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ABSTRACT: We examine an environment where goods and privately informed buyers ar-

rive stochastically to a market. A seller in this setting faces a sequential allocation problem

with a changing population. We characterize the set of incentive compatible allocation

rules and provide a generalized revenue equivalence result. In contrast to a static setting

where incentive compatibility implies that higher-valued buyers have a greater likelihood

of receiving an object, in this dynamic setting, incentive compatibility implies that higher-

valued buyers have a greater likelihood of receiving an object sooner.

We also characterize the set of efficient allocation rules and show that a dynamic Vickrey-

Clarke-Groves mechanism is efficient and dominant strategy incentive compatible. We

then derive an optimal direct mechanism. We show that the revenue-maximizing direct

mechanism is a pivot mechanism with a reserve price.

Finally, we consider sequential ascending auctions in this setting, both with and without

a reserve price. We construct memoryless equilibrium bidding strategies in this indirect

mechanism. Bidders reveal their private information in every period, yielding the same

outcomes as the direct mechanisms. Thus, the sequential ascending auction is a natural

institution for achieving either efficient or optimal outcomes. Interestingly, this is not the

case for sequential second-price auctions, as the bids in a second-price auction do not re-

veal sufficient information to realize either the efficient or optimal allocation.

KEYWORDS: Dynamic mechanism design, Random arrivals, Revenue equivalence, Indi-

rect mechanisms, Sequential ascending auctions.

JEL CLASSIFICATION: C73, D44, D82, D83.

†DEPARTMENT OF ECONOMICS, YALE UNIVERSITY, P.O. BOX 208264, NEW HAVEN, CT 06520-8264
E-mail address: maher.said@yale.edu.

I would like to thank my advisor, Dirk Bergemann, for his constructive advice and comments, as well as Rossella Ar-
genziano, Alessandro Bonatti, Rahul Deb, Eduardo Faingold, James Fenske, Johannes Hörner, Sergei Izmalkov, Katrina
Jessoe, Nenad Kos, Mallesh Pai, Ben Polak, Kareen Rozen, Larry Samuelson, Itai Sher, Juuso Välimäki, and Rakesh
Vohra for their many helpful discussions and suggestions. This work was generously supported by a National Science
Foundation Graduate Research Fellowship, a Cowles Foundation Carl Arvid Anderson Prize Fellowship, and a Yale
University Robert M. Leylan Fellowship in the Social Sciences.
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1. INTRODUCTION

In this paper, we study the problem of a seller faced with a stochastic sequential allocation prob-

lem. At each point in time, a random number of buyers and objects arrive to a market. Buyers

are risk-neutral and patient, while objects are homogeneous and perishable. Each buyer desires

a single unit of the good in question; however, valuations for the good vary across buyers. The

mechanism designer must elicit the private information of these buyers in order to achieve a de-

sirable allocation—one that is either efficient or revenue maximizing, depending on the designer’s

objective function.

We show that the properties of the Vickrey-Clarke-Groves (VCG) mechanism in the static world

carry through to our dynamic setting. In particular, by using a dynamic analogue of the VCG

mechanism, the social planner ensures that truth-telling is a dominant strategy for all agents,

resulting in an efficient allocation. Moreover, we show that the optimal (revenue-maximizing)

mechanism in this dynamic setting is essentially a pivot mechanism with a reserve price. Finally,

we characterize a simple indirect mechanism, the sequential ascending auction, that serves as a

natural institution for achieving both the efficient and the optimal outcome.

Sequential allocation problems arise naturally in a wide variety of economic contexts. Consider,

for example, the problem faced by an airport with a limited number of take-off and landing slots

available at any time. If the airport wishes to use its limited resources efficiently, it must allo-

cate slots to airlines based on their relative value. However, these values are typically the private

information of the airlines. Therefore, the airport must elicit this information. Without the ap-

propriate incentives for truthful revelation, however, an efficient allocation will be unattainable.

As has recently been proposed for New York’s LaGuardia airport, auctions can play an important

role in providing these incentives. An important mechanism design consideration, however, is

one of market dynamics. New airlines may wish to start serving routes to the airport in question,

while established carriers may consolidate routes or merge with one another. Such events alter

the competitive environment and the demand for the airport’s limited runway space (and time),

and should be taken into account.

Similar problems occur in other settings. Electricity markets must be able to dynamically adjust

to fluctuations in supply (as new generation facilities come online or unexpected outages occur

in existing power plants, for instance) as well as in demand (for example, when consumption

changes in response to weather conditions). The addition or removal of nodes from a commu-

nications network requires the reallocation of bandwidth in response to capacity constraints and

the relative importance or value of network traffic. Likewise, computational tasks submitted to a

supercomputing facility are placed in a queue for future processing in response to the submission

of higher-priority tasks, while sponsored search platforms such as Google or Yahoo! need to dy-

namically assign advertisements to ranked “slots” when internet users search various keywords

and new advertisers join the platform.

The model we consider here abstracts away many of the details of these various situations and

markets, focusing instead on what we view are their essential features. In particular, demand is

not constant, as the set and number of buyers change over time, with patient buyers entering and

exiting the market according to a stochastic process. Similarly, supply is random. In some periods
1
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there may be many units available, while in others none. Finally, each buyer’s valuation—her

willingness to pay—is private information. Therefore, a welfare- or revenue-maximizing seller

must provide appropriate incentives for information revelation to this dynamic population. The

seller then makes use of this information to dynamically allocate goods to buyers.

It is well known that, in static environments, the VCG mechanism is efficient. By choosing a

transfer payment for each buyer that equals the externality imposed by her report on other par-

ticipants in the mechanism, the VCG mechanism aligns the incentives of the buyer with those

of a welfare-maximizing social planner. This leads to efficiency and dominant-strategy incentive

compatibility, as truthful reporting now maximizes both the planner’s and the buyer’s objective

functions. In the dynamic environment we consider, the arrival of a new buyer imposes an exter-

nality on her competitors by reordering the (anticipated) schedule of allocations to those buyers

currently present, as well as to those buyers expected to arrive in the future. We show that by

charging each agent, upon her arrival, a price equal to this expected externality, the buyer’s incen-

tives are aligned with those of the forward-looking planner. Therefore, this dynamic version of

the VCG mechanism is efficient and dominant-strategy incentive compatible.

In addition, we are able to construct a revenue-maximizing direct mechanism for this setting.

Making use of the risk-neutrality of buyers, we show that the optimal policy for a revenue-

maximizing seller is equivalent to that of a social planner who wishes to maximize allocative

efficiency, except that buyers’ values are replaced by their virtual values. Each buyers’ incentives

may then be aligned with those of the seller by a variation of the VCG mechanism where buy-

ers face discriminatory reserve prices. By providing each newly arriving buyer with an expected

payoff equal to her expected marginal contribution to the virtual surplus, the seller is able to in-

duce truthful reporting of private information in dominant strategies. This allows the seller to

discriminate between buyers in such a way as to maximize revenue.

Both of the mechanisms discussed above are dynamic direct revelation mechanisms, requiring

buyers to report their values to the mechanism upon their arrival to the market. In practice, how-

ever, direct revelation mechanisms may be difficult to implement. For instance, the multi-unit

Vickrey auction—the (static) mutli-unit generalization of the standard VCG mechanism—is a di-

rect revelation mechanism in which truth-telling is a dominant strategy. Despite this, Ausubel

(2004) points out that it lacks simplicity and transparency, explaining that “many [economists]

believe it is too complicated for practitioners to understand.” Moreover, Rothkopf, Teisberg, and

Kahn (1990) explain that concerns about privacy or the potential for future misuse of information

revealed in a direct mechanism may preclude the real-world use of direct mechanisms. These

criticisms are corroborated by experimental evidence. According to Kagel, Harstad, and Levin

(1987), who examined single-unit auctions with affiliated private values, the predictions of auc-

tion theory for bidding behavior are significantly more accurate in ascending price-auctions than

in second-price auctions, despite the existence of a dominant-strategy equilibrium in the second-

price (Vickrey) auction. In another study examining the efficiency properties of several mecha-

nisms in a resource allocation problem similar to the one we consider here, Banks, Ledyard, and

Porter (1989) find that “the transparency of a mechanism . . . is important in achieving more effi-

cient allocations.” In their experiments, a simple ascending auction dominated both centralized
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administrative allocation processes as well as decentralized markets in terms of both efficiency

and revenues.

With these criticisms and “real-world feasibility” constraints in mind, we turn to the design of

simple, transparent indirect mechanisms. In particular, we consider the possibility of achieving

efficient or revenue-maximizing outcomes via a sequence of auctions. Despite the resemblance

of our direct mechanisms to their single-unit static counterparts, we find that this relationship

does not hold for the corresponding auction formats. Recall that, in the canonical auction envi-

ronment, the analogue of the VCG mechanism is either the second-price auction or the ascending

auction. In our dynamic environment, however, a sequence of second-price auctions cannot yield

outcomes equivalent to those of the dynamic VCG mechanism. In a sequential auction, there is

an “option value” associated with losing in a particular period, as buyers have the possibility of

winning an auction in a future period. The value of this option depends, in general, on the pri-

vate information of all other competitors, as the expected price in the future will depend on their

values—despite the assumption of independent private information, the dynamics of the market

create an environment with interdependent values.

Therefore, a standard second-price auction does not reveal sufficient information for the correct

determination of buyers’ option values. On the other hand, the ascending auction is a simple open

auction format that does allow for the gradual revelation of private information. We use this fact

to construct intuitive equilibrium bidding strategies for buyers in a sequence of ascending auc-

tions. In each period, buyers bid up to the price at which they are indifferent between winning

an object and receiving their expected marginal contribution to the social welfare in the future.

As buyers drop out of the auction, they (indirectly) reveal their private information to their com-

petitors, who are then able to condition their bidding on this information. When this process of

information revelation is repeated in every period, newly arrived buyers are able to learn about

their competitors without being privy to the events of previous periods. This information renewal

is crucial for providing the appropriate incentives for new entrants to also reveal their private in-

formation, leading to prices and allocations identical to the dominant-strategy equilibrium of the

efficient direct mechanism. Moreover, these strategies form a periodic ex post equilibrium: given

her expectations about future competition, each buyer’s behavior in any period remains optimal

even after observing her current opponents’ values.

Similar arguments apply when considering revenue-maximizing indirect mechanisms. When

buyers’ values are drawn from the same distribution, the sequential ascending auction with a

reserve price admits an equilibrium that is equivalent to truth-telling in the optimal direct mecha-

nism. Thus, the sequential ascending auction is a natural institution for achieving either efficient

or optimal outcomes.

The present work contributes to a recent literature exploring dynamic allocation problems and

dynamic mechanism design. Bergemann and Välimäki (2008) develop the dynamic pivot mecha-

nism, a dynamic generalization of the Vickrey-Clarke-Groves mechanism that yields efficient out-

comes when agents’ private information evolves stochastically over time. Athey and Segal (2007)

characterize an efficient dynamic mechanism that is budget-balanced and incentive compatible,

again in the presence of evolving private information. In a similar setting, Pavan, Segal, and
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Toikka (2008) consider the more general question of characterizing incentive-compatible mecha-

nisms. While these papers study dynamic mechanisms for a fixed set of buyers whose types may

change over time, we examine a setting where the number and set of buyers may change over

time but types are fixed.

This paper also relates to work on dynamic auctions and revenue management. For instance,

Mierendorff (2008) characterizes an auction mechanism that efficiently allocates a single storable

object when buyers arrive over the course of the auction. Pai and Vohra (2008) derive the revenue-

maximizing mechanism for allocating a finite number of storable objects to buyers whose arrival

to and departure from the market is also private information. Vulcano, van Ryzin, and Maglaras

(2002) also examine optimal mechanisms for selling identical objects to randomly arriving buyers.

When the objects are heterogeneous but commonly-ranked, Gershkov and Moldovanu (2008a)

and (2008b) derive revenue maximizing and efficient mechanisms. In contrast to the present work,

the buyers in these models are impatient and there are a fixed number of storable objects to be

allocated.

Finally, our analysis of indirect mechanisms is linked to the sequential auctions literature. The

seminal work is Milgrom and Weber (2000), which examines the properties of a variety of auction

formats for the (simultaneous or sequential) sale of a fixed set of objects to a fixed set of buyers.

However, they allow for neither discounting nor the entry of new buyers, features that play a

central role in our model. Said (2008) examines the role of random entry in a model of sequential

second-price auctions when objects are stochastically equivalent; that is, when values are indepen-

dently and identically distributed across both buyers and objects. The computer science literature,

motivated in part by the emergence of online auction sites such as eBay, has also turned attention

towards sequential ascending auctions. Lavi and Nisan (2005) and Lavi and Segev (2008) examine

the “worst-case” performance of sequential ascending auctions with dynamic buyer populations.

Their prior-free, non-equilibrium analysis provides a lower bound on the efficiency of the alloca-

tions achieved via sequential ascending auctions.

The remainder of this paper is structured as follows. Section 2 develops the general model,

introduces dynamic mechanisms, and extends the static payoff- and revenue-equivalence results

of Myerson (1981) and Maskin and Riley (1989) to a dynamic environment. We provide an ex-

tended example in Section 3 of both the direct and the indirect mechanisms we study, providing

an preview of our efficient implementation results. In Section 4, we fully characterize the efficient

allocation rule and show that truth-telling is dominant-strategy incentive compatible in dynamic

versions of the Vickrey-Clarke-Groves mechanism. We then construct an efficient equilibrium of

the sequential ascending auction in Section 5 and show that it is outcome equivalent to the dy-

namic pivot mechanism. Section 6 parallels the development in Sections 4 and 5, characterizing

the revenue-maximizing allocation policy and constructing an optimal direct mechanism for the

dominant-strategy implementation of that policy. We then show that revenue maximization is

achievable via the sequential ascending auction with a reserve price, in a manner analogous to

the relationship between the static Myerson (1981) optimal auction and the second-price auction.

We return in Section 7 to our example to illustrate these results. Finally, Section 8 concludes. All

proofs may be found in Appendix A.
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2. MODEL

2.1. Buyers, Objects, and Random Arrivals

We consider an infinite-horizon discrete-time environment; time periods are indexed by t, where

t ∈ N0 := N ∪ {0}. There is a countable set I of buyers, where each agent i ∈ I desires a single

unit of a homogeneous, indivisible good. Each buyer i’s valuation vi for this good is private in-

formation, where vi is independently distributed according to the distribution Fi. We assume that

Fi has a strictly positive and continuous density fi and support V := [0, v̄]. We assume that each

buyer’s virtual valuation

ϕi(vi) := vi −
1 − Fi(vi)

fi(vi)

is a strictly increasing function of vi. Moreover, we assume that buyers are risk neutral, and that

their preferences are quasilinear and time separable. The future is discounted exponentially with

the (common) discount factor δ ∈ (0, 1).

Buyers are not assumed to be present in each period. Rather, buyers arrive stochastically to the

market. In particular, the set I of buyers is partitioned into disjoint subsets {It}t∈N0
, where It

is the finite subset of agents who may arrive in period t. The arrival of agent i ∈ It in period t

is governed by an independent draw from a Bernoulli distribution, where πi ∈ [0, 1] denotes the

probability that i is present. In addition, buyers may depart from the market after each period,

where the (common) probability of any buyer i “surviving” to the following period is denoted by

γ ∈ [0, 1]. Otherwise, buyers remain present in the market until they receive an object. Note that,

unlike the probability of arriving to the market, the survival rate is identical across agents.

Thus, the arrivals and departures of buyers yield a stochastic process {αt}t∈N0
, where αt : I →

{0, 1} is an indicator function of the presence of each agent in period t, and

At := {i ∈ I : αt(i) = 1}

is the subset of agents present in period t. We assume that buyers cannot conceal their presence,

and so αt (equivalently, At) is commonly known to the agents present at time t.

In addition to the random arrival of buyers, several units of a homogeneous, indivisible, and

non-storable good may also arrive on the market. Let kt ∈ K := {0, 1, . . . , K} denote the number

of objects that arrive in period t, where K is the maximal number of objects potentially available in

any given period. As with buyers, the arrival of objects is governed by a stochastic process, where

µt(k) ∈ [0, 1] denotes the probability that exactly k ∈ K objects are available in period t. Moreover,

these objects are non-storable; any unallocated objects “expire” at the end of each period, and

hence cannot be carried over to future periods. This assumption plays an important role in the

determination of the efficient policy, providing a great deal of tractibility. As with the buyer arrival

process, we assume that the arrival of objects is publicly observed, and so kt is commonly known

to those agents present on the market at time t.

Thus, at the beginning of each period, new buyers arrive to the market (and old buyers may

depart). Simultaneously, new objects arrive, replacing any unallocated objects left over from the

previous period. The realizations of these arrival and departure processes are publicly observed
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by all agents present on the market. The mechanism designer may then allocate objects to agents,

and we move on to the following period.

2.2. Dynamic Direct Mechanisms

In this setting, a dynamic direct mechanism asks each agent i to make a single report, upon

arrival to the market, of her type vi.
1 We denote by ∅ the “report” of an agent who has not arrived

to the market. Thus, the mechanism designer has available to her in each period a collection of

reports rt : It → V ∪ {∅}, where R is the set of all such reports. Note that the report ri ∈ V of an

agent i who has arrived need not be truthful, as this will depend upon the incentives provided by

the mechanism.

Let Ht denote the set of period-t histories, where each history ht ∈ Ht is a sequence of arrivals

and departures (of buyers and objects), agent reports, and allocations up to, and including, period

t − 1. Thus, we have

ht = (α0, k0, r0, x0, α1, k1, r1, x1, . . . , αt−1, kt−1, rt−1, xt−1) ,

where xs =
{

xi,s
}

i∈I
∈ X := {0, 1}I is the allocation in period s.

A dynamic direct mechanism is then a sequence of feasible allocations and feasible monetary trans-

fers M = {xt, pt}t∈N0
, where we abuse notation and denote by

xt : Ht × {0, 1}I ×K×R → ∆(X)

a collection of allocation probabilities for each agent, and denote by

pt : Ht × {0, 1}I ×K×R → R
I

a collection of monetary transfers from each agent. The period-t allocation xt = {xi,t}i∈I is a feasible

allocation if, and only if,

∑
i∈I

xi,t ≤ kt

and

xi,t = 0 for all i /∈ At.

These two conditions require, respectively, that no more objects than are available in period t are

allocated at that time, and that objects are only allocated to agents that are present on the market.

Notice that we have implicitly ruled out the possibility of allocating multiple objects to any agent

as a consequence of the single-unit demand assumption. Similarly, pt = {pi,t}i∈I is a feasible

monetary transfer if, and only if,

pi,t = 0 for all i /∈ At;

that is, agents who are not present on the market cannot make or receive payments.

We assume that, upon her arrival to the market in period t, agent i ∈ It observes only the set

At of agents present on the market (equivalently, the indicator αt) and the number kt of objects

available at time t. Agent i does not observe the history of arrivals and departures in previous

periods or the history of allocative decisions, nor does she observe the reports of agents who have

1The revelation principle applies in this setting, and so the restriction to direct mechanisms is without loss of generality.
6



AUCTIONS WITH DYNAMIC POPULATIONS: EFFICIENCY AND REVENUE MAXIMIZATION

arrived before her. Thus, a reporting strategy for agent i, conditional on having arrived to the

market, is simply a mapping

ri : V × {0, 1}I ×K → V.

Let r−i denote the reports of all agents other than agent i ∈ It. The expected payoff to i when she

reports ri ∈ V to the mechanism M and all other agents report according to r−i is then

E

[
∞

∑
s=t

δs−t
(

xi,s (hs, αs, ks, (ri, r−i)) vi − pi,s (hs, αs, ks, (ri, r−i))
)]

,

where the expectation is taken with respect to the arrival and departure processes of buyers and

sellers, as well the history ht and the reports of all other agents that may be present on the mar-

ket. Note that we have dropped the dependence of reporting strategies on histories and market

presence to simplify notation.

