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Abstract. In this paper we characterize the existence of best choices
of arbitrary binary relations over non finite sets of alternatives, accord-
ing to the Generalized Optimal-Choice Axiom condition introduced by
Schwartz. We focus not just in the best choices of a single set X, but
rather in the best choices of all the members of a family K of subsets of X.
Finally we generalize earlier known results concerning the existence (or
the characterization) of maximal elements of binary relations on compact
subsets of a given space of alternatives.
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1. Introduction

Individual or collective choice theories deal with the process of choice
among a set of alternatives (a range of choice options) that are feasible
or available. The choice process that may has the form of a rule, pro-
cedure, institutional mechanism, or a set of tastes may be represented
by a function that is called choice function. The neoclassical economic
theory assumes that each individual makes choices by selecting, from
each feasible set of alternatives, those which maximize his own pref-
erence relation. This requirement links choice functions to underlying
“preference”and “indifference”relations. More specifically, the individ-
ual’s preference relation corresponding to a choice process is modeled
as a binary relation on the set of alternatives. The choice set, from a
given potential set, is the set of elements undominated under the relation
of pairwise choice. This requires the relation to be acyclic. However,
in collective choice problems (ranking of social preferences, voting in
committees, etc) cyclicity is a plausible assumption as for example the
Condorcet Paradox shows. In this case, no alternative appears to dom-
inate all the others. We must then give up the requirement that choices
are best. A number of theories of general solutions for choice sets deal
with cyclic binary relations. These theories are called solution theories,
and their main task is to specify what set of alternatives may be as
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reasonable solution of choice problems when the set of best alternatives
does not exist. Example of such solution theories is the Generalized
Optimal-Choice Axiom set (GOCHA set) introduced by Schwartz. The
choice set from a given set specified by the GOCHA condition is the
union of minimal sets the elements of which have the following prop-
erty: No alternative outside this set is preferable to an alternative inside
it.

Since the set of the best choices of a choice process corresponds to
the maximal elements in the feasible set according to a binary relation,
it is important to find conditions such that the set of maximal elements
is non empty. To face this problem, there are two issues: (a) The type
of the individual’s preference relation and (b) the topological charac-
ter of the feasible set over which the preferences are maximized. The
standard approach is to assume acyclic and upper semi-continuous bi-
nary relations over compact sets of alternatives. In such case maximal
elements exist. More precisely, when acyclicity holds, the classical re-
sults concerning maximality in binary relations are those of Sloss [16],
Brown [6], Bergstrom [3] and Walker [24] (SBBW-Theorem in the se-
quel) which state that if an acyclic binary relation defined on a topo-
logical space X is upper continuous, then every compact subset of X
contains a maximal element. Campbell and Walker in [7]: (i) Replace
the assumption of lower continuity by the (weaker) assumption of weak
lower continuity, (ii) assume stronger than acyclic binary relations (in
fact pseudo-transitive binary relations) and obtain the existence of max-
imal elements on any compact subset of X. Peris and Subiza in [14]
generalize the result of SBBW-Theorem for irreflexive (not necessarily
acyclic) binary relations. Mehta in [13] and Subiza and Peris in [18] use
the same framework as that considered in Bergstrom [3] and Walker in
[24] and use a weaker than lower continuity condition to obtain maximal
elements in compact sets. Alcantud in [1] relaxes the notion of compact-
ness by introducing the concept of R-upper compactness of a topological
space on which a binary relation R is defined. This allows him to give
sufficient conditions that generalize the Peris and Subiza extension of
the SBBW-Theorem for irreflexive binary relations. He also provides a
characterization of the existence of maximal elements for acyclic binary
relations. This characterization is refined by considering other sufficient
conditions used by Mehta in [13, Theorem 3.7] and Subiza and Peris in
[18].

