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Abstract: The scope of this paper is the presentation of a simple hypothesis test that enables to discern
heteroscedastic data from homoscedastic i.i.d. gaussian white noise. The main feature will be a test statistic
that’s easy applicable and serves well in committing such a test. The power of the statistic will be underlined by
examples where it is applied to stock market data and time series from deterministic diffusion a chaotic time
series process. It will turn out that in those cases the statistic rejects with a high degree of confidence the
random walk hypothesis and is therefore highly reliable. Furthermore it will be discussed, that the test in most
cases also may serve as a test for independence and heteroscedasticity in general. This will be exemplified by
independent and equally distributed random numbers.
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1. Introduction s L (5~ 1)

The history of this paper is basically, that it was NN — i Hy

originally part of [1] and was used to show that | &

DAX and Model time series obey similar degrees of where ;= _Z X,
heteroscedasticity. However for the sake of NS

economy it was left out of [1] since hetero-

scedasticity could also be easily demonstrated is defined as the sample mean estimator. In this
graphically. Nevertheless the used test procedure context heteroscedasticity means that for N

still has got a charm with respect to its simplicity
and should therefore be presented in the following.
It also contributes another measure in addition to
the approaches shown in [2] and can be used
complementary.

samples there exists significant many values k
so that the m-sample estimators of non
overlapping sample buckets differ significantly
from the sample variance.

To have a clear discern between
homoscedastcity and heteroscedasticity of
course one needs a hypothesis test. By
generating a test statistic, it can be defined
what it means that there exist significantly
many sample estimators that are distinct from
the sample variance.

2. Heteroscedasticity

Heteroscedasticity is a common feature
observed in certain time series e.g. financial
time series like interest rates or stock returns. It
happens to occur when a lot of large changes
follow abruptly a series of moderate changes.

Definition 4.2.1(Heteroscedasticity)

Define the m-sample variance estimator at
sample point k of a sample of N realizations of
a variable x;,X,.....,Xy as:

3. The Test Statistic

The hypothesis of heteroscedasticity will be
tested against the Null Hypothesis of a

| ek 2 homoscedastic Gaussian random process. To
62, = _Z( X — [, k) test for heteroscedasticity in time bucket t the
" -1 " following test statistic is suggested:
m+k
where :[lm,k Z_in int(N/m)
_ = m I, (a)
with 1<k<N and n+k<N V k — "
T(ma)=—m=
. . N
is defined as the m-sample mean estimator at
sample p01.nt k. And define the sample Where I is an indicator function for the non
variance estimator by: overlapping buckets k = 1,2,3,...N/m

indicating:
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Where X,(m) is the o-Quantile of the x’
distribution with m degrees of freedom.

The test is motivated by the fact that one can
show under the assumption of a homoscedastic
random process that:
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where = means is distributed as. I.e. under the
assumption of a homoscedastcity gaussian
random process the ratio of the sample
variance and a m-sample variance should
behave like a y* distributed random variable
with m degrees of freedom multiplied by 1/(m-

).

Thus the Indicator function always indicates on
the test level o if the m-sample variance differs
significantly from its expected value at either
the upside or the downside that should be
measured best by the sample variance. Finally
we conclude that:

TilB(n,p):n:int(N/m),p:a
n

le. T follows a binominal distribution
multiplied by 1/n with parameters n=int(N/m),
which is the number of time buckets yielded by
the choice of time bucket length m, and o is
the chosen test level. To commit a statistical
test regarding T, one has to check whether the
observed quantity of as significant indicated
variance changes exceeds a certain 1-f3-
quantile of the binominal distribution
multiplied by 1/N or not:

T> %Bﬂ—l (int(N/m), a) reject null

T< %Bﬁ_l (int(N / m), a) not reject null

The value B will then be the level of
confidence of the test.

4. Examples

Table 1 and 2 show the results of the test
statistic T for the DAX and Model time series
of [1]. Test parameters chosen where a=p=
0.01. The null hypothesis of a homoscedastic
i.i.d Gaussian random process is rejected for
every time bucket significantly at a confidence
level of one percent.

TimeBuckets | Lower-T| Upper-T| Sum-T |P-Value | Reject
50] 10,00%| 75,00%] 85,00%) 2,50%]| TRUE
60| 15,15%)]| 75,76%]| 90,91%) 3,03%| TRUE
70] 14,29%| 82,14%]| 96,43%) 3,57%| TRUE
80] 12,00%| 72,00%] 84,00%) 4,00%| TRUE
90] 18,18%]| 72,73%| 90,91% 4,55%| TRUE

100] 15,00%)] 80,00%] 95,00%) 5,00%| TRUE
110] 16,67%| 77,78%| 94,44%) 5,56%]| TRUE
120] 25,00%] 75,00%| 100,00%) 6,25%| TRUE
130] 20,00%| 73,33%| 93,33%) 6,67%| TRUE
140] 21,43%]| 78,57%] 100,00%) 7,14%| TRUE
150] 23,08%] 69,23%| 92,31%) 7,69%| TRUE
160] 16,67%] 66,67%| 83,33%) 8,33%]| TRUE
170] 18,18%] 63,64%| 81,82%) 9,09%| TRUE
180] 27,27%]| 63,64%| 90,91%) 9,09%]|TRUE
190] 20,00%J 70,00%)| 90,00%| 10,00%]|TRUE
200 20,00%]| 70,00%| 90,00%| 10,00%|TRUE
220 22,22%| 66,67%| 88,89%| 11,11%|TRUE
250] 25,00%] 62,50%] 87,50%| 12,50%|TRUE