2.3. Incentive Compatibility and Individual Rationality

Consider a direct mechanism M = {xt, pt}t∈N0
and fix an arbitrary period t and an arbitrary

agent i ∈ It. Suppose that all other agents j 6= i are reporting truthfully; that is, suppose that

rj(vj, αs, ks) = vj

for all s ∈ N0, all j ∈ Is \ {i}, and every (vj, αs, ks) ∈ V ×{0, 1}I ×K. For notational convenience,

we will denote this strategy by v−i.

Recall that agent i ∈ It, upon her arrival, observes only the set At of agents present on the

market and the number kt of objects available in period t. Thus, we may define

Ui(v′i, vi, αt, kt) := E

[
∞

∑
s=t

δs−t
(

xi,s
(
hs, αs, ks, (v′i, v−i)

)
vi − pi,s

(
hs, αs, ks, (v′i, v−i)

) )
]

.

Ui(v′i, vi, αt, kt) is the expected payoff of agent i ∈ It from reporting v′i ∈ V when her true type is

vi ∈ V and the current state of the market is given by (αt, kt) ∈ {0, 1}I ×K.

The mechanism M is incentive compatible if, for all t ∈ N0 and all i ∈ It,

Ui(vi, vi, αt, kt) ≥ Ui(v′i, vi, αt, kt) for all vi, v′i ∈ V and all (αt, kt) ∈ {0, 1}I ×K.

Thus, M is incentive compatible if truthful reporting by all agents, regardless of their time of

entry, the agents present upon their arrival, and the number of objects available, is an equilibrium.

Notice that this condition is equivalent to requiring interim incentive compatibility for each agent,

for every realization of the arrival processes and every realization of the agent’s values.

Similarly, M is individually rational if, for all t ∈ N0 and all i ∈ It,

Ui(vi, vi, αt, kt) ≥ 0 for all vi ∈ V and all (αt, kt) ∈ {0, 1}I ×K.

Thus, M is individually rational if all agents prefer to participate (truthfully) in the mechanism

than not, where we have normalized the outside option of each player to zero. As with incentive

compatibility, this must hold for every realization of the arrival processes and every realization of

the agent’s values.
7
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2.4. Revenue Equivalence

Notice that, due to the agents’ risk neutrality and the quasilinearity of payoffs, we may rewrite

the payoff functions Ui as

Ui(v′i, vi, αt, kt) = qi(v′i, αt, kt)vi − mi(v′i, αt, kt),

where

qi(v′i, αt, kt) := E

[
∞

∑
s=t

δs−txi,s
(
hs, αs, ks, (v′i, v−i)

)
]

(1)

is the expected discounted sum of object allocation probabilities, and

mi(v′i, αt, kt) := E

[
∞

∑
s=t

δs−t pi,s
(
hs, αs, ks, (v′i, v−i)

)
]

is the expected discounted sum of payments. Therefore, we may rewrite the incentive compatibil-

ity and individual rationality constraints as

qi(vi, αt, kt)vi − mi(vi, αt, kt) ≥ qi(v′i, αt, kt)vi − mi(v′i, αt, kt) for all vi, v′i ∈ V

and qi(vi, αt, kt)vi − mi(vi, αt, kt) ≥ 0 for all vi ∈ V,

for all t ∈ N0, all i ∈ It, and all (αt, kt) ∈ {0, 1}I ×K.

Define for all t ∈ N0 and i ∈ It the function Ûi : V × {0, 1}I ×K → R by

Ûi(vi, αt, kt) := qi(vi, αt, kt)vi − mi(vi, αt, kt).

Ûi is then the expected payoff of agent i from truthfully reporting her value vi. By considering the

properties of this function, we are able to generalize the classic Myerson (1981) characterization

of incentive compatibility and expected payoffs in the static independent private values environ-

ment. In particular, we have the following characterization of implementable mechanisms.

LEMMA 1 (Implementable Mechanisms).

A direct mechanism M = {xt, pt}t∈N0
is incentive compatible and individually rational if, and only if, the

following three conditions are satisfied for all t ∈ N0 all i ∈ It, and all (αt, kt) ∈ {0, 1}I ×K:

(1) qi(vi, αt, kt) is nondecreasing in vi;

(2) Ûi(vi, αt, kt) = Ûi(0, αt, kt) +
∫ vi

0 qi(v′i, αt, kt) dv′i for all vi ∈ V; and

(3) Ûi(0, αt, kt) ≥ 0.

This lemma is the dynamic population analogue of the standard result for static allocation prob-

lems. In particular, instead of a higher type resulting in a higher probability of receiving an object

(as in the static setting), incentive compatibility in this dynamic setting requires that a higher

type has, roughly speaking, a higher probability of receiving an object earlier; that is, the dis-

counted sum of each agent’s expected allocation probabilities must be increasing in that agent’s

type. Moreover, the expected payoffs of a buyer in any two mechanisms with the same alloca-

tion rule can differ only by a constant. As an immediate consequence, we have the following

generalization of the revenue equivalence theorem to our environment, which we state without

proof.
8
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COROLLARY 1 (Revenue Equivalence).

If the dynamic direct mechanism M is incentive compatible, then for all t ∈ N0 all i ∈ It, and all

(αt, kt) ∈ {0, 1}I ×K, the expected payment of type vi ∈ V of buyer i, conditional on entry, is

mi(vi, αt, kt) = mi(0, αt, kt) + qi(vi, αt, kt)vi −
∫ vi

0
qi(v′i, αt, kt) dv′i.

If, in addition, M is individually rational, then mi(0, αt, kt) ≤ 0.

Therefore, in any incentive compatible dynamic mechanism, the expected payment of a buyer

depends (up to an additive constant) only upon the allocation rule. This fact will be particularly

useful in deriving a revenue-maximizing mechanism in Section 6.

3. AN ILLUSTRATIVE EXAMPLE

Before proceeding to the analysis of efficient mechanisms in our general environment, it is in-

structive to examine a simple example. In each period, exactly one unit of the homogeneous good

is available. In the initial period, there are n0 ∈ N0 buyers present, and in each subsequent period,

at most one new buyer may arrive to the market with probability ρ ∈ [0, 1]. Buyers are symmetric:

each buyer i’s privately known valuation for a single object is vi, where vi is drawn independently

and identically from the common distribution F. In addition, buyers do not exit the market until

they receive an object.

Thus, in terms of the notation of Section 2, we have |I0| = n0 and πi = 1 for all i ∈ I0, while

|It| = 1 and πi = ρ for all i ∈ It, t > 0. Since buyers do not depart the market without an object,

we have γ = 1. Finally, since there is exactly one unit available in each period, for all t ∈ N0 we

have µt(1) = 1 and µt(k) = 0 for all k 6= 1.

3.1. The Efficient Allocation

In order to achieve allocative efficiency in this simple environment, a social planner should

assign each object to the highest-valued buyer present. While a formal statement and proof of this

result are subsumed by Lemma 2, we will (for now) rely on an intuitive sketch of that argument.

Suppose that in some period t, the planner assigns the object to an agent i with value vi despite

the availability of another agent j with vj > vi. Let t′ > t denote the period in which the planner

eventually allocates an object to agent j, where we allow for the possibility that t′ = ∞ (the planner

never allocates an object to agent j). Notice that by “swapping” the allocations to agents i and j,

the planner is able to realize a gain. In particular, consider the alternative allocation rule that does

not alter the sequence of allocations to agents other than i and j, but instead assigns an object to i

whenever the planner would assign it to j, and vice versa. This leads to a change in the planner’s

payoff of (
δtvi + δt′vj

)
−
(

δtvj + δt′vi

)
=
(

δt − δt′
) (

vi − vj

)
> 0.

Thus, allocating to a lower-valued buyer when a higher-valued buyer is available is always ineffi-

cient. By letting vi = 0, this argument also demonstrates that the planner should never “discard”

an object when there are any buyers present on the market, but should instead allocate it to the

highest-valued buyer available.
9
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Denote the efficient policy by x̂. Since agent i receives an object in an arbitrary period s under

policy x̂ only if i has the highest value among all agents present at time s, agent i’s expected

discounted probability of receiving an object

q̂i(vi, αt, kt) = E

[
∞

∑
s=t

δs−t x̂i,s(hs, αs, ks, (vi, v−i))

]

is nondecreasing in vi. It is then immediately clear, by applying Lemma 1, that it is possible to

implement the efficient policy x̂ by designing an incentive compatible mechanism that induces

buyers to truthfully reveal their private information.

3.2. Direct Implementation

A natural candidate for such a mechanism is one based on the static Vickrey-Clarke-Groves

mechanism. In particular, it is possible to align the incentives of the buyers with those of the

planner by charging buyers payments that leave them with a payoff equal to their marginal con-

tribution to the social welfare.2 To see why this is so, suppose there are n buyers {1, . . . , n} present

on the market, with values

v1 > v2 > · · · > vn.

In the case of a fixed set of buyers and no entry, the efficient allocation yields a value to the planner

given by ∑
n
j=1 δj−1vj, as buyer 1 receives an object in the current period, buyer 2 receives an object

in the next period, and so on. In the presence of entry, however, new buyers can and do alter the

times at which existing agents are efficiently allocated an object.

Consider, for instance, buyer 2, the buyer with the second-highest value. If we increase her

value v2 by an infinitesimal amount, the efficient allocation in the current period is unchanged,

and the planner realizes no benefit from the increase. In the following period, however, buyer 2

is allocated an object if either no new entrant arrives (which occurs with probability 1 − ρ), or if

a new entrant arrives but has a value smaller than v2 (which occurs with probability ρF(v2)). On

the other hand, if a new, higher-valued buyer does arrive in the next period, the efficient policy

allocates the object to the entrant. The planner must then wait an additional period before poten-

tially realizing the gains from the increase in v2. Since the arrival process is stationary, this implies

that the marginal benefit to the planner from the increase in v2 is given by the geometric series

δ
[
1 − ρ(1 − F(v2)) + ρ(1 − F(v2)) × δ

[
1 − ρ(1 − F(v2)) + ρ(1 − F(v2)) × δ [· · · ]

]]

= δ
∞

∑
t=0

[δρ(1 − F(v2))]
t (1 − ρ(1 − F(v2))

)
= δ

1 − δ(1 − F(v2))

1 − δρ(1 − F(v2))
.

Integrating this ratio then allows us to then measure the total contribution of buyer 2 over a “null”

buyer with zero value, yielding

δ
∫ v2

0

1 − ρ(1 − F(v′))

1 − δρ(1 − F(v′))
dv′ = δ

∫ v2

0
λ(v′) dv′,

2In an early contribution to the scheduling and queueing literature, Dolan (1978) showed that a VCG-like mechanism
succeeds in implementing an efficient sequence of allocations. His model is closely related to the example we consider
here, but focuses on delay costs instead of discounted gains.
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where we define λ : V → [0, 1] by

λ(v) :=
1 − ρ(1 − F(v))

1 − δρ(1 − F(v))
.

An identical argument may be used to show that the marginal benefit to the planner from an

increase in vk is δk−1λk−1(vk), and thus the total surplus due to the presence of buyer k takes a

similar integral form.

We can thus explicitly calculate the social planner’s expected payoff from following the efficient

policy x̂.3 This is given by

Wn(v1, . . . , vn) = W0 +
n

∑
j=1

δj−1
∫ vj

0
λj−1(v′) dv′,

where the planner’s expected payoff when no buyers are present on the market is

W0 :=
δρ

1 − δ

∫ v̄

0
v′ dF(v′).

Similarly, the planner’s payoff under the efficient policy when buyer k is removed from the

market is given by

Wn−1(v1, . . . , vk−1, vk+1, . . . , vn) = W0 +
k−1

∑
j=1

δj−1
∫ vj

0
λj−1(v′) dv′ +

n

∑
j=k+1

δj−2
∫ vj

0
λj−2(v′) dv′.

Therefore, the marginal contribution of buyer k to the social welfare is

wk(v1, . . . , vn) := Wn(v1, . . . , vn) − Wn−1(v1, . . . , vk−1, vk+1, . . . , vn)

=
n

∑
j=k

δj−1
∫ vj

0
λj−1(v′) dv′ −

n

∑
j=k+1

δj−2
∫ vj

0
λj−2(v′) dv′

=
n

∑
j=k

δj−1
∫ vj

vj+1

λj−1(v′) dv′,

where we let vn+1 := 0. Notice that removing buyer k from the market does not affect the al-

location of those buyers ranked above her; however, her presence shifts back by one period the

anticipated allocation to buyers ranked below her. By choosing a mechanism in which transfer

payments are such that buyer k internalizes this effect, the social planner can induce her to truth-

fully reveal her value.

One such mechanism is the dynamic pivot mechanism of Bergemann and Välimäki (2008). This

efficient mechanism prescribes transfers in each period such that every agent i’s flow payoff is

exactly equal to her flow marginal contribution to the social welfare. In this setting, an agent’s

flow marginal contribution is identically zero unless she receives an object. On the other hand,

when the agent does receive an object, her flow marginal contribution is exactly equal to her total

marginal contribution. Therefore, when n agents are present with values v1 > · · · > vn, the

dynamic pivot mechanism gives the object to buyer 1, charging her a payment p̂ such that

v1 − p̂ = w1(v1, . . . , vn).

3A formal statement and proof of this result may be found in Appendix B.
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Rearranging this expression, we see that the transfer paid by buyer 1 is given by

p̂ = v1 −
n

∑
j=1

δj−1
∫ vj

vj+1

λj−1(v′) dv′ = v2 −
n

∑
j=2

δj−1
∫ vj

vj+1

λj−1(v′) dv′. (2)

As we will show formally in Corollary 2 in Section 4, when the social planner chooses transfers as

in the equation above, the efficient policy is implemented in dominant strategies.

3.3. Indirect Implementation

It is important to keep in mind that the Vickrey-Clarke-Groves mechanism and its dynamic

derivatives (such as the dynamic pivot mechanism) are direct revelation mechanisms, relying on a

central planner to aggregate the reported values of each buyer via allocation and payment policies.

It is possible, however, to implement the efficient allocation rule via a decentralized indirect mech-

anism. Indeed, the indirect mechanism in which a standard Milgrom and Weber (1982) “button”

ascending auction is conducted in each period admits a stationary and symmetric equilibrium

which is outcome equivalent to the dynamic pivot mechanism.

The following observation is central to the construction of the strategies used in this equilib-

rium. We may decompose the transfer paid by buyer 1 in Equation (2) into two components. The

first term (v2) is the cost imposed on society by allocating an object to buyer 1 in the current period:

if she were not present, efficiency dictates that the object be assigned to buyer 2, leading to a flow

benefit of v2. The second term (the summation), however, is the expected benefit to society from

postponing the allocation to buyer 2. The presence of buyer 1 implies that we anticipate allocating

to buyer 2 in the next period instead of to buyer 3, and to buyer 3 in the following period instead

of to buyer 4, and so on. In fact, this second term is the discounted expectation of buyer 2’s future

marginal contribution to the social welfare.4 We therefore arrive at a natural conjecture: if, in ev-

ery period, each buyer bids up to the point at which she is indifferent between receiving an object

immediately and receiving her expected future marginal contribution to the social welfare, we are

able to achieve the outcome of the dynamic pivot mechanism.

So, suppose that an ascending auction is conducted in every period. In this auction format, a

price clock rises continuously from zero until all but one buyer exit the auction. This final buyer

wins the object, paying the price at which the second-to-last buyer dropped out. The number

of active bidders is common knowledge throughout the auction, as are the prices at which each

bidder drops out of the bidding. (Recall that exits in a button auction are irreversible.) Therefore,

bidders are able to condition their bids on the exit prices of their competitors. We assume that

when there are n buyers present at the beginning of the period, each buyer i initially bids up to

β̂n,n(vi) := vi − δE [Wn(v̄, . . . , v̄, vi) − Wn−1(v̄, . . . , v̄)] ,

where the expectation is taken with respect to the entry process of new buyers and the possible

valuation of a new entrant in the following period. In words, each buyer initially bids as though

she expects that losing the current-period auction leads to receiving her marginal contribution in

4A formal demonstration of this property may be found in Appendix B.
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the future, conditional on each of her n − 1 competitors having the highest possible value v̄. Thus,

β̂n,n(vi) = vi − δn−1
∫ vi

0
λn−1(v′) dv′.

Since λ(v′) ∈ [0, 1] for all v′ ∈ [0, v̄] and δ ∈ (0, 1), the bid function β̂n,n is strictly increasing in vi.

As the price clock increases, the first buyer to exit the auction will therefore be buyer n, the one

with the lowest value.

Because β̂n,n is strictly increasing, the remaining buyers are able to infer the lowest value vn and

condition their expectations about the future on this information. Therefore, when there are n − 1

buyers remaining in the auction, we assume that each buyer i 6= in bids according to

β̂n−1,n(vi, vn) := vi − δE [Wn(v̄, . . . , v̄, vi, vn) − Wn−1(v̄, . . . , v̄, vn)] ,

where the expectation is with respect to the entry and value of a new buyer in the following period,

conditional on the lowest current-period value vn. This expression implies that each buyer now

bids as though she expects that losing the current-period auction leads to receiving her marginal

contribution in the future, conditional on one competitor’s value being vn and the remaining n− 2

competitors having the highest-possible value v̄. Thus,

β̂n−1,n(vi, vn) = vi − δn−2
∫ vi

vn

λn−2(v′) dv′ − δn−1
∫ vn

0
λn−1(v′) dv′.

As with β̂n,n, this bid function is strictly increasing in vi, implying that the second buyer to exit

the current-period auction will be buyer n − 1, as she has the second-lowest value. Moreover,

the remaining n − 2 buyers will be able to infer the second-lowest value vn−1 and condition their

expectations on this information.

Proceeding inductively, we define, for each k = 2, . . . , n, the bidding function

β̂k,n(vi, vk+1, . . . , vn) := vi − δE [Wn(v̄, . . . , v̄, vi, vk+1, . . . , vn) − Wn−1(v̄, . . . , v̄, vk+1, . . . , vn)]

= vi − δk−1
∫ vi

vk+1

λk(v′) dv′ −
n

∑
j=k+1

δj−1
∫ vj

vj+1

λj−1(v′) dv′

to be the price at which buyer i plans to exit the auction when there are k buyers remaining active

in the auction, where we let vn+1 := 0. Each of these functions is strictly increasing in vi, implying

that the auction will end when the price reaches

β̂2,n(v2, . . . , vn) = v2 −
n

∑
j=2

δj−1
∫ vj

vj+1

λj−1(v′) dv′.

Buyer 1, the buyer with the highest value present on the market, will win the current-period ob-

ject. In addition, the price she pays in the auction is exactly equal to the dynamic pivot mechanism

transfer described in Equation (2). Thus, if each buyer bids according to the functions described

above, the sequential ascending auction leads to outcomes identical to those of the dynamic pivot

mechanism. Finally, when coupled with the appropriate off-equilibrium path beliefs, these bid-

ding strategies do, in fact, yield a perfect Bayesian equilibrium of the sequential ascending auction

mechanism.
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We should point out that buyers’ beliefs play no role in the strategies above other than in the

expectations of future arrivals and values. More specifically, the bids in each period are “mem-

oryless.” They depend only upon information revealed in the current period, and not on any

observations of past behavior. Since this process of information revelation occurs in every auction

in the infinite sequence, newly arriving buyers are not at a disadvantage to their better informed

competitors. On the contrary, by ignoring information revealed in the past, both informed “in-

cumbents” and new entrants are able to behave in a symmetric manner that yields the correct

incentives for information revelation by all auction participants.

