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Abstract:

We model an assurance game played within a population with two types
of individuals – short-sighted and foresighted. Foresighted people have a lower
discount rate than short sighted people. These phenotypes interact with each
other. We define the persistent interaction of foresighted people with other
foresighted people as a critical element of civilization while the interaction of
short sighted people with other short sighted people as critical to the failure
of civilization. We show that whether the short sighted phenotype will be an
evolutionary stable strategy (and thus lead to the collapse of civilization) de-
pends on the initial proportion of short sighted people relative to people with
foresight as well as their relative discount rates. Further we explore some com-
parative static results that connect the probability of the game continuing and
the relative size of the two discount rates to the likelihood that civilization will
collapse.
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1 Introduction

The institutions of civilization are designed to reduce uncertainty (North, 2005,

p. 1-13). A reduction in uncertainty generates benefits for individuals residing

in a civilized society. Whether civilization succeeds or not depends on how well

these institutions are designed. This design, in turn, is based on how well the

designers – humans – perceive reality. We postulate that human perception of

reality depends on the ability to identify and compare the costs and benefits of

decisions over time. However, even with this sort of rational decision making

process, civilizations can fail if the proportion of people who make good decisions

over a long planning horizon is small enough.

Perceptions of reality are driven by a biological cognitive process that finds

expression in human culture and belief systems (Wilson, 1998, p. 66). Since

the biological cognitive process is less well known than human cultures and be-

lief systems, we look for the reasons for misperceiving reality within such belief

systems.1 North (2005, p. 13-22), for example, argues that agents who be-

lieve they live in an ergodic world can have serious misalignments with reality

in non-ergodic situations. This happens because experience of the past cannot

prepare one for the non-ergodic events of the future. This lack of preparedness

against shocks can lead to social failure. Tuchman (1984) makes the case that

sometimes people behave “irrationally” because they somehow hold on to value

systems that are incapable of dealing with a new reality. Diamond (2005, p.

434) suggests that this “irrationality” could be based on differences in planning

horizons. People may be so focused on the current benefits of certain civi-

lizational values that they ignore the future costs of their belief systems. This

1Scientists currently debate the extent of biological determinism in human culture. This
debate over the biological cause of human misperceptions of reality is important. However,
this debate is still quite nascent. Like Plato’s cave dwellers then we look for the causes of
human misperceptions of reality in the cultural shadows cast by some “real” but unknown
cognitive process. This of course leaves us wide open to the criticism that we may be ourselves
misperceiving reality in this paper!
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approach to understanding the collapse of society can therefore be interpreted as

the efforts of rational individuals weighing costs and benefits of their particular

civilizational belief system. The future costs of these belief systems increase as

beliefs diverge from reality. Short sighted agents may ignore these future costs.

Thus, even if the decision making processes of these individuals are rational,

then the relative weights they place on costs and benefits can lead to socially

sub-optimal decisions. We argue, that even in an ergodic world, decisions made

by rational people can lead to a collapse of society simply because people may

have shorter planning horizons; i.e., high discount rates.

“Successful” civilizations tend to adopt institutions or mechanisms to pro-

mote cooperation that leads to greater well-being. We postulate that long-run

progress for a society depends on its members’ ability both to cooperate and to

select actions that are consistent with the goal of maintaining the sustainabil-

ity of resources over the long-run. Diamond (2005, p. 434) for example cites

the case of poor fishermen who dynamite or poison coral reef fish to sustain

themselves even with the knowledge that their actions kill the very reefs that

sustain their food. Thus, societies with a culture of cooperation over a distant

planning horizon are more likely to be successful. Societies marked by a lack of

cooperation over the long term make short sighted decisions that lead to societal

collapse. In other words, we operationalize one strand of the epistemological

discussion on the causes of societal collapse by focusing on differences in how

different people view the future.

We model the actions of individuals using a simple “assurance” game to

illustrate that in the long-run, short-sighted and foresighted individuals may

coexist, but one group will always represent the overwhelming majority. How-

ever, if each type of individual behaves deterministically then whether a society

ultimately succeeds or fails depends critically on the initial proportion of types

3



in the population. We discuss the relevance of perceptions and valuations of

the future for the two types and discuss how they will influence the equilibrium.

Our innovations lie in two areas. First, we interpret a well known equilibrium

phenomenon in evolutionary coordination games as social collapse. Second, we

argue that differences in perceptions of the future and in perceptions of whether

the game continues or not are important determinants of societal collapse, or

success. We believe this approach yields important policy insights. Thus,

our model may suggest a framework for anticipating the impacts of migration

between societies and their resulting chances of success or even a framework for

resolving conflict.