The existence of maximal elements for not acyclic binary relations
over compact subsets of Hausdorff topological vector spaces have also
been used in a general equilibrium theory context: Maximal theorems
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for preference correspondences in compact spaces are thus applied to
obtain existence theorems for generalized games (=abstract economies).
Debreu [8] and Arrow and Debreu [2] first proved the existence of equi-
libria for economies with finitely many agents, finite dimensional strat-
egy space and quasi-concave utility functions. These results have been
generalized in several directions. Sonnenschein in [17] and Shafer and
Sonnenschein in [15] prove the existence of maximal elements on topolog-
ical compact sets when certain assumptions of convexity and continuity
are satisfied. Borglin and Keiding [5] extend the Debreu’s result to ab-
stract economies in which agents have preference correspondences with
open graph or open lower sections. Yannelis and Prabhakar [25] and
Yannelis [26] generalize the previous results and give a new existence
proof for an equilibrium, in abstract economies with an infinite number
of commodities and a countably infinite number of agents.

As the above properties (a) and (b) are inherited when one passes to
any compact subset of the underlying space (if we use each subset’s rela-
tive topology) maximal elements continue to exist. This is of particular
interest in the theory of the consumer as we are interested in the family
of all possible budget sets; and in the theory of production as we are
interested in the family of all possible production sets.

In this paper, we identify conditions under which individual or collec-
tive choices, potentially cyclic, can be rationalized by binary relations
according to the GOCHA condition. More precisely, we present a char-
acterization of the existence of the GOCHA set, over non-finite sets. In
particular, we focus in the case where the maximal elements continue to
exist when one passes from whole space to any R-upper compact sub-
space. These results generalize the results mentioned above for acyclic
binary relations. Finally, we show that if the GOCHA set is non-empty,
then it is R-upper compact. This is analogous to the fact that the set of
maximal elements is compact in the cases considered by Bergstrom and
Walker and R-upper compact in the case considered by Alcantud.

2. Notation and definitions

We first we give some definitions that we use throughout the paper.1

Let X be a (finite or infinite) non-empty set of alternatives, and let
R ⊆ X × X be a binary relation on X. By P (R) and I(R) denote,
respectively, the asymmetric part of R and the symmetric part of R,
which are defined, respectively, by P (R) = {(x, y) ∈ X × X|(x, y) ∈
R and (y, x) /∈ R} and I(R) = {(x, y) ∈ X × X|(x, y) ∈ R and (y, x) ∈

1These can also be found in [1], [18],[19], [20], [21].
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R}. We denote I∗(R) = I(R)∪∆ where ∆ = {(x, x)|x ∈ X} the diagonal
of X. We sometimes abbreviate (x, y) ∈ R as xRy. M(R) denotes the
elements of X that are R-maximal in X, i.e., M(R) = {x ∈ X| for all
y ∈ X, yRx implies xRy}. M(R/Y ) denotes the elements of Y that are
R-maximal in Y . A subset A of X is undominated iff for no x ∈ A there
is a y ∈ X \A such that yRx. An undominated set is minimal if none of
its proper subsets has this property. The transitive closure of a relation
R is denoted by R, that is for all x, y ∈ X, (x, y) ∈ R if there exists k ∈ N

and x0, ..., xK ∈ X such that x = x0, (xk−1, xk) ∈ R for all k ∈ {1, ..., K}
and xK = y. Clearly, R is transitive and, because the case K = 1 is
included, it follows that R ⊆ R. A subset Y ⊆ X is a cycle if, for all
x, y ∈ Y , we have (x, y) ∈ R and (y, x) ∈ R. We say that R is acyclic
if there does not exist a cycle. The binary relation R is consistent, if
for all x, y ∈ X, for all k ∈ N, and for all x0, x1, ..., xK ∈ X, if x = x0,
(xk−1, xk) ∈ R for all k ∈ {1, ..., K} and xK = y, then (y, x) /∈ P (R).
If a binary relation R is consistent then the asymmetric part of R is
contained in the asymmetric part of the transitive closure of R, i.e.,
P (R) ⊆ P (R) (Duggan [9]).

Let Ω be a family of non-empty subsets of X that represents the dif-
ferent feasible sets presented for choice. A choice function is a mapping
that assigns to each choice situation a subset of it:

C : Ω → X such that for all A ∈ Ω, C(A) ⊆ A.

