
Munich Personal RePEc Archive

SOCSol4L An improved MATLAB

package for approximating the solution

to a continuous-time stochastic optimal

control problem

Azzato, Jeffrey and Krawczyk, Jacek

Victoria University of Wellington

2006

Online at https://mpra.ub.uni-muenchen.de/1179/

MPRA Paper No. 1179, posted 15 Dec 2006 UTC

SOCSol4L

AN IMPROVED MATLAB R© PACKAGE FOR APPROXIMATING THE SOLUTION TO

A CONTINUOUS-TIME STOCHASTIC OPTIMAL CONTROL PROBLEM

JEFFREY D. AZZATO & JACEK B. KRAWCZYK

A. Computing the solution to a stochastic optimal control problem

is difficult. A method of approximating a solution to a given stochastic

optimal control problem using Markov chains was developed in [1]. This

paper describes a suite of MATLABR© functions implementing this method

of approximating a solution to a given continuous stochastic optimal

control problem.

2006 Working Paper

School of Economics and Finance

JEL Classification: C63 (Computational Techniques), C87 (Economic Software).

AMS Categories: 93E25 (Computational methods in stochastic optimal control).

Authors’ Keywords: Computational economics, Approximating Markov decision chains.

This report documents 2005 - 2006 research into

Computational Economics Methods

directed by Jacek B. Krawczyk

supported by VUW FCA FRG-05 (24644).

Correspondence should be addressed to:

Jacek B. Krawczyk. Commerce & Administration Faculty, Victoria University of Wellington, PO Box 600,

Wellington, New Zealand; fax +64-4-4712200. Email: Jacek.Krawczykatvuw.ac.nz;

http://www.vuw.ac.nz/staff/jacek krawczyk

C

Introduction 1

1. SOCSol 2

1.1. Purpose 2

1.2. Syntax 2

2. ContRule 8

2.1. Purpose 8

2.2. Syntax 8

3. GenSim 9

3.1. Purpose 9

3.2. Implementation 9

3.3. Syntax 10

4. ValGraph 12

4.1. Purpose 12

4.2. Syntax 12

5. LagranMap 13

5.1. Purpose 13

5.2. Syntax 13

6. Technical Information 15

6.1. Encoding the State Space 15

6.2. The Solution Files 16

7. Hints 17

7.1. Choosing State Variable Bounds 17

7.2. Choosing Discretisation Step Sizes 18

7.3. Use of TolFun 18

7.4. Relative Magnitudes of Controls 19

7.5. Enforcing Bounds on Directly Controlled State Variables 19

7.6. Enforcing Bounds on Monotonic State Variables 19

7.7. Enforcing Terminal State Constraints 19

7.8. Retrieving Additional Information 20

Appendix A. Example of use of SOCSol4L 21

A.1. Optimization Problem 21

A.2. Solution Syntax 22

A.3. Retrieving Results Syntax 23

References 26

I

This should be read and used in conjunction with [1].

Computing the solution to a stochastic optimal control problem is difficult. A method of

approximating a solution to a given stochastic optimal control (SOC) problem using Markov

chains was initially developed in [2], and later modified and improved in [1] (see also [3]). This

paper describes a suite of MATLABR©1 functions implementing this method of approximating

a solution to a continuous SOC problem. We provide an example showing how to generate a

test result from [2] in appendix A.

The method deals with finite horizon, free terminal state SOC problems having the form:

min J(u, x0) = IE
{

∫ T

0

f
(

x(t),u(t), t
)

dt + h
(

x(T)
)

∣

∣

∣

∣

x(0) = x0

}

(1)

subject to:

dx = g
(

x(t),u(t), t
)

dt + b
(

x(t),u(t), t
)

dW(2)

where W is a standard Wiener process. In the optimization method, we also allow for constraints

on the control and state variables (local and mixed).

Note: Throughout this paper, the dimension of the state space shall be denoted by d, the

dimension of the control by c, the length of the horizon by T, and the number of variables which

are affected by noise by N (N 6 d).

To solve (1) subject to (2) and local constraints, we developed a package of MATLABR©

programmes under the name SOCSol4L. The package is composed of five main modules:

1. SOCSol

2. ContRule

3. GenSim

4. ValGraph

5. LagranMap

SOCSol discretises the SOC problem and then solves this ‘discretisation’. For constrained

problems, it can also produce maps from states and times to Lagrange multipliers’ values.

