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Introduction: Arnold Zellner and Nagesh Revankar in their well-known paper 

“Generalized Production Functions” [Zellner and Revankar, 1969] introduced a new 

production function, which was illustrated by an example specified as:  
(1 )exp( ) : 0 1; 0; 0.V V K L

α δ αδθ γ δ γ α−= < < > >           … (1) 

where, , ,V K L  stand for output, capital and labour. The parameters , , (1 )α δ δ−  and γ  

relate to the parameters of returns to scale, output elasticities with respect to labour and 

capital and efficiency. The parameter θ  attribute to other parameters the scale variability 

character and thus makes the function specified above “general”.  In particular, for 0θ =  

the Zellner-Revankar production function (ZRPF) degenerates into the simple Cobb-

Douglas production function. The returns to scale function obtained from the ZRPF is 

given as ( ) /(1 )V Vα α θ= +  that changes with the volume of output. 

 

Estimation of ZRPF: Now we present the Zellner-Revankar method of estimation of the 

ZRPF parameters. Let us have sample data on output, capital and labour in n  

observations. Introducing multiplicative random error and log-transforming we have  

log( ) log( ) (1 ) log( ) log( ) : 1,2,...,
i i i i i

V V K L u i nθ γ α δ δ+ = + − + + =   … (2) 

where 
i

u ’s are random errors, normally and independently distributed, each with mean 

zero and common variance 2σ . It is also assumed that log( )
i

K  and log( )
i

L  are distributed 

independently of the error term, 
i

u , or they are fixed quantities. Then, the logarithm of 

the likelihood function, log( )l , is: 
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where 
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z V V c c cθ θ γ α δ αδ= + = = − =  and J  is the Jacobian of the 
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Now, substituting from (4) in (3) we get 
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Differentiating (5) partially with respect to 2σ  and setting the derivatives equal to zero 

we obtain 
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as the conditional maximizing value for 2σ . When 2σ̂  in (6) is substituted for 2σ  in (5), 

we obtain 
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Now, for any given value of 
0

θ θ= , the conditional maximizing values of 
0 1
,c c  

and 
2

c  may be obtained by regression of 
0

( )
i

z θ  on the explanatory variables, log( )
i

K  and 

log( )
i

L  by minimizing 
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Minimization of (8) can be done with different trial values of θ , say, 
1 2 3
, , , ...θ θ θ  

such that we find out the best values of  (
0 1 2

, , ,c c cθ ) that obtains the global optimum of 

the likelihood function in (7). Zellner and Revankar mention that this procedure of 

maximizing the likelihood function is similar to the procedure described by Box and Cox 

(1963). This procedure of estimation will be examined and revisited in this paper. 
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Aggregate value 

added, Va 

Aggregate capital 

service flow, Ka 

Aggregate man-hours 

worked, La 

 

State 

(Millions of dollars) (Millions of Man-hours) 

No. of 

establishments,  N 

Alabama  126.148 3.804 31.551 68 

California 3201.486 185.446 452.844 1372 

Connecticut  690.670 39.712 124.074 154 

Florida   56.296 6.547 19.181 292 

Georgia  304.531 11.530 45.534 71 

Illinois  723.028 58.987 88.391 275 

Indiana  992.169 112.884 148.530 260 

Iowa   35.796 2.698 8.017 75 

Kansas  494.515 10.360 86.189 76 

Kentucky  124.948 5.213 12.000 31 

Louisiana   73.328 3.763 15.900 115 

Maine   29.467 1.967 6.470 81 

Maryland  415.262 17.546 69.342 129 

Massachusetts 241.530 15.347 39.416 172 

Michigan 4079.554 435.105 490.384 568 

Missouri 652.085 32.840 84.831 125 

New Jersey 667.113 33.292 83.033 247 

New York 940.430 72.974 190.094 461 

Ohio 1611.899 157.978 259.916 363 

Pennsylvania 617.579 34.324 98.152 233 

Texas 527.413 22.736 109.728 308 

Virginia 174.394 7.173 31.301 85 

Washington 636.948 30.807 87.963 179 

West Virginia 22.700 1.543 4.063 15 

Wisconsin 349.711 22.001 52.818 142 

Source: Zellner, A and Revankar, N.S. (1969), p. 249. 

 

Zellner and Revankar apply this procedure for estimating the optimal values of 

0 1 2
, , ,c c cθ , the parameters of the ZRPF, for the U.S. Transportation Equipment Industry. 

The data used by them have been presented in their paper (reproduced here in Table-A). 