2 The Model

We begin by assuming the fundamental or defining trait among individuals

is their degree of foresight. For simplicity, our initial model assumes that all

individuals are either foresighted or short-sighted. Thus, foresight is a fixed,

binary trait. Again this is common in the evolutionary game theory literature.

One may think of society as having a strategy set while individuals can either

inherit or choose between them (Gintis, 2000, p. 148). Our agents merely choose

strategies with a higher payoff or fitness. Naturally, we then believe that those

with greater foresight will care more about the future – and discount future

outcomes less than their short-sighted counterparts – and therefore will choose

to use resources more efficiently over the long-run.

Thus, both types behave according to their time preferences. This general

framework could correspond to numerous, wide-ranging scenarios from the inter-

actions of hunter-gatherers; decisions of business leaders in corporate settings;

the actions of public policy-makers; collaborations among groups of students;

decisions of agrarian societies; or the behavior of smokers and non-smokers, just
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to name a few.

While the implications can be generalized to other applications, we model

foresight and shortsightedness in the context of a “stag hunt” game. The stag

hunt game is a somewhat fanciful name used to describe the general class of

“assurance” games. Our choice stems from the interpretation of an assurance

game as representative of a societal dilemma described in Rousseau’s A Dis-

course on Inequality (Poundstone, 1992, pp. 218-221). Maurice Cranston’s

(1984) translation describes the stag hunt dilemma in the following way:

“If it was a matter of hunting a deer, everyone well realized that he

must remain faithfully at his post; but if a hare happened to pass

within the reach of one of them, we cannot doubt that he would

have gone off in pursuit of it without scruple and, having caught his

own prey, he would have cared very little about having caused his

companions to lose theirs.”2

A stag – the hunt for which requires intensive cooperation – can feed the

entire village. Going after the hare would feed the individual. Thus, an as-

surance game may be used to understand the nature of cooperation in society.

Cooperation provides a way to understand delayed gratification. Hunting a stag

requires time and cooperation, but can feed the entire society. Going after the

hare can feed the individual now.

We therefore model two kinds of people. One group of people can resist the

temptation of going after the hare – that is they always stick to the cooperative

plan of hunting the stag. In other words, these people are capable of committing

to long term decisions. We will refer to this type as “Stag-types” because they

possess the foresight to cooperate in endeavors that require patience to achieve

an efficient outcome. Another group of people show their impulsiveness by

2Read stag for deer in the translated excerpt.
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going after the hare. Thus, the people who go after the hare make short term

decisions, i.e., they do not cooperate, and are referred to as “Hare-types.”

This modeling approach allows us to give a great deal of importance to the

idea that cooperation is the basis for civilization. In our model far sighted

individuals will cooperate. This behavior is not necessarily altruistic. Far

sighted individuals interacting with other far sighted individuals, get a bigger

private benefit than short sighted individuals acting on their own. This lays

out the strongest possible case for the cooperative basis for civilization. In fact,

short sighted individuals who interact with far sighted individuals also receive

a higher payoff than if they act alone. However, far sighted individuals are

punished quite severely for their willingness to delay gratification when they

interact with short sighted individuals since without cooperation the long term

benefits are unattianable.3

In keeping with the general approach used in evolutionary game theory we

proceed with a limited view of rationality. That is to say our actors are allowed

to make mistakes whatever their type. Moreover, some people may be unwilling

or unable to make the socially optimal choice even if it has consequences for

their survival. Hence we have a distinction between those who cannot make

long term decisions and those who can. The short-sighted, “Hare-types” place

less value on the future, and given the option will prefer greater payoffs in the

near-term even if it means overall inefficient outcomes for society.4

In our game there are two possible strategies that people can play. However,

the strategies are entirely determined by type. Those who make short term

decisions always choose Hare and those who make long term decisions always

3One may picture a lone Stag hunter waiting for his colleagues to show up for the hunt
while they are off finding rabbits. The rabbit hunters feed their family while the village
starves. The lone stag hunter is likely to decide to go after rabbits in the next period. Soon
rabbits are scarce and everyone starves. Society collapses.

4One can similarly think of the smoker who – knowing the health risks involved – chooses
to trade minutes or hours of satisfaction today for weeks or years of satisfaction in the future.

