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Abstract

Two new properties of a finite strategic game, strong and weak BR-dominance solv-

ability, are introduced. The first property holds, e.g., if the game is strongly dominance

solvable or if it is weakly dominance solvable and all best responses are unique. It ensures

that every simultaneous best response adjustment path, as well as every non-discriminatory

individual best response improvement path, reaches a Nash equilibrium in a finite number

of steps. The second property holds, e.g., if the game is weakly dominance solvable; it

ensures that every strategy profile can be connected to a Nash equilibrium with a simulta-

neous best response path and with an individual best response path (if there are more than

two players, switches from one best response to another may be needed). In a two person

game, weak BR-dominance solvability is necessary for the acyclicity of simultaneous best

response adjustment paths; if the set of Nash equilibria is rectangular, it is also necessary

for the acyclicity of best response improvement paths.
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1 Introduction

The two strands of game theory referred to in the title have two things in common. First, some

dynamic notions are involved in both cases. Second, both can be developed in a purely ordinal

framework although are equally applicable to mixed extensions. They radically differ in their

assumptions about the rationality of the players.

Dominance solvability presupposes a high degree of sophistication. Each player is able to

analyze the whole game and anticipate the results of similar analyses by the others. The term

is due to Moulin (1979) although the origins of the notion itself can be traced back to Luce

and Raiffa (1957). Actually, there are two versions of the property, strong and weak ones. The

elimination of strongly dominated strategies does not change, say, the set of Nash equilibria.

The elimination of weakly dominated strategies is not at all innocuous (Samuelson, 1992), but,

nonetheless, is often regarded as legitimate.

Individual myopic adaptation, on the contrary, is natural when the players’ rationality is

bounded and they have to rely on “local” considerations. The study of best response dynamics

by A.-A. Cournot predated the very term “game theory” by about a century. Similar processes

in various contexts were investigated by Topkis (1979), Bernheim (1984), Vives (1990), Milgrom

and Roberts (1990).

In the light of this difference, even opposition, it is very interesting to know whether a

game nice from one viewpoint may be nasty from the other. This question was addressed

by Moulin (1984), who found that dominance solvability usually implies the convergence of

Cournot tatonnement; in a rather special case, an equivalence was established. Dominance was

weak although the assumption of unique best responses made it “not so weak.” Two scenarios

of tatonnement were considered: simultaneous and sequential (with a fixed order of the players).

In a sense, this paper returns to the same subject with a newer toolbox. Although none of

the results is strikingly dissimilar to those of Moulin (1984), a much more detailed picture of

“what depends on what” is obtained. For technical convenience, we only consider finite games,

where we can essentially restrict ourselves to finite improvement (or adjustment) paths; in a

continuous game, this would be insufficient. Similarly, in a finite game dominated strategies

can be eliminated one at a time, which gives considerable technical freedom; in a continuous

game, we have to delete strategies en mass, and even then cannot expect a finite number of

eliminations to be sufficient. Iterative elimination of dominated strategies in infinite games raises

quite a few complicated questions (Gilboa et al., 1990; Marx and Swinkels, 1997; Dufwenberg

and Stegeman, 2002).

Concerning adaptive dynamics, we consider both (best response) improvements as defined

by Monderer and Shapley (1996) and Milchtaich (1996), and simultaneous best response adjust-

ments. The former include sequential tatonnement of Moulin (1984). In a broader approach to

learning in strategic games (Fudenberg and Levine, 1998), more sophisticated scenarios of adap-

tation or evolution are often considered, which involve random moves and conscious use of mixed

strategies. We work in a purely ordinal framework; however, the basic properties of improve-

ment paths to be studied here are relevant to the convergence of more complicated processes

(Kalai and Schmeidler, 1977; Young, 1993; Kandori and Rob, 1995; Milchtaich, 1996; Friedman
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and Mezzetti, 2001). The language of binary relations, suggested in Kukushkin (1999), proves

useful.

Since dominance solvability seems to have no implications for better reply dynamics anyway,

we introduce an apparently new notion of BR-dominance solvability. A strategy is called strongly

BR-dominated if it is not among the best responses to any profile of strategies of the partners.

A strategy is weakly BR-dominated if it is not indispensable for providing the best responses to

all profiles of strategies of the partners; to be more precise, we consider three different versions

of the property.

A game is called strongly (weakly) BR-dominance solvable if iterative elimination of strongly

(weakly) BR-dominated strategies produces a game where all strategy profiles are Nash equilib-

ria. Clearly, a strongly (weakly) dominance solvable game is strongly (weakly) BR-dominance

solvable; both converse statements are wrong.

The iterative elimination of strongly BR-dominated strategies can be viewed as an ordinal

analogue of the rationalizability concept (Bernheim, 1984; Pearce, 1984). Admittedly, there is

a serious difference between the two situations: If a pure strategy is not a best response to

any probability distribution on the strategies of the partners, then it is dominated by a mixed

strategy, hence the latter provides a justification for the elimination of the former. When only

pure strategies are allowed, the fact that a strategy is not a best response to any profile of

strategies of the partners does not make it inferior to any other strategy.

An ordinal version of rationalizability was developed by Borges (1993), but its departure

from conventional notions of dominance was less radical than here. Actually, the question of

which strategies are not needed by a player can only be resolved with a particular scenario (or a

list of scenarios) in view; e.g., the Stackelberg solution of a two person game may well include the

choice of a strongly dominated strategy by the leader. And it is easy to see that the elimination

of strongly BR-dominated strategies does not change the set of Nash equilibria.

A very interesting feature of Moulin (1984) is an equivalence result (Corollary of Lemmas 1

and 2), even though obtained in a rather special case. From our current viewpoint, that result is

just a fortunate coincidence: when all best responses are unique, our four levels of BR-dominance

solvability become equivalent. Generally, strong BR-dominance solvability is sufficient for nice

best response dynamics, whereas weak BR-dominance solvability is necessary when there are

two players. The latter is only sufficient for the possibility to reach a Nash equilibrium from

every strategy profile with a tatonnement path. There seems to be no necessity result for more

than two players.

Section 2 contains the basic definitions and facts about improvement dynamics in strategic

games; a new version of the acyclicity of improvements in a strategic game is introduced, “finite

inclusive best response improvement property.” In Section 3, standard notions of (strong and

weak) dominance solvability are reproduced, and their “best response” modifications are de-

fined; the section also contains auxiliary results about the new concepts. Implications of strong

BR-dominance solvability, Theorems 4.4–4.6, are given in Section 4: every simultaneous best re-

sponse adjustment path reaches a Nash equilibrium in a finite number of steps; every individual

best response improvement path does the same unless a player is never given an opportunity to

adapt. Weak BR-dominance solvability also has some “positive” implications, especially in the
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case of two players; they are in Section 5. Theorems 6.2, 6.4 and 6.5 about the necessity of weak

BR-dominance solvability are in Section 6; a plausible Hypothesis 6.6 remains unproven. The

last Section 7 consists of examples showing the impossibility of easy extensions of the results.

