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Abstract

This note is concerned with the spectral properties of matrices associated with linear

smoothers. We derive analytical results on the eigenvalues and eigenvectors of smoothing ma-

trices by interpreting the latter as perturbations of matrices belonging to algebras with known

spectral properties, such as the Circulant and the generalised Tau. These results are used to

characterise the properties of a smoother in terms of an approximate eigen-decomposition of

the associated smoothing matrix.
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1 Introduction and motivations

This note is concerned with linear smoothers that provide the estimator of a signal, ŷ, as linear

combinations of the observations:

ŷ = Sy. (1)

Here S is the n×n smoothing matrix associated with the filter and y is an n×1 vector of observed

values.

The rows of S define the equivalent kernel of the smoother and arise from a number of both

parametric and nonparametric approaches: (i) local polynomial regression (see Fan and Gjbels,

1996); (ii) filtering with low-pass filters designed in the frequency domain (see for instance Bax-

ter and King, 1999, and Christiano and Fitzgerald, 2003); (iii) wavelet multiresolution analysis

(Percival and Walden, 2000); (iv) penalized least squares (Green and Silverman, 1994); (v) linear

mixed models using parametric representations for the signal (Whittle, 1983).

The eigen-decomposition of S provides a useful characterisation of the properties of a smoother;

see Buja, Hastie and Tibshirani (1989), Hastie and Tibshirani (1990) and Ruppert, Wand and Car-

roll, (2003). In the symmetric case, if S =
∑n

i=1 λiviv
′
i is the spectral decomposition of the

smoothing matrix, where λi are the ordered eigenvalues and vi the corresponding eigenvectors,

we can meaningfully decompose the fit as ŷ =
∑n

i=1 αiλivi, where the eigenvectors vi illustrate



what sequences are preserved or compressed via a scalar multiplication and αi are the specific

coefficients of the projection of y onto the space spanned by the eigenvectors vi, y =
∑n

i=1 αivi.

Moreover, tr(S) =
∑n

i=1 λi provides the number of degrees of freedom of a smoother, which

is a measure of the equivalent number of parameters used to obtain the fit ŷ that allows to compare

alternative filters according to their degree of smoothing. A related notion is that of the rank of a

smoother.

The eigen-decomposition of a smoothing matrix is most informative if the matrix S is sym-

metric. In fact, when this is not the case, the eigenvalues and eigenvectors are complex and the

interpretation of the spectral decomposition is not direct. In the nonsymmetric case Buja, Hastie

and Tibshirani (1989) propose to analyse of the singular value decomposition of S, since the sin-

gular values are always real as they represent the squared root of the eigenvalues of the symmetric

SS′. Nevertheless, the right eigenvectors differ from the left eigenvectors and it is no longer clear

what components are passed through by the filter or compressed.

Symmetric smoothers arise in the context of spline smoothing and from optimal signal extrac-

tion for certain classes of parametric linear mixed models (see e.g. Whittle, 1983). A relevant case

in macroeconomics is the Leser-Hodrick-Prescott filter (see Leser, 1951, Hodrick and Prescott,

1997). However, nonsymmetric smoothing matrices arise in a variety of important contexts as

in local polynomial regression, and more generally, when a finite impulse response (FIR) filter is

designed according to some constructive principle. A common characteristic of the approaches

leading to FIR filters is that a constructive principle (e.g. band–pass filtering, Baxter and King,

1999, Percival and Walden, 2000, or local polynomial reproduction, Fan and Gjibels, 1996, Cleve-

land and Loader, 1996) yields a two–sided filter for the central observations, using a specified

bandwidth. The filter is later adapted to the boundaries and a large literature has been devoted

to the estimation of the signal at the boundaries of the parameter space. The smoothing weights

at the boundary are derived according to some approximation criterion, e.g. truncation, followed

by normalization, or extension of the sequence according to some criterion, such as zero padding,

ARIMA forecasts, etc. (see Proietti and Luati, 2009, for local polynomial regression and Chris-

tiano and Fitzgerald, 2003, for the band-pass filter). All these strategies produce a non symmetric

smoothing matrix S.