They measure  output (net value added), capital and labour per unit of establishment, that 

is, 
, , ,

( / ); ( / ); ( / )
i a i i i a i i i a i i

V V N K K N L L N= = = . They obtain:  

0 1 2
ˆ ˆ ˆ ˆ( , , , ) (0.134, 3.0129, 0.3330, 1.1551)c c cθ =     … (9) 



and, since the estimate of returns to scale parameter, 
1 2

ˆ ˆ ˆc cα = + , they also obtain for each 

state of the U.S. 
1 2

ˆˆ ˆ. ( ) ( ) /(1 ) 1.49 /(1 0.134 ) .
i i i

Est V c c V V approxα θ= + + = +  According to their 

estimates, Indiana, Kentucky, Georgia, Ohio, Connecticut, Missouri, Kansas and 

Michigan exhibit decreasing returns ( ˆ( )Vα  decreasing in that order); Illinois, 

Pennsylvania, New Jersey, Maryland and Washington show ˆ1 1.1α< ≤  while other states 

have ˆ 1.1α > . Florida has the highest value of ˆ 1.45α =  (see Table-E). 
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[Per establishment] 

Aggregate 

value added, V 

 Aggregate capital 

service flow, K 

Aggregate man-

hours worked, L 

Figures rounded off at the 

third place after Decimal 
 
 

State a * b *       c ** a * b * c ** 

Alabama 1.855117647 0.055941176 0.463985294 1.855 0.056 0.464 

California 2.333444606 0.135164723 0.330061224 2.333 0.135 0.330 

Connecticut 4.484870130 0.257870130 0.805675325 4.485 0.258 0.806 

Florida 0.192794521 0.022421233 0.065688356 0.193 0.022 0.066 

Georgia 4.289169014 0.162394366 0.641323944 4.289 0.162 0.641 

Illinois 2.629192727 0.214498182 0.321421818 2.629 0.214 0.321 

Indiana 3.816034615 0.434169231 0.571269231 3.816 0.434 0.571 

Iowa 0.477280000 0.035973333 0.106893333 0.477 0.036 0.107 

Kansas 6.506776316 0.136315789 1.134065789 6.507 0.136 1.134 

Kentucky 4.030580645 0.168161290 0.387096774 4.031 0.168 0.387 

Louisiana 0.637634783 0.032721739 0.138260870 0.638 0.033 0.138 

Maine 0.363790123 0.024283951 0.079876543 0.364 0.024 0.080 

Maryland 3.219085271 0.136015504 0.537534884 3.219 0.136 0.538 

Massachusetts 1.404244186 0.089226744 0.229162791 1.404 0.089 0.229 

Michigan 7.182313380 0.766029930 0.863352113 7.182 0.766 0.863 

Missouri 5.216680000 0.262720000 0.678648000 5.217 0.263 0.679 

New Jersey 2.700862348 0.134785425 0.336165992 2.701 0.135 0.336 

New York 2.039978308 0.158295011 0.412351410 2.040 0.158 0.412 

Ohio 4.440493113 0.435201102 0.716022039 4.440 0.435 0.716 

Pennsylvania 2.650553648 0.147313305 0.421253219 2.651 0.147 0.421 

Texas 1.712379870 0.073818182 0.356259740 1.712 0.074 0.356 

Virginia 2.051694118 0.084388235 0.368247059 2.052 0.084 0.368 

Washington 3.558368715 0.172106145 0.491413408 3.558 0.172 0.491 

West Virginia 1.513333333 0.102866667 0.270866667 1.513 0.103 0.271 

Wisconsin 2.462753521 0.154936620 0.371957746 2.463 0.155 0.372 

Computed from Table-A (the last three cols. are the  rounded off  figures in the 2nd through 4th cols.)  
* In millions of dollars per establishment; ** In millions of man-hours per establishment 

 

The Objective of this Paper: We intend to demonstrate here that the estimates of 

parameters of ZRPF as reported by Zellner and Revankar in their paper are somewhat sub-

optimal, that is: 
0 1 2

ˆ ˆ ˆ ˆ( , , , ) (0.134, 3.0129, 0.3330, 1.1551)c c cθ =  do not quite maximize the 

likelihood function. However, that is so due to the trial and error method used by ZR in 

which a trial value of θ  is chosen, and 
i

c ’s are estimated by minimization of (8). This is 

done repeatedly for different trial values of θ  so as to maximize the likelihood function.  