2 Improvement paths in strategic games

Our basic model is a strategic game with ordinal preferences. It is defined by a finite set of

players N , and strategy sets Xi and preference relations on XN =
∏

i∈N Xi for all i ∈ N . We

always assume that each Xi is finite and preferences are described with ordinal utility functions

ui : XN → R. For notational simplicity, we assume Xi ∩ Xj = ∅ whenever i 6= j, and denote

X =
⋃

i∈N Xi. For each i ∈ N , we denote X−i =
∏

j∈N\{i} Xj and

Ri(x−i) = Argmax
xi∈Xi

ui(xi, x−i)

for every x−i ∈ X−i (the best response correspondence); if #N = 2, then −i refers to the partner

of player i.

We introduce the individual improvement relation ⊲
Ind and best response improvement rela-

tion ⊲
BR on XN (i ∈ N , yN , xN ∈ XN):

yN ⊲
Ind

i xN ⇋ [y−i = x−i & ui(yN) > ui(xN)],

yN ⊲
Ind xN ⇋ ∃i ∈ N [yN ⊲

Ind
i xN ];

yN ⊲
BR

i xN ⇋ [y−i = x−i & xi /∈ Ri(x−i) ∋ yi],

yN ⊲
BR xN ⇋ ∃i ∈ N [yN ⊲

BR
i xN ].

By definition, a strategy profile xN ∈ XN is a Nash equilibrium if and only if xN is a maximizer

of ⊲
Ind, i.e., if yN ⊲

Ind xN is impossible for any yN ∈ XN . In a finite game, xN ∈ XN is a Nash

equilibrium if and only if xN is a maximizer of ⊲
BR.

A (best response) improvement path is a finite or infinite sequence {xk
N}k=0,1,... such that

xk+1
N ⊲

Ind xk
N (xk+1

N ⊲
BR xk

N) whenever k ≥ 0 and xk+1
N is defined; henceforth, we call such k

admissible (for a given path).

As in Kukushkin et al. (2005), we combine the terminology of Monderer and Shapley (1996),

Milchtaich (1996), and Friedman and Mezzetti (2001). A game has the finite improvement

property (FIP) if it admits no infinite improvement path. A game has the finite best response

improvement property (FBRP) if it admits no infinite best response improvement path. FIP

(FBRP) means that every (best response) improvement path reaches a Nash equilibrium in a

finite number of steps. A game has the weak FIP (weak FBRP) if, for every xN ∈ XN , there

exists a finite (best response) improvement path {x0
N , . . . , xm

N} such that x0
N = xN and xm

N is a

Nash equilibrium. Clearly, FIP ⇒ FBRP ⇒ weak FBRP ⇒ weak FIP.

A Cournot potential is a strict order (irreflexive and transitive binary relation) ≻ on XN

such that yN ≻ xN whenever yN ⊲
BR xN ; a weak Cournot potential is a strict order ≻ on XN

such that, whenever xN is not a Nash equilibrium, there is yN ∈ XN such that yN ⊲
BR xN

and yN ≻ xN . By Propositions 6.1 and 6.2 from Kukushkin (2004), a finite game has the
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(weak) FBRP if and only if it admits a (weak) Cournot potential. Henceforth, best response

improvement paths will be called just Cournot paths ; clearly, the FBRP is equivalent to the

absence of Cournot cycles, i.e., Cournot paths x0
N , x1

N , . . . , xm
N such that m > 0 and x0

N = xm
N .

A property intermediate between the FBRP and weak FBRP deserves attention. We say

that a player i ∈ N is involved in a Cournot path {xk
N}k=0,1,... if for each admissible m ∈ N

there is an admissible k ≥ m such that xk
i ∈ Ri(x

k
−i). A Cournot path is inclusive if each player

i ∈ N is involved in it; a Cournot cycle is complete if for each player i ∈ N there is k ≤ m such

that xk
i ∈ Ri(x

k
−i).

A game has the finite inclusive best response improvement property (FIBRP) if it admits no

infinite inclusive Cournot path. It is immediately clear that the FIBRP implies, in particular,

the convergence of the sequential tatonnement process as defined by Moulin (1984, p. 87) in a

finite number of steps.

A preorder is a reflexive and transitive binary relation; with every preorder º, a strict order

≻ and an equivalence relation ∼ are naturally associated. A Cournot quasipotential is a preorder

º on XN such that for every xN ∈ XN there exists a subset M(xN) ⊆ N satisfying

yN ⊲
BR xN ⇒

[

yN ≻ xN or [yN ∼ xN & M(yN) = M(xN) 6= ∅]
]

; (1a)

i ∈ M(xN) ⇒ xi /∈ Ri(x−i). (1b)

It immediately follows that yN ≻ xN whenever yN ⊲
BR

i xN and i ∈ M(xN). If ≻ is a Cournot

potential, then its reflexive closure º is a Cournot quasipotential with M(xN) = ∅ for all

xN ∈ XN . If º is a Cournot quasipotential, then its asymmetric component ≻ is a weak

Cournot potential.

Proposition 2.1. For every finite strategic game Γ, the following statements are equivalent:

1. Γ has the FIBRP;

2. Γ admits no complete Cournot cycle;

3. Γ admits a Cournot quasipotential.

Proof. Infinite repetition of a complete Cournot cycle generates an infinite inclusive Cournot

path, hence Statement 1 implies Statement 2.

Let Statement 2 hold. To verify Statement 3, we denote º the reflexive and transitive closure

of ⊲
BR: yN º xN if and only if there is a finite Cournot path x0

N , x1
N , . . . , xm

N such that x0
N = xN

and xm
N = yN (m ≥ 0). Let Y ⊆ XN be an equivalence class of ∼ with #Y > 1; we denote

D(Y ) = {i ∈ N | ∀xN ∈ Y [xi /∈ Ri(x−i)]}. Since all xN ∈ Y can be arranged into a single

Cournot cycle and that cycle cannot be complete, D(Y ) 6= ∅. Now we define M(xN) = D(Y ) if

xN belongs to a non-singleton equivalence class Y , and M(xN) = ∅ otherwise. The conditions

(1) are checked easily.