In all these instances the structure of S is the following (see Dagum and Luati, 2004):

S =







Sa
(m×2m) O(m×n−2m)

Ss
(n−2m×n)

O(m×n−2m) Sa∗
(m×2m)






(2)

where Ss is the submatrix whose rows are the symmetric filters, while Sa and Sa∗ contain the

asymmetric filters to be applied to the first and last observations, respectively; the number into

parentheses indicate the dimension of the submatrices, where m is the (half) bandwidth of the

filter (e.g. for the Baxter and King filter, m is three years of quarterly or monthly data). Hence,

the smoothing matrix is centrosymmetric, but not symmetric, with the consequence that their

eigenvalues and eigenvectors are complex. Moreover, very little is known about the analytical
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form of such quantities, except that eigenvectors are either symmetric or skew symmetric (Weaver,

1985).

This note analyses the spectral properties of the matrices associated with linear smoothers in

the case when the smoothing matrices are non-symmetric. These matrices can be interpreted

as finite approximations of infinite symmetric banded Toeplitz (SBT) operators. The latter have

been extensively explored, but their finite counterparts subject to boundary conditions are much

more difficult to analyse (see Böttcher and Grudsky, 2005; see also Gray, 2006). The availability

of eigenvalues and eigenvectors in analytical form has many desirable implications. In fact, the

eigenvectors of the local polynomial regression matrices can be interpreted as the latent compo-

nents of any time series that the filter smooths through the corresponding eigenvalues. Hence,

eigenvalue-based inferential procedures can be developed.

2 Main results and discussion

In the ideal case of a doubly infinite sample, the matrix S is a SBT operator whose non null

elements are the Fourier coefficients of the transfer function of the symmetric filter, H(ν) =
∑h

j=−h wje
ıνj , evaluated at the frequency ν, and

lim
n→∞

1

n

n
∑

i=1

λi =
1

2π

∫ 2π

0
H(ν)dν

with λ1 ≤ maxH(ν), λn ≥ minH(ν) (Grenander and Szegö, 1958). The fundamental eigen-

value distribution theorem states that when n → ∞ the spectrum of S is dense on the set of values

assumed by the transfer function of the symmetric filter.

In finite dimension, the analytical form of eigenvalues and eigenvectors is known only for

few classes of matrices, which are the tridiagonal SBT and matrices belonging to some algebras,

namely the Circulant, the Hartley and the generalised Tau. All these matrix algebras are associated

with discrete transforms such as, respectively, the Fourier, the Hartley and the various versions of

the Sine or Cosine; see, respectively, Davis (1979), Bini and Favati (1993), Bozzo and Di Fiore

(1995) and the survey paper by Kailath and Sayed (1995).

By interpreting a smoothing matrix as the sum of a matrix belonging to one of these algebras,

plus a perturbation occurring at the boundaries, approximate results on the eigenvalues of S can

be derived. The size of the perturbation depends on the matrix algebra and on the boundary

conditions.

In our setting, appropriate choices are the Circulant algebra and the so-called Cosine I version

of the Tau algebra (see below), that assume respectively a circular and a reflecting behavior of

the series at the end (and at the beginning) of the sample. Our results will be based on the Tau

algebra, but the methods apply to any of the above mentioned class of matrices. The Tau algebra

has interesting properties that will be discussed in the following section, also in comparison with

those of the Circulant algebra, more popular among statisticians and econometricians (Pollock,

2002).
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2.1 Reflecting boundary conditions

Besides the class of circulant matrices, another class of matrices with known spectral properties

in finite dimension is the τψϕ algebra (Bozzo and Di Fiore, 1995), that is associated with different

versions of the Sine and Cosine transforms and constitutes a generalisation of the τ family (Bini

and Capovani, 1983). An n × n matrix H belongs to the τψϕ class if and only if

TψϕH = HTψϕ,

where

Tψϕ =





















ψ 1 0 · · · 0

1 0 1
. . . 0

0 1
. . .

. . . 0
...

