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Abstract
This article describes, within a myopic intergenerational bargaining framework
incorporating two discrete periods and binary states of risks, some new aspects regarding
the mixture of intergenerational risk sharing and social security. Here, state-dependent
utility under mortality risk proves to generate parents’ peculiar indifference curve regarding
insurance contract, and self-insurance is shown to play a crucial role on the decision
regarding social security holding and intergenerational transfer contract. This peculiar
aspect, given for the first time in this article, also derives some novel features of insurance
theory under lifetime uncertainty, where the current position in social security contract
could adversely affect parents’ decision regarding intergenerational risk sharing with
children. In addition, other basic results regarding the sensitivity to default risk and

taxation in social security are summarized.

1. Introduction

The objective of this article is simply and clearly to describe some new economic aspects
of intergenerational risk sharing under lifetime uncertainty within a myopic bargaining
framework. Atkinson and Stiglitz (1980) and Obstfeld and Rogoff (1996) are textbooks of
public economics and international macroeconomics, especially the latter of which contains
the description of a risk sharing with default risk and saving. Ehrlich and Becker (1972)
develop a basic theory of demand for insurance that emphasizes the interaction between
market insurance, “self-insurance” and “self-protection”. For some other examples among
related literatures, Shiller (1999), Ball and Mankiw (2001), Enders and Lapan (1982) and
Gordon and Varian (1988) examine the economic role of intergenerational risk sharing.

Yaari (1965) is a classical article, which pursuits the implications of life insurance under the



mortality risk. Hayashi, Altonji and Kotlikoff (1996) is an empirical work on intra-gamily &
inter-generational risk sharing accompanying the possibility of self-insurance. Analyses on
bequest motives appear, among many, in Abel (1985, 1987), Hurd (1989), Bernheim, Shleifer
and Summers (1985) and Bernheim (1991).

In this article we newly focus on a peculiar shape of parents’ indifference curve, which
arises from a state dependent aspect of utility under a life uncertainty environment, using a
model of two discrete periods and binary states of mortality/income risks. In section 2, a
basic framework is set, in which two adjacent generations, parents in old adulthood and
children in young adulthood are facing the decision regarding intergenerational risk sharing
with/without an available old-age social security for parents. In section 3, some
characteristics in parents’ difference curve are explained, where self-insurance plays an
important role on the insurance contract decision. On the basis of these analyses, we claim
some fundamental propositions regarding the optimal allocation of social security and
intergenerational risk sharing in section 4, and some regarding the sensitivity to default

risk and taxation in social security in section 5.

2. Basic setting

At first we divide each generation’s lifetime roughly into three stages, “Y ” (for the child),
“M ” (for the young adulthood) and “O” (for the old adulthood), each of which corresponds
with each discrete period ($30 years). Assume that, at the beginning of period ¢, two
adjacent generations, “p” (parents) and “c¢” (children), are now going to begin stage O
and M , respectively.!l 2 Parents hold an available asset A”, and children’s disposable

income isW . During this period, there exist two types of binary risk, the risk of death

1 This is a typical overlapping generation model.
2 These notations are also used in superscripts/subscripts.



(mortality risk s, (= 1,0)) for parents, and that of disposable income s,(=1,0) for children.
The risk of death exists is revealed exactly at the middle point of stage O, when they are
alive (s, =1) with probability ¢, or die (s, = 0)with probability ] — ¢ . The income risk is
revealed exactly at the middle point of stage M , when they earn the higher income W/
(s, =1) with probability @', or the lower income W, (s, =0)with 1—¢'. Therefore, the
revelation of mortality risk for parents, and that of income risk for children exactly coincide
with each other in time. Each generation i(= p,c) holds an egoistic utility, which depends

explicitly only on its own consumption only during stage M and O, not during Y, and

takes a form of state-dependent utility:
U =u'(cy, )+ Pu () + B {u (o) + Pu'(coy)} it s, =1

~i i i i i 2 0 i .
u' =u'(cy,)+ Pu'(cy,)+ B u(cy) if 5,=0
u'(cy=c"/1-0) if #1,0r u'(c)=Incif o =1 (2.1)

Here B is a constant time preference for each half period, ¢ is a constant relative risk

aversion coefficient, c;,, is a real consumption of generation i during the first half period
of stage M, c,, is a real consumption of generation i during the second half period of

stage O, or etc. Utility function u(:) is increasing and concave, and assumes ordinary
Inada conditions. The real interest rate for each half period is denoted by r.3 Children’s
life strategies during stage M (number of children to bear N, human capital investment

for each child H, asset plan 4) are exogenously given, except for the intergenerational
transfer contracts with parents (S, B) . For parents, there are two options of old adulthood

insurance for mortality risk, intergenerational transfer with children (S,B) and social

3 B =1/(14r)is assumed just for convenience but without loss of generality.



security (R, P) .+ 5 If these transfer contracts are actuarially fair, they necessarily satisfy:
L,:pS=(1-¢)B or [,:pR=(1-¢@)P (2.2)
At first assume thats, and s, are uncorrelated. Then the associated indirect utilities for
parents and children regarding a transfer contract schedule (S, B) are represented as:
v?(S,B,p,B,r, A"y =u(A” — B)+@Pu((1+r)(S + B)) (2.4a)¢

(8. Bop. ur V) = may] A€ T Pu@E )T =8 =)
o a \+(1=@)u(c,)+ Pu(l+ )W +B—c))]

(2.4b)7

3. Some peculiar aspects of intergenerational risk sharing
See Figure 1. The dotted linea, ¢, and d are the indifference curves of parents,
which draws the contour lines v?(S,B,p, 8,1, A”) =v? for distinct constants, v’ ’s. On

the other hand, b, e, and f are those of children, which draws the contour lines

ve(S,B,p,p,r, Wc) =V for distinct v°’s. Under the settings of section 2, there exists a

set of intergenerational transfer contract (S, B), such that: (1) both parents and children are
willing to conclude the contract. (Participation constraints), and (2) each contract is

Pareto-optimum. (Pareto optimality conditions) Furthermore, the compact set denoted by

X ,, satisfying the above conditions (1) and (2), is located inside the area S >0, B>0

1 (S,B)and (R, P) denote (Support, Bequest) and (Receipt, Payment), respectively. Here
the left-hand side of (S,B) and (R, P) denotes receipt with occurrence of §, =1, and the

right-hand side does payment withs, = 0, both sides measured by present value at the beginning of

the period.
5 In this article, we do not set any substantial distinction between social security and market
insurance.