Finally, let º be a Cournot quasipotential and {xk
N}k=0,1,... be an infinite Cournot path; we

have to show that a player i ∈ N is not involved in the path. Since XN is finite, at least one

strategy profile x̄N must enter into the path an infinite number of times. Let xm
N = x̄N for the
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first time; clearly, we must have xk+1
N ∼ xk

N for all k ≥ m. By (1a), M(xk+1
N ) = M(xk

N) = M0 6= ∅
for all k ≥ m. By (1b), we have xk

i /∈ Ri(x
k
−i) for all i ∈ M0 and k ≥ m. Thus, each player

i ∈ M0 is not involved.

Corollary. If a finite two person game Γ has the FIBRP, then it has the FBRP.

Proof. By Proposition 2.1, Γ admits no complete Cournot cycle; on the other hand, best response

improvements by one player cannot form a cycle in any game.

Remark. In the proof of Theorem 3 of Kukushkin (2004), the FBRP was derived from the

presence of a “quasipotential” in an even weaker sense than (1). The point is that whenever a

game satisfies the conditions of that theorem, so do all its reduced games. Generally, we only

obtain FIBRP. In particular, dominance solvability (in any sense) need not be inherited by the

reduced games, hence Theorem 4.4 below also asserts only FIBRP.

We introduce the simultaneous best response adjustment relation ⊲
∗BR on XN (yN , xN ∈ XN):

yN ⊲
∗BR xN ⇋

[

∀i ∈ N [yi = xi ∈ Ri(x−i) or xi /∈ Ri(x−i) ∋ yi] & yN 6= xN

]

.

In a finite game, xN ∈ XN is a Nash equilibrium if and only if xN is a maximizer of ⊲
∗BR. A

simultaneous Cournot path is a finite or infinite sequence {xk
N}k=0,1,... such that xk+1

N ⊲
∗BR xk

N

whenever k ≥ 0 and xk+1
N is defined.

Remark. We do not use the term “improvement” here because yN ⊲
∗BR xN is compatible with

ui(yN) < ui(xN) for all i ∈ N .

A game has the finite simultaneous best response adjustment property (FSP) if there exists

no infinite simultaneous Cournot path. FSP implies that every simultaneous Cournot path

eventually leads to a Nash equilibrium. A game has the weak FSP if, for every xN ∈ XN , there

exists a finite simultaneous Cournot path {x0
N , . . . , xm

N} such that x0
N = xN and xm

N is a Nash

equilibrium.

A simultaneous Cournot potential is a strict order ≻ on XN such that yN ≻ xN whenever

yN ⊲
∗BR xN ; a weak simultaneous Cournot potential is a strict order ≻ on XN such that,

whenever xN is not a Nash equilibrium, there is yN ∈ XN such that yN ⊲
∗BR xN and yN ≻ xN .

By Propositions 6.1 and 6.2 from Kukushkin (2004), a finite game has the (weak) FSP if and

only if it admits a (weak) simultaneous Cournot potential.

Proposition 2.2. If a finite two person game Γ has the (weak) FSP, then it has the (weak)

FBRP.

Proof. For every xN ∈ XN , we define

ν(xN) = #{i ∈ N | xi ∈ Ri(x−i)}. (2)

If ν(xN) = 2, then xN is a Nash equilibrium. If yN ⊲
BR xN , then ν(yN) ≥ 1. If x0

N , . . . , xm
N = x0

N

(m > 0) is a Cournot cycle, then ν(xk
N) = 1 for all k. If ν(xN) = 1, then yN ⊲

∗BR xN is
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equivalent to yN ⊲
BR xN . Therefore, every Cournot cycle is a simultaneous Cournot cycle,

hence FSP implies FBRP.

Let Γ have the weak FSP and x0
N ∈ XN ; then there is a simultaneous Cournot path

x0
N , . . . , xm

N such that xm
N is a Nash equilibrium. If ν(x0

N) = 1, then ν(xk
N) = 1 as well for

all k < m, hence the path is also a Cournot path. Let ν(x0
N) = 0 and ν(xk

N) ≥ 1 for the first

time when k = k̄ (0 < k̄ ≤ m). Without restricting generality, we may assume xk̄
1 ∈ R1(x

k̄
2).

We denote yk̄+1
N = xk̄

N , y0
N = x0

N , yk̄−2h
N = (xk̄−2h

1 , xk̄−2h−1
2 ) (h = 0, 1, . . . , 2h + 1 ≤ k̄), and

yk̄−2h−1
N = (xk̄−2h−2

1 , xk̄−2h−1
2 ) (h = 0, 1, . . . , 2h + 1 < k̄). It is immediately clear from the defini-

tions that yk̄−2h
1 ∈ R1(y

k̄−2h−1
2 ), yk̄−2h

2 = yk̄−2h−1
2 , yk̄−2h−1

2 ∈ R2(y
k̄−2h−2
1 ), and yk̄−2h−1

1 = yk̄−2h−2
1

for all admissible h. (If k̄ is odd, then player 1 moves from x0
N = y0

N to y1
N ; if k̄ is even, it is

player 2.) For every k = 0, 1, . . . , k̄, either yk+1
N ⊲

BR yk
N or yk

N is a Nash equilibrium. Therefore,

we have obtained a Cournot path starting at x0
N = y0

N and ending either at a Nash equilibrium

or at xk̄
N with ν(xk̄

N) = 1. In the first case, we are home immediately; in the second, we recall

that xk̄
N , . . . , xm

N is a Cournot path.

When there are more than two players, there seems to be no relation between the convergence

of Cournot paths and simultaneous Cournot paths (see Moulin, 1986).

Proposition 2.3. For every finite two person game Γ where Ri(x−i) is a singleton for every

i ∈ N and x−i ∈ X−i, the weak FSP (FBRP) implies the FSP (FBRP).

Proof. No more than one simultaneous Cournot path can be started from any xN . Therefore,

if there were a simultaneous Cournot cycle, no equilibrium could be reached from any strategy

profile belonging to the cycle. Similarly, no more than one Cournot path can be started from

xN such that xi ∈ Ri(x−i) for at least one i ∈ N , and every Cournot cycle must consist of such

profiles.

3 Elimination of dominated strategies

Let Γ be a strategic game, i ∈ N , and xi, yi ∈ Xi. We call yi and xi equivalent, yi ≈ xi, if

ui(yi, x−i) = ui(xi, x−i) for all x−i ∈ X−i. We say that yi strongly dominates xi, yi ≫ xi, if

for every x−i ∈ X−i, there holds ui(yi, x−i) > ui(xi, x−i). We say that yi weakly dominates xi,

yi ≫ xi, if ui(yi, x−i) ≥ ui(xi, x−i) for every x−i ∈ X−i, while ui(yi, x−i) > ui(xi, x−i) for some

x−i ∈ X−i. A strategy yi ∈ Xi is strongly (weakly) dominant if yi ≫ xi (yi ≫ xi) for any

xi 6= yi. A strategy xi ∈ Xi is strongly (weakly) dominated if there exists yi ∈ Xi such that

yi ≫ xi (yi ≫ xi).