6



choose Stag. Let x denote the proportion of the population that always follows

the Stag strategy while the proportion (1−x) always follows the Hare strategy.

Of course, actors playing each type of strategy interact with both other actors

playing the same strategy or a different one. Keeping in mind the assurance

game we can therefore specify the payoffs illustrated in Figures 1 and 2. We

assume that outcomes stem from random, pair-wise matching of players.

Figure 1: Immediate Payoffs, in general

Stag Hare

Stag e/2, e/2 (1 − γ)αe, γαe

Hare γαe, (1 − γ)αe αe/2, αe/2

Where the payoffs today depend on the following parameters5:

e defines the total payoff to efficient behavior

α ∈ (0, 1) denotes the efficiency loss due to myopic behavior (i.e., less coopera-

tion)

γ ∈ [0, 1] denotes the “greediness” of H-types, so S-types may be “punished”

when interacting with H-types.

If we let e = 6, α = 1/3, and γ = 1, then the payoffs will correspond to those

in Figure 2 below.6

5We assume an equal division within pairs of the same type; however, relaxing this as-
sumption should not alter the overall outcomes

6This framework is not a zero-sum game, so interactions do generate non-negative payoff
for all pairs, and hence society will grow. There will be more treatment on the issue of growth
later in the paper. Moreover, we also restrict α to be less than 1/2 else the game becomes a
prisoner’s dilemma.
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Figure 2: Immediate Payoffs, a specific example

Stag Hare

Stag 3, 3 0, 2

Hare 2, 0 1, 1

However, we can further differentiate between Stag and Hare types. The

Stag types are patient and therefore have a lower discount rate (rS) than that

(rH) of the impatient Hare types. In other words, the Stag types discount their

future less heavily than the Hare types. Say further that there is some chance

that a meteor will hit the earth (or some other environmental disaster) and

all human interaction will cease with probability (1 − p).7 Thus, Stag types

discount the future with a discount factor δS = p/(1 + rS) and Hare types

discount the future with a discount factor δH = p/(1+rH). Note that δS > δH .

After accounting for the future stream of payoffs, the game illustrated in Figure

2 may be represented by Figure 3.

Figure 3: Present Value of Future Payoffs

Stag Hare

Stag 3
(

1+rS

1+rS−p

)

, 3
(

1+rS

1+rS−p

)

0, 2
(

1+rH

1+rH−p

)

Hare 2
(

1+rH

1+rH−p

)

, 0
(

1+rH

1+rH−p

)

,
(

1+rH

1+rH−p

)

Note that the payoffs are structured to make fore-sighted cooperation, i.e.,

when stag types coordinate with other stag types, the most efficient outcome.

In fact, the payoff to shortsighted agents when they interact with foresighted

agents is higher than if they interact with other shortsighted agents. This is in

line with our fundamental assumption that civilization, based on the ability to

plan for the future, generates benefits for individuals – whatever their planning

horizon.

7In other words, p is the probability that life, and the game, continues.
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3 Equilibrium Strategy

We are interested in explaining the success and failure of civilization as a func-

tion of the ability of people to plan for the future.

We note here that cooperation (Stag, Stag) is the payoff dominant equilib-

rium in this game. Thus players “should not have any trouble coordinating

their expectations at the commonly preferred equilibrium point” (Harsanyi and

Selten, 1988, p. 81). We interpret this cooperative equilibrium as civilization

precisely because it is the payoff dominant equilibrium. However, the non-

cooperative equilibrium (Hare, Hare) risk dominates the cooperative equilibrium

in the sense that a deviation from the non-cooperative equilibrium will lead to

a greater loss in payoff relative to a deviation from the cooperative equilibrium

(see Aumann, 1987 for a discussion of the trade-off between efficiency and risk).

Thus rational people may choose the less efficient equilibrium (Weibull, 1997,

p. 31). We interpret this lack of cooperation as social breakdown and the fall

of civilization. It seems to be a matter of interest, then, to find the conditions

under which such breakdown is likely.

We show that whether one equilibrium or the other is a steady state is a

function of the initial proportion of farsighted people to shortsighted people as

well as the relative gap in discount rates of the two types. Thus, our model

shows that the success or failure of a civilization could be an artifact of pure

chance since the initial proportion of shortsighted people to farsighted people

could be a matter of pure chance. Further we show cooperation, or civilization,

also depends on the relative size of the discount rates through which the two

types view the future.