6 If social security program (R, P) is also available, then:
vI(S+R,B+P,p,B,r,A")=u(A” —B—-P)+@fu((l+r)(S+ R+ B+ P)) (2.4a)
7 Under no correlation between s, and s, , W ©is defined as the expected disposable income, that

W =@ W +(1—@ WS



and (I-@)B>@S. X  is abold segment line GF', where point F' is a tangent point of

parents’ indifference curve a, and that of children e, and point G 1is a tangent point of
children’s indifference curve b and that of parents d . Any indifference curves of parents
(a, ¢ or d) are shown to be tangent with two lines, B =A? and certainty line
[, : B=—=S. Children, if they do not conclude any transfer contract, will be undoubtedly at
point O (that is, (S,B)=(0,0) ), being tangent with the actuarially fair line
[,:¢S =(1—@)B . In general, as illustrated in the indifference curve f, any arbitrary
indifference curve of children is tangent with the constant premium Iline
[,':(1-@)B—@S =k, at the intersection of /,' and /,:B=-S.

See Figure 2. Now we examine parents’ position within a given transfer contract
scheme (S, B) . If parents are not given any transfer contract, their position is illustrated as
point D : (S,B) = (0, ("7 BA”) /(1 + (pl/aﬂ)), where @ is tangent with the horizontal
axis § =0, exactly at point D .8 Here B is not an amount of bequest, but is some
conditional cost on death (s, =0) to be additionally discarded as a result of partially
self-insuring mortality risk s, .9 Thus point D is an optimal “self-insurance (self-contract)”,
which parents would choose when the social security is not available. Instead, if parents
make the actuarially fair and flexible social security contract, their position is
point E (R, P) = (1 - 9)BA” /(1+ @B),@PA” /(1+ @p)), where their indifference curve c
is tangent with /, : R = (1-¢@)P, at point E .10 See point / and J, both located on /.

I is the point where a, which passes point D, intersects with /,. Therefore, / is a

8 In this case, parents’ maximization problem is equivalent with maximizing their indirect utility
associated with the transfer contract (S, B ) , (2.4a), with regard to B , keeping S fixed at 0.

9 This cost is paid along axis B .
10 Note that parents’ maximization problem is equivalent with maximizing their associated indirect

utility (2.4a), with regard to (S, B ) satisfying/ | - Here intergenerational transfer (S,B ) is replaced

with the notation for social security contract (R, P).



reservation actuarially fair contract, which assures a minimum utility, same as an “optimal
self-insuring contract” D . On the other hand, J is a point on /, at which an indifference
curve of parents takes a minimum in S exactly at J. Now we consider some fixed
actuarially fair contract on [, represented as point K :(R,,P,).1' Assume that K is
located on between point O and J . In this case, parents can be even better off than at K,
by discarding some additional cost P' say, conditionally on death (along the axis in B), as a
kind of self-insuring contract. Let point K' be the tangent point of parents’ indifference
curve and S = R, . Then the optimal additional cost P', which parents should discard
conditionally on death, is calculated as distance KK'. If K is located in the upper-right of
Jalong [, then parents do not have to pay any additional cost along in B . The overall
locus of a mixed contract schedule K say, which should include that additional and
conditional cost in correspondence with each given contract K , would be a semi-segment of
line, DJEQ, as drawn in a bold line in Figure 1.12 we denote this set, which can be
optimally attained as a result of making use only of an actuarially fair contract set,
by X .13

Without any contracts concluded, parents would stand at point D, while children
would at a different point O . This aspect makes it for both parents and children impossible
to set initially some value for the state contingent claim between two states of s, or
equivalently to set the initial relative price between S and B. This is a totally different
point from Arrow-Debreu state-contingent exchange economy, in which state contingent

claim (or state price) enables them to arrive at a market-clearing and Pareto optimal

nR, >0,P, >0.
12 Point Q on [ , is infinitely far in the upper-right side.

13 Clearly K coincides with K' if K islocated on a segment line OJ , and coincides with K
itselfif K is on a semi-segment line JO .



equilibrium. 14 Therefore, in this myopic bargaining frame work, an automatic price

adjustment process to a unique equilibrium point on X , cannot be expected, as far as any

additional restriction (e.g., regarding the altruistic weight in utility between parents and

children) or any other peculiar agreements or algorithms are not introduced.!s This is one

important economic feature of intergenerational contract curve X »- On the other hand,

with a fixed level of available social security, for example K = J , in which self-insurance is
not necessary, Arrow-Debreu state-contingent exchange economy can be well defined. In this
case, an equilibrium (Pareto optimal and market clearing) contract does not depend on the
existence of altruism between parents and children, since, in general, the weight of altruism
does not transform the shape of extended contract curve, which is drawn just by relaxing

participation constraints.16

4. Some propositions regarding the mixture of intergenerational risk sharing and social
security

Now we compare, within the current framework, actuarially fair social security and
intergenerational transfer contract, from parents’ viewpoint. Especially one important
question is: Do parents choose only an actuarially fair social security or only an
intergenerational transfer contract with children, or both of them? Although it depends on

where an available social security K and an available intergenerational transfer Y are

14 If both parents and children agree with standing initially at point O, there does exist a
competitive equilibrium on X , (GF').