For each A, C(A) may represent the set of alternatives that are chosen
by the given process, when A is presented to the individual or group. In
sort, C(A) is called the choice set of A. The problem of finding choice
sets can be expressed as the maximization of the individuals’s preferences
over a set of alternatives. That is, for every A ∈ Ω, C(A) = M(R/A).2

To deal with the case where the set of maximal choices C(A) is empty,
Schwartz among others has proposed the following general solution:
The Generalized Optimal-Choice Axiom GOCHA (Schwartz): For each
A ∈ Ω, C(A) is equivalent to the union of minimum undominated subsets
of A. The GOCHA set is the choice set from a given set specified by
the GOCHA condition. In what follows, GOCHA(R/Y ) denotes the
GOCHA set of Y under R. If Y = X, then we put GOCHA(R/Y ) =
GOCHA(R).

Let R be a consistent binary relation defined on a topological space
(X, τ). The relation R is: (a) upper-semicontinuous if for all x ∈ X
the set {y ∈ X|xP (R)y} is open; (b) upper tc-semicontinuous if the set

2In the neoclassical economic theory the link between preference relations and choice
functions is formed by Rational Choice Functions. This is because Rational Choice Functions
choose the most preferred alternatives according to the individual’s preferences.
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{y ∈ X|xP (R)y} is open. In consistent binary relations, upper semicon-
tinuity implies upper tc-semicontinuity trivially, and these definitions
are equivalent for partial orders. In acyclic binary relations, the two
notions we have defined above coincide with the usual ones. A subset
A of X is lower (upper) set if x ∈ A and xRy (yRx) imply y ∈ A. The
space (X, τ) is R-upper compact if for each collection of lower open sets
which cover X there exists a finite subcollection that also covers X. If R
is an irreflexive binary relation then the notion of R-upper compactness
coincides with that of Alcantud in [1]. If ≈ is an equivalence relation on
a topological space (X, τ), then the quotient set by this equivalence re-
lation ≈ will be denoted by X

≈ , and its elements (equivalence classes) by

[x]. Let the projection map π : X −→ X
≈ which carries each point of X

to the element of X
≈ that contains it. In the quotient topology induced

by π, a subset U of X
≈ is open in X

≈ if and only if π−1(U) is open in

X. Thus, the typical open set in X
≈ is a collection of equivalence classes

whose union is an open set in X. If the set of alternatives is finite, we
always assume the discrete topology. It is well known that if a finite set
is endowed with the discrete topology, then every set is open. Thus, the
topological conditions and continuity assumptions posed for the infinite
case also hold in the finite case.

3. The Generalized Optimal-Choice Axiom set

3.1. Characterization of the existence of the GOCHA set. As we
pointed out in the introduction, we are generally interested not in the
GOCHA(R) set of just a single set X, but rather in the whole family K
of R-upper compact subsets of some underlying set X, and in whether
each member of K has non empty Generalized Optimal-Choice Axiom
set.

We first give a general theorem which ensures the existence of maximal
elements in every R- upper compact subset of a given topological space.

Proposition 1. Let R be a consistent binary relation on a topological
space (X, τ). If R is upper semicontinuous then every R-upper compact
subset of X has a maximal element.

Proof. Let Y be an R-upper compact subset of X. Suppose that Y has
no maximal elements. Then, for each x ∈ Y , there exists y ∈ Y such
that (y, x) ∈ P (R) ⊆ P (R). Thus,

Y =
⋃

y∈Y

({x ∈ X|yP (R)x} ∩ Y ).
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Clearly, for every y ∈ Y , the sets {x ∈ X|yP (R)x}∩Y are lower sets.
On the other hand, upper semicontinuity and consistency imply that the
sets {y ∈ Y |yP (R)x} ∩ Y are open in the relative topology of Y . Since
the space is R-upper compact, there exist {y

1
, ..., yn} such that

Y =
⋃

y∈{y
1
,...,yn}

({x ∈ X|yP (R)x} ∩ Y ).