 

 In this paper, we use two methods of global optimization, the Particle Swarm 

[Eberhart and Kennedy, 1995] and Differential Evolution [Storn and Price, 1995] 



methods, to minimize (8) in which 
0 1 2

, , ,c c cθ  are estimated together. This approach 

frees us from the risk of obtaining a sub-optimal set of estimated parameters of ZRPF.  

 

Our Estimates by the Methods of Global Optimization: We present here two sets of 

estimates of the parameters of ZRPF: the one based on highly accurate values of ,
i i

V K  

and 
i

L  (presented in Table-B, 2
nd

 to 4
th

 columns) and the other when these variables are 

measured with values correct only up to two places after decimal (rounded off at the third 

place after decimal). We do not know of the accuracy level of the original computations 

(done by Zellner and Revankar). 

 
Table-C: Estimated Parameters of ZRPF  for U.S. Transport Equipment Industry 

Accuracy Method 
0

ĉ  
1̂

c  
2

ĉ  θ̂  SSQD  ( *)l  

Zellner-Revankar 3.0129 0.3330 1.1551 0.134 1.2016# 5.4790 

Differential  Evaln   2.91527   0.352646   1.087540   0.106441 1.0689  5.5769 

Low 

Accuracy (LA) 
R Particle Swarm 2.91476   0.350784   1.090654   0.106506 1.0691 5.5773 

Zellner-Revankar 3.0129 0.3330 1.1551 0.134 1.2118# 5.4945 

Differential  Evaln    2.91161   0.350226   1.090161   0.106184 1.0665 5.5917 

High 

Accuracy (HA) 

R Particle Swarm    2.91587   0.350255   1.092447   0.106811 1.0692 5.5918 

SSQD = Sum of Squared Deviations; #  = Computed by us; l*  = Log Max Likelihood 

 
Table-D: 1957 U.S. Transportation Equipment Industry Value Added  [Per Establishment] 

Zellner-Revankar Production Function Estimated by Different Methods 

 V (Emp) V(DE)LA V(RPS)LA V(ZR)LA V(DE)HA V(RPS)HA V(ZR)HA 

Florida 0.193 0.245 0.244 0.245 0.245 0.244 0.241 

Maine 0.364 0.306 0.305 0.306 0.306 0.305 0.303 

Iowa 0.477 0.478 0.477 0.478 0.477 0.476 0.477 

Louisiana 0.638 0.601 0.601 0.601 0.600 0.600 0.608 

Massachusetts 1.404 1.363 1.362 1.363 1.363 1.363 1.375 

West Virginia 1.513 1.704 1.703 1.704 1.700 1.700 1.723 

Texas 1.712 1.997 1.999 1.997 1.998 1.999 2.061 

Alabama 1.855 2.378 2.384 2.378 2.381 2.384 2.502 

New York 2.040 2.954 2.954 2.954 2.956 2.958 3.012 

Virginia 2.052 2.088 2.090 2.088 2.093 2.095 2.140 

California 2.333 2.128 2.127 2.128 2.127 2.127 2.124 

Wisconsin 2.463 2.510 2.509 2.510 2.507 2.508 2.508 

Illinois 2.629 2.354 2.350 2.354 2.354 2.354 2.309 

Pennsylvania 2.651 2.762 2.763 2.762 2.765 2.766 2.777 

New Jersey 2.701 2.087 2.086 2.087 2.084 2.084 2.063 

Maryland 3.219 3.303 3.307 3.303 3.301 3.304 3.321 

Washington 3.558 3.134 3.135 3.134 3.136 3.137 3.094 

Indiana 3.816 4.979 4.975 4.979 4.972 4.975 4.840 

Kentucky 4.031 2.281 2.280 2.281 2.281 2.280 2.188 

Georgia 4.289 3.793 3.798 3.793 3.801 3.803 3.742 

Ohio 4.440 5.964 5.963 5.964 5.957 5.961 5.783 

Connecticut 4.485 5.616 5.622 5.616 5.614 5.619 5.535 

Missouri 5.217 4.340 4.342 4.340 4.336 4.336 4.141 

Kansas 6.507 5.238 5.254 5.238 5.259 5.261 5.067 

Michigan 7.182 6.663 6.657 6.663 6.655 6.652 6.001 

 

 



 
Fig-I: 1957 U.S. Transportation Equipment Industry Value Added  [Per Establishment] 

Zellner-Revankar Production Function Estimated by Different Methods (Low Accuracy) 

 
 

Fig-II: 1957 U.S. Transportation Equipment Industry Value Added  [Per Establishment] 
Zellner-Revankar Production Function Estimated by Different Methods (High Accuracy) 