15 One example is one-sided (or two-sided) altruistic utility of the form U” =u? +w(u*).

16 With a fixed social security (R, Py ), this extended contract curve (not X ) is drawn by a set of

points, where parents’ indifference curve is tangent with the curve generated by shifting children’s
indifference curve in parallel along with / . by vector (R K ,PK ) .



located on /[, and on X » respectively, some aspects regarding this question can be

extracted, by setting one simple assumption regarding children’s behavior, that they would
accept any intergenerational transfer which is offered from parents, if it assures at least the
same utility as at point Y in terms of children’s associated indirect utility (2.4b).17 Denote
parents’ maximized utilities, which can be attained by concluding only social security K,
only intergenerational transfer Y, both of them, by V*(K), V?(Y) and V7 (K+Y),
respectively.8 At first, we claim a following proposition and corollary.

Proposition 1: See Figure 2. Then:

(i) Assume that Y coincides with G , the point which attains parents’ maximum utility on
X i Then, for any arbitrary K, which is located on the segment line of /;, OZ, it holds
that V?(Y)<V?(K+Y) and V' (K)SV?(K+Y).

(i) Assume that Y coincides with F', the point which attains parents’ minimum utility on
X, . Then, for any arbitrary K on [/, such that OK <O'Z", it holds that
VP <V?(K+Y) and V2 (K)2V?(K+Y).

Corollary 1: Consider an already concluded (mandatory) intergenerational transfer Y
on X . Then, any arbitrary social security K on /; (§20,B>0) surely enhances

parents’ indirect utility without any necessity to discard any additional and conditional cost,

if K is not extremely large in amount. This always holds whether there exists some

correlation between parents’ state s, and children’s state s, or not.

17 Therefore we assume implicitly that children do not enter any other transfer contract including
social security.

18 With each of these three options, parents may pay, if necessary, an additional and conditional cost
along the axis in B (self-insurance), as explained in Section 3. For rigorous formulation of parents’
problems to be solved, see Appendix.



Corollary 1 is clear from children’s indifference curve under positive/negative correlation
between s, and s,, as shown in Figure 3 and 4. Proposition 1 has quite interesting
economic implications. First, parents, together with a mandatory intergenerational transfer,
would almost always choose to take any arbitrarily given social security. Second, but if
reversely any social security is mandatory, while a fixed intergenerational transfer is not, it
may not be the case. If a non-mandatory intergenerational transfer Y coincides with G,

the maximum utility point, parents are very likely to take both of any arbitrary K and the

intergenerational transfer Y(=G) , on the other hand, if a non-mandatory

intergenerational transfer Y coincides with F', the minimum utility point, parents are
very likely to take only social security for any arbitrary K . This implies that it is quite

natural to think that for any arbitrary, but mandatory K, which is not extremely large in

amount, there exists some point ¥ on X »» such that parents are indifferent to whether to

accept an intergenerational contract or not. From continuity and monotonicity of parents’

indirect utilities on X C have a proposition and a corollary as follows.

Proposition 2: See Figure 2. For any arbitrary social security K , which is located on /,, such

that OK < 0'Z", there always exists at least one intergenerational transfer, Y (K) asa

function of K on X ,, such that V*(K)=V"(K+ Y (K)).

Corollary 2: Assume Y (K) is not point G . Then Y (K) moves slightly along X » (GF)

in the direction to G, for a slight positive change in K .

Just for purely mathematical interest, we claim following two lemmas.

Lemma 1: X (A segment line GF') has a negative tangent slope (of R with regard to

10



P), which is less than -1. Also, a segment line JD , which is a part of X __, has a negative

tangent slope (of R with regard to P), which is less than -1.
Lemma 2: Denote a tangent point of parents’ indifference curve with a constant premium
line, /,'=(1-@)P—@R =k, by point E*. (So, E'™ is the same point as E.) Then the

locus of the set of point E*, has a negative tangent slope (of R with regard to P), which

is less than -1.

The proof of next Proposition is directly derived from Lemma 2.
Proposition 3: Assume an already concluded (mandatory) intergenerational transfer ¥ on

X iy and a flexible, actuarially fair social security K on /. Then the optimal social

security K(Y) as a function of Y, which gives the maximum of parents’ indirect utility

v (I%(Y) +7Y), decreases in its size OK ,as Y moves along X, from G to F.

Lastly we examine the simplest case in which only actuarially fair social security K
on /, is available for parents. Assume that only actuarially fair social security K on [/, is
available for parents. Then, as K moves along /, from O to Q, that is, as K moves
along X, (DJEQ), parents' marginal utility of social security decreases. Especially at
point J the marginal utility discontinuously jumps into a lower level, and it becomes 0
(zero) at point £ . This aspect shows that if social security is some point between O and.J,
the marginal utility (benefit) of social security is relatively high because of the decreasing
cost of self-insurance. Together with intergenerational transfer, however, this kind of

discontinuity does not appear.

5. Other results regarding the sensitivity to default risk and taxation in social security

11



In this section we limit our analysis only on social security, and examine the sensitivity

both of parents and children to default risk and taxation on the demand for social security,
wherein now children’s income risk s, arisesand W," > W, .19

Sensitivity to default risk

We introduce another risk s, for the default risk of social security system, where
s, =1 represents non-default and s; =0 represents default. Also assume that the
probability of default (s, =0) is7n, and s; has no correlation with s, and s, ,
respectively.20 At first, consider the demand for social security by parents during stage O,
(R”,P?)(=(R,P)). The pay off of parents for each realization of two relevant risks, s,
and s, is as following. Parents receive R for {s, =1,5, =1} with probability p(1-7),
—P for {s, =0,5, =1} with(1-¢)(1-n),0(zero) for {s, =1,s, =0} with ¢n, —P
for {s, =0,s5, =0} with (1—-¢)n, respectively. In case of “default”, parents still have a
liability ( P), if they die (that is, if {s, =0,5, =0} occurs). Now we have two definitions for
actuarially fair condition: Conditional actuarially fair condition on non-default,
L,:pR=(1-9)P (5.1), and  unconditional  actuarially  fair = condition,
[ :p(1-n)R =(1—¢)P (5.2). Furthermore, parents’ associated indirect utility including

default risk is re-defined as:2!

v (R,P,o,n,B,r,A")=u(A” = P)+o(1—n)Pu((+7r)R+ P))+enpu((l+r)P) (5.3

Now we examine the sensitivity of parents’ demand for an actuarially fair social security in

the sense of (5.1) and (5.2), when 7 deviates slightly from 0 (zero) by a positive bit. In

particular, our interest is in the sensitivity of an optimal contract £ and a reservation

19 Therefore condition (iv) of (2.4) has been relaxed.
20 It seems appropriate to assume that there exists no correlation among §,, §, and §;, so far as

there does not occur any strong social systemic risk. Otherwise, these three risks may have a
considerable strong positive correlation with each other.
21 (5.3) is a modified version of (2.4a).