A fragment Γ′ of Γ is a strategic game with the same set of players N , nonempty subsets

∅ 6= X ′
i ⊆ Xi for all i ∈ N , and the restrictions of the same utility functions to X ′

N =
∏

i∈N X ′
i.

Let X ′
i contain both yi and xi. Then the relations yi ≈ xi or yi ≫ xi in Γ imply the same

relations in Γ′; if yi ≫ xi in Γ, then either yi ≈ xi or yi ≫ xi in Γ′.

Given a strategic game Γ, an elimination scheme of the length m > 0 is a mapping

ξ : {1, . . . , m} → X ; we associate with the scheme a sequence of fragments Γk of Γ: Γ0 = Γ;

7



Xk
i = Xi \ ξ({1, . . . , k}) for each k ∈ {1, . . . , m} and i ∈ N . It is convenient to allow an elimi-

nation scheme of the length 0, which means just taking Γ0 = Γ. An elimination scheme of the

length m ≥ 0 is perfect if yi ≈ xi in Γm for every i ∈ N and yi, xi ∈ Xm
i (hence every xN ∈ Xm

N

is a Nash equilibrium in Γm).

A game Γ is strongly dominance solvable if it admits a perfect elimination scheme such that,

for each k ∈ {1, . . . , m}, the deleted strategy ξ(k) is strongly dominated in Γk−1. A game

Γ is weakly dominance solvable if it admits a perfect elimination scheme such that, for each

k ∈ {1, . . . , m}, there is κ(k) < k such that the deleted strategy ξ(k) is weakly dominated in

Γκ(k).

Remark. When strongly dominated strategies are iteratively deleted, the result does not depend

on the details of the process. The latter may very much matter in the case of the elimination of

weakly dominated strategies; the presence of κ(k) in our definition allows for both simultaneous

and sequential elimination. The more usual requirement is that each player should become

indifferent between all outcomes when the elimination process is completed; our perfect schemes

do not ensure that. However, our weaker condition is sufficient for all “nice” conclusions.

With a slight abuse, we denote R−1
i (xi) = {x−i ∈ X−i | xi ∈ Ri(x−i)}. A strategy xi ∈ Xi is

strongly BR-dominated if R−1
i (xi) = ∅. Let xi, yi ∈ Xi; we say that yi weakly (“not so weakly”)

BR-dominates xi, denoting the fact yi ºº xi (yi ≻≻ xi), if yi 6= xi and R−1
i (xi) ⊆ R−1

i (yi)

(R−1
i (xi) ⊂ R−1

i (yi)); note that ≻≻ is the asymmetric component of ºº. It is immediately

clear that a strongly (weakly) dominated strategy is strongly (weakly) BR-dominated, while a

strongly BR-dominated strategy is weakly BR-dominated by any other, and “not so weakly”

BR-dominated by any strategy which is not strongly BR-dominated itself. A strategy xi ∈
Xi is very weakly BR-dominated if Ri(x−i) \ {xi} 6= ∅ for every x−i ∈ X−i. Every weakly

BR-dominated strategy is very weakly BR-dominated.

An S-scheme (W+-scheme, W-scheme, W−-scheme) is an elimination scheme ξ of the length

m such that, for every k ∈ {1, . . . ,m}, the deleted strategy ξ(k) is strongly (“not so weakly”,

weakly, or very weakly) BR-dominated in Γk−1. We call Γ strongly (weakly, etc.) BR-dominance

solvable if it admits a perfect S-scheme (W-scheme, etc.). Since equivalent strategies weakly

BR-dominate each other, the elimination of (very) weakly BR-dominated strategies can be

continued until each Xm
i is a singleton; however, it is technically more convenient to have all

definitions as similar to one another as possible.

Since BR-dominance solvability seems to have never been studied in the literature, we provide

detailed proofs of familiar results in the new context. Four implications are obvious: a strongly

dominance solvable game is strongly BR-dominance solvable with the same elimination scheme;

a strongly BR-dominance solvable game is “not so weakly” BR-dominance solvable with the

same elimination scheme; and similarly for (“not so”) weak BR-dominance solvability.

Proposition 3.1. If Γ is weakly dominance solvable, then Γ is weakly BR-dominance solvable

with the same elimination scheme.

Proof. At every step k, the deleted strategy ξ(k) ∈ Xk−1
i is weakly dominated in Γκ(k): yi ≫ ξ(k)

with yi ∈ X
κ(k)
i . The strategy yi need not belong to Xk−1

i , but the transitivity of ≫ implies
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that there is k′ < k and y′
i ∈ Xk−1

i such that y′
i ≫ ξ(k) in Γk′

. Clearly, y′
i 6= ξ(k) and either

y′
i ≫ ξ(k) or y′

i ≈ ξ(k) in Γk−1; therefore, y′
i ºº ξ(k) in Γk−1, i.e., ξ(k) is weakly BR-dominated

in Γk−1.

Proposition 3.2. If xN is a Nash equilibrium in Γ and ξ is an S-scheme of the length m, then

xN ∈ Xm
N .

Proof. Supposing the contrary, let k be the first step when xN /∈ Xk
N ; then xi = ξ(k) and

x−i ∈ Xk−1
−i for some i ∈ N . On the other hand, xi ∈ Ri(x−i) in Γ, hence it cannot be

BR-dominated in Γk−1: a contradiction.

Lemma 3.3. Let ξ be a W−-scheme of the length m; then Ri(x−i) ∩ Xk
i 6= ∅ whenever i ∈ N ,

k ≤ m, and x−i ∈ Xk
−i.

Proof. Supposing the contrary, let h ≥ 0 be the first step when Ri(x−i) ∩ Xh+1
i = ∅. Then

ξ(h + 1) ∈ Ri(x−i), hence Ri(x−i) = Rh
i (x−i). By definition, there is yi ∈ Rh

i (x−i) such that

yi 6= xi. Clearly, yi ∈ Ri(x−i) ∩ Xh+1
i , which contradicts the definition of h.

Proposition 3.4. If Γ is very weakly BR-dominance solvable and xN ∈ Xm
N , then xN is a Nash

equilibrium in Γ.