4. EFFICIENT MECHANISMS

4.1. Efficient Policy

In order to examine the properties of efficient mechanisms or efficient auctions in this setting,

it is necessary to develop an understanding of the efficient policy. Recall that, in the static single-

object allocation setting, allocative efficiency is equivalent to allocating the object to the highest-

valued buyer. In our dynamic setting, the structure of the environment—the nature of the arrival

processes and the non-storability of objects—implies that the socially efficient policy is essentially

an assortative matching. In particular, objects are ordered by their arrival time and buyers are

ordered by their values, and “earlier” objects are allocated to higher-valued buyers. Of course,

the feasibility constraints imposed by the dynamic nature of the agent population have an impact

on the nature of the efficient policy, as the ordering of buyers by valuation need not correspond

to the sequential ordering of buyers by their periods of availability. Thus, the socially efficient

allocation policy is, in any given period, to allocate all available objects to the set of buyers with

the highest values.

We consider a social planner who commits to a feasible direct mechanism M = {xt, pt}t∈N0
at

time zero. The planner’s goal is to maximize allocative efficiency; that is, the planner wishes to

choose a mechanism M to maximize

W(M) := E

[
∞

∑
t=0

∑
i∈I

δtxi,t(ht, αt, kt, v)vi

]
,

subject to incentive compatibility and individual rationality, where the expectation is taken with

respect to the arrival and departure processes, as well the values of the agents. Recalling that

qi(vi, αt, kt) from Equation (1) is agent i’s expected discounted probability of receiving an object

(conditional on entry), we may rewrite this objective function as

E

[
∞

∑
t=0

∑
i∈It

δtαt(i)qi(vi, αt, kt)vi

]
,

where αt(i) = 1 if i ∈ It arrives to the market and zero otherwise. (Recall that this arrival occurs

with probability πi ∈ [0, 1] for each agent i.)

Before a formal statement of our result, a few additional definitions are necessary. Fix any state

zt = (ht, αt, kt, v) ∈ Ht × {0, 1}I ×K ×R, where v denotes the truthful reporting strategy by all
14
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agents. We denote by

A+(zt) :=
{

i ∈ At :
∣∣{j ∈ At : vj ≥ vi

}∣∣ ≤ kt

}
.

the set of agents who are among the kt highest-ranked buyers at state zt. Similarly, the set of agents

who are ranked outside the top kt agents is denoted by

A−(zt) :=
{

i ∈ At :
∣∣{j ∈ At : vj > vi

}∣∣ ≥ kt

}
.

Finally,

A∼(zt) := At \
(
A+(zt)

⋃
A−(zt)

)
.

is the set of agents who are “on the boundary”—the agents who are tied for the kt-th highest rank.

LEMMA 2 (Efficient Allocation Rules).

Suppose all buyers, upon arrival, report their true values. A feasible allocation rule {xt}t∈N0 is efficient if,

and only if, for all states zt = (ht, αt, kt, v) ∈ Ht × {0, 1}I ×K×R,

xi,t(zt) = 1 for all i ∈ A+(zt)

and

∑
i∈A∼(zt)

xi,t(zt) = kt − |A+(zt)| if |A+(zt)| < kt.

Note that the conditions in this lemma pin down the behavior of efficient allocation rules after

almost all histories.5 The second condition applies only in the case of “ties” among the agents,

which are probability zero events. Additionally, notice that the period-t efficient allocation does

not depend on past allocations or history; only the set of objects available (indicated by kt), the set

of agents present at time t (indicated by αt), and these agents’ reported values (denoted by vt) are

relevant.

Therefore, we will henceforth restrict attention to the efficient allocation rule which breaks ties

with equal probability. Thus, the efficient allocation rule is defined by

x̂i,t(αt, kt, vt) =





1 if i ∈ A+

0 if i ∈ A−

kt−|A+|
|A∼|

if i ∈ A∼

for all (αt, kt) ∈ {0, 1}I ×K and vt ∈ VAt , where we have dropped the dependence on histories.

From the perspective of any particular buyer i ∈ I , the efficient policy allocates an object after

a history to i if, and only if, i is among the highest-ranking buyers at that history. Thus, given the

values of all other agents, x̂i,t is nondecreasing in vi. Since this is is true for any arbitrary history,

this implies that it is true in expectation for each time period. Hence, the expected discounted

probability of receiving an object qi is nondecreasing in vi. In light of the characterization of

incentive compatibility in Lemma 1, it may then be possible to construct an incentive compatible

dynamic direct mechanism which implements the efficient allocation rule.

5While it is straightforward to do so, we do not formally account for the zero-probability event in which a buyer’s value
is equal to zero. While leaving our results unchanged, this simplifies both our notation and exposition.
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4.2. Efficient Dynamic Direct Mechanisms

A logical candidate for such a mechanism is the classic Vickrey-Clarke-Groves Mechanism. Re-

call that the VCG mechanism ensures that each agent’s payoff is their marginal contribution to

overall social welfare. In the static setting, the VCG mechanism is not only incentive compatible,

but it is also truthfully implementable in dominant strategies—regardless of the reports of other

agents, truth-telling is a weakly dominant strategy for each buyer. We will now show that this

result extends to our setting.

For any (αt, kt) ∈ {0, 1}I ×K and truthful vt ∈ VAt , define

W(αt, kt, vt) := E

[
∞

∑
s=t

∑
j∈I

δs−t x̂j,s(αs, ks, vs)vj

]

to be the social welfare when the efficient policy x̂ is implemented. Denoting by α−i
s the agent

presence indicator in period s ∈ N0 when i is removed from the market (that is, where we impose

αs(i) = 0), we write

W−i(α−i
t , kt, vt) := E




∞

∑
s=t

∑
j∈I\{i}

δs−t x̂j,s(α−i
s , ks, vs)vj


 .

for the social welfare when i is removed from the market. Thus, the arrival of agent i ∈ It to the

market yields a marginal contribution to the social welfare of

wi(αt, kt, vt) := W(αt, kt, vt) − W−i(α−i
t , kt, vt).

Thus, the Vickrey-Clarke-Groves mechanism is the dynamic direct mechanism M̂ := {x̂t, p̂t}t∈N0
,

where x̂ is the socially efficient allocation rule, and the payment rule p̂ is defined by

p̂i,t(αt, kt, vt) := q̂i(αt, kt, vt)vi − wi(αt, kt, vt)

upon i’s arrival, and pi,s(αs, ks, vt) := 0 for all s 6= t, where q̂i denotes the discounted expected

probability of i ∈ It receiving an object given her arrival at time t.

PROPOSITION 1 (VCG is Dominant Strategy IC and IR).

The Vickrey-Clarke-Groves mechanism M̂ is dominant-strategy incentive compatible and individually ra-

tional.

Note that the Vickrey-Clarke-Groves mechanism M̂ charges each buyer a single payment upon

her arrival to the mechanism, regardless of whether the buyer receives an object immediately or

not. Since buyers are risk neutral, it is clearly possible to design other payment schemes with

differing streams of payments that are, in terms of expected utility, equivalent to p̂. This may be

especially desirable in the case that γ, the survival probability of each agent from one period to the

next, is less than 1. In this case, an agent may be charged a payment upon her arrival, but depart

from the market before receiving an object in a future period. Thus, while M̂ is individually

rational from the ex ante perspective of an agent arriving on the market, it need not remain so

upon that agent’s departure.

16



AUCTIONS WITH DYNAMIC POPULATIONS: EFFICIENCY AND REVENUE MAXIMIZATION

One mechanism that does not suffer from this problem is the dynamic pivot mechanism of

Bergemann and Välimäki (2008). Their direct mechanism is essentially the generalization of the

Vickrey-Clarke-Groves mechanism to the case in which agents’ private information may be chang-

ing over time. By choosing payments which provide agents with their flow marginal contribution

to the social welfare in each period, the dynamic pivot mechanism obtains truth-telling as an equi-

librium which implements the efficient policy.6 Moreover, in our sequential allocation problem,

the dynamic pivot mechanism imposes payments on agents only when they receive an object.

To see why this is true, note first that the flow marginal contribution of an agent i in period

t ∈ N0 is simply the period-t contribution to the social welfare provided by i’s presence:

wF
i (αt, kt, vt) := wi(αt, kt, vt) − δE [wi(αt+1, kt+1, vt+1)]

= W(αt, kt, vt) − W−i(α−i
t , kt, vt)

− δ
(

E

[
W(αt+1, kt+1, vt+1)

]
− E

[
W−i(α−i

t+1, kt+1, vt+1)
])

.

Thus, the dynamic pivot mechanism is then the dynamic direct mechanism M̂F :=
{

x̂t, p̂F
t

}
t∈N0

,

where the payment rule p̂F is defined by

p̂F
i,t(αt, kt, vt) := x̂i,t(αt, kt, vt)vi − wF

i (αt, kt, vt)

for all (αt, kt, vt). This mechanism yields to each agent flow payoffs equal to her flow marginal

contribution.

As stated above, p̂F
i,t(αt, kt, vt) = 0 if i does not receive an object. Note that i does not receive an

object only if there are sufficiently many agents j ∈ At with vj > vi such that the efficient policy

allocates to the same set of agents, irrespective of the presence of i. Therefore,

W(αt, kt, vt) − δE

[
W(αt+1, kt+1, vt+1)|x̂t(αt, kt, vt)

]
= ∑

j∈At\{i}

x̂j,t(αt, kt, vt)vj

and

W−i(α−i
t , kt, vt) − δE

[
W−i(α−i

t+1, kt+1, vt+1)|x̂t(α−i
t , kt, vt)

]
= ∑

j∈At\{i}

x̂j,t(αt, kt, vt)vj

must be equal, implying that wF
i (αt, kt, vt) = 0, and hence no payment is made by agent i. More-

over, if the efficient policy does allocate an object to agent i in period t, then i will not be present

on the market in future periods, implying that

E

[
W(αt+1, kt+1, vt+1)

]
= E

[
W−i(α−i

t+1, kt+1, vt+1)
]
.

Hence, i’s flow marginal contribution when allocated an object is exactly equal to her total mar-

ginal contribution at that point in time.

Finally, note that the dynamic pivot mechanism inherits all the implementability properties of

the Vickrey-Clarke-Groves mechanism in this context; in particular, M̂F is both incentive com-

patible and individually rational, and truth-telling remains a (weakly) dominant strategy for all

6Bergemann and Välimäki (2008) show this result in the context of a fixed agent population. Cavallo, Parkes, and Singh
(2007) are able to demonstrate that the dynamic pivot mechanism truthfully implements the socially efficient policy in
the presence of an evolving agent population.
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agents.7 This follows directly from the fact that agents’ payoffs are quasilinear. Hence, when agent

i considers the discounted sum of a stream of payoffs, each of which is equal to i’s flow marginal

contribution at some point in time, this is equivalent to a single, one-time payoff equal to i’s total

marginal contribution. Thus, we have the following result, which we state without proof.

COROLLARY 2 (Dynamic Pivot Mechanism is Dominant Strategy IC and IR).

The dynamic pivot mechanism M̂F is dominant strategy incentive compatible and individually rational.

5. AN EFFICIENT AUCTION

It is important to keep in mind that both the Vickrey-Clarke-Groves mechanism and the dy-

namic pivot mechanism are direct revelation mechanisms, relying on a planner to aggregate the

reported values of each buyer in order to determine allocations and payments. This raises an

important question: do these efficient mechanisms correspond to a familiar auction format? In

the static single-object case, Vickrey (1961) provided a clear answer: the analogue of the Vickrey-

Clarke-Groves mechanism for the allocation of a single indivisible good is the second-price auc-

tion. Both the sealed-bid second-price auction and the ascending (English) auction admit equi-

libria that are outcome equivalent to the VCG mechanism and are compelling prescriptions for

“real-world” behavior.8

A reasonable conjecture is that a sequential auction would be useful in the context of a sequen-

tial allocation problem. But what type of auction? Clearly, no standard sealed-bid auction format

can achieve the outcome of the dynamic pivot mechanism described above. To see this, consider

the example of Section 3. There, the price paid by the winning buyer depended on her own value,

as well as on the values of all other agents present in the market. However, it is impossible for

buyers in a sealed-bid auction to submit bids that are conditioned on information that is unavail-

able to them. Therefore, information revelation within the course of the auction is a necessary

condition for the indirect implementation of the efficient policy, and the natural candidate for an

open auction format is the ascending auction. In fact, we will now demonstrate that it is possi-

ble to implement the efficient allocation rule via the sequential ascending auction; in particular,

we will construct an equilibrium of this indirect mechanism that yields the same outcome as the

dynamic pivot mechanism.9

We make use of a simple generalization of the Milgrom and Weber (1982) “button” model of

ascending auctions. In particular, we consider a multi-unit, uniform-price variant of their model.

The auction begins, in each period, with the price at zero and with all agents present participating

7Note that since agents’ types do not change over time, we can restrict attention to dynamic direct mechanisms that re-
quire a single report upon agents’ arrival to the mechanism. This differs from the mechanism considered by Bergemann
and Välimäki (2008) which requires agents to make a report in every period.
8Of course, the revenue equivalence theorem applies, and several other standard auction mechanisms are able to yield
efficient outcomes in the single-object static setting. However, they lack the robustness of the VCG mechanism that is
provided by dominant-strategy incentive compatibility.
9Recall that both the Vickrey-Clarke-Groves mechanism and the dynamic pivot mechanism impose only a single pay-
ment upon each agent. However, the VCG mechanism imposes this payment upon an agent’s arrival to the market,
leading to a stream of payments that cannot correspond to a standard sequential auction format—a reasonable auction
should require payments from buyers only when they win. The dynamic pivot mechanism, on the other hand, requires
a payment by an agent only when they are allocated an object.
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in the auction. Each bidder may choose any price at which to drop out of the auction. This exit

decision is irreversible (in the current period), and is observable by all agents currently present.

Thus, the current price and the set of active bidders is commonly known throughout the auction.

When there are m ≥ 1 objects for sale, the auction ends whenever at most m active bidders remain,

with each remaining bidder receiving an object and paying the price at which the auction ended.

Note that if there are fewer than m bidders initially, then the auction ends immediately at a price

of zero. In addition, suppose that several bidders drop out of the auction simultaneously, leaving

m′
< m bidders active. The auction ends at this point, and m−m′ of the “tied” bidders are selected

with equal probability to receive an object—along with the remaining active bidders—paying the

price at which the auction closed. With this in mind, each bidder’s decision problem within a given

period is not the choice of a single bid, but is instead the choice of a sequence of functions, each of

which determines an exit price contingent on the (observed) exit prices of the bidders who have

already dropped out of the current auction.

We now informally describe the strategies used by each player in the sequential ascending auc-

tion mechanism. In a sequential auction, there is an option value associated with losing. Buyers

who do not win an object in the current period have available to them the possibility of partic-

ipating in future auctions. Rational bidding therefore requires remaining active in the auction

as long as the price is low enough that the benefit of winning outweighs the expected benefit

of losing. As the price rises, buyers start to drop out of the auction, (indirectly) revealing their

values to their competitors. This information revelation allows any remaining active buyers to

update their beliefs, both about their competitors and about the option value of losing. This pro-

cess continues until the auction concludes. In many cases, however, buyers will already possess

information about their competitors from previous interactions. However, in the equilibrium that

we construct, bidders ignore any such information and begin the information revelation process

anew. This information renewal process allows all buyers, “incumbents” and new entrants alike,

to behave symmetrically, implying that newly arrived buyers are able to learn about their current

competitors without knowledge of the events of previous periods. Therefore, new entrants are

provided with the appropriate incentives to reveal their own private information.

With this in mind, let nt := |At| = ∑j∈I αt(i) denote the number of buyers present in period t.

In addition, taking the perspective of an arbitrary bidder i, let

yt :=
(
yt

1, . . . , yt
nt−1

)

denote the ordered valuations of all other buyers present in period t, where yt
1 is the largest value,

and yt
nt−1 is the smallest. Finally, for each m = 1, . . . , nt − 1, let

v̄m := (v̄, . . . , v̄) ∈ Vm and y>m
t :=

(
yt

m+1, . . . , yt
nt−1

)
.

If, in period t, all buyers are using symmetric strictly increasing bidding strategies, then the prices

at which buyers exit the auction will reveal their values. Thus, over the course of the auction

buyers will observe (in sequence) the realizations y>m
t , allowing their bids to be conditioned on

this information. Finally, we define, for each m = 1, . . . , nt − 1,

wt+1(αt, kt, vi, y>m
t ) := δE [wi(αt+1, kt+1, vt+1)|vt = (v̄m, vi, y>m

t )]
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to be the (discounted) expected future marginal contribution of an agent i ∈ At with value vi,

conditional on the period-t presence of m competitors each with the highest possible value v̄ and

nt − m − 1 buyers ranked below i with values y>m
t .

Define, for each m = 1, . . . , nt − 1,

β̂t
m,nt

(αt, kt, vi, y>m
t ) := vi − wt+1(αt, kt, vi, y>m

t ). (3)

We will assume that, in each period t ∈ N0, each agent i ∈ At bids according to β̂t
m,nt

whenever she

has m active competitors in the auction. Thus, each buyer i initially bids up to the point at which

she is indifferent between winning the object at the current price and receiving her discounted

expected marginal contribution in the next period, conditional on being the lowest-ranked of the

nt bidders currently present and all other bidders having the highest possible valuation.10 Notice

that, if vi > vj, then

wt+1(αt, kt, vj) − wt+1(αt, kt, vi)

= δE

[
W(αt+1, kt+1, vt+1)|vt = (v̄nt−1, vj)

]
− δE

[
W−j(α

−j
t+1, kt+1, vt+1)|vt = (v̄nt−1, vj)

]

− δE

[
W(αt+1, kt+1, vt+1)|vt = (v̄nt−1, vi)

]
+ δE

[
W−i(α−i

t+1, kt+1, vt+1)|vt = (v̄nt−1, vi)
]

= δE

[
W(αt+1, kt+1, vt+1)|vt = (v̄nt−1, vj)

]
− δE

[
W(αt+1, kt+1, vt+1)|vt = (v̄nt−1, vi)

]
,

since removing either i or j in the next period, conditional on her being the lowest-ranked agent,

does not affect the order of anticipated future allocations to any other agents. Moreover, note that

by treating buyer j as though her true value were vi, we can provide a bound for the difference

above. In particular, we have

δE

[
W(αt+1, kt+1, vt+1)|vt = (v̄nt−1, vj)

]
− δE

[
W(αt+1, kt+1, vt+1)|vt = (v̄nt−1, vi)

]

≥ E

[
∞

∑
s=t+1

δs−t x̂i,s(αs, ks, vs)|vt = (v̄nt−1, vi)

]
(vj − vi).

Thus, if vi > vj, then

β̂t
nt−1,nt

(αt, kt, vi) − β̂t
nt−1,nt

(αt, kt, vi)

≥ (vi − vj)

(
1 − E

[
∞

∑
s=t+1

δs−t x̂i,s(αs, ks, vs)|vt = (v̄nt−1, vi)

])
> 0

since the discounted expected probability of receiving an object in the future is bounded above by

δ < 1. Thus, the agent who is, in fact, the lowest-ranked buyer present in period t will be the first

to drop out of the period-t auction, publicly revealing her value.