12



contract / , to 1. In order to do this, we denote the tangent point of either /, or /' with
the indifference curve based on this “modified” associated indirect utility (5.3),
by E" : (R;(n),P;(n)) .22 Also, we denote the point on either /, or [, which, with the
indifference curve based on a modified associated indirect utility, (5.3), attains the same
utility as at point D of n=0 (D", say), by 1" :(R,(),P,(17)).22 Now we claim a
following proposition.

Proposition 4: (Parents’ demand sensitivity to default risk) Assume that social security has
default risk with conditional actuarially fair condition (5.1). Then we have: @)
R,'m)>0,P,'(m)>0 if o>1 , R,/(M=0,P,'(mM)=0 if o=1 , and
R,'M)<0,P.,'(m)<0 if o<1. Furthermore we have: (i) R,'(0)>0,P,'(0)>0,
irrespective of the value of o .

Instead of (5.1), assume that social security has default risk with unconditional actuarially
fair condition (5.2). Then it always holds that: (i) R,'(n)>0,P.'(n)>0, and @v)

R,'(0) > 0,P,'(0) > 0, irrespective of the value of o .

Next consider the optimal demand for social security by children during stage M ,
(R°,P°)(=(R,P)). The pay off of children for each realization of two relevant risks, s,
and s,, is as following. Children receive —P for (s, =1,5, =1) with probability@'(1-1),
R for {s,=0,5;,=1} with(1-¢")1-n),-P for {s, =15, =0} with ¢'n, 0(zero)
for {s, =0,s5, =0} with (1—-¢@")n, respectively. In case of “default”, children still have a
liability ( P), if they have a higher income (that is, if {s, =1,5, =0} occurs). Now we have

two definitions for actuarially fair condition: Conditional actuarially fair condition on

2 E17: (R, (0), P, (0)) coincides with point £ : (S,, B, ).
23 [T ig the point, which, with the default risk, assures the same minimum utility as when no social
security is available. 1"~ : (R, (0), P, (0)) coincides with point [ :(S,,B,).

13



non-default, [, :¢'P=(1-¢")R (5.4), and unconditional actuarially fair condition,
I:p'P=(1-¢"Y1-n)R (5.5). Furthermore, children’s “modified” associated indirect

utility including default risk is defined as: 24

@'lu(e,) + Pu(+r) (W =P —c)))]
VPR, B0, 7, ) =max| +(1 -9 )1 =0)u(c,) + Bu((L+ 1)y +R—c,))]
+ (=" nlu(e,) + Pu(@+ )Wy —c)))]

(5.6)
Now we examine the sensitivity of children’s optimal demand for an actuarially fair social
security (R°(n),P°(n))under (5.4) and (5.5) to 17, when 1 deviates slightly from 0 by a
positive bit. Then:
Proposition 5: (Children’s demand sensitivity to default risk) Assume that social security has
default risk with conditional actuarially fair condition (5.4). Then () R'(0) < 0,P“'(0) < 0.
Instead of (5.4), assume that social security has default risk with unconditional actuarially

fair condition (5.5). Then (i) R“'(0) > 0, P“'(0) < 0.

In either case of (5.4) or (5.5), R°(0)=¢' (W —-W,)and P°(0)=(1—-@" WS -W;),

where children fully insure their income risk.
Sensitivity to taxation

We turn our focus to taxation on social security both for parents and children. Consider
two kinds of tax: a lump-sum actuarially fair tax, and an exercise tax only on payment P.
Let T, and 7, be conditional taxes imposed on the realization of receipt R and payment
P, respectively Lump-sum actuarially fair tax is described as (7,,7,) , where

¢T, =(1—)T, for parents and (1-¢")T, =¢'T, for children, (5.7). An exercise tax on

24 (5.6) is a modified version of (2.4b).

14



payment P , is described as (7%,7,)=(0,7,) , where 7, =CP , and we assume

tax-deducted actuarially fair conditions, @R =(1-@)1-{)P (5.8) for parents,
(1-9")YR=¢'(1-{)P (5.9 for children. { is defined as a proportional tax rate on P.
The expected tax income by the government is, ET = (1-¢)T, — T, (5.10) for parents,
and ET=¢'T, —(1-¢")T, (5.11) for children. The associated indirect utilities with
regard to (R, P), remain almost the same as (2.4a) for parents, and (2.4b) for children:

VPR, P,0,B,r, A7) = u(A” — P) + Bu((1+ r)(R + P)) (2.42”)

VC(P,R,q),ﬁ,r,WC)E maX

<

(<p’[u<c1) + B+ " = P=c))] J )
+(1=@)lue) + pul(U+ )y +R=c,)]

Clearly a lump-sum actuarially fair tax is better than an exercise tax on payment P, for
both parents and children, in the sense that, keeping the expected tax income ET at
constant, a lump-sum actuarially fair tax could always attain better associated indirect

utility with regard to (R, P), than an exercise tax only on payment P.