Proof. For each i ∈ N , we apply Lemma 3.3 to x−i ∈ Xm
−i and pick yi ∈ Ri(x−i) ∩ Xm

i . By

definition, yi ≈ xi in Γm, hence xi ∈ Ri(x−i) as well.

Propositions 3.2 and 3.4 immediately imply that the set of Nash equilibria in a strongly

BR-dominance solvable game is rectangular, and all perfect S-schemes eliminate the strategies

not participating in the equilibria.

4 Strong BR-dominance solvability

First, we show that weak and strong BR-dominance solvability are equivalent under the unique-

ness of best responses as assumed in Moulin (1984).

Lemma 4.1. If Ri(x−i) is a singleton for every i ∈ N and x−i ∈ X−i, then every W−-scheme

is an S-scheme.

Proof. Supposing the contrary, we must have a stage k (1 ≤ k ≤ m) when the deleted, very

weakly BR-dominated strategy ξ(k) ∈ Xi is not strongly BR-dominated in Γk−1, i.e., is a best

response to x−i ∈ Xk−1
−i . Let Ri(x−i) = {yi}; applying Lemma 3.3, we obtain yi ∈ Xk−1

i , hence

Rk−1
i (x−i) = Ri(x−i) = {yi}. Therefore, ξ(k) = yi, while Rk−1

i (x−i)\{yi} = ∅, i.e., yi is not very

weakly BR-dominated in Γk−1.

Proposition 4.2. If Γ is very weakly BR-dominance solvable and Ri(x−i) is a singleton for

every i ∈ N and x−i ∈ X−i, then Γ is strongly BR-dominance solvable.

Proof. The statement immediately follows from Lemma 4.1.

9



Let us introduce some useful notations and an auxiliary result. Given an elimination scheme

ξ of the length m, we define µ : X → {1, . . . ,m + 1} by

µ(ξ(k)) = k; (3a)

µ(xi) = m + 1 if xi /∈ ξ({1, . . . ,m}). (3b)

We also define µ− : XN → {1, . . . , m + 1} by

µ−(xN) = min
i∈N

µ(xi). (3c)

As long as µ(xi) ≤ m, µ is injective, hence Argmini∈N µ(xi) is a singleton whenever µ−(xN) ≤ m.

Lemma 4.3. Let ξ be an S-scheme of the length m and xN ∈ XN be such that µ−(xN) ≤ m;

then for every i ∈ N and yi ∈ Ri(x−i), there holds µ(yi) > µ−(xN).

Proof. If µ(yi) = k ≤ µ−(xN) ≤ m, then yi is strongly BR-dominated in Γk−1; since x−i ∈

X
µ−(xN )−1
−i ⊆ Xk−1

−i , this is incompatible with yi ∈ Ri(x−i).

Theorem 4.4. If a finite game Γ is strongly BR-dominance solvable, then it has the FIBRP.

Proof. Fixing a perfect S-scheme ξ, we consider the functions µ and µ− defined by (3). Let us

show that the preorder represented by µ−, i.e., yN º xN ⇋ µ−(yN) ≥ µ−(xN), is a Cournot

quasipotential with M(xN) = Argmini∈N µ(xi) when µ−(xN) ≤ m and M(xN) = ∅ otherwise.

If µ−(xN) = m + 1, then xN ∈ Xm
N , hence xN is a Nash equilibrium in Γ by Proposition 3.4.

Let yN ⊲
BR

i xN ; then µ−(xN) ≤ m, hence Lemma 4.3 is applicable. If i /∈ M(xN), then

µ−(yN) = µ−(xN) and M(yN) = M(xN); if i ∈ M(xN), then µ−(yN) > µ−(xN) because

M(xN) = {i}. We see that condition (1a) holds. Finally, if i ∈ M(xN), then µ(xi) = µ−(xN) ≤
m; if xi ∈ Ri(x−i), then Lemma 4.3 would imply µ(xi) > µ(xi). Thus, (1b) holds as well.

Theorem 4.5. If a finite two person game Γ is strongly BR-dominance solvable, then it has the

FBRP.

Proof. The statement immediately follows from Theorem 4.4 and Corollary to Proposition 2.1.

The FBRP in the formulation of Theorem 4.5 cannot be replaced with the FIP: if one player

has a strongly dominant strategy x+
i , then any behavior of improvement paths with xk

i 6= x+
i

is compatible with strong dominance solvability. For the same reason, the FIBRP cannot be

replaced with the FBRP in Theorem 4.4.

Theorem 4.6. If a finite game Γ is strongly BR-dominance solvable, then it has the FSP.

Proof. Fixing a perfect S-scheme ξ, we consider the functions µ and µ− defined by (3). Let

us show that the strict order represented by µ−, i.e., yN ≻ xN ⇋ µ−(yN) > µ−(xN), is a

simultaneous Cournot potential. Let yN ⊲
∗BR xN ; then µ−(xN) ≤ m. By Lemma 4.3, µ(yi) >

µ−(xN) for every i ∈ N , hence µ−(yN) > µ−(xN) as well.
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5 Weak BR-dominance solvability

Lemma 5.1. Let ξ be a W−-scheme of the length m and xN ∈ XN be such that µ−(xN) ≤ m;

then for each i ∈ N there is yi ∈ Ri(x−i) such that µ(yi) > µ−(xN).

Proof. Let µ−(xN) = k; for each i ∈ N , we pick yi maximizing µ over Ri(x−i). Lemma 3.3

implies µ(yi) ≥ k for each i ∈ N because x−i ∈ Xk−1
−i . If µ(xi) > k, then µ(yi) > k because µ is

injective; let µ(xi) = k. If xi /∈ Ri(x−i), we have yi 6= xi, hence µ(yi) > µ(xi) = k. Otherwise,

µ(x′
i) ≥ k + 1 for every x′

i ∈ Rk−1
i (x−i) \ {xi}, which set is not empty because xi is very weakly

dominated in Γk−1; therefore, µ(yi) ≥ µ(x′
i) ≥ k + 1.

Theorem 5.2. If a finite two person game is very weakly BR-dominance solvable, then it has

the weak FSP and the weak FBRP.

Proof. Fixing a perfect W−-scheme ξ, we consider the functions µ and µ− defined by (3), and

introduce a binary relation on XN :

yN ≻ xN ⇋

[

µ−(yN) > µ−(xN) or

∃i ∈ N [µ−(xN) = µ(xi) = µ−(yN) & xi ∈ Ri(x−i) & x−i /∈ R−i(xi) ∋ y−i]
]

. (4)

The relation is obviously irreflexive; the transitivity is obvious as long as the first disjunctive term

in (4) is applicable. Let yN ≻ xN by the second term. Since x−i /∈ R−i(xi), we have µ−(yN) ≤ m,

hence the minimizing i ∈ N is unique and xi = yi. Now if zN ≻ yN , then the second disjunctive

term in (4) cannot be valid because y−i ∈ R−i(yi), hence µ−(zN) > µ−(yN) = µ−(xN), hence

zN ≻ xN by the first term in (4). Similarly, if xN ≻ zN , then the second term in (4) cannot be

valid because x−i /∈ R−i(xi), hence µ−(yN) = µ−(xN) > µ−(zN), hence yN ≻ zN .