Theorem 1 The Hare-type behavior is an evolutionary-stable “strategy” (ESS)

only if x < 1

3
(

1−δH

1−δS

)

−1
. 8

8See Appendix A for the formal proof. Throughout the paper we will use the payoffs

9



This theorem suggests that social failure (i.e., inefficient outcomes for soci-

ety) depends crucially on the initial proportion of people who are Hare types.

This in turn depends on the discount factor of people with a long term planning

horizon relative to a short term planning horizon.

The expected payoff to the Hare types is higher on average than the Stag

types under the conditions listed in Theorem 1. Stag type people benefit only

when there are other Stag types around.9 Thus, the expected payoff to Stag

types is higher than that of Hare types if and only if the proportion of the Stag

types is relatively large. We refer to the “tipping point,” as x∗, which is derived

in the proof of Theorem 1: x∗ = 1

3
(

1−δH

1−δS

)

−1
. If the proportion of Stag-types is

less than x∗, then Hare-types will eventually dominate society.

Since there are no à priori reasons to believe that the proportion of one type

of actor relative to the other in a civilization will be large or small, the success

or failure of a civilization may be determined by pure chance! In other words,

inefficient outcomes may persist (David, 1985).

assumed in Figure 2.
9This occurs because γ = 1, an assumption that could be relaxed.
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Figure 4: Proportions of Types
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(Entire Population is “Hare” type)
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(Entire Population is “Stag” type)

Corollary 1 There is no stable polymorphic ESS.

The expected payoff to both types monotonically increases with respect to

the proportion of Stag types. If x < 1

3(
1−δH

1−δS
)−1

then the expected payoffs

favor the Hare-type (i.e., E(H) > E(S)). In this case the population will be

taken over by the Hare types. This occurs because we further assume that

population growth of each type is tied to their relative payoffs. If x > x∗ then

E(H) < E(S). In this case the population will be taken over by Stag types.

Thus, very small mutations of behavior around x∗ will move the population

toward a monomorphic equilibrium at Hare or Stag depending on whether the

mutation favors Hare or Stag. In other words, an equilibrium where x = x∗ is

not stable.

This result has important policy ramifications. A shock to the actual pro-

portion of Hare types relative to Stag types could alter the very nature of a
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society in a very deterministic way. This could occur due to migration or a

random event. Let x∗ denote the proportion (of Stag-types in the population)

corresponding to this unstable equilibrium. Then, at any given point in time

either (a) the proportion of foresighted individuals is greater than x∗ is mov-

ing toward long-run success, or (b) the proportion of foresighted individuals is

less than x∗ is moving toward long-run inefficiency (failure). In either case, the

importance – of a shock – for society lies almost entirely in whether or not the

proportion x shifts to the other side of x∗. On a smaller scale this intuition could

be used to manage conflict at a tactical level. Eliminating short sighted agents

at a given point in time could increase the proportion of foresighted people –

thus increasing cooperation and reducing conflict.10

Moreover, small mutations – if a Hare type mistakenly cooperates or vice

versa – will unravel the polymorphic equilibrium toward one where everyone

learns to be foresighted or short-sighted.11

4 Discounting, Expectations & Equilibria

We note that whether a society moves toward the efficient equilibrium or not

depends on the actual proportion of foresighted people relative to the proportion

of foresighted required to make society move toward the efficient equilibrium.

Thus, if the actual proportion of foresighted people is less than this requirement,

then society moves toward collapse. However, this “required” proportion of

foresighted people depends on two things in our model. First, it depends on

the probability the game continues. Second, it depends on the relative discount

10This result also has ominous overtones. Abimael Guzman, a philosophy professor who
leads the terrorist Shining Path outfit in Peru, famously advocates the death of 10 percent of
the Peruvian population as a means of tipping Peru toward a Maoist “utopia” (Washington
Post, 2006)

11Note that an ESS is always perfect but not vice versa. In this case the polymorphic
equilibrium is perfect but it is not ESS because small mistakes unravel the equilibrium (Selten,
1975).
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rates of each type of individual. In this section, we look at this relationship

with a view toward understanding how these parameters affect the likelihood of

societal collapse.

The unstable equilibrium corresponds to the populations where the propor-

tion of Stag-types is equal to x∗. However, this, unstable, tipping point for

society depends upon the likelihood that life continues, p, and the relative dis-

count rates that each type places on the future, rS and rH . Without loss of

generality, we assume that rS = 0. The comparative statics relating to x∗ reveal

how this unstable equilibrium changes with respect to p and rH .