We proceed to the sensitivity analysis to an exercise taxation on payment P, as
described in (5.8) for parents and (5.9) for children. (5.8) and (5.9) are, in a sense, equivalent
with unconditional actuarially fair conditions incorporating default risk, (5.2) for parents
and (5.5) for children, respectively, if we set (1—1)(1—¢{) =1. Here, we can interpret 1 as
a conditional profit margin or a subsidy margin on the realization of receipt R. Denote

parents’ optimal demand for social security with the condition (5.8) by (R” (4 ),ﬁp ©é),

and children’s optimal demand for social security with the condition (5.9) by

(R€(),P¢(C)), respectively. Then:
Proposition 6: (Parents’ demand sensitivity to taxation) Assume that the government

imposes an exercise tax on payment P, for parents’ social security, with tax-deducted

15



actuarially fair condition (5.8). Then () R”'(()<0, irrespective of the value of o .

Furthermore (i) P?'(()>0 if o >1, P?'(¢)=0 if o =1,and P"'({)<0 if o <1.
Proposition 7: (Children’s demand sensitivity to taxation) Assume that the government

imposes an exercise tax on payment P for children’s social security, with tax-deducted

actuarially fair condition (5.9). Then (i) R¢ '(0) < 0, irrespective of the value of o .

6. Final remarks

In a continuous-time case, parents’ problem to be solved can be represented as follows:
Define parents’ transfer contract incorporating the risk of death (S(¢),B(¢)) for 0<¢<T.
T (+30 years) is the length of stage O, and (S(¢), B(t)) is measured as a present value at

time 0, not ¢, and B(f) is continuously differentiable for all 0 <¢<T . Also let c(¢) be

their consumption plan at time t, measured as a present value at time ¢, and A4” be the

present value of total available wealth, measured at time 0. Define the probability that
parents are alive at time t, as @(¢), where @(0)=1, and @(7T)=0. Then the budget

(feasibility) constraint is written as:
I; {(=S(")+c(t")exp(—rt")}dt'= A" — B(t) forall 0<¢<T. (6.1)
Equivalently in a differential form: c(¢) =[-B'(¢) + S(¢)]exp(rt) forall 0 <t <T (6.1)
From (6.1), we have B(0) = A”,and B(T) = 0. An actuarially fair condition of the transfer
T T
contract (S(¢), B(?))is: jo o(H)S(t)dt = — jo B(t)g'(t)dt 6.2)
Here § = Jj(p(t)S ()t is an expected support and B = —IOT B®)@'(¢)dt is an expected

bequest. In a differential form, @(¢)S(¢)=—-B(¢)p'(¢) (6.2). This is a continuous-time

version of an actuarially fair condition in a two-period case, [, : ¢S = (1—¢)B. Assume that
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parents’ transfer schedule (S(¢),B(¢)) is predetermined. Then they solve: (X)

T
maXJ.O o(u(c(t))exp(—pt)dt (6.3) st. (6.1). However, as a matter of fact the
c(t)

maximization problem is not left for parents, but their consumption is automatically
determined at c(¢) =[-B'(¢)+ S(¢)]exp(rt) for all 0<¢<T (6.1). Therefore, as in a
two-period case, there exists some possibility of self-insurance, in which parents must pay
an additional cost conditionally on death. On the other hand, children’s indirect utility at
time ¢ with transfer contract (S(¢),B(¢)) (0 <t <T) proves to have an indifference curve,
which is tangent with a continuous-time actuarially fair line @(¢)S(t) =—B(@)p'(t) (6.2).
From all the above points, our analysis made in the previous 4 sections with two discrete
periods does not lose any generality even in a continuous-time case.

Thus this article has just summarized, using a simple model of two discrete periods
and binary states of mortality/income risks, some fundamental propositions regarding the
mixture of intergenerational risk sharing and social security. Here for the first time,
state-dependent utility under mortality risk proves to generate parents’ peculiar
indifference curve regarding insurance contract, and self-insurance is shown to play a
crucial role on the decision regarding social security holding and intergenerational transfer

contract.
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Appendix
Rigorous definitions of V" (K), V"(Y) and V" (K +Y)
Define an actuarially fair social security K:(R,,P.) , where K is on

[, : R, =(1—@)P,, and an intergenerational transfer Y :(S,,B,) on X,. Then:

VP(K)z%achP(RK,PK +PLp,B,r,A") (A1.1-1)
Ve)=vr(Sy,By,p,B,r,A") (A1.1-2)
VP(K+Y) E(S%I)agsovp(RK J’_SaPK +B+P'a(paﬁaraAp) (A1.1'3) %6

st. V(S,B,@, B,r,W ) =V(Sy,By,0, B,r, W) =V°)

and /1 @R, =(1-¢@)P,

Proof of Proposition 1:

See Figure 2. Graphically V' (K ) can be determined as parents’ indirect utility of the
point, where a horizontal line R = R, crosses X (that is, parents’ indifference curve is
tangent with a horizontal line R = R, clearlyon X ), V"(Y) simply as that of point Y
on X,,and V"(K+Y) as that of the point where parents’ indifference curve is tangent
with the curve generated by shifting children’s indifference curve in parallel along with /|
by vector (R, ,P,).

(@) (Case: Y =G)Let Z be the point where children’s “shifted” indifference curve, which is

tangent both with parents’ indifference curve d, and an actuarially fair line /,, is tangent

25 (A1.1-1) can be rewritten as:

VP(K)= max V’(R,P,p,B,r,A") (A1.1-7)
R=Ry P>P,
26 (A1.1-3) can be rewritten as:
VP(K+Y)E(m)axOV"(R,PJrP',(p,ﬁ,r,A") (A1.1-3)
R.P).P™>

s.t. VC(R_RK’P_PK’(p’ﬂ’r’WC)ZVC(SYaBYa(paBaraWC)(EVC)
and [, 1R, =(1—-¢)P,
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with /. For some social security K , children’s shifted indifference curve is denoted by 5'
for the original indifference curve b . Graphically it is clear that for any arbitrary K on /|
such that OK < OZ, parents’ indifference curve, which is tangent with children’s shifted
indifference curve b', is located in the upper side of both point K and indifference curve
d (or point G ). So, we have V'’ (Y(=G))<V?(K +Y(=G)) with equality whenK = Z,
and V7 (K)<V?(K+Y(=G)) with equality when K =F.

