
κ1

, µ
(j)
2 , φ

(j)
2 , σ

2(j)
κ2

, z(j)}J
j=1 is are multiple (correlated)

draws from the distribution:

π(σ2
κ1

, µ2, φ2, σ
2
κ2

, z|y, µ∗

1, φ
∗

1) × q(φ∗

1, φ1|y, z, µ1, σ
2
κ1

, µ2, φ2, σ
2
κ2

).

4. Denoting the probability of a move by

α(φ1, φ
′

1|u) = min

{

1,
f(y|φ∗

1, ς, z)π(φ∗

1, ς)

f(y|φ
(g)
1 , ς, z)π(φ

(g)
1 , ς)

q(φ∗

1, φ
(g)
1 |y, ς, z)

q(φ
(g)
1 , φ∗

1|y, ς, z)

}

,

where ς is the collection of parameters (µ∗

1, σ
2
κ1

, µ2, φ2, σ
2
κ2

). The required marginal

density at φ∗

1 can now be estimated as

π̂(φ∗

1|y) =
G−1

∑

g α(φ
(g)
1 , φ∗

1|y, z(g), µ∗

1, σ
2(g)
κ1

, µ
(g)
2 , φ

(g)
2 , σ

2(g)
κ2

) × q(φ
(g)
1 , φ∗

1|y, z(g), µ∗

1, σ
2(g)
κ1

, µ
(g)
2 , φ

(g)
2 , σ

2(g)
κ2

)

J−1
∑

j α(φ∗

1, φ
(j)
1 |y, z(j), µ∗

1, σ
2(j)
κ1

, µ
(j)
2 , φ

(j)
2 , σ

2(j)
κ2

)

• Run a reduced Gibbs on the following parameters {σ2
κ1

, µ2, φ2, σ
2
κ2

, z} and calculate σ
2,(∗)
κ1

• Run a reduced Gibbs and calculate the φ∗

2 with the same procedure describe before noticing

that the φ∗

1, µ
∗

1, σ
2,(∗)
κ1

are fixed.

• Run a reduced Gibbs on the following parameters {µ2, σ
2
κ2

, z} and calculate µ∗

2;

• Run a reduced Gibbs on the following parameters {σ2
κ2

, z} and calculate σ
2,(∗)
κ2

12



References

[1] Bos, C. S., and Shephard, N. (2006). Inference for Adaptive Time Series Models: Stochastic

Volatility and Conditionally Guassian State Space Form, Econometric Reviews, 25, 219–244.

[2] Bos, C. S., Koopman, S.J. and Ooms, M. (2008). Long Memory Modelling of Inflation with

Stochastic Variance and Structural Breaks, Discussion paper TI 07–099/4, Tinbergen Institute.

[3] Brot, C. and Ruiz, E., (2008) Testing for conditional heteroskedastic in the components of

inflation, Banco de España, WP n. 0812.

[4] Doornik, J.A (2007). Ox: An Object-Oriented Matrix Programming Language, Timberlake

Consultants Press, London.
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Figure 1: Quarterly Inflation series

Figure 2: Upper: Inflation and the posterior mean component; Middle: Irregular Volatility com-

ponent with confidence interval; Bottom: Core Volatility component with confidence interval
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Figure 3: Upper left: Signal to noise ratio; Upper Right: Persistence Parameter; Bottom left:

Prediction error variance; Bottom right: Predictability

Figure 4: Upper: Quarterly inflation and its posterior mean level; Buttom: Volatility of the core

component
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Figure 5: Posterior of the Volatility of volatility for the core component; Simulation against itera-

tions for a LLM with SV in the core component.

Figure 6: Upper left: Signal to noise ratio ; Upper Right: Persistence Parameter; Bottom left:

Prediction error variance; Bottom right: Predictability
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Figure 7: Upper left: Autocorrelation of φ2; Upper right: Autocorrelation of σ2
η; Buttom left:

Autocorrelation of σ2
ǫ ; Buttom right: Autocorrelation of µ2.
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