Consider the finite set {y
1
, ..., yn}. Since y

1
∈ Y , then there exist

i ∈ {1, ..., n} such that y
i
P (R)y

1
. If i = 1, then we have a contra-

diction. Otherwise, call this element y
2
. We have y

2
P (R)y

1
. Similarly,

y
3
P (R)y

2
P (R)y

1
. As {y

1
, ..., yn} is finite, by an induction argument

based on this logic, we obtain the existence of a cycle for P (R). This
last conclusion contradicts the acyclicity of P (R). ¤

Notice that acyclicity implies consistency and compactness implies
R-upper compactness. Hence, as a result of Proposition 2, we have the
corresponded results of Sloss [16], Brown [6], Bergstrom [3], Walker [24],
Subiza and Peris[14] and Alcantud [1].3

For a binary relation R, we define a binary relation R∗ on X

I∗(R)
(in a

similar way as Peris and Subiza define relation P in [14] for irreflexive
relations), as follows:

[x]R∗[y] if there are x′ ∈ [x], y′ ∈ [y] such that x′P (R)y′.

We call R∗ the quotient relation of R. Clearly, R∗ is an acyclic binary
relation.

Proposition 2. Let R be a consistent binary relation defined on a set
X and let R∗ be the quotient relation of R on X

I∗(R)
. If [z] is a maximal

element on X

I∗(R)
, then each t ∈ [z] belongs to GOCHA(R).

Proof. Let [z] be a maximal element on X

I∗(R)
. We prove that [z] is a

minimal undominated set in X. Suppose that there exists a t ∈ X \ [z]
such that (t, s) ∈ R for some s ∈ [z]. We cannot have (s, t) ∈ R, since
in that case t ∈ [z] which is impossible. Hence, (t, s) ∈ P (R) ⊆ P (R)
which jointly with sI(R)z would imply that tP (R)z. Hence, [t]R∗[z]
and [t] 6= [z], but this contradicts the maximality of [z]. Therefore,
t ∈ GOCHA(R). ¤

3Sloss, Brown, Bergstrom and Walker prove that if an acyclic binary relation defined on
a topological space (X, τ) is upper semicontinuous, then every non-empty compact subset of
the space contains a maximal element. Subiza and Peris derive the same result in the case
where R is acyclic and lower quasi-continuous and Alcantud in the case where R is partial
order, upper semicontinuous and the space is R-upper compact.
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We now use Propositions 1 to show the existence theorem of GOCHA(R)
set for every R-upper compact subset of the underling set.

Theorem 3. Let (X, τ) be a topological space, and let R be an upper
tc-semicontinuous binary relation on X. Then every R-upper compact
subset of X has a non empty GOCHA set.

Proof. Let Y be an R-upper compact subset of X. We first show that
( X

I⋆(R)
, R∗) with the quotient topology satisfies the hypotheses of Propo-

sition 1:
(a) R∗ is a consistent binary relation in X

I⋆(R)
. Suppose that [x], [y] ∈

X

I⋆(R)
, n ∈ N, [x

0
], [x

1
], ..., [xn ] ∈ X

I⋆(R)
such that [x] = [x

0
], ([x

k−1
], [x

k
]) ∈

R∗ for all k ∈ {1, ..., n} and [xn ] = [y]. We must prove that ([y], [x]) /∈
P (R∗) = R∗. Indeed, There are x′ ∈ [x], x′

1
, x′′

1
∈ [x

1
], x′

2
, x′′

2
∈

[x
2
],...,x′

n−1
, x′′

n−1
∈ [x

n−1
], y′ ∈ [y] such that

x′P (R)x′
1
I⋆(R)x′′

1
P (R)x′

2
...P (R)x′

n−i
I⋆(R)x′′

n−1
P (R)y′

Hence, x′P (R)y′. Then for each t ∈ [x] and each s ∈ [y] we have
tI⋆(R)x′P (R)y′I⋆(R)s which implies that tP (R)s. This last conclusion
implies that ([y], [x]) /∈ R∗.
(b) R∗ is upper semicontinuous. Indeed, since π−1{[y]|[x]R∗[y]} = {y ∈
X|xP (R)y} ∈ τ , we conclude that the set {[y]|[x]R∗[y]} is open in the
quotient topology for each [x] ∈ X

I(R)
. Hence, R∗ is upper semicontinu-

ous. It remains to prove that:

(c) Y

I∗(R)
is R∗-upper compact. Indeed, let Y

I∗(R)
=

⋃

a∈A

(Ua∩
Y

I∗(R)
) with

Ua R∗-lower open set. Then,

Y =
⋃

a∈A

π−1(Ua ∩
Y

I∗(R)
).