Theorem 2 The unstable equilibrium, x∗, is decreasing in p, the probability

that life continues.

This essentially means that the bleaker the future becomes, the greater the

proportion of foresighted, patient individuals required to achieve an efficient

societal outcome.12 Here is the intuition underlying this result: with a less

certain future (i.e., as p moves closer to zero than to one), the present value of

payoffs to both types diminish, as illustrated in Figure 2. However, the payoff

decreases relatively less for the Hare types since they placed less value on the

future anyway. (Mathematically, this is resulting from rH in the denominator

of the payoff for Hare types.) Thus, with a bleaker future, or lower p, the

payoff and hence growth of Hare types is relatively larger. This means that

achieving the efficient outcome (the equilibrium with all Stag types) requires

more foresighted individuals.

Corollary 2 The rate at which x∗decreases in p depends on rH .

The higher the discount rate of the short sighted type, the greater the differ-

ence between the short sighted and the farsighted types. Thus, even as p moves

12See Appendix C for the derivative of x∗ with respect to p.
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closer to zero and the present value of both types diminish, the payoff diver-

gence between Hare types and Stag types rises with rH . Thus, with a high rH

(given our payoffs this means an rH > 2) x∗decreases in p at an increasing rate.

Further, with a low rH (given our payoffs this means an rH < 2) x∗decreases in

p at a decreasing rate.13

Theorem 3 The unstable equilibrium, x∗, is decreasing in rH , the discount rate

of the short-sighted type of people.

This implies that the less the short-sighted individuals care about the future

(i.e., the greater rH), the lower the proportion of foresighted, patient individuals

required to achieve an efficient societal outcome.14 The intuition here is as

follows: As short-sighted individuals receive less benefit from their future payoffs

(this happens increasingly as rH rises), then their relative expected payoffs

diminish compared with those of foresighted people. Thus, higher discounting

of the future means that the sub-population of short-sighted individuals will

grow less quickly and, all else equal, society will need fewer foresighted people

to eventually achieve the efficient outcome.

Corollary 3 As rH rises, x∗ falls at an increasing rate.

The higher the discount rate of the short sighted type, the greater the dif-

ference between the short sighted and the farsighted types. The divergence

between the short sighted individual’s future payoffs and the foresighted indi-

vidual’s payoff increases as rH rises. This drives the increased rate with which

x∗ falls as rH rises.15

13See Appendix C for the second derivative of x∗ with respect to p.
14See Appendix C for the derivative of x∗ with respect to rH .
15See Appendix C for the second derivative of x∗ with respect to rH .
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5 Population Growth

The sub-populations of each type grow based on the relative expected payoffs.

In other words, if the expected payoff to Stag-types is greater than for Hare-

types, then the population of Stag-types will grow more (in percentage terms)

in the next time period. Here we view time discretely, but it can also be viewed

as a continuous measure. The growth pattern is defined in Appendix B and

examples are provided in Tables 1 and 2.

Generally, we allow our agents to follow a simple replicator dynamic pro-

cess.16 In our example this implies that the total population grows at a rate pro-

portional to xtE(St)+ (1−xt)E(Ht) in each period t. Where E(St) and E(Ht)

are the expected payoffs to the sub-populations of S-types and H-types, respec-

tively. Moreover, in each period t the S-types grow at a rate E(St)
xtE(St)+(1−xt)E(Ht)

while the H-types grow at a rate E(Ht)
xtE(St)+(1−xt)E(Ht)

.

Theorem 1 implies that if x < x∗ then, E(St)
xtE(St)+(1−xt)E(Ht)

< E(Ht)
xtE(St)+(1−xt)E(Ht)

.

We note that in this process no one dies and the population grows at a steady

pace. Within this growing population the proportion of each type of individ-

ual grows at a differential rate each period. Thus, it is possible to specify the

number of periods it will take to reach the equilibrium predicted in Theorem 1

as a function of certain parameters by using this replicator dynamic process. A

representative simulation illustrates this point.

16There are many ways to define evolutionary dynamics. Replicator dynamics however are
generally accepted as standard (Gintis, 2000, p. 190)
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Table 1: Example of Population Growth, if x0 > x
∗

Here we assume the payoffs are those found in Figure 3 and, the discount

rate for the H-types is 0.5 (i.e., rH = 0.5), the discount rate for S-types is

normalized to zero (i.e., rS = 0), and if the probability that the game continues

is 80% (i.e., p = 0.8), then x∗ = 1/6, and the path of xt will follow the pattern in

the table below. Under these conditions, H-types will grow at a slower pace than

the S-types relative to the average growth rate of the population. Remember,

if x0 > x∗, then the efficient, foresighted equilibrium will result, where x = 1.