Let us show that ≻ is a weak simultaneous Cournot potential; let xN ∈ XN . For each j ∈ N ,

we define yj = xj if xj ∈ Rj(x−j), and pick yj maximizing µ over Rj(x−j) otherwise. If yN = xN ,

then xN is a Nash equilibrium already; otherwise, yN ⊲
∗BR xN . Let us show yN ≻ xN .

First, we note that µ−(xN) ≤ m, hence µ−(xN) = µ(xi) for a unique i. By Lemma 5.1,

µ−(yN) ≥ µ−(xN). If the inequality is strict, the first disjunctive term in (4) works. Otherwise,

we have yi = xi, hence xi ∈ Ri(x−i) by the definition of yi; besides, y−i ∈ R−i(xi) by the same

definition. Since xN is not a Nash equilibrium, x−i /∈ R−i(xi). Thus, yN ≻ xN by the second

disjunctive term in (4).

The weak FBRP immediately follows from the weak FSP and Proposition 2.2.

For more than two players, Theorem 5.2 is wrong as Example 7.2 shows; only a “very weak”

FSP, or a “very weak” FBRP, are then ensured. An individual best response path is a finite

or infinite sequence {xk
N}k=0,1,... such that, whenever xk+1

N is defined, there is i ∈ N for which

xk+1
−i = xk

−i, xk+1
i 6= xk

i , and xk+1
i ∈ Ri(x

k
−i). A simultaneous best response path is a finite or

infinite sequence {xk
N}k=0,1,... such that xk+1

N 6= xk
N and xk+1

i ∈ Ri(x
k
−i) for all i ∈ N whenever

xk+1
N is defined.
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Theorem 5.3. If a finite game is very weakly BR-dominance solvable, then every strategy profile

can be connected to a Nash equilibrium with a simultaneous best response path, as well as with

an individual best response path.

Proof. As above, if µ−(xN) = m+1, then xN is already a Nash equilibrium. Otherwise, we pick

yi maximizing µ over Ri(x−i) for each i ∈ N ; clearly, {xN , yN} is a simultaneous best response

path. By Lemma 5.1, µ−(yN) > µ−(xN). If yN is not a Nash equilibrium, we make a similar

step, and so on. Thus we obtain a simultaneous best response path along which µ− strictly

increases until a Nash equilibrium is reached.

The second statement immediately follows from a straightforward modification of the proof

of Proposition 2.2.

6 On the necessity of BR-dominance solvability

Lemma 6.1. For every finite two person game Γ, at least one of the following statements holds:

1. Every strategy set Xi is a singleton.

2. Γ admits a simultaneous Cournot cycle.

3. There is a weakly BR-dominated strategy in Γ.

Proof. Let Statements 1 and 2 not hold. If every strategy profile xN ∈ XN is a Nash equilibrium,

then all strategies of the same player are equivalent, hence Statement 3 holds. Otherwise, there

is, at least, one pair of strategy profiles such that yN ⊲
∗BR xN . Since there is no simultaneous

Cournot cycle, we can pick an xN ∈ XN which is not a Nash equilibrium and for which xN ⊲
∗BR

x′
N is impossible for any x′

N ∈ XN .

For each i ∈ N , we denote X ′
−i = R−1

i (xi) ⊆ X−i. If X ′
i = ∅ for an i ∈ N , then xi is

even strongly BR-dominated and we are home. Let X ′
N = X ′

1 × X ′
2 6= ∅. Since xN is not a

Nash equilibrium, there must be i ∈ N and x0
i ∈ X ′

i such that x0
i 6= xi. If R−1

i (x0
i ) ⊇ X ′

−i,

then x0
i ºº xi and we are home again; otherwise, there is x0

−i ∈ X ′
−i such that x0

i /∈ Ri(x
0
−i).

Since xN ⊲
∗BR x0

N is assumed impossible, we must have x−i 6= x0
−i ∈ R−i(x

0
i ). Again, if

R−1
−i (x

0
−i) ⊇ X ′

i, then x0
−i ºº x−i. Otherwise, there is x1

i ∈ X ′
i such that x0

−i /∈ R−i(x
1
i ); we denote

x1
N = (x1

i , x
0
−i) ∈ X ′

N . Since xN ⊲
∗BR x1

N is assumed impossible, we must have xi 6= x1
i ∈ Ri(x

0
−i);

therefore, x1
N ⊲

∗BR x0
N . Again, if R−1

i (x1
i ) ⊇ X ′

−i, then x1
i ºº xi; otherwise, there is x2

−i ∈ X ′
−i

such that x1
i /∈ Ri(x

2
−i). We denote x2

N = (x1
i , x

2
−i) ∈ X ′

N ; again, x2
N ⊲

∗BR x1
N ⊲

∗BR x0
N , and so

on.

Since there is no simultaneous Cournot cycle, the simultaneous Cournot path x0
N , x1

N , . . .

cannot be infinite. On the other hand, the next profile xk+1
N cannot be defined only if xk

i ºº xi

for an i ∈ N . Thus, Statement 3 holds.

Theorem 6.2. If a finite two person game Γ has the FSP, then it is weakly BR-dominance

solvable.
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Proof. We apply Lemma 6.1. If XN is a singleton, Γ is even strong BR-dominance solvable.

Statement 2 cannot hold by the FSP assumption. Therefore, there is a weakly BR-dominated

strategy xi. The elimination of xi defines a W-scheme of the length 1 and a fragment Γ1. By

Lemma 3.3, we have R1
i (x−i) = Ri(x−i)∩X1

i for all i ∈ N and x−i ∈ X1
−i; therefore, the relation

⊲
∗BR in Γ1 is the restriction of ⊲

∗BR in Γ to X1
N , hence Γ1 also has the FSP, hence Lemma 6.1

applies again. The process only stops when Xm
N is a singleton; then the W-scheme will be perfect

(it may become so even before that).

The Battle of Sexes shows that the FSP in Theorem 6.2 cannot be replaced with the FBRP

(or even FIP). This becomes possible under an additional assumption that the set of Nash

equilibria is rectangular.