To show that π−1(Ua ∩ Y

I∗(R)
) is an R-lower set, suppose that x ∈

π−1(Ua ∩
Y

I∗(R)
) and y ∈ X such that (x, y) ∈ R. There are two cases to

consider: (i) (y, x) ∈ R; (ii) (y, x) /∈ R. In the first case, [x] = [y] and
[x] ∈ Ua∩

Y

I∗(R)
imply that y ∈ π−1(Ua∩

Y

I∗(R)
) ⊆ Y . In case (ii) it follows

that [x] ∈ Ua ∩
Y

I∗(R)
, [x] 6= [y] and ([x], [y]) ∈ R∗. Thus, [y] ∈ Ua ∩

Y

I∗(R)

which implies that y ∈ π−1(Ua ∩ Y

I∗(R)
). Therefore, since Y is R-upper

compact we have Y =
⋃

i∈1,...,n

π−1(Uai
∩

Y

I∗(R)
) for some ai ∈ A, and
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thus Y

I∗(R)
=

⋃

i∈1,...,n

(Uai
∩

Y

I∗(R)
). Hence, Y

I∗(R)
is R∗-upper compact.

By Proposition 1 we conclude that Y

I∗(R)
has a maximal element. Hence,

Proposition 2 implies that the GOCHA(R/Y ) set is not empty. ¤

Proposition 4. Let X be a non empty set of alternatives and let R be
an acyclic binary relation over X. Then, GOCHA(R) = M(R).

Proof. Suppose that x ∈ GOCHA(R). Then, there exists an undom-
inated subset D of X such that x ∈ D. We prove that x ∈ M(R).
Suppose to the contrary that x is not a maximal element of R. Then,
there exists a y ∈ X such that (y, x) ∈ R. Since for each y ∈ X \ D,
we have (y, x) /∈ R, we conclude that y ∈ D. Hence, the acyclicity of R
implies that (x, y) /∈ R.

Let

D∗ = {λ ∈ D|(x, λ) /∈ R}.

Then, {y} ⊆ D∗ ⊆ D. We show that this last conclusion will lead to a
contradiction. Indeed, suppose that D∗ = D, then D \ {x} ⊂ D is an
undominated subset of X, which is impossible because of the minimal
character of D. It remains to exclude the case D∗ ⊂ D. In fact, if we
were in this case, then for each t ∈ D \ D∗ and each s ∈ D∗ there must
hold (t, s) /∈ R, for otherwise, from (x, t) ∈ R (t ∈ D \D∗) and (t, s) ∈ R
we must have (x, s) ∈ R which is impossible (s ∈ D∗). In such case we
have (t, s) /∈ R. Hence, D∗ ⊂ D is an undominated subset of X which
is impossible. This contradiction implies that x is a maximal element of
R. Conversely, if x is a maximal element of R, then {x} is a minimal
undominated element of X. ¤

Since acyclicity concludes that upper semicontinuity implies upper
tc-semicontinuity, by using Theorem 3 and Proposition 4 we have the
following result.

Corollary 5. Let (X, τ) be an R-upper compact topological space, and
let R be an acyclic upper semicontinuous binary relation on X. Then
the set of of maximal elements in X is non empty.

Next theorem characterizes the existence of the GOCHA(R) set for
binary relations.

Theorem 6. Let R be a binary relation on X and let Y be a subset of
X. The following conditions are equivalent:

(i) The GOCHA(R/Y ) set is non empty,
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(ii) there exists a topology τ on X such that R is upper tc-semicontinuous
and Y is compact in relative topology,

(iii) there exists a topology τ on X such that R is upper tc-semicontinuous
and Y is R-upper compact in relative topology.