If 30% of the population is foresighted to begin with (i.e., x0 = 0.3), then the

follow pattern will emerge:

t xt Expected

Payoff for

S-types

Expected

Payoff for

H-types

Relative

Growth of

S-types

Relative

Growth of

H-types

0 0.3 4.5 2.78 1.364 0.844
1 0.35 5.32 2.90 1.415 0.772
2 0.38 6.42 3.06 1.427 0.680
3 0.43 7.79 3.26 1.388 0.580
. . . . . .
. . . . . .
. . . . . .

40 0.99 15 4.286 1 0.286
. . . . . .
. . . . . .
. . . . . .
∞ 1 15 4.286 1.000 0.286

In this example, the short-sighted individuals always receive a payoff. Thus,

even though their growth is positive, it will be dominated by the growth of

foresighted people, and thus the efficient outcome will result, and the population

will be virtually all foresighted.
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Table 2: Example of Population Growth, if x0 < x
∗

Again, the payoffs are identical to those found in Figure 3 and rS = 0, rH =

0.5, and p = 0.8, thus x∗ = 1/6, and the path of xt will follow the pattern

in the table below. However, if x0 < x∗, then the inefficient, short-sighted

equilibrium will result, where x = 0. If 10% of the population is foresighted

to begin with (i.e., x0 = 0.1), then the follow pattern will emerge. In this

example, foresighted people receive rapidly diminishing payoffs and eventually

stop growing all together. Society rapidly moves toward failure! It takes roughly

10 periods to reach the short-sighted equilibrium and the collapse of civilization.

t xt Expected

Payoff for

S-types

Expected

Payoff for

H-types

Relative

Growth of

S-types

Relative

Growth of

H-types

0 0.100 1.5 2.36 0.660 1.038
1 0.083 1.24 2.32 0.558 1.040
2 0.064 0.97 2.281 0.442 1.039
3 0.047 0.70 2.243 0.322 1.033
. . . . . .
. . . . . .
. . . . . .

10 0.0008 0.011 2.144 0.0053 1.0008
. . . . . .
. . . . . .
. . . . . .
∞ 0 0 2.143 0 1

Note that the replicator dynamic process provides the speed with which a

particular population will converge to an equilibrium. This “speed” of con-

vergence, however, depends on certain parameters. So, the initial proportion

of S to H types in the population, the discount rates, and the probability the

game ends all drive the speed with which an equilibrium is reached. These

are issues we will address in future iterations of this paper. However, even
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in this preliminary version of our paper we sense how fast people decide on a

particular strategy. In other words, we get a sense of how fast a civilization may

collapse. Distinguishing between the effect of the parameters that drive this

process may allow us to compare the speeds at which different societies may

collapse. Arguably this approach can be used to predict how soon any social

organization may collapse relative to others. Thus, for example one might use

this insight to predict which hedge funds are more likely to go bankrupt in an

economic downturn given their short positions.17

Mailath (1998) points out evolutionary models mimic models of learning.

This happens for two reasons. On one hand, evolutionary models cannot really

model learning since in these models the unit of analysis is not really the indi-

vidual. On the other hand, the notion that successful behavior in one period

increases the proportion of agents following that behavior in the next period sug-

gests a certain naive learning. At any rate, the fact that populations converge

on a Nash Equilibrium (in the sense that no one individual has an incentive to

deviate from this equilibrium) suggests an awareness of at least what constitutes

success and failure and the ability to mimic successful behavior. However, one

can think of a richer model with adaptive individuals who not only know that

they are being successful, but also why they are being successful. In this case

there would indeed be reason for those with the benefit of foresight to act to

increase their numbers in the population through extensive education programs

that emphasize the benefit of civic engagement. In fact, one could argue that

the role of public education in the US is designed for precisely this purpose. The

failure of the public education system without any plausible alternate avenue

for teaching and reinforcing the value of foresighted behavior may then lead to

17The short positions would give the observer a sense of the relative discount rates for each
firm. Then, sorting these funds as foresighted or shortsighted and given the probability of
the game continuing (determined by the economic environment, but same for all the firms)
one could possibly decide if these firms would cooperate or not. A replicator dynamic process
might then tell the observer how soon the firms would go bankrupt – or recover.
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dire consequences. Again, if agents did have the ability to alter their behavior,

then in a society where there is a large proportion of people with short planning

horizons those with a cooperative bent would gradually change their behavior

to the society’s detriment until the entire population has a short planning hori-

zon. However, in the present model, the proportion of types in the population

changes one generation at a time depending on the relative payoffs, but this will

yield the same result (Mailath, 1998 p. 1354-1356).