At this point, each remaining buyer i bids until she is indifferent between winning the object

at the current price and receiving her discounted expected marginal contribution, conditional on

the knowledge that she is the second-lowest ranked of the nt − 1 bidders remaining active in the

10This is not strictly necessary; any beliefs about the valuations of her opponents will suffice as long as the support of
those beliefs is contained in the interval (vi, v̄].
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auction, that all remaining active bidders have the highest possible valuation, and that the lowest-

ranked buyer present has value ynt−1
t < vi. In addition, suppose that buyer j with value vj was

the first to exit the auction. Then ynt−1
t = vj < vi implies

wt+1(αt, kt, vj) − wt+1(αt, kt, vi, vj)

= δ
(

E

[
W(αt+1, kt+1, vt+1)|vt = (v̄nt−1, vj)

]
− E

[
W(αt+1, kt+1, vt+1)|vt = (v̄nt−2, vi, vj)

])

− δ
(

E

[
W−i(α−i

t+1, kt+1, vt+1)|vt = (v̄nt−2, vi, vj)
]
− E

[
W−j(α

−j
t+1, kt+1, vt+1)|vt = (v̄nt−1, vj)

])
.

However, the second difference above may be rewritten as
(

E

[
W−i(α−i

t+1, kt+1, vt+1)|vt = (v̄nt−2, vi, vj)
]
− E

[
W−i(α−i

t+1, kt+1, vt+1)|vt = (v̄nt−2, vi, vi)
])

+
(

E

[
W−i(α−i

t+1, kt+1, vt+1)|vt = (v̄nt−2, vi, vi)
]
− E

[
W−j(α

−j
t+1, kt+1, vt+1)|vt = (v̄nt−1, vj)

])
.

Thus,

wt+1(αt, kt, vj) − wt+1(αt, kt, vi, vj)

is the sum of three differences. The first is the gain in social welfare when increasing i’s value from

vi to v̄. The second is the gain in social welfare (when i is not on the market) from increasing j’s

value from vj to vi. Finally, the third difference is the loss in social welfare (when j is not present)

from decreasing i’s value from v̄ to vi. However, since vj < vi, the presence or absence of j from the

market has no influence on when the efficient policy allocates to i, regardless of whether i’s value

is vi or v̄. Therefore, the gain from the first difference equals the loss from the third difference,

implying that

wt+1(αt, kt, vj) − wt+1(αt, kt, vi, vj)

= δ
(

E

[
W−i(α−i

t+1, kt+1, vt+1)|vt = (v̄nt−2, vi, vj)
]
− E

[
W−i(α−i

t+1, kt+1, vt+1)|vt = (v̄nt−2, vi, vi)
])

.

A bounding argument similar to the one previously applied may then be used to show that

β̂t
nt−2,nt

(αt, kt, vi, vj) − β̂t
nt−1,nt

(αt, kt, vj) > 0.

Thus, there is continuity at the first drop out point, in the sense that the exit of the lowest-

valued buyer does not induce the immediate exit of any buyer with a higher value. Therefore,

if β̂t
nt−2,nt

(αt, kt, vi, vj) is increasing in vi, the price at which the second exit occurs fully reveals the

value of the second-lowest ranked buyer.

Similar logic may be used to show that β̂t
m,nt

(αt, kt, vi, y>m
t ) is strictly increasing in vi for all m,

and that the “continuity” property discussed above holds after every exit from the auction.

LEMMA 3 (Bids are Fully Revealing).

The bid functions β̂t
m,nt

(αt, kt, vi, y>m
t ) are increasing in vi for all m = 1, . . . , nt − 1. Moreover, if vi >

ym+1
t , then

β̂t
m,nt

(αt, kt, vi, y>m
t ) > β̂t

m+1,nt
(αt, kt, y>m

t ).

Thus, if every buyer follows these strategies in each period, the efficient allocation is achieved.

Under the assumption (which we will shortly verify) that these strategies form an equilibrium of
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the indirect mechanism in which an ascending auction is held in each period, Corollary 1 implies

that ex ante expected payments by buyers in this mechanism must be the same, up to a constant,

as in the Vickrey-Clarke-Groves mechanism or the dynamic pivot mechanism. Since the marginal

contribution of a buyer with value equal to zero is identically zero, and the bid of such a buyer

in the conjectured equilibrium is also zero, this ex ante equivalence is exact. Analysis of the prices

paid in the auction mechanism, however, show that this equivalence extends further.

PROPOSITION 2 (Sequential Ascending Auctions are Equivalent to Dynamic Pivot Mechanism).

Following the bidding strategies β̂t
m,nt

in every period t in the sequential ascending auction mechanism is

outcome equivalent to the dynamic pivot mechanism.

Therefore, following the bidding strategies prescribed in Equation (3) leads to an outcome that

is identical to that of truth-telling in the dynamic pivot mechanism. Moreover, we know from

Corollary 2 that truth-telling is an equilibrium of the dynamic pivot mechanism. It remains to be

shown, however, that the bidding strategies described in Equation (3) form an equilibrium of the

sequential ascending auction mechanism.

Since the sequential ascending auction mechanism is a dynamic game of incomplete informa-

tion, the equilibrium concept we will consider is that of perfect Bayesian equilibrium. This solu-

tion concept requires that behavior be sequentially rational with respect to agents’ beliefs, and that

agents’ beliefs be updated in accordance with Bayes’ rule wherever possible. Since the bidding

strategies β̂t
m,nt

are strictly increasing, behavior along the equilibrium path is perfectly separating,

implying that Bayesian updating fully determines beliefs. To determine optimality off the equi-

librium path, however, we need to consider the behavior of bidders after a deviation. Since such

post-deviation histories are zero probability events, we are free to choose arbitrary off-equilibrium

beliefs. Therefore, we will suppose that, after a deviation, buyers disregard their previous obser-

vations, believing that the deviating agent is currently truthfully revealing her value in accordance

with β̂t
m,nt

.

This particular specification of off-equilibrium beliefs is particularly useful. Note that these be-

liefs are consistent with Bayes’ rule even after probability zero histories. This follows immediately

from the fact that, generally, this system of beliefs consists of point-mass beliefs about the types

of other agents. The only agents about whom beliefs do not take this form are those that have yet

to arrive to the market and those who win an object in the period of their arrival—these agents

reveal only a lower bound on their value.

Moreover, this property is equivalent to the condition of preconsistency of beliefs in an extensive

form game of incomplete information put forth by Hendon, Jacobsen, and Sloth (1996), which

Perea (2002) shows to be both necessary and sufficient for the one-shot-deviation principle to

hold.11 This is an important observation, as perfect Bayesian equilibrium, in contrast to sequen-

tial equilibrium, need not satisfy the one-shot-deviation principle.12 We can therefore prove the

following result.

11This condition is called updating consistency by Perea (2002), and is also equivalent to part 3.1(1) of Fudenberg and
Tirole (1991)’s definition of a reasonable assessment.
12These off-equilibrium beliefs also satisfy the “no-signaling-what-you-don’t know condition” in Fudenberg and Tirole
(1991). This suggests that (aside from measurability issues) one could construct a conditional probability system for

22



AUCTIONS WITH DYNAMIC POPULATIONS: EFFICIENCY AND REVENUE MAXIMIZATION

PROPOSITION 3 (Equilibrium in the Sequential Ascending Auction).

Suppose that in each period, buyers bid according to the cutoff strategies given in Equation (3). This

strategy profile, combined with the system of beliefs described above, forms a perfect Bayesian equilibrium

of the sequential ascending auction mechanism.

Proposition 2 and Proposition 3, taken together, imply that the sequential ascending auction ad-

mits an efficient equilibrium that also yields prices identical to those of the dynamic pivot mecha-

nism. Thus, the sequential ascending auction is a natural, intuitive institution that yields efficient

outcomes.

It is interesting to note several additional properties of the equilibrium described above. First,

the proof shows that deviations from the bidding strategies β̂t
m,nt

are not rational for any agent,

even when conditioning on competitors’ values in the current period. Thus, the strategy pro-

file specified in Equation (3) forms a periodic ex post equilibrium. Introduced by Bergemann and

Välimäki (2008), this notion requires that, given expectations about future behavior and arrivals of

both objects and buyers, each buyer’s current-period behavior is a best response to the strategies

of her opponents, regardless of the history and realized values of her competitors. Since agents

essentially “report” their values in each auction, the extensive-form structure of the indirect mech-

anism leads to a marginally weaker form of implementation (in contrast to the dominant-strategy

incentive compatibility of the direct mechanisms discussed above).

Furthermore, notice that in the sequential ascending auction, buyers have the ability to drop

out immediately once an auction begins. Since the bidding strategies discussed above form a

periodic ex post equilibrium, buyers do not wish to take advantage of this possibility, even if they

know their opponents’ values. Thus, although we have assumed that buyers cannot conceal their

presence when arriving to the market, we may conclude that, in equilibrium, they would not take

advantage of that opportunity were it afforded to them. Moreover, the outcome equivalence result

(Proposition 2) implies that this logic extends to the direct mechanisms considered earlier.

Finally, by using the bidding strategies described above, buyers fully reveal their private infor-

mation. However, the strategy is “memoryless,” as buyers make use only of information revealed

in the current period, disregarding any information that may have been revealed in previous peri-

ods. The necessity of memoryless behavior arises from the informational asymmetry that develops

over the course of the sequence of ascending auctions. Consider a period in which several buyers

remain on the market from previous periods. Since buyers have revealed their values in the past,

there is essentially no private information within this group of buyers. However, when a new

buyer arrives, the “incumbent” buyers know nothing about the new entrant other than the distri-

bution from which her value is drawn. By behaving in a symmetric way that ignores previously

revealed information, incumbent buyers restore symmetry to the environment, thereby providing

the appropriate incentives for the new entrant to also reveal her own private information.

this equilibrium such that it satisfies Fudenberg and Tirole’s conditions for perfect extended Bayesian equilibrium. The
set of all such equilibria coincides, in finite games, with the set of sequential equilibria.
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6. REVENUE MAXIMIZATION

While the previous section provides a characterization of efficient mechanisms, we have said

little about revenue and optimal mechanisms. In the static setting, Myerson (1981) showed that

the optimal mechanism for selling a single indivisible unit is a Vickrey-Clarke-Groves mechanism,

with the caveat that instead of allocating the good to the agent with the highest value, the seller

allocates the object to the agent with the highest virtual value. Maskin and Riley (1989) extend

Myerson’s insights to the setting in which multiple identical units are offered for sale and show

that, as in the single-unit case, the objects are allocated to the set of buyers with the highest virtual

valuations.

In our setting, however, while the objects are individual units of a homogeneous good, from the

perspective of an individual buyer, they are differentiated products. To make this clear, consider

a buyer i with value vi who is present at period t. If this buyer receives an object in period t, this

yields her utility vi. However, if she anticipates receiving an object in period t + 1, her valuation

for that object is δvi. Thus, she does not value the two objects identically. While there does exist a

literature on auctions for multiple heterogeneous objects, much of the focus has been on efficiency

and not revenue maximization.13 Thus, paralleling the development of the previous section, we

will derive the optimal dynamic direct mechanism for a revenue maximizing seller. We will show

that revenue maximization in our dynamic setting is achieved by an efficient mechanism applied

to virtual values. We will then discuss the indirect implementation of the revenue maximizing

policy via a sequence of ascending auctions.

6.1. Optimal Direct Mechanism

We consider a single monopolist seller who commits to a direct mechanism M = {xt, pt}t∈N0

at time zero.14 The seller’s expected revenue from this mechanism is the expected discounted sum

of payments made by each buyer. Recalling that the expected payment of a buyer i, conditional

on entry, is denoted by mi(vi, αt, kt), the seller’s payoff may be written as

Π(M) := E

[
∞

∑
t=0

∑
i∈It

δtαt(i)mi(vi, αt, kt)

]
,

where αt(i) = 1 if i ∈ It arrives to the market (which occurs with probability πi ∈ [0, 1]) and

αt(i) = 0 otherwise.

Conditional on the arrival of agent i ∈ It in period t, when the current state of the market is

described by (αt, kt) ∈ {0, 1}I ×K, her expected payment is given by
∫ v̄

0
mi(vi, αt, kt) fi(vi) dvi.

13Researchers interested in keyword auctions for sponsored search have, however, considered the problem of designing
optimal auctions for selling various advertising “slots” on a search engine, where slots are differentiated by their click-
through-rate. See, for instance, Iyengar and Kumar (2006).
14Commitment is necessary so as to ensure that that the revelation principle applies and it is without loss of generality
to consider direct mechanisms.
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By applying the revenue equivalence result from Corollary 1, this may be rewritten as

mi(0, αt, kt) +
∫ v̄

0
qi(vi, αt, kt)vi fi(vi) dvi −

∫ v̄

0

∫ vi

0
qi(v′i, αt, kt) fi(vi) dv′i dvi.

Applying the standard interchange of the order of integration of the last term above, the expected

payment of buyer i, conditional on entry, is then

mi(0, αt, kt) +
∫ v̄

0
qi(vi, αt, kt)ϕi(vi) fi(vi) dvi,

where

ϕi(vi) := vi −
1 − Fi(vi)

fi(vi)

is the virtual valuation of buyer i with value vi. Recall that we have assumed that ϕi is strictly

increasing in vi for all agents i ∈ I . Thus, applying the law of iterated expectations, the revenue

maximizing seller is faced with the problem of choosing a feasible mechanism M to maximize

Π(M) = E

[
∞

∑
t=0

∑
i∈It

δtαt(i)mi(0, αt, kt)

]
+ E

[
∞

∑
t=0

∑
i∈It

δtαt(i)qi(vi, αt, kt)ϕi(vi)

]
, (4)

subject to the incentive compatibility and individual rationality constraints discussed in Lemma 1

and Corollary 1.

Notice that the seller’s objective function above is the sum of two terms: the first term is a dis-

counted sum of expected payments, while the second is a discounted sum of weighted virtual

values. Moreover, this second term is identical to the efficiency-oriented social planner’s objective

function in Equation (4), except that values have been replaced with virtual values. Therefore, the

insights about the efficient policy carry over to this context. In particular, the revenue-maximizing

policy is again an assortative matching: objects are ordered by their arrival time and buyers are

ordered by their virtual values, and “earlier” objects are allocated to agents with higher virtual

values. Again, this matching must respect the feasibility constraints placed on the allocation rule.

Thus, the revenue-maximizing allocation policy is, in each period, to allocate all available objects

to the buyers with the highest virtual values currently on the market. Note, however, that allocat-

ing objects to agents with negative virtual values decreases the seller’s payoff. Thus, the matching

described above must restrict attention to buyers with non-negative virtual values.

Before proceeding to the formal description of this policy, some definitions are necessary. For

any state zt = (ht, αt, kt, v) ∈ Ht × {0, 1}I ×K×R, where v denotes the truthful reporting strat-

egy by all agents, let

Aπ(zt) := {i ∈ At : ϕi(vi) ≥ 0}

denote the set of agents with non-negative virtual values. The set of agents i ∈ Aπ(zt) whose

virtual value is among the kt highest present is given by

Aπ
+(zt) :=

{
i ∈ Aπ(zt) :

∣∣{j ∈ At : ϕj(vj) ≥ ϕi(vi)
}∣∣ ≤ kt

}
.

Similarly, the set of agents i ∈ Aπ(zt) whose virtual value places them outside the top kt agents is

denoted by

Aπ
−(zt) :=

{
i ∈ Aπ(zt) :

∣∣{j ∈ At : ϕj(vj) > ϕi(vi)
}∣∣ ≥ kt

}
.

25



MAHER SAID

Finally,

Aπ
∼(zt) := Aπ(zt) \

(
Aπ

+(zt)
⋃

Aπ
−(zt)

)
.

is the set of agents tied for the kt-th highest ranking virtual value. The above observations and

Lemma 2 then yield the following characterization of optimal allocations.

LEMMA 4 (Revenue-Maximizing Allocation Rules).

Suppose all buyers, upon arrival, report their true values. A feasible allocation rule {xt}t∈N0 is optimal

(revenue-maximizing) if, and only if, for all zt = (ht, αt, kt, v) ∈ Ht × {0, 1}I ×K×R,

xi,t(zt) = 1 for all i ∈ Aπ
+(zt) and ∑

i∈Aπ
∼(zt)

xi,t(zt) = kt − |Aπ
+(zt)| if |Aπ

+(zt)| < kt.

As with the set of efficient allocation rules described by Lemma 2, all revenue-maximizing al-

location rules agree after almost all histories. The only possible variations are at probability zero

histories in which multiple agents have identical (positive) virtual values.15 Additionally, these

allocation policies are independent of past history, as optimal allocations are functions only of

the values of the agents currently present on the market and on the number of objects currently

available.

We will therefore refer to the revenue-maximizing allocation rule x̃. By this, we mean the

revenue-maximizing allocation rule which breaks ties with equal probability, which is defined

by

x̃i,t(αt, kt, vt) =





1 if i ∈ Aπ
+

0 if i ∈ Aπ
−

kt−|Aπ
+|

|Aπ
∼|

if i ∈ Aπ
∼

for all (αt, kt) ∈ {0, 1}I ×K and vt ∈ VAt , where we drop the dependence on ht.

It should be clear that the revenue-maximizing allocation rule x̃ satisfies the requirements of

incentive compatibility. From the perspective of a given buyer i ∈ I , x̃ allocates an object to

i after a given history if, and only if, i is among the highest-ranking (by virtual value) buyers

present at that history. Since we have assumed the standard regularity condition of increasing

virtual valuations, this implies that x̃i,t is nondecreasing in vi, given the values of the other agents

present on the market. The fact that this property holds for any arbitrary history and realization of

competitors’ values implies that it must also be true in expectation for each time period t; hence,

the expected discounted probability of receiving an object qi is also nondecreasing in vi. Thus, by

choosing an appropriate payment rule, it is possible to design an incentive compatible mechanism

that implements the revenue-maximizing allocation policy.

Let us now examine the first term in the seller’s objective function in Equation (4). Given the

incentive compatibility of the revenue-maximizing allocation policy, the generalization of the rev-

enue equivalence theorem presented in Corollary 1 implies that the individual rationality con-

straint faced by our seller is

mi(0, αt, kt) ≤ 0

15As with the efficient policies discussed in Section 4, we (without loss of generality) disregard the zero-probability
events in which an agent’s virtual value is equal to zero.
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for all i ∈ I and all (αt, kt) ∈ {0, 1}I ×K. Therefore, since mi enters the seller’s objective function

additively, this constraint must be binding.

The problem of choosing a payment rule that satisfies this constraint in this dynamic setting

is similar to the static optimal auction problem. In the static setting, the Myerson (1981) optimal

mechanism can be reinterpreted as a Vickrey-Clarke-Groves mechanism. Instead of maximiz-

ing surplus, the revenue-maximizing single-object mechanism maximizes virtual surplus. When

agents report their values vi, the mechanism computes their virtual values ϕi(vi) and then applies

the VCG mechanism to these virtual values. This yields an allocation and a “virtual price” such

that the winning buyer’s virtual value less this virtual price is equal to her marginal contribution

to the virtual surplus. We can then invert this virtual price into a standard price, which in the

single-object case is the lowest value that could have been reported by the winning buyer such

that she remains the winner.

These insights can be applied in our setting; however, care must be taken to ensure that we

correctly account for the heterogeneous nature of the multiple goods available. In particular, one

cannot simply invert the price charged to winners via the virtual valuation functions to determine

the new prices, as prices will typically be functions of several agents’ values.

So, for each i ∈ I , define

r̃i := ϕ−1
i (0).