Proof. It is then obvious that (ii) implies (iii). By Theorem 3, we have
that (iii) implies (i). It remains to prove that (i) implies (ii). Indeed,

let Y ⊆ X and let GOCHA(R/Y ) 6= ∅. Then, GOCHA(R/Y ) =
⋃

i∈I

D
i

where D
i

are minimum undominated subsets of Y . Let τ be the ex-
cluded set topology generated by GOCHA(R/Y ) [12, page 48] (it has
as open sets all those subsets of Y which are disjoint from G, together
with Y and X themselves). Then Y is compact under τ in relative
topology since every open cover of Y includes Y = Y ∩X itself. Hence,
{Y } is always a finite subcover. It remains to prove that R is upper tc-
semicontinuous. We prove that for each x ∈ X the sets {y ∈ X|xP (R)y}
are open in τ . We have two cases to consider: (a) x /∈ GOCHA(R/Y );
(b) x ∈ GOCHA(R/Y ). In the first case, we show that for each t ∈
GOCHA(R/Y ), there holds (x, t) /∈ R. Indeed, suppose to the contrary
that (x, t

0
) ∈ R for some t

0
∈ GOCHA(R/Y ). It then follows that,

there exists a natural number n and alternatives t
1
, t

2
, ..., t

n−1
, tn such

that xRt
1
...t

n−1
RtnRt

0
. Therefore, tn ∈ GOCHA(R/Y ), for suppose

otherwise: since t
0

∈ GOCHA(R/Y ), we cannot have tnRt
0
. Sim-

ilarly, t
n−1

∈ GOCHA(R/Y ), and an induction argument based on
this logic yields x ∈ GOCHA(R/Y ), a contradiction. Hence, {y ∈
X|xP (R)y} ∩ GOCHA(R/Y ) = ∅. To prove the second case above,

let x ∈ GOCHA(R/Y ) =
⋃

i∈I

D
i

where D
i

are minimum undominated

subsets of Y . Then, there exists i ∈ I such that x ∈ D
i
. Suppose

that xP (R)y for some y ∈ GOCHA(R/Y ). There are two subcases to
consider: (b

1
) y ∈ D

i
; (b

2
) y ∈ D

j
with j 6= i.

Subcase (b
1
). Let y ∈ D

i
. Put Ay = {t ∈ D

i
|(y, t) ∈ R }. We have that

Ay 6= ∅, because otherwise, for each t ∈ D
i
, (y, t) /∈ R ⊇ R, which implies

that D
i
\ {y} ⊂ D

i
is an undominated subset of X, a contradiction

because of the minimal character of D
i
. Let D∗

i
= D

i
\ Ay . We now

show that D∗
i

= ∅. We proceed by the way of contradiction. Suppose
that D∗

i
6= ∅. Then, for each t ∈ Ay and each s ∈ D∗

i
we have (t, s) /∈ R

for suppose otherwise, (t, s) ∈ R implies that (y, s) ∈ R contradicting
s ∈ D∗

i
. Therefore, D∗

i
⊂ D

i
is an undominated subset of X, again a

contradiction. Hence, Ay = D
i
. But then, since x ∈ D

i
we conclude

that (y, x) ∈ R which contradicts xP (R)y.
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Subcase (b
2
). In this subcase we have xP (R)y with x ∈ D

i
, y ∈ D

j
and

i 6= j. But then, by using xRy as in the case (i) above we conclude
that x ∈ D

j
, an absurd. Hence, in any case we have {y ∈ X|xP (R)y} ∩

GOCHA(R/Y ) = ∅. Hence the proof is complete. ¤

The following corollary is an immediate consequence of Proposition 4
and Theorem 6.

Corollary 7. Let R be an acyclic binary relation on X and let Y be a
subset of X. The following conditions are equivalent:

(i) The set of maximal elements in Y is non empty,
(ii) there exists a topology τ on X such that R is upper semicontinuous

and Y is compact in relative topology,
(iii) there exists a topology τ on X such that R is upper semicontin-

uous and Y is R-upper compact in relative topology.

If we apply Corollary 7 for Y = X, we have the main result of Alcan-
tud in [1].