(i) (Case:Y = F') Denote the point where children’s indifference curve e crosses the
certainty line /,:R=—P, by O'. Also denote some constant premium line, which
passes O', by/,":(1-@)P—@R =k'. (So, e is tangent with parents’ indifference curve a
at point F', and also is tangent with /|" at point O'.) Z" is the point where children’s
shifted indifference curve, which is tangent with both parents’ indifference curve a and a
constant premium line /,", is tangent with /,". For some social security K, denote
children’s shifted indifference curve, which corresponds with original indifference curve e,
by e'. Graphically it is clear that for any arbitrary K on /,, such that OK < O0'Z", that
parents’ indifference curve, which is tangent with children’s shifted indifference curve ¢', is
located in the upper side of parents’ indifference curve a (or point F ). So we have
VP (=F))<V?(K+Y(=F)) with equality when OK = O'Z". Now we proceed to the
proof of VP (K)>V?(K+Y(=F)). For later convenience, we rewrite V?(K) and
VP(K+Y) as VP(R;) and V?”(R,Y) using the amount of receipt for social
security K , R, . Clearly, when K =0 (zero receipt, zero payment), we have
VPR (=0)=V*?(R;(=0),Y(=F)) ,2" because parents are indifferent between D

and F' . So, at first we show that,

21 Thatis, V7 (K(=0))=V"(K(=0)+Y(=F)).
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O Lok (0N VPR (—0) V(e
@V (R (=0)) > 5RKV (R, (=0),Y(=F)), (A1.2)

and next show that V”(R,,Y(=F)) can never catch and overpass V”(R,) for any
arbitrary K such that OK <0'Z".
First step’ Since, given an intergenerational transferY , parents need not pay an additional

cost on death (i.e., one constraint P'>0 isbinding.), we can rewrite (A1.1-3) as:

VP (Ry.Y)=maxv” (R, P,) (A1.3)
R,P

st. V(R=R.,P—Pc,)=7(S,,B,,)=7°)
and /[, : R, =(1-@)P;
Here (R,P) denotes a “mixed” transfer contract schedule. Plugging the second equation of
constraints into other equations of (A1.3), we have a following Lagrangian and

corresponding first order conditions.

L :NP(RaPa“')_)v{VC(R—RK,P—ﬁRK,...)_‘_)CJ

a%Np(R,P;--)—/laiRVC(R—RK,P‘I_LR“--)=0 (AL4)
0 ~, 0 ~ %

— V(R P, ) = A=V (R=Ry,P———R,,-) =0

oP ( ) apv ( K 1—(P K )

From the envelope theorem, also using (A1.3), we obtain:

0
VPR, Y)=——V (R,Y
Ry, Y) 2R, (Re,Y)
0 . @ ¢ 0 . @
=AM —V(R-R;,P———R,, )+ ——V (R-R;,,P———R,,--) | (AL5)
OR I-¢ l-¢ OP 1-¢
:i;P(R,p,...)+Li‘7P(R,p,...)EE(R,p)
OR l-¢ OP

Similarly we obtain the following equation quite easily:

0
Vp'(RK) EGTVP(RK)
5 K (A1.6)
=—v"(R,P,--
R ( )
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Denote the point at which parents indifference curve, which crosses a solution point of (A1.3),

Q:(R,,P,) say, intersects with X, by Q_ :(R, ,F, ).Clearly, at any arbitrary point

= ac’

“—ac’

0 -
onX _, wehave (3_P VY(R,P,--) =0, so (A1.5) and (A1.6) actually share the same value at

Q and Q_, that is Z(R,P). Now we have only to show that Z(R, P) is decreasing as

ac’
P increases (moves) along parents' indifference curve from Q,, to Q.

Here, denote parents’ indifference curve, which passes . and €, by g. Remember
parents’ indirect utility:

5P (R, P, B.r, A") =u(A” — P)+Pu((l+r)(R + P)) (2.42)

It follows directly that:28

o° _p *
~V"(R,P,) = v’ (R,P,-)<0
a; OPOR (AL7)
v'(R,P,-)<0

opP? ( )
From the definition, we also have;

Z(R,P) za%vP(R,P,---)+1_La%VP(R,P,~--) (A1.8)
So, from (A1.7) and (A1.8), it follows that:

2 2

O 5rpy=2 . SR, 4 —2 O PR Py <0

OR OR 1—¢ OPOR L9

; 5 0 O 1.9

—Z(R,P)= VIR, P, )+ ———=V (R,P,)<0

oP OPOR 1-¢ 0P

dR

ﬁ l.>0 (As graphically clear, P increases (moves) along parents indifference curve

from Q, to Q, R alsoincreases.)

0 -
28 For the first order condition, we havea—R v’ (R,P,---) > 0. Furthermore, if P is located in the

right side of DJ on X ), then a%VP(R, P,--)<0.
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where * denotes that (R,P) ison g:V”(R,P,---)=Vv,,, ,say.

dR 0

Now, sinceiE(R,P) = iE(R,P)— l. +—&(R,P), (A1.10)
dP OR dP opP

and also dP >0, from (A1.9) and (A1.10) we get %E(R,P) L<0 (A1L1D. If Q=F,

clearly Q= D, so we have completed the first step, that is, have proved (A1.2).
Second step: Assume that for some K : (R, P, ), we have V?(K)=V?(K+Y(=F)), in
another expression, V?(R,)=V"(R,;,Y(=F)). For thisK, denote solution points (of

mixed contract schedule (R,P)) for (A1.1-3) and (A1.3), by € again, and Z:(R;,FP),
respectively. 2 and X attain the same indirect utility for parents, so X should coincide
with Q. in the above notation. Then we can use the same inequality (A1.11), in order to

prove:

0 0
ar R R = Ra ) > 2V (Re(= Ro). Y (= ) (a1.12)

From the continuity of V?(R;) and V*”(R,,Y(= F)) with regard to R, now we have
just proved V?(R,)2V*?(R,,Y(=F)), that is, V" (K)2V?"(K+Y(=F)) for any

arbitrary K such that OK <0'Z".