This is the minimal value required for agent i to potentially receive an object under the revenue-

maximizing allocation policy. Furthermore, for each t ∈ N0 and all i ∈ It, we define for any

(αt, kt) ∈ {0, 1}I ×K and truthful vt ∈ VAt the function

Πi(αt, kt, vt) := E

[
∞

∑
s=t

∑
j∈I

δs−t x̃j,s(αs, ks, vs)
(

ϕ−1
i

(
ϕj(vj)

)
− r̃i

)]
. (5)

This expression is the same as the virtual surplus in the seller’s objective function in Equation (4),

except that instead of a weighted sum of virtual values, it is a weighted sum of the corresponding

“real” values of agent i, less the reservation value r̃i applied to agent i; that is, Πi measures the

virtual surplus in the same units as i’s utility function. Since we have assumed that virtual values

are increasing for all agents, ϕ−1
i is increasing. Therefore, transforming the virtual values of all

agents by ϕ−1
i preserves their ordering; moreover, ϕ−1

i (ϕj(vj)) − r̃i ≥ 0 if, and only if, ϕj(vj) ≥ 0.

Therefore,

x̃ ∈ arg max
{xs}∞

s=t

{
E

[
∞

∑
t=0

∑
j∈It

δtαt(j)qj(vj, αt, kt)
(

ϕ−1
i (ϕj(vi)) − r̃i

)]}
;

that is, x̃ is an efficient allocation rule for an environment in which a social planner realizes a

payoff of ϕ−1
i (ϕj(vj)) − r̃i when allocating an object to agent j with value vj.

Again denoting by α−i
s the agent presence indicator in period s ∈ N0 when i is removed from

the market (that is, where we impose αs(i) = 0), we write

Πi
−i(α−i

t , kt, vt) := E




∞

∑
s=t

∑
j∈I\{i}

δs−t x̃j,s(α−i
s , ks, vs)

(
ϕ−1

i

(
ϕj(vj)

)
− r̃i

)


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for the virtual social welfare (in terms of i’s utility) when i is removed from the market. Thus, the

arrival of agent i ∈ It to the market yields a marginal contribution—again, in units of i’s utility

function—equal to

w̃i(αt, kt, vt) := Πi(αt, kt, vt) − Πi
−i(α−i

t , kt, vt).

We now define the virtual Vickrey-Clarke-Groves mechanism to be the dynamic direct mechanism

M̃ := {x̃t, p̃t}t∈N0 , where x̃ is the revenue-maximizing allocation rule and the payment rule p̃ is

defined by

p̃i,t(αt, kt, vt) := q̃i(αt, kt, vt)vi − w̃i(αt, kt, vt)

upon the arrival of agent i ∈ It in period t, and p̃i,s(αs, ks, vs) := 0 for all s 6= t. (We denote by q̃i

the discounted expected probability of i receiving an object under the allocation rule x̃.)

PROPOSITION 4 (Virtual VCG is Dominant Strategy IC and IR).

Suppose that virtual values ϕi are increasing for all i ∈ I . Then the virtual Vickrey-Clarke-Groves mecha-

nism M̃ is dominant-strategy incentive compatible and individually rational.

Thus, the virtual Vickrey-Clarke-Groves mechanism M̃ is an optimal (revenue-maximizing)

dynamic direct mechanism. However, it is subject to the same criticism that we applied to the

Vickrey-Clarke-Groves mechanism: M̃ charges each buyer a single payment upon their arrival,

even if the agent is not immediately allocated an object. In the case in which the survival proba-

bility γ < 1, this implies that agents may make a payment but depart the market before receiving

an object.

We may compensate for this problem, as we did in the case of efficient mechanisms, by charging

payments such that each agent’s flow utility is equal to her current period contribution to the

virtual surplus. This quantity is defined by

w̃F
i (αt, kt, vt) := w̃i(αt, kt, vt) − δE [w̃i(αt+1, kt+1, vt+1)]

= Πi(αt, kt, vt) − Πi
−i(α−i

t , kt, vt)

− δ
(

E

[
Πi(αt+1, kt+1, vt+1)

]
− E

[
Πi

−i(α−i
t+1, kt+1, vt+1).

])

We define the dynamic virtual pivot mechanism as the dynamic direct mechanism M̃F := {x̃t, p̃F
t }t∈N0 ,

where the payment rule p̃F is defined by

p̃F
i,t(αt, kt, vt) := x̃i,t(αt, kt, vt)vi − w̃F

i (αt, kt, vt)

for all (αt, kt, vt). As with the dynamic pivot mechanism discussed earlier, the dynamic virtual

pivot mechanism does not require agents to make any transfers in periods where they are not

allocated an object. If i does not receive an object, either ϕi(vi) < 0 or there are sufficiently many

agents with higher virtual values currently present on the market. In the first case, i’s presence

does not affect the allocation to any other agent, and hence her contribution is identically zero. If,

on the other hand, the latter is true, then removing i from the market will not affect the current-

period allocation, and hence i’s flow contribution is zero. It should also be clear that, if agent i

does receive an object, her flow marginal contribution to the virtual surplus is equal to her total

marginal contribution, as she will no longer be present in the future.
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Moreover, the expectation of a discounted sum of flow marginal contributions is equal to the

the total marginal contribution. Therefore, we have the following observation, which we state

without proof.

COROLLARY 3 (Dynamic Virtual Pivot Mechanism is Dominant Strategy IC and IR).

Suppose that virtual values ϕi are increasing for all i ∈ I . Then the dynamic virtual pivot mechanism M̃F

is dominant strategy incentive compatible and individually rational.

As with the case of optimal mechanisms in static settings, there is a clear tradeoff between

revenue and efficiency. The inefficiency of the revenue-maximizing mechanism stems from two

sources. First, there are buyers who, despite having positive values for an object, never receive

one. The second source of inefficiency enters due to the discriminatory nature of virtual values: a

buyer with a higher value may have the timing of her allocation delayed because of the presence

of a buyer with a lower value but higher virtual value.

This second source of inefficiency disappears in the symmetric case in which all buyers’ values

are drawn from the same distribution F. In this case, each buyer is faced with the same reser-

vation value r̃i = r̃ := ϕ−1(0), and the ordering of virtual values agrees with the ordering of

actual values. Moreover, the revenue-maximizing allocation rule becomes quasi-efficient, in the

sense that it allocates objects efficiently among the subset of agents with values greater than the

reserve value r̃. In addition, an agent’s marginal contribution to the virtual surplus in this case

may be reinterpreted in terms of social welfare. Recall that agent i’s marginal contribution to

the social welfare is the total surplus when i is present less the total surplus when she is absent.

Since a buyer with value 0 does not provide (or remove) any surplus from the market, the total

surplus when i is absent is unchanged when we add a “null” buyer with value zero. Therefore,

i’s marginal contribution may also be viewed as her “social replacement value,” where instead

of removing i from the market entirely, she is simply replaced with an agent whose value is 0.

Analogously, i’s contribution to the virtual surplus w̃i is her replacement value, where instead of

replacing i with an agent whose value is 0, we replace her with an agent whose value is equal

to the reservation price r̃. With this in mind, the link between optimal mechanisms and efficient

VCG-like mechanisms should not be surprising. In a static setting, Krishna and Perry (2000) show

that the Vickrey-Clarke-Groves mechanism is revenue-maximizing among all mechanisms that

are efficient, individually rational, and incentive compatible. Cavallo (2008) proves a similar re-

sult: in a dynamic setting with a fixed agent population and changing types, the dynamic pivot

mechanism is revenue maximizing among the class of efficient, individually rational, and peri-

odic ex post incentive compatible dynamic mechanisms. Therefore, when revenue maximization

leads to quasi-efficient allocation rules, a pivot mechanism with an appropriately chosen reserve

is optimal.

6.2. Optimal Auction

In light of the previous observation and the results of Section 4, when values are independently

and identically drawn from the same distribution F, a natural candidate for a revenue maximizing

auction is the sequential ascending auction. It is well-known that in a static setting with K units
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of a homogenous good to be allocated, efficiency is achievable by a Vickrey-Clarke-Groves mech-

anism. This mechanism is outcome equivalent to a K-th price sealed-bid or ascending auction. As

established by Myerson (1981) in the case of a single object, and by Maskin and Riley (1989) with

multiple units of a homogenous good, the revenue-maximizing mechanism is a pivot mechanism

with a reserve price equal to r̃ := ϕ−1(0). This mechanism is again outcome equivalent to a K-th

price sealed bid or ascending auction with a reserve price equal to r̃. In our dynamic setting with

randomly arriving and departing buyers, both the Vickrey-Clarke-Groves mechanism and the dy-

namic pivot mechanism are efficient. Moreover, the outcome of the dynamic pivot mechanism

may be implemented via a sequence of ascending auctions. Reasoning by analogy, we may con-

clude that, since the dynamic virtual pivot mechanism is revenue maximizing and corresponds to

the dynamic pivot mechanism with a reserve of r̃, a sequence of ascending auctions with reserve

price r̃ is the corresponding revenue-maximizing auction.

Let us formalize this analogy. We again make use of the multi-unit, uniform-price variant of the

Milgrom and Weber (1982) button model of ascending auctions. However, we introduce a reserve

price equal to r̃. For notational convenience, we will assume that the price clock starts at zero

and rises continuously.16 When there are m ≥ 1 units available in a given period, the auction will

end whenever there are at most m bidders still active and the price is at least r̃. At that time, each

remaining bidder receives an object and pays the price at which the auction ended. As before, ties

are broken fairly.

Recall that we denote by nt := At the number of buyers present in period t. Also recall that,

taking the perspective of an arbitrary bidder i, we let

yt := (y1
t , . . . , ynt−1

t )

denote the ordered valuations of all other buyers present in period t, where y1
t is the largest value

and ynt−1
t is the smallest. For each m = 1, . . . , nt − 1, we define

v̄m := (v̄, . . . , v̄) ∈ Vm and y>m
t := (ym+1

t , . . . , ynt−1
t ).

Finally, we define, for each m = 1, . . . , nt − 1,

w̃t+1(αt, kt, vi, y>m
t ) := δE [w̃i(αt+1, kt+1, vt+1)|vt = (v̄m, vi, y>m

t )] .

This is the (discounted) expected future marginal contribution of an agent i ∈ At to the virtual

surplus, conditional on the period-t presence of m competitors with the highest possible value

v̄ and nt − m − 1 buyers ranked below i with values y>m
t . Recall from the previous discussion,

however, that this is exactly i’s expected contribution to the social welfare over a replacement

agent with value r̃; moreover, note that w̃t+1(αt, kt, vi, y>m
t ) = 0 for all buyers with values vi ≤ r̃,

regardless of the realization of y>m
t .

In each period t ∈ N0, we assume that each agent i ∈ At bids up to the cutoffs β̃t
m,nt

whenever

she has m active competitors in the auction, where

β̃t
m,nt

(αt, kt, vi, y>m
t ) := vi − w̃t+1(αt, kt, vi, y>m

t ). (6)

16Alternately, one could model each auction as a two-stage game in which buyers first choose to participate in the
current period auction and then the price clock starts at r̃.

30



AUCTIONS WITH DYNAMIC POPULATIONS: EFFICIENCY AND REVENUE MAXIMIZATION

These (symmetric across agents) cutoffs are strictly increasing in vi, implying that buyers can infer

the values of those competitors that have already exited the auction. Note that when buyer i is

active, and she knows the values y>m
t of her opponents that are no longer active, the price at which

she is indifferent between winning an object and receiving her discounted marginal contribution

in the next period (conditional on all remaining active buyers having values greater than hers) is

exactly β̃t
m,nt

.

We may then use arguments similar to those of Lemma 3, Proposition 2, and Proposition 3 to

prove the following result.

PROPOSITION 5 (Revenue Maximization via Sequential Ascending Auctions).

Suppose that Fi = F for all i ∈ I . Then following the bidding strategies β̃t
m,nt

in Equation (6) in every

period of the sequential ascending auction mechanism with reserve price r̃ := ϕ−1(0) is a perfect Bayesian

equilibrium that is outcome equivalent to the truth-telling equilibrium of the dynamic virtual pivot mecha-

nism.

Proposition 5 therefore implies that the sequential ascending auction with a reserve price ad-

mits an equilibrium with prices and allocations identical to those of the dynamic virtual pivot

mechanism. Therefore, as was the case in Section 4, we find that a monopolist who wishes to max-

imize revenues while making use of a transparent, decentralized mechanism may do so by using

a sequence of ascending auctions. Moreover, the method of proof of the proposition above shows

that the strategy profile specified in Equation (6) forms a periodic ex post equilibrium. Given ex-

pectations about future arrivals and behavior, each buyer’s current period bid is a best response

to the strategies of her opponents, regardless of the realization of their values or the history of the

mechanism.

7. AN ILLUSTRATIVE EXAMPLE, CONTINUED

In order to make the results of the previous section more concrete, let us return to the example of

Section 3. Recall that in this example, there is exactly one unit of the homogeneous good available

in each period, and at most one new buyer arriving to the market in each period with probability

ρ ∈ [0, 1]. In addition, buyers do not exit the market until they receive an object. Finally, each

buyer i’s privately known valuation for a single object is vi, where vi is drawn independently and

identically from the common distribution F. Virtual values ϕ(vi) are strictly increasing in vi, and

we denote by r̃ the value corresponding to a virtual value equal to zero: ϕ(r̃) = 0.

Lemma 4 established that, in order to maximize revenues, the optimal policy x̃ assigns the ob-

ject in each period to the buyer with the highest non-negative virtual value, which corresponds

(in this symmetric setting) to the highest value greater than r̃. Moreover, the subsequent discus-

sion (including Corollary 3) demonstrated that the dynamic virtual pivot mechanism succeeds in

implementing x̃ in dominant strategies.

In the relatively simple setting of this example, it is possible to derive explicit expressions for the

transfers in this direct mechanism. In particular, a straightforward adaptation of the arguments

found in in Appendix B used to characterize the social planner’s payoff may be used to calcu-

late the virtual surplus from the perspective of an arbitrary buyer. Suppose there are n buyers
31



MAHER SAID

{1, . . . , n} present on the market, with values

v1 > v2 > · · · > vm > r̃ > vm+1 > · · · > vn.

Notice that, of the n buyers present, only m buyers have values greater than r̃.

Consider, for instance, buyer 2, the buyer with the second-highest value. If we increase her

value v2 by an infinitesimal amount, the optimal allocation in the current period is unchanged,

and the seller realizes no benefit from the increase. In the following period, however, buyer 2 is

allocated an object if either no new entrant arrives (which occurs with probability 1 − ρ), or if a

new entrant arrives but has a value lower than v2 (which occurs with probability ρF(v2)). On the

other hand, if a new, higher-valued buyer does arrive in the next period, the revenue-maximizing

policy allocates the object to the entrant, and the seller must wait an additional period before

potentially realizing the gains from the increase in v2. Since the arrival process is stationary, this

implies that the marginal increase in the virtual surplus due to the increase in v2 is

δ
[
1 − ρ(1 − F(v2)) + ρ(1 − F(v2)) × δ

[
1 − ρ(1 − F(v2)) + ρ(1 − F(v2)) × δ [· · · ]

]]

= δ
∞

∑
t=0

[δρ(1 − F(v2))]
t (1 − ρ(1 − F(v2))

)
= δ

1 − δ(1 − F(v2))

1 − δρ(1 − F(v2))
.

Integrating this expression therefore captures the total contribution of buyer 2 over a “replace-

ment” buyer with value equal to r̃, yielding

δ
∫ v2

r̃
λ(v′) dv′,

where, as in Section 3, the function λ : V → [0, 1] is given by

λ(v) :=
1 − ρ(1 − F(v))

1 − δρ(1 − F(v))
.

Therefore, the virtual surplus from the perspective of an arbitrary buyer is (with some abuse of

notation) given by

Πn(v1, . . . , vn) = Π0 +
m

∑
j=1

δj−1
∫ vj

r̃
λj−1(v′) dv′,

where

Π0 :=
δρ

1 − δ

∫ v̄

r̃
(v′ − r̃) dF(v′)

is the expected virtual surplus when no buyers are present on the market. Notice that the values

of buyers m + 1, . . . , n do not enter the above expression. Since their values are below r̃, these

buyers are never allocated an object, and hence make no contribution to the virtual surplus. Thus,

removing any one of these agents from the market leads to no change in the virtual surplus. On

the other hand, the virtual surplus when buyer ik, where k ≤ m, is removed from the market is

given by

Πn−1(v1, . . . , vk−1, vk+1, . . . , vn) = Π0 +
k−1

∑
j=1

δj−1
∫ vj

r̃
λj−1(v′) dv′ +

m

∑
j=k+1

δj−2
∫ vj

r̃
λj−2(v′) dv′.
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Therefore, the marginal contribution of buyer k, where k ≤ m, to the virtual surplus is

w̃k(v1, . . . , vn) := Πn(v1, . . . , vn) − Πn−1(v1, . . . , vk−1, vk+1, . . . , vn)

=
m

∑
j=k

δj−1
∫ vj

r̃
λj−1(v′) dv′ −

m

∑
j=k+1

δj−2
∫ vj

r̃
λj−2(v′) dv′

=
m

∑
j=k

δj−1
∫ vj

vj+1

λj−1(v′) dv′,

where we abuse notation and let vm+1 := r̃. As with the efficient allocation rule discussed in

Section 3, removing buyer k from the market does not affect the allocation of those buyers ranked

above her; however, her presence shifts back the anticipated allocation to buyers ranked below

her by one period.

By setting transfer payments such that buyer k internalizes this effect, the dynamic virtual pivot

mechanism induces her to truthfully reveal her value. Recall that this mechanism makes transfers

in each period such that every agent i’s flow payoff is exactly equal to her flow marginal contribu-

tion to the virtual surplus. In this setting, an agent’s flow marginal contribution is zero unless she

receives an object. On the other hand, when the agent does receive an object, her flow contribution

to the virtual surplus is exactly equal to her total contribution. Therefore, when there are n agents

present with values v1 > · · · > vm > r̃ > vm+1 > · · · > vn, the dynamic virtual pivot mechanism

gives the object to buyer 1, charging her a payment p̃ such that

v1 − p̃ = w̃1(v1, . . . , vn).

Rearranging this expression (and again setting vm+1 := r̃), we see that the transfer paid by buyer

1 is given by

p̃ = v1 −
m

∑
j=1

δj−1
∫ vj

vj+1

λj−1(v′) dv′ = v2 −
m

∑
j=2

δj−1
∫ vj

vj+1

λj−1(v′) dv′. (7)

As demonstrated by Corollary 3 in Section 6, when the seller sets transfers as in the equation

above, the revenue-maximizing policy is implemented in dominant strategies. Notice the resem-

blance of this price to the corresponding transfer in the (efficient) dynamic pivot mechanism as

described in Equation (2). However, instead of the price depending on the values of all agents

present, the summation ends with the agent with the lowest value above r̃. This is precisely due

to the fact that the dynamic virtual pivot mechanism leaves buyer 1 with her marginal contribu-

tion over a replacement agent with value r̃, as opposed to a “null” agent with value zero.

Recall that Proposition 5 characterized an equilibrium of the sequential ascending auction (with

a reserve price) that is outcome equivalent to the dynamic virtual pivot mechanism. This equilib-

rium may be interpreted in the same manner as that discussed in Section 3. The price paid by

buyer 1 in Equation (7) can be decomposed into two components. The first term (v2) is the loss in

virtual surplus from allocating the object to buyer 1 in the current period: if she were not present,

the optimal allocation rule x̃ would assign the object to buyer 2, leading to a flow benefit of v2. On

the other hand, the summation in the expression above is the expected gain in the virtual surplus

33



MAHER SAID

from postponing the allocation to buyer 2. The presence of buyer 1 implies that the seller antici-

pates allocating to buyer 2 in the next period instead of to buyer 3, and to buyer 3 in the following

period instead of to buyer 4, and so on. As with the transfer of the dynamic pivot mechanism

calculated in Equation (2), this second term is the discounted expectation of buyer 2’s future con-

tribution to the virtual surplus.17 Thus, Proposition 5 may be restated as: if, in every period, each

buyer bids up to the point at which she is indifferent between receiving an object immediately

and receiving her expected future contribution to the virtual surplus, we are able to achieve the

outcome of the dynamic virtual pivot mechanism.