. . .
. . . 0 1

0 . . . 0 1 ϕ





















and ψ,ϕ = 0, 1,−1. The elements hij of the matrices in τψϕ satisfy the cross sum property

hi−1,j + hi+1,j = hi,j−1 + hi,j+1 subject to boundary conditions determined by ψ and ϕ. For the

original τ algebra arising when ψ = ϕ = 0 the boundary conditions are h0j = hi0 = hn+1,j =

hi,n+1 = 0, i, j = 1, ..., n and all the matrices in τ can be then derived given their first row

elements. Still based on the first row of H but more appropriate for our purposes, since it allows

to obtain the eigenvalues and eigenvectors of H ∈ τψϕ in an amenable form, is the following

way to construct H as a linear combination of powers of Tψϕ (see Bini and Capovani, 1983,

Proposition 2.2).

Let h′ = [h11, h12, ..., h1n] be the first row of H. Then

H =

n
∑

j=1

cjT
j−1
ψϕ

where c is the solution of the upper triangular system Qc = h and Q is the matrix whose j-th

column equals the first column of T
j−1
ψϕ . It follows that the eigenvalues of H are given by

ξi =
n

∑

j=1

ϑ
j−1
i cj (3)

where ϑi, i = 1, .., n, are the eigenvalues of Tψϕ. The eigenvectors of H are the same of Tψϕ.

Let us consider the reflecting hypothesis such that the first missing observation is replaced by

the last available observation, the second missing observation is replaced by the previous to the

last observation and so on, that for a two-sided 2m+1-term estimator corresponds to the real time

filter {wm, wm−1 + wm, ..., w1 + w2, w0 + w1}, made of m + 1 terms. With the constraint of

being centrosymmetric, the reflecting matrix H belongs to the τ11 algebra and its first row is the

vector

h′ = [w0 + w1, w1 + w2, w2 + w3, ..., wm−1 + wm, wm, 0, ..., 0] . (4)
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With these premises, we are able to construct H ∈ τ11 associated with the symmetric filter

{w−m, ..., w0, w1, ..., wm}. Given H, we will denote its spectrum by σ(H) and its 2-norm by

‖H‖2 =
√

ρ(H′H) where ρ(H) is the spectral radius of H, which is the maximum modulus of

its eigenvalues. With this notation, we may state the following result where, for sake of notation,

we use the Pochhammer symbol for rising factorial, (j)q = j(j + 1)(j + 2)...(j + q − 1), for

q = 0, . . . ,
⌊

m−j−1
2

⌋

, the latter term denoting the largest integer less than or equal to m−j−1
2 , and

(j)q = 1 for q = 0.

Theorem 1 Let S and H be n × n smoothing matrices associated with the symmetric filter

{w−m, ..., w0, ..., wm}, and let H ∈ τ11. Hence, ∀λ ∈ σ(S), ∃i ∈ {1, 2, .., n} such that

|λ − ξi| ≤ δH

where

ξi =
m+1
∑

j=1

(

2 cos
(i − 1)π

n

)j−1






wj−1 +

⌊m−j−1

2
⌋

∑

q=0

(−1)q+1(j)q

(q + 1)!
(j + 2q + 1)wj+2q+1






(5)

and δH = ‖S − H‖2.

The proof is in the appendix. As a by-product, theorem 1 gives the eigenvalues of H ∈ τ11,

with first row equal to (4), as an explicit function of the filter weights, as shown in (5). The

corresponding eigenvectors are (Bozzo and Di Fiore, 1995):

zi = ki

[

cos
(2j − 1)(i − 1)π

2n

]

j

, j = 1, 2, ..., n (6)

with ki = 1√
2

for i = 1 and ki = 1 for i > 1.

Theorem 1 provides an upper bound to the size of the perturbation of the eigenvalues of S

with respect to those of H, for which an exact analytical expression is available. The quantity

δH measures how much the eigenvalues of a smoothing matrix move away from the eigenvalue

distribution of the corresponding matrix in τ11. The eigenvalue distribution of H can be visualised

as the plot of the eigenvalues (5) against n and provides a discrete approximation to the transfer

function of the symmetric filter. What follows is that δH can be chosen as a measure of how much

the absolute eigenvalues of S deviate from the gain function of the associated filter.

We now discuss the advantages of assuming reflecting rather than circular boundary conditions.