Proof of Lemma 1:

Graphically it is clear that, for any points on a segment line JD of X, which is the

ac?’

subset of solution points for (A1.1-1), one constraint P'> 0 is notbinding. So, from the first

order condition, we have a following equality:

%p = —u' (4" = P)+ @B +ru' (1 +7r)(R, +P))=0 (A2.1)

Taking R as a function of P, and differentiate (A2.1) with regard to P, we obtain:

u"(A” = P)+ @B(1+ r)u" (1 + r)(R, +P))(% + 1) =0 (A2.2)
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dR
Considering "< 0, it follows directly that d—}f < -1 (A2.3).

Proof of Lemma 2:

Plugging the constant premium condition /,'=(1-¢)P—@R =k (A2.4) into (2.4a),

we obtain the first order condition:

—u'(4” —P)+B(1+r)u'[(1+r)(P_kD=0 (A2.5)
)

Taking P as a function of k, and differentiate (A2.4) with regard to k, we obtain;

u"(4” —P)d—P+ﬂ(1—+r)2u"((1 + r){P _kD(d—P —1} =0, (A2.6)
dk Q Q dk

from which it follows that 0 < Z—i <1 or Z—l; >1. Since, from (A2.4);

AR _1-¢ 1dk (A2.7)
dP ¢ ¢@dP

dR
we have d_P < —1. Now the proof is done.

Proof of Proposition 4:

Proof of (i): Parents’ associated indirect utility including default risk is given in (5.3).
Maximizing (5.3) subject to (5.1) with regard to P (and implicitly R), we have the first

order condition for point E":
—u'(A" = P)+(A-npA+ru'((1+r)P/o)+enBA+r)u'(1+r)P)=0 (A3.1)
Replacing P with P(n) as a function of 77 in (A3.1), differentiating the equality with

regard to 77, and implementing the comparative statics immediately produces the following

equation:
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P (4" = Pa) +[(A-m)BA+r)* ol (1+r)P()/ p)
+onB+r)u" (1+7r)PM))} (A3.2)
= B+ ((L+r)P)/ @) = pu' (1+ 1) P(1))]

The coefficient of P'(1) in L.H.S,

W"'(A4” = P) +[A=-m BUA+7)* /@l (1+ 1) P()/ @) + enf L+ 1) u" (1 + 1) P())}
is clearly negative since u''< (. The sign of R.H.S is negative, zero and positive,
corresponding to ¢ >1, o =1 and o <1, respectively. Replacing P(1) with P.(n), we
have completed the proof.

Proof of (iii): The proof is almost the same as proof of (i) except for maximizing (5.3) subject

to (5.2) instead of (5.1). The first order condition for point E7 is:

—u' (4" = P() + B+ 1)1 =)+ o(L=mu'(1+ )P - @) + p(1-m)] /(1= 1)))
+onB(1+ru'((1+r)P(1)) =0
(A3.3)

We get a following equation for comparative statics:
P'(m){u"' (4" - P(n))

+ B+ ([1-0)+e(L—m)T ML —m))u"((1+7) P -@) + (L -] Ap(1-n)))
+onBL+r)’u"((1+r)Pn))}

= B+’ [(1= ) + o= - @) (@ =m)* )" (1 + )P - @) + (1 =] /(@(1 - 7))
=B+ ru'((1+r)P(n))

(A3.4)
Considering u'>0, u''<0, clearly, R.H.S is negative, and the coefficient of P'(1) in
L.H.S,
{u" (4" = P(n))

+ B+’ [A=@) + (=] (o =)l ((+ 1) P ~¢) + o1 =m]/p(1-n))
+onB(L+r)*u" (1+r)P()}

is also negative. So, replacing P(1) with P, (1), the proof is done.
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Proof of (ii): Since (5.3) must be constant subject to (5.1), we have:

u(A” = P(m) + o1 —=n)pu((+r)P(n)/ @) + enpu((1+ r)P(1)) = Const.over n

The first order condition with regard to 1) produces:
P'(m){-u' (4" —=Pm)+A-n)BA+ru'((L+r)P(Mn)/p)
+onB(+ru'((1+r)P(n))} (A3.5)
= @Blu(+r)Pm)/ @) —u(l+r)Pn)]>0
Evaluating (A3.5) at n =0,
P O){—u'(4” —PO)+ BA+r)u'(A+r)P0)/ @)} >0 (A3.6)
So, we need the sign of the coefficient of P'(0) in L.H.S,
{~u'(A" = PO)+ BA+r)u'((1+7r)P0)/p)}. (A3.7)
But, this is exactly the first order condition at FE =0 (= E), which should be 0 at E. Since
I"°(=1) islocated in the left-down side of E along [, so (A3.7) should have a positive

value. The proof is now done.

Proof of (iv): Since (5.3) must be constant subject to (5.2), we have:

u(4” = P(m)) +o(1—1n) Bu((1+ )P - @) + o(1-m]1/(eBL-1)))
+onPu((1+r)P(n)) = Const.
over 1. (A3.8)

Differentiating (A3.8) with regard to 1 produces:

P'(m){-u'(4" — P(n))
+ B+ P[1=¢)+ o1 -m' (1+ 1) PO -9) + o1 -m)](@(1-1)))
+onB+ru'((1+r)P(n))} (A3.9)
= oBlu((1+ 1) PIA- @) + oL -] (@1 -n))) - u((1+ r)P())]
+ B+ r)(1- @) [(1—mu'(1+ 1) P - @)+ p(1-m)]/(e(1-1)))P(n)
Evaluating (A3.9) at n =0,
P'(0){-u'(4” = P(0))+ B(L+r)u'((1+r)P(0)/ )}
= pBlu((1+ )P(0)/ @) ~u((1 + PYP(O))] 510

+ B+ A —@)u'((1+r)P(0)/¢)P(0)
>0

Now we have only to examine the sign of the coefficient of P'(0) in L.H.S;
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{~u'(A" — P(0))+ B+ r)u'((1+7)P(0)/ @)}, which is exactly the same as (A3.7). Since
™" =1, we can apply the same argument as after (A3.7) in the proof of (ii). The proof is

now done.