Lemma 6.3. For every finite two person game Γ, at least one of the following statements holds:

1. Every strategy profile xN ∈ XN is a Nash equilibrium.

2. Γ admits a Cournot cycle.

3. The set of Nash equilibria in Γ is not rectangular.

4. There is a “not so weakly” BR-dominated strategy in Γ.

Proof. Let Statements 1, 2, and 3 not hold. We have to show that Statement 4 holds. If there

is a strongly BR-dominated strategy in Γ, we are home immediately; suppose there is none.

For each i ∈ N , there is X0
i ⊆ Xi such that X0

N = X1
N × X2

N is the set of Nash equilibria of

Γ; therefore, R−1
i (x0

i ) ⊇ X0
−i for both i ∈ N and all x0

i ∈ X0
i . We pick an xN ∈ XN \ X0

N 6= ∅
and start a Cournot path from xN ; since Γ has the FBRP, the path must end at an x0

N ∈ X0
N ;

therefore, R−1
i (x0

i ) ⊃ X0
−i for an i ∈ N .

We define a binary relation ⊲ on Xi:

yi ⊲ xi ⇋ ∃x−i ∈ X−i [xi /∈ Ri(x−i) ∋ yi & x−i ∈ R−i(xi) & x−i /∈ R−i(yi)]. (5)

Let us show that ⊲ is acyclic. Supposing to the contrary that x0
i , x

1
i , . . . , x

m
i = x0

i are such that

xk+1
i ⊲ xk

i for each k = 0, . . . , m − 1, we pick, for each k, an xk
−i from (5). Then we define

x2k
N = (xk

i , x
k
−i) and x2k+1

N = (xk+1
i , xk

−i) for each k = 0, . . . , m − 1. It follows immediately from

(5) that x0
N , x1

N , . . . , x2m
N = x0

N is a Cournot cycle in Γ, i.e., Statement 2 holds.

Since Xi is finite and ⊲ is acyclic, there is yi ∈ Xi such that yi ⊲ xi does not hold for any

xi ∈ Xi. For every x−i ∈ R−1
i (yi), we consider two alternatives: If x−i ∈ R−i(yi), then (yi, x−i)

is a Nash equilibrium, hence x−i ∈ X0
−i. If x−i /∈ R−i(yi), then we pick xi ∈ R−1

−i (x−i) 6= ∅; then

xi ∈ Ri(x−i) because we would have yi ⊲ xi otherwise; therefore, (xi, x−i) is a Nash equilibrium,

hence x−i ∈ X0
−i again. Thus, R−1

i (yi) ⊆ X0
−i ⊂ R−1

i (x0
i ), i.e., Statement 4 holds.

Theorem 6.4. If a finite two person game Γ has the FBRP and the set of Nash equilibria in Γ

is rectangular, then Γ is “not so weakly” BR-dominance solvable.
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Proof. We apply Lemma 6.3 in the same way as Lemma 6.1 was applied in the proof of Theo-

rem 6.2.

Theorem 6.5. If a finite two person game Γ has the weak FBRP and the set of Nash equilibria

in Γ is rectangular, then Γ is very weakly BR-dominance solvable.

Proof. We assume that the set of Nash equilibria in Γ is X0
N = X0

1 ×X0
2 . For every xN ∈ XN , we

define P (xN) as the length of the shortest Cournot path connecting xN to a Nash equilibrium;

then P (xN) = 0 ⇐⇒ xN ∈ X0
N . Clearly, there is a mapping π : XN → XN such that: (i)

π(xN) = xN ⇐⇒ xN ∈ X0
N ; (ii) π(xN) ⊲

BR xN and P (π(xN)) = P (xN)−1 whenever xN /∈ X0
N .

The iteration of π defines a “recommended Cournot path” from an arbitrary strategy profile

xN ∈ XN to a Nash equilibrium. We denote M = maxxN∈XN
P (xN).

If M ≤ 1, then X−i = X0
−i for at least one i ∈ N and R−1

i (xi) = ∅ for every xi ∈ Xi \ X0
i ,

hence Γ is even strongly BR-dominance solvable. Let P (x∗
N) = M ≥ 2. Without restricting

generality, π(x∗
N) = (x∗

1, y2), hence x∗
2 /∈ R2(x

∗
1) and P (x∗

1, y2) = M − 1.

Claim 6.5.1. If xN ∈ XN and π1(xN) = x∗
1, then x1 = x∗

1.

Proof. Suppose the contrary: π(xN) = (x∗
1, x2) while x1 6= x∗

1; then x∗
1 ∈ R1(x2). Let π(x∗

1, x2) =

(x∗
1, x

′
2), hence x′

2 ∈ R2(x
∗
1), hence (x∗

1, x
′
2) ⊲

BR x∗
N . Now if P (x∗

1, x
′
2) < M − 1, we obtain a

contradiction with P (x∗
N) = M . If P (x∗

1, x
′
2) ≥ M −1, we obtain P (xN) > M , contradicting the

definition of M .

We see that the elimination of x∗
1 would not destroy the weak FBRP. If x∗

1 is very weakly

BR-dominated, we are home. Suppose the contrary: R1(x
′
2) = {x∗

1} for an x′
2 ∈ X2; then

x′
2 /∈ X0

2 .

Claim 6.5.2. For any x1 ∈ X1, x′
2 /∈ R2(x1).

Proof. Otherwise, we would have π(x1, x
′
2) = (x∗

1, x
′
2), hence x1 = x∗

1 by Claim 6.5.1, hence

(x∗
1, x

′
2) ∈ X0

N .

Therefore, x′
2 is even strongly BR-dominated and π2(xN) 6= x′

2 for any xN ∈ XN , hence

the elimination of x′
2 will not destroy the weak FBRP. A straightforward inductive argument

completes the proof.

Hypothesis 6.6. If a finite two person game Γ has the weak FSP, then Γ is very weakly

BR-dominance solvable.

Remark. The existence of very weakly BR-dominated strategies under the conditions is easy

to show. However, the elimination of an arbitrary dominated strategy may destroy the weak

FSP, even the weak FBRP, making further recursion impossible. In the proof of Theorem 6.5,

a suitable candidate for the elimination was pointed out; here, it has not yet been found.

The relationship between BR-dominance solvability and nice best response dynamics be-

comes especially simple in the case of two person games with unique best responses, as in Moulin
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(1984). According to Proposition 2.3 and Lemma 4.1, there is then no need to distinguish be-

tween strong and weak versions of the properties. The set of Nash equilibria is rectangular if

and only if it is a singleton.