6 Areas for Expansion and Model Enrichment

In future iterations of this paper we plan on exploring the replicator dynamic

process fully – particularly with respect to the effect of relative discount rates

and the probability that the game might end. We also hope to flesh out the links

of our model with institutional systems designed to move society toward a more

efficient outcome. In this context we wish to address the relative importance of

external shocks to the system. The critical shocks will alter the proportion of

types in society. Such a shift would cause a succeeding society to unravel toward

inefficiency or short-sighted behavior, or vice versa. The relative possibility of

this will depend on the speed at which the prevailing type propagates.

A focus on the relative importance of risk dominance and payoff dominance

may yield interesting results as well. For example if the payoff from the Hare

type increases when they are around Stag types to the point where there may be

no individual benefit to the Hare type then the game will resemble a prisoner’s

dilemma. Thus as these relative payoffs change the relative importance of

risk dominant equilibrium to the payoff dominant equilibrium changes (see for

example, Bearden, 2001). Ultimately as these relative payoffs change the game

morphs into a prisoner’s dilemma. In this case polymorphic ESS is possible.
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Thus, exploring the social conditions specified by a prisoner’s dilemma class of

games relative to the assurance class of games would increase the applicability

of evolutionary modeling in understanding social change.

7 Conclusion

Our innovations lie in two areas. First, we interpret a well known equilibrium

phenomenon in evolutionary coordination games as social collapse. We show

that the initial proportions of people with foresight, relative to those without,

matter critically in determining whether society collapses or not. Second, we

argue that differences in perceptions of the future and in perceptions of whether

the game continues or not are important determinants of societal collapse, or

success. Thus, as discount rates between the foresighted and shortsighted

types diverge, the evolution of the efficient equilibrium becomes more likely.

Civilization is more likely to survive as the discount rates diverge. Moreover,

as the probability that life continues falls it becomes harder to achieve the

efficient equilibrium. That is civilization is unlikely to survive extinction level

threats even when the imminence of the threat is probabilistically determined.
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Appendix A: Proof of Theorem 1

The expected payoff from the Stag (S) strategy is

E(S) = 3x
1 + rS

1 + rS − p
(1)

and from Hare (H) strategy is

E(H) = 2x
1 + rH

1 + rH − p
+ (1 − x)

1 + rH

1 + rH − p
(2)

The H and S strategy provide the same expected payoff when E(H) = E(S)
i.e.,

2x
1 + rH

1 + rH − p
+ (1 − x)

1 + rH

1 + rH − p
= 3x

1 + rS

1 + rS − p

Or

3

(

1 + rS

1 + rH

)(

1 + rH − p

1 + rS − p

)

= 1 +
1

x
(3)

Now we have defined δS = p
1+rS

and δH = p
1+rH

. Thus,

1 + rS

1 + rH

=
δH

δS

(4)

And

1 + rH − p

1 + rS − p
=

1
δH

− 1
1

δS
− 1

(5)

Substituting (4) and (5) into (3) gives us

3

(

δH

δS

)

(

1
δH

− 1
1

δS
− 1

)

= 1 +
1

x

Or

x =
1

3
(

1−δH

1−δS

)

− 1
(6)

Thus for (H) to be preferred over (S)

x <
1

3
(

1−δH

1−δS

)

− 1
(7)
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Appendix B: Population Growth

The success or failure of society depends on the initial proportion of fore-
sighted people: x0 = St/Ht when t = 0. If x0 < x∗, then the growth of Hare
types will dominate, and society will eventually reach the inefficient equilibrium,
x = 0, where short-sighted people account for approximately 100% of the pop-
ulation. If x0 > x∗, then the growth of Stag types will dominate, and society
will eventually reach the efficient equilibrium, x = 1, where foresighted people
account for approximately 100% of the population.