Table 1

TimeBuckets Lower-T | Upper-T |Sum-T P-Value Reject
S50]  17,31%]  48,08% 65,38% 1,92%| TRUE
60l 16,28%] 44,19% 60,47% 2,33%]| TRUE
70|  18,92%| 45,95% 64,86% 2,70%]| TRUE
80] 18,75%] 50,00% 68,75% 3,13%| TRUE
90 21,43%] 46,43% 67,86% 3,57%]| TRUE
100]  23,08%| 50,00% 73,08% 3,85%] TRUE
110]  17,39%| 47,83% 65,22% 4,35%| TRUE
120 23,81%| 47,62% 71,43%) 4,76%| TRUE
130]  25,00%| 55,00% 80,00%)| 5,00%] TRUE
140  22,22%| 50,00% 72,22%, 5,56%]| TRUE
150 23,53%| 47,06% 70,59% 5,88%| TRUE
160 25,00%| 50,00% 75,00%| 6,25%| TRUE
170)  26,67%| 53,33% 80,00%)| 6,67%| TRUE
180] 28,57%| 50,00% 78,57% 7,14%]| TRUE
190]  15,38%| 38,46% 53,85%) 7,69%| TRUE
200 30,77%] 46,15% 76,92% 7,69%| TRUE
2201 27,27%| 45,45% 72,73%)| 9,09%]| TRUE
250 30,00%]  50,00% 80,00%| 10,00%| TRUE

Table 2

Table 1, 2 Results for model time series of the test
statistic T for various time buckets by observing
N=2000 sample date points for the model time series
and DAX time series respectively. Upper-T, Lower-T
percentage of samples for which the m-sample bucket
variance differs significantly from its expected value
indicated by I at either the upside or the downside
respectively. Sum-T total percentage of m-sample
bucket variance being significantly different from its
expected value. P-Value is the 1-B Quantil of the
Binomial Distribution B(n,p) Multiplied by 1/N with
=0,01



From the proof of general limit theorem in [3],
one could conjecture, that the intermediate
distribution of squares of i.i.d. random
variables is a 5’ distributed random variable
until also these sums of i.i.d. random variables
converge to a normal distribution.

Therefore the test should also serve as a test
for independence and a homoscedastcity in
general. Finally table 3 shows the test results
independent and equally on the interval [0,1]
distributed random numbers. Please note that
the test statistic only rejects  the
homoscedastcity and independence hypothesis
for the smallest time bucket.

TimeBuckets |UpperP |LowerP |LowerP+UpperP |P-Value |Reject
20| 0,00% 4,00% 4,00% 1,00% | TRUE
30 0,00% 0,00% 0,00% 1,52%|FALSE
40|  0,00% 0,00% 0,00% 2,00%|FALSE
50 0,00% 0,00% 0,00% 2,50%|FALSE
60[ 0,00% 0,00% 0,00% 3,03% |FALSE
70 0,00% 0,00% 0,00% 3,57%|FALSE
80[ 0,00% 0,00% 0,00% 4,00%|FALSE
90 0,00% 0,00% 0,00% 4,55% |FALSE

100{  0,00% 0,00% 0,00% 5,00% [FALSE
110 0,00% 0,00% 0,00% 5,56% [FALSE
120|  0,00% 0,00% 0,00% 6,25% |[FALSE
130 0,00% 0,00% 0,00% 6,67% [FALSE
140 0,00% 0,00% 0,00% 7,14% |[FALSE
150|  0,00% 0,00% 0,00% 7,69% |FALSE
160 0,00% 0,00% 0,00% 8,33% |[FALSE
170|  0,00% 0,00% 0,00% 9,09% [FALSE
180 0,00% 0,00% 0,00% 9,09% |[FALSE
190|  0,00% 0,00% 0,00% 10,00% |FALSE
200 0,00% 0,00% 0,00% 10,00%|FALSE
210[  0,00% 0,00% 0,00% 11,11%|FALSE
220 0,00% 0,00% 0,00% 11,11%|FALSE
230[ 0,00% 0,00% 0,00% 12,50% |FALSE
240 0,00% 0,00% 0,00% 12,50% |FALSE
250[  0,00% 0,00% 0,00% 12,50% |FALSE

Table 1, 2 Results for model time series of the test
statistic T for various time buckets by observing
N=2000 sample date points of an i.i.d random variable
equally distributed on the interval [0,1].

5. Summary and Conclusions

The presented method is straight forward and
shows, when applied, significant results
indicating its power. It can be used in addition
to the methods of [2] but should also work
stand alone. Furthermore the test seems to have
power in general to verify homoscedastcity and
independence at the same time.

6 References

[1] Guido Venier “A New Model for Stock
Price Movements” JAES “Journal of Applied
Economic Sciences” http://www.jaes.uv.ro.
Volume III Issue2(4) Fall2008

[2] Andrew W. Lo & A. Craig MacKinlay
(1987) “Stock Market Prices do not follow
Random Walks: evidence from a simple
specification Test” Department of Finance,

Wharton School, University of Pennsylvania,
Philadelphia, PA 19104 USA

[3] Heinz Bauer: Wahrscheinlichkeitstheorie
und Grundziige der MaBtheorie. 4. Auflage.
DeGruyter, Berlin 1991