3.2. Transfer continuities. It is trivial that if a binary relation R
is acyclic, then R is upper tc-semicontinuous if and only if for every
x, y ∈ X such that xRy there is a neighborhood N(y) of y such that
xRz for each z ∈ N(y). Some authors use this alternative expression for
upper tc-semicontinuity; cf., e.g., Peris and Subiza [18], where that prop-
erty is called lower quasi-continuity. Tian and Zhou [27] prove a similar
result by using a condition that they call transfer continuity which states
that whenever xRy there exists a point x′ and a neighborhood N(y) of y
such that x′Rz for each z ∈ N(y). This condition was used by Sonnen-
schein [17] to prove the existence of maximal elements for relations (not
necessarily acyclic) satisfying a convexity condition. Subiza and Peris
give an example [18, Example 2] which show that transfer continuity
and lower quasi-continuity are independent properties. They also give
a kind of continuity that generalizes both lower quasi-continuity and
transfer continuity. More precisely: A binary relation R defined on a
topological space (X, τ) is transfer lower quasi-continuous ([18]) if for all
x ∈ X there is x′ and a neighborhood N(y) of y such that x′Rz for all
z ∈ N(y). If we suppose that R satisfies the continuity condition P, it
can be seen that R is transfer P on X if it is P by choosing x′ = x. The
basic idea behind the transfer continuities is the following: For a pref-
erence R to have, maximal elements, given y ∈ R(x), the conventional
continuity conditions describe relations between x and a neighborhood
of y. However, to characterize the existence of maximal elements for
a preference, the topological structure of R below the level of y is ir-
relevant and only the topological structure of R above the level of y is



THE GENERALIZED OPTIMAL-CHOICE AXIOM SET 11

important. Therefore, we do not have to know the topological relations
between x and a neighborhood of y. We only need to know the relation
between a neighborhood of y and an element x′ in its “upper”part of
this neighborhood.

Results on the existence of maximal elements by using transfer conti-
nuities, have been given by Subiza and Peris [18], Mechta [13], Tian and
Zhou [27] and Alcantud [1]. Although these results ensure the existence
of maximal elements on compact topological spaces for weaker continuity
conditions from that described in §3.1, they cannot do that in compact
subspaces. This is due to the fact that transfer lower quasi-continuity
condition is not a “local”property, in the sense that we cannot ensure the
existence of maximal elements in closed subsets of the underlying set.
We now give a general theorem which ensures the existence of maximal
elements in compact sets. To do that, we extend the notion of transfer
lower (quasi-) continuous defined by Subiza and Peris.

Definition 8. Let (X, τ) be a topological space and let R be a consistent
binary relation defined on X. Then, R is said to be generalized transfer
lower (quasi-)continuous if, whenever xP (R)y, there exists a point x′ and
a neighborhood N(y) of y such that x′P (R)z (x′P (R)z) for all z ∈ N(y).

Clearly, in acyclic binary relations the notions of generalized transfer
lower (quasi-)continuity and transfer lower (quasi-)continuity coincide.

Proposition 9. Let X be a compact topological space and let R be
a generalized transfer lower quasi-continuous binary relation defined on
X. Then the set of maximal elements of R on X is non-empty.

Proof. Suppose that there is not a maximal element. Then for every
element x ∈ X there exists y ∈ X such that yP (R)x. Since the space is
generalized transfer lower quasi-continuous, there exists y(x) ∈ X and
an open neighborhood N(x) of x which satisfies y(x)P (R)z for every
z ∈ N(x).

Thus,

X =
⋃

x∈X

N(x).

Since the space is compact, there exist {x
1
, ..., xn} such that

X =
⋃

i∈{1,...,n}

N(x
i
).

Consider the finite set {y(x
1
), ..., y(xn)}. Then by following a similar

argument as in Proposition 1 we obtain the existence of a P (R)-cycle in
{y(x

1
), ..., y(xn)}, and therefore a contradiction. ¤
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The previous Proposition generalizes the corresponding theorems of
Mehta [13], Subiza and Peris [18] and Alcantud [1].

The following Theorem can be derived from Proposition 9, in the same
way as Theorem 3 is derived by Proposition 1.