First, all the operators belonging to τ algebras have real eigenvalues and eigenvectors. All the

computations related to this class can therefore be done in real arithmetic. Another important

aspect is that in general Circulant-to-Toeplitz corrections produce perturbations that are not smaller

than Tau-to-Toeplitz corrections, since while H is structured as (2), a circulant matrix has nonzero

corrections in the top right and bottom left m×m blocks. When the elements of the central-block

matrix are the same, this results in a greater perturbation. Finally, H has n distinct eigenvalues

compared to the at most n−1
2 +1 of a circulant matrix and so σ(H) provides a better approximation

to H(ν), ν ∈ (0, π).
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We now consider the eigenvectors. In general, the analytical expression of the eigenvectors of

a smoothing matrix cannot be derived using the perturbation theory, not even in an approximate

form. However, evaluating the action of S on the eigenvectors of H, we are able to show that,

unless for the boundaries, the latent components of S can be fairly approximated by those of

H. In fact, let us decompose the time series y as a linear combination of the n known real and

orthogonal latent components represented by the eigenvectors of H, y = θ1z1 + θ2z2 + ...+ θnzn

where the zi are given by (6) and θ = [θ1, ..., θn]′ is a vector of coefficients. It follows from

theorem 1 that

Sy =
n

∑

i=1

θiξizi +
n

∑

i=1

θi∆Hzi (7)

where ∆Hzi is a vector of zeros except for the first and last m coordinates, i.e. ∆Hzi =
[

z∗
′

i 0′ Ehz
∗′
i

]′
and z∗i =

∑q
j=1(Sij − Hij)zij for q = m + 1, ..., 2m and i = 1, 2, ..., m.

Due to the fact that the elements of both S and H add up to one and their absolute values are in

general smaller than one, the values in z∗i and in Ehz
∗
i are almost zero. This holds for all n > 2m.

As a consequence of (7), the eigenvectors of H can be interpreted as the periodic latent com-

ponents of any time series, that the filter modifies through multiplication by the corresponding

eigenvalues. Specifically, by (5) and (6), (7) can be written as

Sy =
k

∑

i=1

θiξizi +
n

∑

i=k+1

θiξizi +
n

∑

i=1

θi∆Hzi,

i.e. the series y can be decomposed as the sum of k long-period components that the filter leaves

unchanged or smoothly shrinks, and these account for the signal, and n − k high-frequency com-

ponents that will be almost suppressed, and these account for the noise. The choice of k turns out

to be a filter design problem in the time domain. There is a mathematically elegant exact solution,

which occurs if rank(H) = k that is m̂ belongs to the column space C(H) and ε lies in the null

space N (H). In practice, even if many of the eigenvalues are close to zero, H is full rank and

therefore we may only look for an approximate solution that consists of choosing a cut-off time or

a cut-off eigenvalue.

3 Applications

The results of the previous section can be used to provide the eigen-decomposition of the smooth-

ing matrix corresponding to the low-pass Baxter and King filter with cutoff frequency correspond-

ing to 10 years of quarterly data, and to compare it to the Leser-Hodrick-Prescott filter for quarterly

data (smoothing parameter 1600). The eigenvalues ξi are reproduced in the top panel of figure 1,

which are constructed for n = 61. The plot reveals that these are very similar and that only the first

six are relevant to describe the properties of the filters. The corresponding eigenvectors are plot-

ted in the bottom panel. It is also clear from the plot that the Leser-Hodrick-Prescott component

suffers less from the leakage from periodic features zi with smaller period.
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Figure 1: Eigen-decomposition of the smoothing matrices corresponding to the Baxter and King

low-pass filter with cutoff frequency corresponding to 10 years (quarterly data) and to the Leser-

Hodrick-Prescott filter with smoothing parameter 1600.
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The results of the preceding sections can also be relevant for the desing of a filter in the time

domain. The method consists of modifying S so that n − k high frequency noisy components

receive zero weight. This is done through the spectral decomposition of H.