Proof of Proposition 5:

Proof of (i): Children’s associated indirect utility including default risk is given in (5.6).
Maximizing (5.6) subject to (5.4) with regard to R (and implicitly P) and c,, we have the

first order condition, with regard to R , for some value of ¢, such that

¢, = argmax%”(P,R,(p',ﬂ,n,r,W”) s.t. (5.4):

c,P,R
u'[(1+ P -1 g —él)j
l-n= - - (A3.11)
' ((1+ 1 +R-¢)
Since u'() is a decreasing function (u''< 0), for 17> 0 we have:
77 ¢ 1_(/)' n 77 ¢ n
W'———"—R—-¢ >W,+R-¢ (A3.12)

1

%

So, we get @'(W,* =W, )>R and (1—@")(W," —W,°)>P (A3.13). Replacing R and
P with R°(n) and P°(n) , and considering RC(O)=(p'(V718—V7()C) and

P(0)=(1—@" W, —W,), (A3.12) is equivalent with R°'(0) <0, P'(0) < 0. The proof

is now done.
Proof of (ii): Quite similar to proof of (i). Maximizing (5.6) subject to (5.5), in stead of subject

to (5.4), with regard to R (and implicitly P) and c,, we have the first order condition,

with regard to R, for some value of ¢, such that ¢, = argmaxv‘(P,R,¢",B,1n,7, W °)
c,P.R

s.t. (5.5):
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u'[(l+r)(V71” —(1_"")9_”)R—él)j
%

1= — (A3.13)
w1+ 1), +R=¢)))
Then we have:
(p' 77 ¢ 77 ¢ c (1_(/)')(1_77) 77 ¢ 7 C c
I/]?l _WO =R and I/lyl _WO :P
I—o)l-m+g" V=R and =+ e )=rm

(A3.14). Considering R°(0)=¢'(W, =W,°) and P°(0)=(1—-@" W, —=W,), (A3.14)

implies R“'(0) > 0,P°'(0) < 0. The proof is now done.

Proof of Proposition 6:

Proof of (i): Parents’ associated indirect utility is given by (2.5a”). Maximizing (2.5a”) subject

to (5.8) with regard to R (and implicitly P ), we have the first order condition:
(4 = Ro ((1-9)(1-¢)))
+ B+ 7)p+ 11— @)1=l (1+7)R[p + 1 - @)1= -)(1-¢)))=0

Replacing R with R({) as a function of { in (A3.15), differentiating the equality with

(A3.15)

regard to { , and implementing the comparative statics immediately produce the following

equation:

RO U@ 1-@)1-E)u"(4” - R (1)1 =)

+ B+ ([o+ (=) =T (A=) =N (1+MRE)l + (=) =N~ @)1= )N

= ~(@A(1-)1 =L NREG " (47 = RC)p ((1-9)1-¢))

+ B+ (A=) (L+MRE)e + A=) =1~ )1 -£)))

=B+ (9 + A=) =P @ (1 =) =& NREGw" (1 + MR + 1 =p)(1 =) - p)1-$))

(A3.16)

Considering u'>0, u'"<0, clearly, R.H.S is positive, and the coefficient of R'(n) in

L.H.S is negative. So, replacing R({) with R” (£), the proof is done.

Proof of (ii): Parents’ associated indirect utility is given by (A2.5). Maximizing (2.5a”) subject

to (5.8) with regard to P (and implicitly R ), we have the first order condition:
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- u'(A" - P)
+ B+ +1-@)1-Ol'(1+ 1) Plo+(1-)1-)])/9)=0
Replacing P with P({) as a function of { in (A3.17), differentiating the equality with

(A3.17)

regard to { , and implementing the comparative statics immediately produce the following

equation:

PO (47 - P©))

+ B+ [+ A-p)1-OPu" (1 + ) PE)lg + (1 -0)1 )/ )}

= B+ )1 -y (1+NPElp+ (1 -0)1-0)1/ )

+ B+ [+ 1-p)1-ONA-9)/@)PEu" ((1+ NPElp + (1 -0)(1 -1/ )

(A3.18)
Considering u''< 0, clearly, the coefficient of P'(1) in L.H.S is negative. On the other

hand, R.H.S can be rewritten as:
RH.S = B(1+r)(1-@)u'(X)+Xu"(X)) (A3.19)

where X = (1+7)([¢p +(1-0)(1-5)]/ @) PS)

Considering the form of utility (2.1), the sign of R.H.S is positive, zero and negative,
corresponding to o <1, o =1 and o > 1, respectively. So, replacing P({) with p? &),

the proof is done.

Proof of Proposition 7:

Proof of (i): Children’s associated indirect utility including default risk is given in (2.5b").
Maximizing (2.5b’) subject to (5.9) with regard to R (and implicitly P) and c,, we have the
first order condition, with regard to R , for some value of ¢, such that

¢, =argmaxv°(P,R,¢',B,r,W°) s.t. (5.9)

c,P,R

—. (1-9") .
NA+r)———2 2 R-¢
I—Czu[( o p'1=¢) C)j (A3.20)
w1+ +R=¢,)) ‘
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Since u'() is a decreasing function (¢''< 0), for 11 > 0 we have:
n

Wl”—MR—él >W,S +R-¢, (A3.21)
¢'(1-¢)
So, we get p1=¢) (W,© —=W,°)> R (A3.22). L.H.S of (A3.22) is decreasing with

(1-¢)+e'(1-¢)

regard to{ . Replacing R with R($), and considering R°(0) = ¢' W, —W,), (A3.22) is

equivalent with R¢ (0) < 0. The proof is now done. Unlike Proposition 5, the sign of P '(0)

is still uncertain.
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