Theorem 10. Let (X, τ) be an R-upper compact topological space, and
let R be a generalized transfer lower quasi-continuous binary relation on
X. Then, the GOCHA(R) set is non empty.

In a similar way, as in Theorem 6, we can prove the following theorem.

Theorem 11. Let R be a binary relation on X. The following condi-
tions are equivalent:

(i) The GOCHA set is non empty,
(ii) there exists a compact topology τ on X such that R is generalized

transfer lower continuous,
(iii) there exists a compact topology τ on X such that R is generalized

transfer lower quasi-continuous.

The following corollary is an immediate consequence of Proposition 4
and Theorem 11.

Corollary 12. [1, Theorem 5]. Let R be an acyclic binary relation on
X. The following conditions are equivalent:

(i) The set of maximal elements is non empty,
(ii) there exists a compact topology τ on X such that R is transfer

lower continuous,
(iii) there exists a compact topology τ on X such that R is transfer

lower quasi-continuous.

4. The structure of the GOCHA(R) set

In the cases considered by Sloss, Brown, Bergstrom and Walker, if
the binary relation is upper semicontinuous and the underlying set is
compact then the set of maximal elements obtained is compact too (see
7.12 in Border [4]). Alcantud considers a condition weaker than upper
semicontinuity (in fact upper tc-semicontinuity) for the binary relation
and a weaker condition than compactness (R-upper compactness) in the
underlying set and he proves that the set of maximal elements is R-upper
compact.

Similarly, we shall show that in the case where an arbitrary binary
relation is upper tc-semicontinuous and the underlying set is R-upper
compact then the GOCHA(R) set is R-upper compact.
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Proposition 13. Let R be a binary relation on (X, τ). Suppose that
X is R-upper compact and the relation R is upper tc-semicontinuous.
Then, GOCHA(R) is R-upper compact.

Proof. We firstly prove that the GOCHA(R) set equals to
⋂

x∈X

(X−{y ∈

X|xP (R)y}). Indeed, let y∗ ∈ GOCHA(R). Then, as in the proof of
Theorem 7, we conclude that GOCHA(R) ∩ {y ∈ X|xP (R)y}) = ∅ and
hence, for each x ∈ X we have (x, y∗) /∈ P (R). Therefore, for each

x ∈ X, y∗ /∈ {y ∈ X|xP (R)y}. Thus, y∗ ∈
⋂

x∈X

(X − {y ∈ X|xP (R)y}).

Conversely, if y∗ ∈
⋂

x∈X

(X − {y ∈ X|xP (R)y}), then for each x ∈ X we

have (x, y∗) /∈ P (R). We prove that y∗ belongs to a minimum undomi-
nated subset of X. If for each x ∈ X we have (x, y∗) /∈ R, then {y∗} is
an undominated subset of X. It is a minimum one because it is a unit
set. Otherwise, there exists x ∈ X such that (x, y∗) ∈ R ⊆ R. Since
(x, y∗) /∈ P (R), we conclude that (y∗, x) ∈ R. Let C(y∗) be the cycle
containing y∗ that is maximal in the sense that it is not a proper subset
of any other cycle. We prove that C(y∗) is an undominated subset of
X. Suppose on the contrary, that (t, z) ∈ R for some t ∈ X \ C(y∗) and
z ∈ C(y∗); to deduce a contradiction. It follows that (t, y∗) ∈ R which
implies that (y∗, t) ∈ R. Hence, t ∈ C(y∗), a contradiction. Clearly,
C(y∗) is a minimal undominated subset of X. Hence, y∗ ∈ GOCHA(R).
Because the intersection of closed upper sets is again a closed upper set,
the GOCHA set is R-upper compact, by [1, Lemma 2] . ¤

Since acyclicity of R implies P (R) = R, the following result is an
immediate consequence of the previous proposition and Proposition 4.

Corollary 14. ([1, Proposition 2]). Let R be an acyclic binary relation
on (X, τ). Suppose that X is R-upper compact and R is upper tc-
semicontinuous. Then, the set of maximal elements is non-empty and
R-upper compact.
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