Decomposing S = H + ∆H and H = ZXZ′, where X = diag{ξ1, ξ2, ..., ξn}, and writing

y = Zθ, we get

Sy = ZXθ + ∆HZθ

≈ ZXkθ + ∆HZθ

where Xk is the matrix obtained by replacing with zeros the eigenvalues of H that are smaller

than a cut-off eigenvalue ξk and ∆HZθ is a null vector except for the first and last elements that

account for the boundary conditions. Turning to the original coordinate system and arranging the

boundaries, we get the new estimator

Sk = Hk + ∆k + ∆H

= H(k) + ∆H

where H(k) is the matrix with boundaries equal to those of H and interior equal to that of Hk =

ZXkZ
′. In other words, H(k) is structured like (2) with Ha

k = Ha, Ha∗
k = EhH

aEh and Hs
k =

[ZXkZ
′]s. Hence a new smoothing matrix is obtained, Sk, and consequently new trend estimates,

say m̂k.

In practice, the procedure is very easy to apply. In fact, given a symmetric filter, it consists of:

obtaining H, replacing it by Hk and then adjusting the boundaries with suitable chosen asymmet-

ric filters to get Sk.
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4 Appendix: proof of Theorem 1

Let us write S = H + ∆H. The matrix H is diagonalised by the orthogonal matrix

Z =

√

2

n

[

kj cos
(2i − 1)(j − 1)π

2n

]

ij

, i, j = 1, 2, ..., n

where kj = 1√
2

for j = 1 and kj = 1 for j > 1 which satisfies ‖Z‖2‖Z
−1‖2 = 1. The spectrum

of H is σ(H) = {ξ1, ξ2, ..., ξn}, where

ξi =
n

∑

j=1

(

2 cos
(i − 1)π

n

)j−1

cj

which follows by (3) and by the fact that the eigenvalues of T11 are (Bini and Capovani, 1983)

ϑi = 2 cos
(i − 1)π

n
.

Setting δH = ‖∆H‖2 and applying the Bauer-Fike theorem (Bauer and Fike, 1960) with the

2-norm as an absolute norm gives
∣

∣

∣

∣

∣

∣

λ −
n

∑

j=1

(

2 cos
(i − 1)π

n

)j−1

cj

∣

∣

∣

∣

∣

∣

≤ δH .

We now prove that cj = 0 for j > m + 1, so that the above summation involves just m + 1

terms instead of n. It follows by the Cramer rule that, explicitly,

cj =
detQ [j,h]

detQ

where Q [j,h] is the matrix obtained replacing the j-th column of Q by the vector h. The matrix

Q is upper triangular with ones on the diagonal so its its determinant is equal to one and since the

generic element hj of h is null for j > m + 1 it follows that detQ [j,h] = 0 and cj will be null

as well.

Finally, we prove that

cj = wj−1 +

⌊m−j−1

2
⌋

∑

q=0

(−1)q+1(j)q

(q + 1)!
(j + 2q + 1)wj+2q+1. (8)

This expression can be directly verified by calculating detQ [j,h] for all j. Here in the following,

we prove it by induction over j = 1, ..., m + 1, with m ∈ N.

• For j = 1, c1 = w0 +
∑

m−2

2

q=0 (−1)q+12w2q+2 which follows by (1)q = q! and by simple

algebra. The linear system Qc = h can be written as c = Q−1(h1 + h2) with h1 =

[w0, w1, ..., wm, 0, ..., 0]′ and h2 = [w1, w2, ..., wm, 0, ..., 0]′, both n-dimensional vectors.

Since the first row of Q−1 is the vector [1,−1,−1, 1, 1,−1,−1, ...] we have that c1 =

(w0 + w1)− (w1 + w2)− (w2 + w3) + (w2 + w4) + ... + (−1)⌊
m−2

2
⌋+12w2⌊m−2

2
⌋+2 and

therefore (8) holds for j = 1.
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• For j = m, cm = wm−1 as it is immediate to see given that the summation in q was defined

for non negative values of m−j−1
2 . All the more so, it implies that cm+1 = wm. Hence

we have showed that (8) holds for j = 1 and that, if it holds for j = m then it holds for

j = m + 1. This proves that (8) is true for all m ∈ N. The proof of theorem 2 is therefore

complete ¥
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