 
  



As it has been shown in Table-C, first, there is no significant difference in the 

values of estimated parameters (of ZRPF) due to accuracy in computation. HA and LA 

estimates are more or less same. Secondly, there is no significant difference between the 

estimated parameters obtained by DE (Differential Evolution) and RPS (Repulsive Particle 

Swarm).  However, the Zellner-Revankar estimates of parameters are quite different from 

those obtained by the methods of global optimization (DE and RPS). The SSQD (sum of 

squared deviations) of ZR is larger (and *
l  is smaller) than those of DE and RPS. It shows 

very clearly that the ZR estimates are somewhat sub-optimal. This sub-optimality of ZR 

estimates may clearly be appreciated by a perusal of Fig-II, although the difference is not 

observable in Fig.-I.  We have arranged the U.S. states in an ascending order of value 

added per establishment (V) and plotted against each state the observed (empirical) and 

expected values of V obtained by different methods of estimation. The graphs (that 

should not ideally have been drawn as curves, since the points on the x axis are discrete) 

are drawn continuous only to facilitate the visualization of differences between ZR-

estimated and DE/RPS-estimated values of V.  We observe in Fig-II that DE/RPS estimates 

are closer to the empirical curve for a majority of points. It appears that ZR computations 

used rounded off numbers of V, K and L. 

 

 Two points deserve a special mention. First, the returns-to-scale parameter, 

1 2
ˆ ˆ ˆc cα = +  obtained by DE/RPS method is 1.44 approx, against 1.488 obtained by the ZR 

estimation. Further, the value of θ̂  obtained by DE/RPS is about 0.106, while it is 0.134 

obtained by ZR. A consequence of all these changes is that ( )
i

Vα  values for different 

states are different from those obtained by ZR method. The estimates of ( )
i

Vα  are 

presented in Table-E. 

 
Fig.-III. A Graph of SSQD and Log Max Likelihood With Different Values of Theta 

 
 



Table-E. Estimated Variable Returns to Scale by Zellner Revankar Method of Estimation 

Est ( )Vα  Est . ( )Vα  
State V 

ZR* DE/RPS 
State V 

ZR* DE/RPS 
Florida 0.193 1.45 1.41 Pennsylvania 2.651 1.10 1.12 
Maine 0.364 1.42 1.39 New Jersey 2.701 1.09 1.12 
Iowa 0.477 1.40 1.37 Maryland 3.219 1.04 1.07 
Louisiana 0.638 1.37 1.35 Washington 3.558 1.01 1.05 
Massachusetts 1.404 1.25 1.25 Indiana 3.816 0.98 1.03 
West Virginia 1.513 1.24 1.24 Kentucky 4.031 0.97 1.01 
Texas 1.712 1.21 1.22 Georgia 4.289 0.94 0.99 
Alabama 1.855 1.19 1.20 Ohio 4.44 0.93 0.98 
New York 2.04 1.17 1.18 Connecticut 4.485 0.93 0.98 
Virginia 2.052 1.17 1.18 Missouri 5.217 0.88 0.93 
California 2.333 1.13 1.15 Kansas 6.507 0.80 0.85 
Wisconsin 2.463 1.12 1.14 Michigan 7.182 0.76 0.82 
Illinois 2.629 1.10 1.13 * Source: Zellner & Revankar (1969),  p. 248  

 

 

Concluding Remarks: Zellner-Revankar’s paper made two contributions: first, it 

generalized the production function to allow for the parameters to vary according to the 

scale of output and secondly it contributed a method to estimate such parameters by the 

maximum likelihood method. This paper has only an appreciation for the first 

contribution, but it has shown that the method of estimation (suggested by ZR) is neither 

convenient nor accurate. It gives us only a local optimum, not the global optimum, of the 

likelihood function. This observation may not sound very impressive when a simple 

function like Cobb-Douglas’s  is generalized, but it may be very important if the basic 

function is intrinsically nonlinear. It is understandable that at the time when the ZR paper 

was written, there were no effective methods to find global optima of nonlinear functions, 

especially those with numerous local optima. Now that very effective methods of global 

optimization have been found, it would be appropriate to estimate the parameters of ZRPF 

by those advance methods. Our present paper has made a modest attempt to that effect. 

Using such global optimization methods, we have estimated other nonlinear production 

functions [Sato’s two-level CES and LINEX functions; Mishra, 2006(b)] as well. We have 

found that the performance of these methods is much better than that of the classical 

methods of estimation of nonlinear functions [Mishra, 2006(a)]. 
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