So, suppose that an ascending auction is conducted in every period. We assume that when there

are n buyers present at the beginning of the period, of which k are actively bidding in the auction,

each active buyer i bids up to

β̃k,n(vi) := vi − δE [Πn(v̄, . . . , v̄, vi, vk+1, . . . , vn) − Πn−1(v̄, . . . , v̄, vk+1, . . . , vn)] ,

where the expectation is taken with respect to the entry process of new buyers and the possible

valuation of a new entrant in the following period. (Recall that the values of buyers that have

already exited the auction are revealed by their exit prices.) In words, each buyer bids as though

she expects that losing the current-period auction leads to receiving her marginal contribution in

the future, conditional on her remaining competitors having the highest possible value v̄. This

expectation is equal to zero for buyers i with values vi ≤ r̃, as they contribute nothing to the

virtual surplus (in any period). Therefore, buyers with values less than the reserve price r̃ will bid

up to their true values, dropping out of the auction before the reserve price is met.

Of the remaining buyers (those with values greater than r̃), the first to exit the auction is buyer

m. She will drop out of the auction when the price reaches

β̃m,n(vm, . . . , vn) = vm − δE [Πn(v̄, . . . , v̄, vm, vm+1, . . . , vn) − Πn−1(v̄, . . . , v̄, vm+1, . . . , vn)]

= vm − δm−1
∫ vm

r̃
λm−1(v′) dv′.

Notice that this price is strictly greater than the reserve price, as vm > r̃ and λ(v′) ∈ [0, 1] for all

v′ ∈ [0, v̄]. The m − 1 remaining buyers observe this exit, and revise their anticipated exit prices.

As expected, these exit prices are monotonic in their values, leading to the agents sequentially

dropping out of the auction in increasing order of their values. Thus, the auction will end when

the price reaches

β̃2,n(v2, . . . , vn) = vi2 −
m

∑
j=2

δj−1
∫ vj

vj+1

λj−1(v′) dv′,

where vm+1 := r̃. Buyer 1, the buyer with the highest value present on the market, will win the

current-period object. In addition, the price she pays in the auction is exactly equal to the dynamic

virtual pivot mechanism transfer described in Equation (7). Thus, if each buyer bids according

to the functions described above, the sequential ascending auction leads to outcomes identical

to those of the dynamic virtual pivot mechanism. Moreover, as shown in Proposition 5, these

17This fact follows from a simple alteration to the argument found in Appendix B.
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bidding strategies, coupled with the appropriate off-equilibrium beliefs, form a perfect Bayesian

equilibrium.

8. CONCLUSION

In this paper, we examine a private-values, single-unit demand environment where buyers and

objects arrive at random times. We show that the efficient allocation policy may be implemented

by using a dynamic variant of the classic Vickrey-Clarke-Groves mechanism. Moreover, by gen-

eralizing the static Myerson (1981) payoff- and revenue-equivalence results to our setting, we are

able to derive a revenue-maximizing direct mechanism. This mechanism succeeds in maximizing

a seller’s profits by applying an efficient dynamic pivot mechanism to buyers’ virtual values.

We also examine indirect mechanisms in this setting, finding that a sequence of ascending auc-

tions serves as a natural and intuitive institution that corresponds to the direct mechanisms de-

scribed above. This open auction format allows each buyer to learn her competitors’ values, and

hence determine her own marginal contribution to the social welfare. When each buyer exits each

auction at the price such that she is indifferent between winning the object and obtaining her mar-

ginal contribution, we obtain a decentralized price discovery mechanism that yields outcomes

identical to those of the centralized direct mechanisms.

These results set the stage for several additional avenues of inquiry. For instance, suppose that

objects need not be allocated in the period of their arrival, but can instead be placed in inven-

tory and allocated in future periods. While some properties of our solution are maintained (for

instance, the efficient policy continues to allocate objects to higher-ranked buyers before moving

onto competitors with lower values, and a dynamic VCG mechanism will continue to be efficient),

the indirect implementation results do not follow immediately. For example, in the case of storable

objects, the sale of an object to a particular agent imposes an additional externality on her com-

petitors, as the number of objects available in the future decreases. This reduces the incentives for

buyers to truthfully reveal their private information, as this information may be of great strategic

value to competitors.

Another natural extension of our model is the generalization to the case in which agents may

demand multiple units. This, however, introduces additional intertemporal tradeoffs in any auc-

tion mechanism, as expected future payoffs in individual valuations are no longer identical func-

tions of individual values when buyers have differential demands. An alternative line of research

relaxes the assumption that buyer entries and exits are exogenous. It is unclear what outcomes

will arise when buyers may instead condition their entry on market conditions. We leave these

questions, however, for future work.
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APPENDIX A. PROOFS

Proof of Lemma 1. We first show the necessity of the three conditions for incentive compatibility

and individual rationality. So, suppose that the mechanism M is both incentive compatible and

individually rational. Fix any t ∈ N0, any i ∈ It, and arbitrary (αt, kt) ∈ {0, 1}I × K. Then

incentive compatibility implies that, for all vi ∈ V,

Ûi(vi, αt, kt) = max
v′i∈V

{
qi(v′i, αt, kt)vi − mi(v′i, αt, kt)

}
.

Thus, Ûi(vi, ·) is an affine maximizer, and is hence a convex function of vi. Moreover, for all

vi, v′i ∈ V, incentive compatibility is equivalent to

Ûi(v′i, αt, kt) ≥ qi(vi, αt, kt)v′i − mi(vi, αt, kt)

= qi(vi, αt, kt)vi − mi(vi, αt, kt) + qi(vi, αt, kt)(v′i − vi)

= Ûi(vi, αt, kt) + qi(vi, αt, kt)(v′i − vi).

Thus, qi(vi, ·) is a subderivative of Ûi(vi, ·) at vi. Since Ûi(vi, ·) is convex in vi, it is absolutely

continuous and hence differentiable almost everywhere, implying that at every point of differen-

tiability,
∂

∂vi
Ûi(vi, αt, kt) = qi(vi, αt, kt).

Since Ûi(vi, ·) is convex, this implies that qi must be nondecreasing in vi.

Moreover, every absolutely continuous function is equal to the definite integral of its derivative,

implying that

Ûi(vi, αt, kt) = Ûi(0, αt, kt) +
∫ vi

0
qi(v′i, αt, kt) dv′i

for all vi ∈ V. Finally, since qi is nondecreasing in vi, the requirement of individual rationality is

then satisfied for all vi only if

Ûi(0, αt, kt) ≥ 0.

Hence, the three conditions are necessary conditions for M to be incentive compatible and indi-

vidually rational.

We now show the sufficiency of the three conditions for incentive compatibility and individual

rationality. Suppose that M satisfies the three conditions, and fix any t ∈ N0, any i ∈ It, and

arbitrary (αt, kt) ∈ {0, 1}I × K. Note first that qi is nondecreasing in vi and Ûi(0, αt, kt) ≥ 0

immediately imply that Ûi(vi, αt, kt) ≥ 0 for all vi ∈ V, and so M is individually rational.

Now, for any vi, v′i ∈ V, the second condition implies that

Ûi(v′i, αt, kt) = Ûi(vi, αt, kt) +
∫ v′i

vi

qi(v′′i , αt, kt) dv′′i .

If vi < v′i, then qi nondecreasing implies that qi(vi, αt, kt) ≤ qi(v′i, αt, kt). Thus,

Ûi(v′i, αt, kt) ≥ Ûi(vi, αt, kt) + qi(vi, αt, kt)(v′i − vi).
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Similarly, if vi > v′i, then qi nondecreasing implies that qi(vi, αt, kt) ≥ qi(v′i, αt, kt). Therefore,

Ûi(v′i, αt, kt) = Ûi(vi, αt, kt) −
∫ vi

v′i

qi(v′′i , αt, kt) dv′′i

≥ Ûi(vi, αt, kt) − qi(vi, αt, kt)(vi − v′i) = Ûi(vi, αt, kt) + qi(vi, αt, kt)(v′i − vi).

However, this inequality is, as shown above, equivalent to incentive compatibility. Since vi, v′i ∈ V

were chosen arbitrarily, this implies that M is incentive compatible. �

Proof of Lemma 2. Note first that any two allocation rule that satisfy the conditions of the lemma

yield the same expected payoff to the social planner. To see this, note that the only variation

permitted is in the allocation of objects to agents with zero valuation and in the breaking of ties.

Given the allocations to all other agents, choosing to allocate to agents with value zero yields

neither an increase nor decrease in the realized surplus. Moreover, although the second condition

regarding the allocation to agents in A∼ allows for various mixtures over this set of agents, the

outcome of these mixtures is always the same: exactly kt − |A+| of these agents receive an object.

Different choices among these outcomes does not affect future payoffs, as the arrival process of

agents and objects is orthogonal to these allocative decisions, and all agents depart the system at

the same exogenously given rate 1 − γ.

With this in mind, let x̂ denote a deterministic allocation rule that allocates an object to the

highest-ranking agents (including those with value equal to zero), where ties are broken arbitrarily

(but without randomization). Fix any policy x0 that yields the planner a strictly higher payoff than

the policy x̂, and define

Z0 :=
{
(ht, αt, kt) ∈ H× {0, 1}I ×K : x0(z) 6= x̂(z), x0(z′) = x̂(z′) for all z′ → z

}
.

Thus, Z0 is the set of all histories and arrivals z such that x0 and x̂ disagree at z, but agree on all

of z’s prefixes; that is, Z0 is the set of “first” or “earliest” disagreements between x0 and x̂. Since

x0 does strictly better than x̂, this set must have nonzero measure (with respect to the measure

induced by the arrival processes), as otherwise the two policies would agree almost everywhere

(and hence yield identical payoffs).

For each z ∈ Z0, note that the policy x0 induces a probability distribution over outcomes, where

an outcome is an assignment of objects to agents. Denote by Σ0(z) the set of outcomes induced

by x0 at history z. Thus, an outcome σ ∈ Σ0(z) is associated with a subset of buyers present that

receive an object. Let aj(σ) denote the j-th highest-valued agent that receives an object under x0 in

outcome σ. Similarly, let bj(z) denote the j-th highest-valued agent overall.

Define for each z ∈ Z0 and for each σ ∈ Σ0(z), we define the “continuation policy” xσ
1 (z) to

be the allocation rule that allocates to the highest-ranking agents present at time z, and is equal to

x0 at all successors of z except that it allocates to agent aj(σ) whenever x0 allocates to agent bj(z).

Thus, xσ
1 (z) is the same as x0 except that it “swaps” the allocation decisions of aj(σ) and bj(z).

Since vaj(σ) ≤ vbj(z) (with a strict inequality for at least one j), the expected payoff to the planner

under xσ
1 is greater than that of x0 along this branch of the mechanism tree. To see why this is true,
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consider any v > v′ and t < t′. Since δ < 1, we have

(δtv + δt′v′) − (δtv′ + δt′v) = (δt − δt′)(v − v′) > 0.

Thus, even if agents do not depart the market, the planner’s payoff along this path is increases.

Thus, define the allocation policy x1 to be equal to x0 at all histories that are not successors to

histories in Z0. Furthermore, for each z ∈ Z0, we define x1(z) to be the stochastic policy that

chooses xσ
1 (z) with the probability that x0 leads to outcome σ. Since this leads to an increase in

the planner’s payoff over x0 along every successor history to those in Z0, and this set has positive

measure, it must be the case that x1 yields a strictly greater payoff that x0.

If x1 yields the planner a payoff less than or equal to that of x̂, transitivity of the planner’s

payoffs leads to a contradiction, implying that there does not exist a policy x0 such that x0 does

strictly better than x̂, and hence that x̂ is optimal.

On the other hand, if x1 yields a payoff greater than that of x̂, we define the set

Z1 :=
{
(ht, αt, kt) ∈ H× {0, 1}I ×K : x1(z) 6= x̂(z), x1(z′) = x̂(z′) for all z′ → z

}

to be the set of x1’s “first disagreements” with x̂. We may repeat the procedure above to then

define a new policy x2 that agrees with x̂ at every z ∈ Z1, but does strictly better than either x1.

Notice that, if x1 does better than x̂, then we have arrived at a contradiction.

Proceeding in this manner, we construct a sequence of policies {xs}∞
s=0 with associated expected

payoffs {Ws}∞
t=0 such that Ws < Ws+1 for all s ∈ N0. Note, however, that for all s ∈ N0, xs agrees

with x̂ on at least all histories of length s. Since δs approaches zero as s becomes increasingly large,

this implies that

lim
s→∞

Ws = Ŵ,

where Ŵ is the planner’s expected payoff from following policy x̂. Moreover, since {Ws} is an

increasing sequence, this implies that

Ŵ ≥ Ws for all s ∈ N0,

a contradiction. It must therefore be the case that there does not exist a policy x0 that yields the

planner a strictly higher payoff than x̂. Therefore, we may conclude that x̂ is, in fact, a socially

optimal policy. �

Proof of Proposition 1. As already established, the discounted expected probability of receiving an

object under the efficient allocation rule q̂i(vi, αt, kt) is nondecreasing in vi. Given the result of

Lemma 1, this implies that the VCG mechanism is incentive compatible. To see that it is individu-

ally rational, note that

Ûi(vi, αt, kt) = q̂i(vi, αt, kt)vi − m̂i(vi, αt, kt) = E [wi(αt, kt, vt)] ,

where the expectation is taken with respect the values of agents j ∈ At \ {i}. However, since the

social planner always has available to her the option of ignoring i’s presence on the market (which

imposes no externalities on the other agents), i’s marginal contribution to the social welfare must

be nonnegative. Thus, Ûi(vi, αt, kt) ≥ 0, implying that M̂ is individually rational.
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In order to show that truth-telling is a dominant strategy for all agents, fix an arbitrary agent

i ∈ It for arbitrary t ∈ N0, and suppose that i knows the reported values v−i ∈ ×j 6=iV of all agents

other than i. Then, by reporting a value v′i upon her arrival in state (αt, kt), agent i’s payoff under

the VCG mechanism is

E

[
∞

∑
s=t

δs−t x̂i,s(αs, ks, (v′i, v−i))

]
(vi − v′i) + wi(αt, kt, (v′i, v−i))

= E

[
∞

∑
s=t

∑
j∈I

δs−t x̂j,s(αs, ks, (v′i, v−i))vj

]
− W−i(α−i

t , kt, v−i).

Since x̂ is the efficient policy, the first term above is maximized by setting v′i = vi. Moreover, the

second term does not depend on v′i. Hence, i’s expected payoff is maximized by truthful reporting

of her value, regardless of the reports of the other agents or the state upon i’s arrival; that is,

truth-telling is a dominant strategy. �

Proof of Lemma 3. Fix an arbitrary period t ∈ N0, and let αt and kt indicate the set of agents and

objects present on the market, respectively. Consider an agent i ∈ At with value vi, and suppose

that nt − m − 1 buyers have dropped out of the period-t auction, revealing values y>m
t , where

nt := |At| is the number of agents present, and m ∈ {1, . . . , nt − 1}. We wish to show first that

vi > vj > ym+1
t implies that

β̂t
m,nt

(αt, kt, vi, y>m
t ) := vi − wt+1(αt, kt, vi, y>m

t )

> vj − wt+1(αt, kt, vj, y>m
t ) =: β̂t

m,nt
(αt, kt, vj, y>m

t ).

Notice that

wt+1(αt, kt, vj, y>m
t ) − wt+1(αt, kt, vi, y>m

t )

= δE

[
W(αt+1, kt+1, vt+1)|vt = (v̄nt−m, vj, y>m

t )
]
− δE

[
W−j(α

−j
t+1, kt+1, vt+1)|vt = (v̄nt−m, vj, y>m

t )
]

− δE

[
W(αt+1, kt+1, vt+1)|vt = (v̄nt−m, vi, y>m

t )
]
+ δE

[
W−i(α−i

t+1, kt+1, vt+1)|vt = (v̄nt−m, vi, y>m
t )

]

= δE

[
W(αt+1, kt+1, vt+1)|vt = (v̄nt−m, vj, y>m

t )
]
− δE

[
W(αt+1, kt+1, vt+1)|vt = (v̄nt−m, vi, y>m

t )
]
,

since removing either i or j in the following period, conditional on their being the m-th highest-

ranked agent, does not differentially affect the order of anticipated future allocations to any other

agents. In particular, since the the efficient allocation rule x̂ makes assignments based solely on

the ranking of valuations, it will choose the same assignments in future periods when i or j have

been removed from the market.

Moreover, by naïvely treating buyer j as though her true value were vi, we can provide a bound

on the difference above. In particular, we have

δE

[
W(αt+1, kt+1, vt+1)|vt = (v̄nt−m, vj, y>m

t )
]
− δE

[
W(αt+1, kt+1, vt+1)|vt = (v̄nt−m, vi, y>m

t )
]

≥ E

[
∞

∑
s=t+1

δs−t x̂i,s(αs, ks, vs)|vt = (v̄nt−m, vi, y>m
t )

]
(vj − vi).
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Thus, if vi > vj, then

β̂t
m,nt

(αt, kt, vi, y>m
t ) − β̂t

m,nt
(αt, kt, vi, y>m

t )

≥ (vi − vj)

(
1 − E

[
∞

∑
s=t+1

δs−t x̂i,s(αs, ks, vs)|vt = (v̄m, vi, y>m
t )

])
> 0

since the discounted expected probability of receiving an object in the future is bounded above by

δ < 1. Thus, β̂t
m,nt

(αt, kt, vi, y>m
t ) is strictly increasing in vi.

Additionally, note that if vi > vj = ym+1
t , then

wt+1(αt, kt, vj, y>m+1
t ) − wt+1(αt, kt, vi, vj, y>m+1

t )

= δ
(

E

[
W(αt+1, kt+1, vt+1)|vt = (v̄m+1, vj, y>m+1

t )
]

− E

[
W(αt+1, kt+1, vt+1)|vt = (v̄m, vi, vj, y>m+1

t )
])

− δ
(

E

[
W−i(α−i

t+1, kt+1, vt+1)|vt = (v̄m, vi, vj, y>m+1
t )

]

− E

[
W−j(α

−j
t+1, kt+1, vt+1)|vt = (v̄m+1, vj, y>m+1

t )
])

.

However, the second difference above may be rewritten as

E

[
W−i(α−i

t+1, kt+1, vt+1)|vt = (v̄m, vi, vj, y>m+1
t )

]

− E

[
W−i(α−i

t+1, kt+1, vt+1)|vt = (v̄m, vi, vi, y>m+1
t )

]

+ E

[
W−i(α−i

t+1, kt+1, vt+1)|vt = (v̄m, vi, vi, y>m+1
t )

]

− E

[
W−j(α

−j
t+1, kt+1, vt+1)|vt = (v̄m+1, vj, y>m+1

t )
]
.

Thus,

wt+1(αt, kt, vj, y>m+1
t ) − wt+1(αt, kt, vi, vj, y>m+1

t )

is the sum of three differences. The first is the expected gain in social welfare when increasing i’s

value from vi to v̄. The second is the expected gain in social welfare (when i is not on the market)

from increasing j’s value from vj to vi. Finally, the third difference is the expected loss in social

welfare (when j is not present) from decreasing i’s value from v̄ to vi. However, since vj < vi, the

presence or absence of j from the market has no influence on when the efficient policy allocates to

i, regardless of whether i’s value is vi or v̄. Therefore, the gain from the first difference equals the

loss from the third difference, implying that

wt+1(αt, kt, vj, y>m+1
t ) − wt+1(αt, kt, vi, vj, y>m+1

t )

= δ
(

E

[
W−i(α−i

t+1, kt+1, vt+1)|vt = (v̄m, vi, vj, y>m+1
t )

]

− E

[
W−i(α−i

t+1, kt+1, vt+1)|vt = (v̄m, vi, vi, y>m+1
t )

])
.
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Moreover, by (again) naïvely treating buyer j as though her true value were vi, we can provide a

bound on the difference above, which may be used to show that

β̂t
m,nt

(αt, kt, vi, vj, y>m+1
t ) − β̂t

m+1,nt
(αt, kt, vj, y>m+1

t ) > 0.