Growth in x proceeds as follows:

xt =
St

St + Ht

, St+1 = St · (1 + growthSt), Ht+1 = Ht · (1 + growthHt)

and

growthSt =
E(St)

xtE(St) + (1 − xt)E(Ht)
growthHt =

E(Ht)

xtE(St) + (1 − xt)E(Ht)

where the expected values are based on the payoffs given in Figure 3:

E(St) = 3xt

(

1

1 − p

)

E(Ht) = 2xt

(

1 + rH

1 − p + rH

)

+ (1 − xt)

(

1 + rH

1 − p + rH

)

= (1 + xt)

(

1 + rH

1 − p + rH

)

To simplify, set βS =

(

1

1 − p

)

and βH =

(

1 + rH

1 − p + rH

)

.

E(St) = 3βSxt

E(Ht) = βH(1 + xt)

Thus, growth in x can be written as a system of finite difference equations:

xt+1 =

St

(

1 +
3βSxt

3βS(xt)2 + βH(1 − (xt)2)

)

St

(

1 +
3βSxt

3βS(xt)2 + βH(1 − (xt)2)

)

+ Ht

(

1 +
βH(1 + xt)

3βS(xt)2 + βH(1 − (xt)2)

)

St+1 = St

(

1 +
3βSxt

3βS(xt)2 + βH(1 − (xt)2)

)

Ht+1 = Ht

(

1 +
βH(1 + xt)

3βS(xt)2 + βH(1 − (xt)2)

)
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Appendix C: Proofs of Theorems 2 & 3 and their
Corollaries.

Theorem 2 states that x∗ is decreasing in rH . Theorem 3 states that x∗ is
decreasing in p. To demonstrate these, we must show that the derivatives of x∗

with respect to rH and p are alway negative. We can re-write x∗ such that

x∗ =













1 −
p

1 + rH

1 −
p

1 + rS






− 1







−1

=






3







1 + rH − p

1 + rH

1 + rS − p

1 + rS






− 1







−1

=

(

3

(

(1 + rH − p)(1 − rS)

(1 + rH)(1 + rS − p)

)

− 1

)−1

=
(1 + rH)(1 + rS − p)

3(1 + rH − p)(1 − rS) − (1 + rH)(1 + rS − p)

or

x∗ =
(1 + rH)(1 + rS − p)

3(1 + rH − p)(1 − rS) − (1 + rH)(1 + rS − p)

Equivalently,

x∗ =
1 + rH + rS + rSrH − p − prH

2 − 2p + rS(2 − 3p) + rH(2 + 2rS + p)

Next, separately differentiate with respect to rH and p:

dx∗

drH

=
−3p(1 + rS)(1 + rS − p)

(2 − 2p + rS(2 − 3p) + rH(2 + 2rS + p))2

dx∗

dp
=

−3(1 + rH)(rH − rS)(1 + rS)

(2 − 2p + rS(2 − 3p) + rH(2 + 2rS + p))2

Now, we assume without loss of generality, that rS = 0, thus:

dx∗

dp
=

−3rH(1 + rH)

(2 − 2p + rH(2 + p))2

dx∗

drH

=
−3p(1 − p)

(2 − 2p + rH(2 + p))2
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This indicates that whenever either p or rH increases, x∗ decreases since p is
strictly between zero and one, and rH is strictly positive.

Corollaries 2 and 3 are derived from the second derivatives of x∗. These
are given below; however, for simplicity, we continue to analyze the case where
rS = 0. We begin by rewriting the first derivatives as

dx∗

dp
= −3rH(1 + rH)(2 − 2p + rH(2 + p))−2

dx∗

drH

= −3p(1 − p)(2 − 2p + rH(2 + p))−2

This gives

d2x∗

dp2
= −3rH(1 + rH)[−2(2 − 2p + rH(2 + p))−3(−2 + rH)]

=
−3rH(1 + rH)(−2)(−2 + rH)

(2 − 2p + rH(2 + p))3

=
6rH(1 + rH)(rH − 2)

(2 − 2p + rH(2 + p))3

d2x∗

d(rH)2
= −3p(1 − p)[−2(2 − 2p + rH(2 + p))−3(2 + p)]

=
−3p(1 − p)(−2)(2 + p)

(2 − 2p + rH(2 + p))3

=
6p(1 − p)(2 + p)

(2 − 2p + rH(2 + p))3

These indicate that
d2x∗

d(rH)2
is always positive and

d2x∗

dp2
< 0, rH < 2

d2x∗

dp2
= 0, rH = 2

d2x∗

dp2
> 0, rH > 2
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