Corollary to Theorem 6.2. If Γ is a finite two person game such that Ri(x−i) is a singleton

for every i ∈ N and x−i ∈ X−i, and Γ has the weak FSP, then Γ is strongly BR-dominance

solvable.

Corollary to Theorem 6.4. If Γ is a finite two person game such that Ri(x−i) is a singleton

for every i ∈ N and x−i ∈ X−i, the set of Nash equilibria in Γ is a singleton, and Γ has the

weak FBRP, then Γ is strongly BR-dominance solvable.

7 “Counterexamples”

Example 7.1 shows that “not so weak” BR-dominance solvability could not be asserted in Propo-

sition 3.1.

Example 7.1. Let us consider the following bimatrix game:

(3, 3) (2, 2) (0, 0)

(0, 0) (1, 1) (1, 1)
.

The middle column weakly dominates the right one; when the latter is deleted, the upper row

becomes strongly dominant. Therefore, the game is weakly dominance solvable. On the other

hand, none of the strategies is “not so weakly” BR-dominated: each row is the unique best

response to a column; the left column is the unique best response to the upper row; both other

columns are only best responses to the bottom row.

Example 7.2 shows that Theorems 4.4 and 4.6 become wrong if Γ is only weakly domi-

nance solvable (or “not so weakly” BR-dominance solvable); Example 7.3 shows the same for

Theorem 4.5.

Example 7.2. Let us consider a three person 2 × 3 × 2 game (where player 1 chooses rows,

player 2 columns, and player 3 matrices):

[

(3, 3, 3) (2, 1, 1) (1, 2, 2)

(3, 3, 3) (1, 2, 2) (2, 1, 1)

] [

(0, 0, 0) (2, 1, 1) (1, 2, 2)

(0, 0, 0) (1, 2, 2) (2, 1, 1)

]

.

Nash equilibria fill the left column of the left matrix; however, none of the underlined strategy

profiles could be connected to any equilibrium with an individual improvement path or with

a simultaneous Cournot path. Thus, the game does not have even the weak FIP or the weak

FSP. On the other hand, it is weakly dominance solvable: The choice of the left matrix weakly

dominates the choice of the right matrix; when the latter is deleted, the left column becomes

strongly dominant.
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Example 7.3. Let us consider the following bimatrix game:

(0, 1) (1, 0) (0, 1)

(0, 1) (0, 1) (1, 0)

(2, 2) (1, 0) (1, 0)

.

The bottom row and the left column are weakly dominant; the southwestern corner of the matrix

is a unique Nash equilibrium. The underlined fragment is a Cournot cycle (hence a simultaneous

Cournot cycle as well).

The Battle of Sexes has the FIP, but is not even very weakly BR-dominance solvable; there-

fore, the converse to Theorems 4.4 and 4.5 would be wrong. Example 7.4 shows the impossibility

to reverse Theorem 4.5 even when the set of Nash equilibria is rectangular. Example 7.5 shows

the impossibility to reverse Theorem 4.6, or assert “not so weak” BR-dominance solvability in

Theorem 6.4.

Example 7.4. Let us consider a two person 2 × 2 game:

(0, 2) (2, 0)

(1, 1) (1, 1)
.

The southwestern corner is a unique Nash equilibrium. The game obviously has the FIP. On

the other hand, each strategy of each player is a best response to a strategy of the partner;

therefore, the game is not strongly BR-dominance solvable.

Example 7.5. Let us consider a two person 2 × 2 game:

(1, 1) (0, 1)

(0, 1) (1, 1)
.

There are two Nash equilibria: the northwestern and southeastern corners. Simultaneous best

response adjustment from any other strategy profile immediately produces a Nash equilibrium,

so the game has the FSP. On the other hand, each strategy of player 1 is the unique best response

to a strategy of the partner; each strategy of player 2 is a best response to each strategy of the

partner. Therefore, the game is not strongly BR-dominance solvable, nor even “not so weak”

BR-dominance solvable.

Example 7.6 shows that Theorem 6.2 is wrong for more than two players; Example 7.7 shows

the same for Theorem 6.4.

Example 7.6. Let us consider a three person 2 × 2 × 2 game (where player 1 chooses rows,

player 2 columns, and player 3 matrices):
[

(2, 1, 2) (4, 4, 4)

(0, 0, 0) (1, 3, 3)

] [

(0, 0, 0) (3, 2, 1)

(4, 4, 4) (0, 0, 0)

]

.

The two Nash equilibria are not underlined. Each of the three strategy profiles underlined once

is dominated in the sense of ⊲
∗BR only by a Nash equilibrium; each of the three strategy profiles
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underlined twice is dominated in the same sense only by a strategy profile underlined once.

Thus, the game has the FSP. On the other hand, each strategy of each player is a unique best

response to a strategy profile of the partners. Therefore, the game is not even very weakly

BR-dominance solvable.

Example 7.7. Let us consider a three person 2 × 2 × 2 game (where player 1 chooses rows,

player 2 columns, and player 3 matrices):

[

(3, 4, 3) (0, 0, 0)

(5, 5, 5) (4, 3, 4)

] [

(2, 2, 1) (1, 1, 2)

(0, 0, 0) (2, 2, 1)

]

.

The southwestern corner is a unique Nash equilibrium; the FBRP is easy to check. On the

other hand, each strategy of each player is the unique best response to a strategy profile of the

partners. Therefore, the game is not even very weakly BR-dominance solvable.

Example 7.8 shows that the adverb “very” cannot be dropped in Theorem 6.5 or Hypothe-

sis 6.6.

Example 7.8. Let us consider a two person 6 × 6 game defined by the left matrix:

(3, 3) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 0) (2, 1) (1, 2) (2, 1) (1, 2) (0, 0)

(0, 0) (0, 0) (2, 1) (1, 2) (2, 1) (1, 2)

(0, 0) (1, 2) (0, 0) (2, 1) (1, 2) (2, 1)

(0, 0) (2, 1) (1, 2) (0, 0) (2, 1) (1, 2)

(1, 2) (1, 2) (2, 1) (1, 2) (0, 0) (2, 1)

















0 4 2 4 4 2

3 4 3 4 5 3

3 4 4 5 4 3

5 5 5 6 5 6

3 4 3 4 4 3

1 5 2 5 4 2

















.

The northwestern corner is a unique Nash equilibrium. The weak FSP is easy to check: the right

matrix shows the length of the shortest simultaneous Cournot path leading to the equilibrium

from every strategy profile. By Proposition 2.2, the game has the weak FBRP as well. On

the other hand, none of the sets R−1
i (xi) include each other for either i ∈ N , even if non-strict

inclusion is taken into account. Therefore, there is no weakly BR-dominated strategy.
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