Thus, the exit of the buyer with rank (m + 1) does not induce the immediate exit of any buyer

with a higher value. Therefore, since β̂t
m,nt

(αt, kt, vi, vj, y>m+1
t ) is strictly increasing in vi, the price

at which this exit occurs fully reveals the value of the (m + 1)-th highest-ranked buyer.

Since m was arbitrarily chosen, this implies that the drop-out points of buyers bidding accord-

ing to the strategy described by Equation (3) are fully revealing of the buyers’ values. �

Proof of Proposition 2. Fix an arbitrary period t ∈ N0, and let kt denote the number of objects

present, and nt := |At| denote the number of agents present. As discussed above, the bidding

strategies β̂t
m,nt

are strictly increasing; therefore, the multi-unit uniform-price ascending auction

ends allocates the kt objects to the group of buyers with the kt highest values. Recall that if kt ≥ nt,

the auction ends immediately, and all buyers present receive an object for free. Similarly, in the

dynamic pivot mechanism, each buyer i receives an object, and makes a payment p̂F
i,t given by

p̂F
i,t(αt, kt, vt) = vi − wF

i (αt, kt, vt),

where wF
i is the agent’s marginal contribution to the social welfare.18 However, since there are

sufficient objects present for each agent to receive one, i does not impose any externalities on the

remaining agents; thus,

wF
i (αt, kt, vt) = wi(αt, kt, vt) = vi,

implying that p̂F
i,t(αt, kt, vt) = 0. In this case, then, the allocation and payments of the auction

mechanism and the dynamic pivot mechanism are the same.

Suppose instead that kt < nt; that is, there are more agents present than objects. Denote by im

the bidder with the m-th highest value. Then each agent who receives an object pays the price at

which buyer ikt+1 drops out of the auction, which is given by

β̂t
kt+1,nt

(αt, kt, vikt+1
, . . . , vint

) = vikt+1
− wt+1(αt, kt, vikt+1

, . . . , vint
).

In the dynamic pivot mechanism, on the other hand, each agent i who receives an object pays a

price

p̂F
i,t(αt, kt, vt) = vi − wF

i (αt, kt, vt)

= vi − E

[
∞

∑
s=t

∑
j∈I

δs−t x̂j,s(αs, ks, vs)vj

]
+ E




∞

∑
s=t

∑
j∈I\{i}

δs−t x̂j,s(α−i
s , ks, vs)vj




= vi −

(
kt

∑
m=1

vm + E

[
∞

∑
s=t+1

∑
j∈I

δs−t x̂j,s(αs, ks, vs)vj

])

+

(
kt

∑
m=1

vm + (vikt+1
− vi) + E

[
∞

∑
s=t+1

∑
j∈I

δs−t x̂j,s(α
−i,−ikt+1
s , ks, vs)vj

])
.

18Note that since i is receiving an object, her total and flow marginal contributions are equal.
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Rearranging and rewriting this expression yields

p̂F
i,t(αt, kt, vt) = vikt+1

− E

[
∞

∑
s=t+1

∑
j∈I

δs−t x̂j,s(αs, ks, vs)vj

]

+ E

[
∞

∑
s=t+1

∑
j∈I

δs−t x̂j,s(α
−i,−ikt+1
s , ks, vs)vj

]

= vikt+1
− wt+1(αt, kt, vikt+1

, . . . , vint
),

where the second equality follows from the fact that wt+1(αt, kt, vikt+1
, . . . , vint

) is defined to be the

expected future marginal contribution of the agent with the (kt + 1)-th highest value, conditional

on agents with higher values (which includes i) receiving an object today.

Thus, following the bidding strategies β̂t
m,nt

leads to period-t prices and allocations identical to

those of the dynamic pivot mechanism. Since the period t was arbitrary, as was the state (αt, kt),

this equivalence holds after each history. Thus, the two mechanisms are outcome equivalent. �

Proof of Proposition 3. We prove this proposition by making use of the one-shot deviation principle.

Consider any period with nt := |At| buyers on the market and kt objects present. Suppose that all

bidders other than player i are using the conjectured equilibrium strategies. We must show that

bidder i has no profitable one-shot deviations from the collection of cutoff points {β̂t
m,nt

}. More

specifically, we must show that i does not wish to exit the auction earlier than prescribed, nor does

she wish to remain active later than specified.

Once again labeling agents such that buyer i1 has the highest value and buyer int has the lowest,

note that if vi < vikt
, bidding according to {β̂t

m,nt
} implies that i does not win an object in the

current period. Therefore, exiting earlier than specified does not affect i’s current-period returns.

Moreover, since the bidding strategies are memoryless, neither future behavior by i’s competitors

nor i’s future payoffs will be affected by an early exit. Suppose, on the other hand, that i has

one of the kt highest values; that is, that vi ≥ vikt
. As established by Proposition 2, i receives

an object, paying a price such that her payoff is exactly equal to her marginal contribution to the

social welfare. Deviating to an early exit, however, leads to agent ikt+1 winning an object instead

of buyer i. Moreover, i’s expected payoff is then wt+1(αt, kt, vi, vikt+2
, . . . , vint

), which we defined as

i’s future expected marginal contribution. This is a profitable one-shot deviation for i if, and only

if,

wt+1(αt, kt, vi, vikt+2
, . . . , vint

) ≥ vi − β̂t
kt,nt

(αt, kt, vikt+1
, . . . , vint

).

Rearranging this inequality yields

β̂t
kt,nt

(αt, kt, vikt+1
, . . . , vint

) ≥ vi − wt+1(αt, kt, vi, vikt+2
, . . . , vint

) = β̂t
kt,nt

(αt, kt, vi, vikt+2
, . . . , vint

),

where the equality comes from the definition of β̂t
kt,nt

in Equation (3). Since vi > vikt+1
, this contra-

dicts the conclusion of Lemma 3. Thus, i does not wish to exit the auction early.

Alternately, if vi ≥ vikt
, then planning to remain active in the auction longer than specified does

not change i’s payoffs, as i will win an object regardless. If, on the other hand, vi < vikt
, then

delaying exit from the period-t auction can affect i’s payoffs. Since bids in future periods do not
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depend on information revealed in the current period, this only occurs if i remains in the auction

long enough to win an object. If i wins, she pays a price equal to the exit point of ivkt
, whereas if

she exits, she receives as her continuation payoff her marginal contribution to the social welfare.

So, suppose that i = im for some m > kt. Then a deviation to remaining active in the auction is

profitable if, and only if,

vm − β̂t
kt,nt

(αt, kt, vikt
, . . . , vim−1 , vm+1, . . . , vint

) ≥ wt+1(αt, kt, vm, . . . , vint
).

Rearranging this inequality yields

β̂t
kt,nt

(αt, kt, vikt
, . . . , vim−1 , vm+1, . . . , vint

) ≤ vm − wt+1(αt, kt, vm, . . . , vint
)

= β̂t
m−1,nt

(αt, kt, vm, . . . , vint
),

where the equality comes from the definition of β̂t
m−1,nt

in Equation (3). As above, the fact that

vm < vikt
contradicts the conclusion of Lemma 3. Therefore, i does not desire to remain active in

the auction long enough to receive an object.

Thus, we have shown that no player has any incentive to deviate from the prescribed strategies

when on the equilibrium path. In particular, using the bidding strategies β̂t
m,nt

is sequentially ra-

tional given players’ beliefs along the equilibrium path. Recall, however, that we have specified

off-equilibrium beliefs such that buyers “ignore” their past observations when they observe a de-

viation from equilibrium play, updating their beliefs to place full probability on the valuation that

rationalizes the deviation; they believe that the deviating agent is currently being truthful with re-

gards to the strategies β̂t
m,nt

. The argument above then implies that continuing to bid according to

the specified strategies remains sequentially rational with respect to these updated beliefs. Thus,

bidding according to the cutoffs in Equation (3) is optimal along the entire game tree: this strategy

profile forms a perfect Bayesian equilibrium of the sequential ascending auction mechanism. �

Proof of Proposition 4. As discussed above, q̃i(vi, αt, kt), the discounted expected probability of re-

ceiving an object under the revenue-maximizing allocation policy, is nondecreasing in vi, implying

that the virtual VCG mechanism is incentive compatible. To see that it is individually rational, note

that the expected utility from participating in the mechanism of an agent i with value vi = 0 is

Ûi(0, αt, kt) = −m̃i(0, αt, kt) = E [w̃i(αt, kt, vt)|vi = 0] ,

where the expectation is taken with respect to the values of agents j ∈ At \ {i}. However, since

ϕi(0) = −
1

fi(0)
< 0,

the revenue-maximizing allocation rule never allocates an object to agent i. Therefore, the optimal

policy yields exactly the same outcome whether or not i is present, implying that w̃i = 0 regardless

of the realizations of other buyers’ values. Thus, by Lemma 1, M̂ is individually rational.

In order to show that truth-telling is a dominant strategy for all agents, fix an arbitrary agent

i ∈ It for arbitrary t ∈ N0, and suppose that all agents other than i report values v−i ∈ ×j 6=iV,

which need not be truthful. Then, by reporting a value v′i upon her arrival in state (αt, kt), agent
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i’s payoff under the virtual VCG mechanism is

E

[
∞

∑
s=t

x̃i,s(αs, ks, (v′i, v−i))

]
(vi − v′i) + w̃i(αt, kt, (v′i, v−i))

= E

[
∞

∑
s=t

∑
j∈I

δs−t x̃j,s(αs, ks, (v′i, v−i))
(

ϕ−1
i (ϕj(vj)) − r̃i

)]
− Πi

−i(α−i
t , kt, v−i).

Since x̃ is an efficient policy for maximizing the above sum of “transformed” virtual values, the

first term above is maximized by setting v′i = vi. Moreover, the second term does not depend on

v′i. Hence, i’s expected payoff is maximized by truthful reporting of her value, regardless of the

reports of the other agents or the state upon i’s arrival; that is, truth-telling is a dominant strategy

in the virtual Vickrey-Clarke-Groves mechanism. �

Proof of Proposition 5. The proof of this proposition parallels the developments of Section 5. In

particular, we will first show that bids are monotone and fully revealing, as in Lemma 3. Then,

we will show that following the postulated bidding strategies leads to an identical outcome as the

dynamic virtual pivot mechanism in a manner similar to the proof of Proposition 2. Finally, we

will, analogously to Proposition 3, show that these strategies do, in fact, form a perfect Bayesian

equilibrium of the sequential auction mechanism.

CLAIM. The bid functions β̃t
m,nt

(αt, kt, vi, y>m
t ) are increasing in vi for all m = 1, . . . , nt − 1. Moreover,

if vi > ym+1
t , then

β̃t
m,nt

(αt, kt, vi, y>m
t ) > β̃t

m+1,nt
(αt, kt, y>m

t ).

Proof. Fix an arbitrary period t ∈ N0, and let αt and kt indicate the set of agents and objects present

on the market, respectively. Consider an agent i ∈ At with value vi, and suppose that nt − m − 1

buyers have dropped out of the period-t auction, revealing values y>m
t , where nt := |At| is the

number of agents present, and m ∈ {1, . . . , nt − 1}. We wish to show first that vi > vj > ym+1
t

implies that

β̃t
m,nt

(αt, kt, vi, y>m
t ) := vi − w̃t+1(αt, kt, vi, y>m

t )

> vj − w̃t+1(αt, kt, vj, y>m
t ) =: β̃t

m,nt
(αt, kt, vj, y>m

t ).

Notice that

w̃t+1(αt, kt, vj, y>m
t ) − w̃t+1(αt, kt, vi, y>m

t )

= δE

[
Π(αt+1, kt+1, vt+1)|vt = (v̄nt−m, vj, y>m

t )
]
− δE

[
Π−j(α

−j
t+1, kt+1, vt+1)|vt = (v̄nt−m, vj, y>m

t )
]

− δE

[
Π(αt+1, kt+1, vt+1)|vt = (v̄nt−m, vi, y>m

t )
]
+ δE

[
Π−i(α−i

t+1, kt+1, vt+1)|vt = (v̄nt−m, vi, y>m
t )

]

= δE

[
Π(αt+1, kt+1, vt+1)|vt = (v̄nt−m, vj, y>m

t )
]
− δE

[
Π(αt+1, kt+1, vt+1)|vt = (v̄nt−m, vi, y>m

t )
]
,

since removing either i or j in the following period, conditional on their being the m-th highest-

ranked agent, does not differentially affect the order of anticipated future allocations to any other

agents. In particular, since the the revenue-maximizing allocation rule x̃ makes assignments based
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solely on the ranking of valuations, it will choose the same assignments in future periods when i

or j have been removed from the market.

Moreover, by naïvely treating buyer j as though her true value were vi, we can provide a bound

on the difference above. In particular, we have

δE

[
Π(αt+1, kt+1, vt+1)|vt = (v̄nt−m, vj, y>m

t )
]

≥ δE

[
Π(αt+1, kt+1, vt+1)|vt = (v̄nt−m, vi, y>m

t )
]

+ E

[
∞

∑
s=t+1

δs−t x̃i,s(αs, ks, vs)|vt = (v̄nt−m, vi, y>m
t )

]
(vj − vi).

Thus, if vi > vj, then

β̃t
m,nt

(αt, kt, vi, y>m
t ) − β̃t

m,nt
(αt, kt, vi, y>m

t )

≥ (vi − vj)

(
1 − E

[
∞

∑
s=t+1

δs−t x̃i,s(αs, ks, vs)|vt = (v̄m, vi, y>m
t )

])
> 0

since the discounted expected probability of receiving an object in the future is bounded above by

δ < 1. Thus, β̃t
m,nt

(αt, kt, vi, y>m
t ) is strictly increasing in vi.

Additionally, note that if vi > vj = ym+1
t , then

w̃t+1(αt, kt, vj, y>m+1
t ) − w̃t+1(αt, kt, vi, vj, y>m+1

t )

= δ
(

E

[
Π(αt+1, kt+1, vt+1)|vt = (v̄m+1, vj, y>m+1

t )
]

− E

[
Π(αt+1, kt+1, vt+1)|vt = (v̄m, vi, vj, y>m+1

t )
])

− δ
(

E

[
Π−i(α−i

t+1, kt+1, vt+1)|vt = (v̄m, vi, vj, y>m+1
t )

]

− E

[
Π−j(α

−j
t+1, kt+1, vt+1)|vt = (v̄m+1, vj, y>m+1

t )
])

.

However, the second difference above may be rewritten as

E

[
Π−i(α−i

t+1, kt+1, vt+1)|vt = (v̄m, vi, vj, y>m+1
t )

]

− E

[
Π−i(α−i

t+1, kt+1, vt+1)|vt = (v̄m, vi, vi, y>m+1
t )

]

+ E

[
Π−i(α−i

t+1, kt+1, vt+1)|vt = (v̄m, vi, vi, y>m+1
t )

]

− E

[
Π−j(α

−j
t+1, kt+1, vt+1)|vt = (v̄m+1, vj, y>m+1

t )
]
.

Thus,

w̃t+1(αt, kt, vj, y>m+1
t ) − w̃t+1(αt, kt, vi, vj, y>m+1

t )

is the sum of three differences. The first is the expected gain in virtual surplus when increasing i’s

value from vi to v̄. The second is the expected gain in virtual surplus (when i is not on the market)

from increasing j’s value from vj to vi. Finally, the third difference is the expected loss in virtual

surplus (when j is not present) from decreasing i’s value from v̄ to vi. However, since vj < vi,
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the presence or absence of j from the market has no influence on when the optimal (revenue-

maximizing) policy allocates to i, regardless of whether i’s value is vi or v̄. Therefore, the gain

from the first difference equals the loss from the third difference, implying that

w̃t+1(αt, kt, vj, y>m+1
t ) − w̃t+1(αt, kt, vi, vj, y>m+1

t )

= δ
(

E

[
Π−i(α−i

t+1, kt+1, vt+1)|vt = (v̄m, vi, vj, y>m+1
t )

]

− E

[
Π−i(α−i

t+1, kt+1, vt+1)|vt = (v̄m, vi, vi, y>m+1
t )

])
.

Moreover, by (again) naïvely treating buyer j as though her true value were vi, we can provide a

bound on the difference above, which may be used to show that

β̃t
m,nt

(αt, kt, vi, vj, y>m+1
t ) − β̃t

m+1,nt
(αt, kt, vj, y>m+1

t ) > 0.

Thus, the exit of the buyer with rank (m + 1) does not induce the immediate exit of any buyer

with a higher value. Therefore, since β̃t
m,nt

(αt, kt, vi, vj, y>m+1
t ) is strictly increasing in vi, the price

at which this exit occurs fully reveals the value of the (m + 1)-th highest-ranked buyer.

Since m was arbitrarily chosen, this implies that the drop-out points of buyers bidding accord-

ing to the strategy described by Equation (6) are fully revealing of the buyers’ values. �

CLAIM. Following the bidding strategies β̃t
m,nt

in every period t in the sequential ascending auction mech-

anism is outcome equivalent to the dynamic virtual pivot mechanism.

Proof. Fix an arbitrary period t ∈ N0, and let kt denote the number of objects present, and nt :=

|At| denote the number of agents present. As shown above, the bidding strategies β̃t
m,nt

are strictly

increasing; therefore, the multi-unit uniform-price ascending auction ends allocates the kt objects

to the group of buyers with the kt highest values greater than the reserve.19 Recall that if kt ≥ nt,

the auction ends immediately upon the price reaching the reserve value r̃, and all buyers present

receive an object at that price. Similarly, in the dynamic virtual pivot mechanism, each buyer i

with vi > r̃ receives an object, and makes a payment p̃F
i,t given by

p̃F
i,t(αt, kt, vt) = vi − w̃F

i (αt, kt, vt),

where w̃F
i is the agent’s marginal contribution to the virtual surplus.20 However, since there are

sufficient objects present for each agent with a non-negative virtual value to receive one, i does

not impose any externalities on the remaining agents; thus,

w̃F
i (αt, kt, vt) = w̃i(αt, kt, vt) = vi − r̃,

implying that p̃F
i,t(αt, kt, vt) = r̃. In this case, then, the allocation and payments of the auction

mechanism and the dynamic pivot mechanism are the same.

Suppose instead that kt < nt; that is, there are more agents present than objects. Denote by im

the bidder with the m-th highest value. Then each agent who receives an object pays the greater

19Recall that buyers with values less than r̃ bid up to their true value, as they are never allocated an object, and so their
future expected contribution to the virtual surplus is zero.
20Note that since i is receiving an object, her total and flow marginal contributions are equal.
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of the reserve price r̃ and the price at which buyer ikt+1 drops out of the auction, which is given by

β̂t
kt+1,nt

(αt, kt, vikt+1
, . . . , vint

) = vikt+1
− wt+1(αt, kt, vikt+1

, . . . , vint
).

If vikt+1
< r̃, then the situation is identical to the previous case. Therefore, assume that vikt+1

≥ r̃.

In the dynamic virtual pivot mechanism, on the other hand, each agent i who receives an object

pays a price

p̃F
i,t(αt, kt, vt) = vi − wF

i (αt, kt, vt)

= vi − E

[
∞

∑
s=t

∑
j∈I

δs−t x̃j,s(αs, ks, vs)(vj − r̃)

]

+ E




∞

∑
s=t

∑
j∈I\{i}

δs−t x̃j,s(α−i
s , ks, vs)(vj − r̃)




= vi −

(
kt

∑
m=1

(vm − r̃) + E

[
∞

∑
s=t+1

∑
j∈I

δs−t x̃j,s(αs, ks, vs)(vj − r̃)

])

+

(
kt

∑
m=1

(vm − r̃) + (vikt+1
− vi) + E

[
∞

∑
s=t+1

∑
j∈I

δs−t x̃j,s(α
−i,−ikt+1
s , ks, vs)(vj − r̃)

])
.

Rearranging the above expression allows us to rewrite it as

p̃F
i,t(αt, kt, vt) = vikt+1

− E

[
∞

∑
s=t+1

∑
j∈I

δs−t x̃j,s(αs, ks, vs)(vj − r̃)

]

+ E

[
∞

∑
s=t+1

∑
j∈I

δs−t x̃j,s(α
−i,−ikt+1
s , ks, vs)(vj − r̃)

]

= vikt+1
− w̃t+1(αt, kt, vikt+1

, . . . , vint
),

where the second equality follows from the fact that wt+1(αt, kt, vikt+1
, . . . , vint

) is defined to be

the expected future marginal contribution to the virtual surplus of the agent with the (kt + 1)-

th highest value, conditional on agents with higher values (which includes i) receiving an object

today. Therefore, following the bidding strategies β̃t
m,nt

leads to period-t prices and allocations

identical to those of the dynamic pivot mechanism. Since the period t was arbitrary, as was the

state (αt, kt), this equivalence holds after each history. Thus, the two mechanisms are outcome

equivalent. �

Finally, it remains to be seen that the bidding strategies in Equation (6) do, in fact, form an equi-

librium. As in the case of the sequential ascending auction with no reserve, the bidding strategies

β̃t
m,nt

are strictly increasing. Behavior along the equilibrium path is therefore perfectly separating,

implying that Bayesian updating fully determines beliefs. In order to determine optimality off

the equilibrium path, we again suppose that, after a deviation, buyers ignore their past observa-

tions and the history of the mechanism, and instead believe that the deviating agent is currently

truthfully revealing her value in accordance with the bidding strategies β̃t
m,nt

.
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CLAIM. Suppose that in each period, buyers bid according to the cutoff strategies given in Equation (6).

This strategy profile, combined with the system of beliefs described above, forms a perfect Bayesian equilib-

rium of the sequential ascending auction mechanism with reserve price r̃.

Proof. We prove this claim by making use of the one-shot deviation principle. Consider any period

with nt := |At| buyers on the market and kt objects present. Suppose that all bidders other than

player i are using the conjectured equilibrium strategies. We must show that bidder i has no

profitable one-shot deviations from the collection of cutoff points {β̃t
m,nt

}. More specifically, we

must show that i does not wish to exit the auction earlier than prescribed, nor does she wish to

remain active later than specified.

Once again labeling agents such that buyer i1 has the highest value and buyer int has the lowest,

note that if vi < max{vikt
, r̃}, bidding according to {β̃t

m,nt
} implies that i does not win an object

in the current period. Therefore, exiting earlier than specified does not affect i’s current-period

returns. Moreover, since the bidding strategies are memoryless, neither future behavior by i’s

competitors nor i’s future payoffs will be affected by an early exit. Suppose, on the other hand,

that vi > r̃ and that i has one of the kt highest values; that is, that vi ≥ max{vikt
, r̃}. As established

by Proposition 2, i receives an object, paying a price such that her payoff is exactly equal to her

marginal contribution to the virtual surplus. Deviating to an early exit, however, leads either to

agent ikt+1 winning an object (if vikt+1
≥ r̃) instead of buyer i, or to an object being discarded.

Moreover, i’s expected payoff is then w̃t+1(αt, kt, vi, vikt+2
, . . . , vint

), which we defined as i’s future

expected marginal contribution to the virtual surplus. This is a profitable one-shot deviation for i

if, and only if,

w̃t+1(αt, kt, vi, vikt+2
, . . . , vint

) ≥ vi − β̃t
kt,nt

(αt, kt, vikt+1
, . . . , vint

).

Rearranging this inequality yields

β̃t
kt,nt

(αt, kt, vikt+1
, . . . , vint

) ≥ vi − w̃t+1(αt, kt, vi, vikt+2
, . . . , vint

)

= β̃t
kt,nt

(αt, kt, vi, vikt+2
, . . . , vint

),

where the equality comes from the definition of β̃t
kt,nt

in Equation (6). Since vi > vikt+1
, this contra-

dicts the conclusion of the first claim above. Thus, i does not wish to exit the auction early.

Alternately, if vi ≥ max{vikt
, r̃}, then planning to remain active in the auction longer than

specified does not change i’s payoffs, as i will win an object regardless. If, on the other hand,

vi < max{vikt
, r̃}, then delaying exit from the period-t auction can affect i’s payoffs. Since bids

in future periods do not depend on information revealed in the current period, this only occurs

if i remains in the auction long enough to win an object. If i wins, she pays a price equal to the

larger of r̃ and the exit point of ivkt
, whereas if she exits, she receives as her continuation payoff

her marginal contribution to the virtual surplus. So, suppose that i = im for some m > kt. Then a

deviation to remaining active in the auction is profitable if, and only if,

vm − β̃t
kt,nt

(αt, kt, vikt
, . . . , vim−1 , vm+1, . . . , vint

) ≥ w̃t+1(αt, kt, vm, . . . , vint
).
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Rearranging this inequality yields

β̃t
kt,nt

(αt, kt, vikt
, . . . , vim−1 , vm+1, . . . , vint

) ≤ vm − w̃t+1(αt, kt, vm, . . . , vint
)

= β̃t
m−1,nt

(αt, kt, vm, . . . , vint
),

where the equality comes from the definition of β̃t
m−1,nt

in Equation (6). As above, the fact that

vm < vikt
contradicts the conclusion of the claim above regarding the monotonicity of bids. There-

fore, i does not desire to remain active in the auction long enough to receive an object.

Thus, we have shown that no player has any incentive to deviate from the prescribed strategies

when on the equilibrium path. In particular, using the bidding strategies β̃t
m,nt

is sequentially ra-

tional given players’ beliefs along the equilibrium path. Recall, however, that we have specified

off-equilibrium beliefs such that buyers “ignore” their past observations when they observe a de-

viation from equilibrium play, updating their beliefs to place full probability on the valuation that

rationalizes the deviation; they believe that the deviating agent is currently being truthful with re-

gards to the strategies β̃t
m,nt

. The argument above then implies that continuing to bid according to

the specified strategies remains sequentially rational with respect to these updated beliefs. Thus,

bidding according to the cutoffs in Equation (6) is optimal along the entire game tree: this strategy

profile forms a perfect Bayesian equilibrium of the sequential ascending auction mechanism. �

Thus, bidding in each period according to the strategy described in Equation (6) forms a per-

fect Bayesian equilibrium of the sequential ascending auction with reserve price r̃; moreover, this

equilibrium is outcome equivalent to the dynamic virtual pivot mechanism. �
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APPENDIX B. AN ILLUSTRATIVE EXAMPLE:

SUPPORTING RESULTS

In this appendix, we formally state and prove two results relating to the example in Section 3.

The first characterizes the social planner’s payoff function from following the efficient policy x̂ in

a setting where there is exactly one object available in each period and at most one new entrant

arrives in each period (with probability ρ ∈ [0, 1]). Before we can prove the result, however,

we require the following technical lemma. Denote by C(Vn) the set of continuous real-valued

functions on Vn. In addition, for any k < n, let Ck(Vn) ⊆ C(Vn) denote the subset of such

functions that do not depend on their first k arguments. We endow C(Vn) with the sup-metric d∞,

where

d∞( f , g) := sup {| f (x) − g(x)| : x ∈ Vn} for all f , g ∈ C(Vn).

This implies that C(Vn) is a complete metric space.

LEMMA B.1 (Ck(Vn) is closed).

For any k ≤ n, Ck(Vn) is a closed subset of C(Vn).

Proof. Fix any convergent sequence { fm}∞
m=1 in C(Vn) such that fm ∈ Ck(Vn) for all m ∈ N, and

let f ∗ ∈ C(Vn) denote the (uniform) limit of this sequence. Suppose, however, that f ∗ /∈ Ck(Vn).

Then there exist x, y ∈ Vn such that xi = yi for i = k + 1, k + 2, . . . , n, but f ∗(x) 6= f ∗(y). Let

ǫ := | f ∗(x) − f ∗(y)| > 0.

Since fm converges to f ∗, there exists Mx ∈ N such that | fm(x) − f ∗(x)| <
ǫ
2 for all m > Mx.

Similarly, there exists My ∈ N such that | fm(y) − f ∗(y)| <
ǫ
2 for all m > My. Therefore, for any

m > max{Mx, My},

ǫ = | f ∗(x) − f ∗(y)| ≤ | f ∗(x) − fm(x)| + | fm(x) − fm(y)| + | fm(y) − f ∗(y)|

<
ǫ

2
+ 0 +

ǫ

2
= ǫ,

a contradiction. The first inequality above follows from the triangle inequality, and the second is

due to the fact that fm ∈ Ck(Vn) implies fm(x) = fm(y). Therefore, we must have f ∗(x) = f ∗(y);

that is, there are no x, y ∈ Vn such that x and y agree on their last n − k arguments but f ∗(x) 6=

f ∗(y). Thus, we may conclude that f ∗ ∈ Ck(Vn). �

Define W0 to be the expected value to the social planner when there are no buyers present on

the market. Then

W0 = δ

[
(1 − ρ)W0 + ρ

∫ v̄

0
(v′ + W0) dF(v′)

]
=

δρ

1 − δ

∫ v̄

0
v′ dF(v′).

We now denote by Wn(v1, . . . , vn) the expected value to the social planner when there are n buyers

with values v1 > · · · > vn.

LEMMA B.2 (Characterization of Wn).

The planner’s expected payoff from implementing the efficient policy x̂ when there are n buyers present with
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values v1 > · · · > vn is given by

Wn(v1, . . . , vn) = W0 +
n

∑
j=1

δj−1
∫ vj

0
λj−1(v′) dv′,

where λ(v′) := 1−δ(1−F(v′))
1−δρ(1−F(v′))

.

Proof. We begin by showing that W1 has the desired form and then proceed inductively. Note that

W1 is a fixed point of the operator T̂1 : C(V) → C(V) defined by

[T̂(g)](x) := x + δ

[
(1 − ρ)W0 + ρ

∫ v̄

0
g(y) dF(y)

]
.

This operator is clearly a self-map from C(V) into itself. Furthermore, it is straightforward to see

that T̂1 is a contraction. Fix any g, g′ ∈ C(V) such that g′ > g. Then

[T̂1(g′ − g)](x) = δρ

[∫ v̄

0
(g′(y) − g(y)) dF(y)

]
> 0.

Furthermore, for any g ∈ C(V) and any α ∈ R++,

[T̂1(g + α)](x) = [T̂1(g)](x) + δρα.

Since δρ < 1, we may apply Blackwell’s Contraction Lemma and the Banach Fixed Point Theo-

rem.21 These imply that T̂1 has a unique fixed point W1 such that

W1(v1) = v1 + δ

[
(1 − ρ)W0 + ρ

∫ v̄

0
W1(v′) dF(v′)

]
.

Differentiating this expression with respect to v1 yields

W ′
1(v1) = 1.

Finally, note that W1(0) = W0, since a buyer with value zero adds nothing to the social welfare.

Since the continuity of F implies the continuity of W ′
1, we may apply the Fundamental Theorem

of Calculus, yielding

W1(v1) = W0 + v1 = W0 + δ0
∫ v1

0
λ0(v′) dv′.

Now consider Wn(v1, . . . , vn) for arbitrary n > 1, and suppose that Wn−1 takes the desired

form.22 Wn is defined to be a fixed point of the operator T̂n : C(Vn) → C(Vn) given by

[T̂n(g)](x1, . . . , xn) := x1 + δ(1 − ρ)Wn−1(x−1)

+ δρ

[ n−2

∑
j=0

∫ xn−j

xn−j+1

g(x2, . . . , xn−j, y, xn−j+1, . . . , xn) dF(y) +
∫ v̄

x2

g(y, x−1) dF(y)

]
.

Note that for any g, g′ ∈ C(Vn), [T̂n(g′ − g)](x) is given by

δρ

[ n−2

∑
j=0

∫ xn−j

xn−j+1

[g′ − g](x2, . . . , xn−j, y, xn−j+1, . . . , xn) dF(y) +
∫ v̄

x2

[g′ − g](y, x−1) dF(y)

]
.

21See Section C.6 of Ok (2007) for precise statements of the results we are applying.
22Notice that this implies that all of the cross-derivatives of Wn−1 are identically zero.
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If g′ > g, then this expression is strictly positive. Furthermore, for any g ∈ C(Vn) and any

α ∈ R++,

[T̂n(g + α)](x) = [T̂n(g)](x) + δqα.

Since δq < 1, Blackwell’s monotonicity and discounting conditions are satisfied. Thus, Blackwell’s

Contraction Lemma and the Banach Fixed Point Theorem imply that T̂n has a unique fixed point

Wn such that

Wn(v1, . . . , vn) = x1 + δ(1 − ρ)Wn−1(v−1)

+ δρ

[ n−2

∑
j=0

∫ vn−j

vn−j+1

Wn(v2, . . . , vn−j, v′, vn−j+1, . . . , vn)) dF(v′) +
∫ v̄

v2

Wn(v′, v−1) dF(v′)

]
.

Differentiating this expression implicitly with respect to v1 yields

W
(1)
n (v1, . . . , vn) = 1 = δ0λ0(v1).

Note that this expression is independent of n and of vj for j 6= 1, implying that W
(1,j)
n is identically

zero for all j 6= 1.

Similarly, implicit differentiation with respect to v2 yields

W
(2)
n (v1, . . . , vn) = δ(1 − ρ)W

(1)
n−1(v−1)

+ δρ

[ n−2

∑
j=0

∫ vn−j

vn−j+1

W
(1)
n (v2, . . . , v′, . . . , vn) dF(v′) +

∫ v̄

v2

W
(2)
n (v′, v−1) dF(v′)

]
.

Since W
(1,j)
n is identically zero,

n−2

∑
j=0

∫ vn−j

vn−j+1

W
(1)
n (v2, . . . , v′, . . . , vn) dF(v′) = F(v2).

Furthermore, W
(2,1)
n = W

(1,2)
n = 0 implies that
∫ v̄

v2

W
(2)
n (v′, v−1) dF(v′) = (1 − F(v2))W

(2)
n (v1, v−1)

Thus, making use of the inductive hypothesis that W
(1)
n−1(v−1) = 1, we may conclude that

W
(2)
n (v1, . . . , vn) = δ(1 − ρ) + δρF(v2) + δρ(1 − F(v2))W

(2)
n (v1, . . . , vn) = δλ(v2).

Once again, note that this expression is independent of n and of vj for any j 6= 2, implying that

W
(2,j)
n is identically zero for all j 6= 2.

Proceeding inductively, consider the derivative of Wn with respect to its k-th argument, where

k ≤ n. We have

W
(k)
n (v1, . . . , vn) = δ(1 − ρ)W

(k−1)
n−1 (v−1) + δρ

[ n−k

∑
j=0

∫ vn−j

vn−j+1

W
(k−1)
n (v2, . . . , v′, . . . , vn) dF(v′)

+
n−1

∑
j=n−k+1

∫ vn−j

vn−j+1

W
(k)
n (v2, . . . , v′, . . . , vn) dF(v′) +

∫ v̄

v2

W
(k)
n (v′, v−1)

]
.
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Applying the same simplifications as above, along with our inductive hypothesis that W
(k−1)
n−1 (v−1) =

δk−2λk−2(vk), we have

W
(k)
n (v1, . . . , vn) = δ(1 − ρ)W

(k−1)
n−1 (v−1) + δρF(vk)W

(k−1)
n−1 (v−1) + δρ(1 − F(vk))W

(k)
n (v1, . . . , vn)

= δk−1λk−1(vk).

Finally, note that Wn(0, . . . , 0) = W0 since, as with a single buyer with value zero, “null” agents

provide no social benefit. By induction on n, we may then conclude that

Wn(v1, . . . , vn) = W0 +
n

∑
j=1

δj−1
∫ vj

0
λj−1(v′) dv′

for all n ∈ N and all (v1, . . . , vn) ∈ Vn. �

The second result we wish to show in this appendix is a characterization of the discounted

expectation of buyer 2’s future marginal contribution to the social welfare. In order to do so, we

make use of the following lemma.

LEMMA B.3.

Suppose that, prior to the potential entry of a new agent, there are n buyers present with values v1 > · · · >

vn, and that the planner is using the efficient allocation rule x̂. Then the planner’s expected payoff is given

by
ρ

1 − δ

∫ v̄

0
v′ dF(v′) +

n

∑
j=1

δj−1
∫ vj

0
λj(v′) dv′.

Proof. Recall that a new entrant arrives with probability ρ ∈ [0, 1], and that there is always a single

object available to be allocated. Therefore, applying Lemma B.2, the planner’s expected payoff

when entering a period with n buyers whose values are v1 > · · · > vn is, letting v0 := v̄ and

vn+1 := 0,

(1 − ρ)Wn(v1, . . . , vn) + ρ
n

∑
k=0

∫ vk

vk+1

Wn+1(v1, . . . , v′, . . . , vn) dF(v′)

= W0 + (1 − ρ)
n

∑
j=1

δj−1
∫ vj

0
λj−1(z) dz

+ ρ
n

∑
k=0

∫ vk

vk+1

(
k

∑
j=1

δj−1
∫ vj

0
λj−1(z) dz + δk

∫ v′

0
λk(z) dz +

n

∑
j=k+1

δj
∫ vj

0
λj(z) dz

)
dF(v′)

= W0 + (1 − ρ)
n

∑
j=1

δj−1
∫ vj

0
λj−1(z) dz

+ ρ
n

∑
j=1

[
δj−1F(vj)

∫ vj

0
λj−1(z) dz + δj(1 − F(vj))

∫ vj

0
λj(z) dz

]

+ ρ
n

∑
k=0

[
δk
∫ vk

0
(F(vk) − F(z))λk(z) dz − δk

∫ vk+1

0
(F(vk+1) − F(z))λk(z) dz

]
,
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where the final equality follows from interchanging the orders of summation and integration.

Combining terms and rewriting this expression yields

W0 + ρ
∫ v̄

0
(1 − F(z)) dz +

n

∑
j=1

∫ vj

0

(
(1 − ρ(1 − F(z)))δj−1λj−1(z) + ρ(1 − F(z))δjλj(z)

)
dz.

Note, however, that

(1 − ρ(1 − F(z)))δj−1λj−1(z) + ρ(1 − F(z))δjλj(z)

= δj−1λj−1(z) [(1 − ρ(1 − F(z))) + δρ(1 − F(z))λ(z)]

= δj−1λj−1(z) [(1 − δρ(1 − F(z))λ(z) + δρ(1 − F(z))λ(z)] = δj−1λj(z).

Therefore, the planner’s expected payoff is given by

ρ

1 − δ

∫ v̄

0
v′ dF(v′) +

n

∑
j=1

δj−1
∫ vj

0
λj(v′) dv′. �

With this result in hand, it is a matter of straightforward subtraction in order to determine that

the discounted expectation of buyer 2’s future marginal contribution to the social welfare is given

by
n

∑
j=1

δj−1
∫ vj

0
λj−1(v′) dv′,

as i2 is the highest-ranking buyer entering the next period.
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