ContRule derives graphs of continuous-time, continuous-state control rules from the SOCSol

solution. GenSim simulates the continuous system using such a control rule (also derived from

the SOCSol solution). ValGraph provides an automated means of computing expected values

for the continuous system as initial conditions change. LagranMapproduces graphs of Lagrange

multipliers’ values from Lagrange maps generated by SOCSol.

1See [4] for the introduction to MATLABR©.

1

1. SOCSol

1.1. Purpose. SOCSol takes the given SOC problem and approximates it with a Markov decision

chain, which it then solves. This results in a discrete-time, discrete-space control rule. SOCSol

does not perform the interpolation to convert this discrete-time, discrete-space control rule into

a continuous-time, continuous-state control rule (this is done by GenSim).

1.2. Syntax.

SOCSol(‘DeltaFunctionFile’, ‘InstantaneousCostFunctionFile’,

‘TerminalStateFunctionFile’, StateLB, StateUB, StateStep,

TimeStep, ‘ProblemFile’, Options, InitialControlValue, A,

b, Aeq, beq, ControlLB, ControlUB,

‘UserConstraintFunctionFile’)

Note: It is easiest to define these arguments in a script, and then call that script in MATLABR©.

See appendix A for an example of this.

DeltaFunctionFile:

A string containing the name (no .m extension) of a file containing a MATLABR© function

representing the equations of motion.

If the problem is deterministic, the function returns a vector of length d corresponding to the

value of g
(

x(t),u(t), t
)

.

If the problem is stochastic, the function returns a vector of length 2d , the first d elements of

which are g
(

x(t),u(t), t
)

and the second d elements of which are b
(

x(t),u(t), t
)

. If some of the

variables are undisturbed by noise (i.e. N < d), then the variables for which the diffusion term

is constantly 0 must follow the variables that are disturbed by noise.

In either case the function should have a header of the form:

function Value = Delta(Control, StateVariables, Time)

where Control is a vector of length c, StateVariables is a vector of length d, and Time is a

scalar.
2

InstantaneousCostFunctionFile:

A string containing the name (no .m extension) of a file containing a MATLABR© function

representing the instantaneous cost function f
(

x(t),u(t), t
)

1. The function should have a header

of the form:

function Value = Cost(Control, StateVariables, Time)

where Control is a vector of length c, StateVariables is a vector of length d, and Time is a

scalar.

TerminalStateFunctionFile:

A string containing the name (no .m extension) of a file containing a MATLABR© function

representing the terminal state function h
(

x(T)
)

1.

This function should return only the single real value given by h
(

x(T)
)

(even if the function is

identically zero). The function should have a header of the form:

function Value = Term(StateVariables)

where StateVariables is a vector of length d.

As for InstantaneousCostFunctionFile above, if the SOC problem to be solved involves

maximisation, the negative of its terminal state bonus should be specified here.

StateLB, StateUB, and StateStep:

These determine the finite state grid for the Markov chain that we hope will approximate the

SOC problem. Each may be given as a vector or as an array, independent of the type of the

other two.

The value of StateLB is the least possible state2.

The value of StateUB is the maximum possible state2.

1A maximisation problem can be converted into a minimisation problem by multiplying the performance criterion

by −1. Consequently, if the SOC problem to be solved involves maximisation, the negative of its instantaneous cost

should be specified in InstantaneousCostFunctionFile and the negative of its terminal state should be specified

in TerminalStateFunctionFile.
2The solution is routinely disturbed close to the state boundaries StateLB and StateUB. Consequently, these

should be chosen ‘generously’. Of course, larger state grids require greater computation times - see section 7.1 for

advice.

3

The value of StateStep determines the distances between points of the state grid. It has to be

chosen so that its entry/entries corresponding to the ith state variable exactly divides/divide the

difference/differences between the corresponding entries of StateLB and StateUB. Of course,

step size need not be the same for all state variables.

Each of these values can be given in two different ways:

1. As a vector of length d (the dimension of the state space, where each value in the vector

corresponds to one dimension) In this case, the same set of numbers will apply to every

decision stage of the Markov chain.

2. As a matrix with S + 1 rows and d columns, where S is the number of decision stages in the

Markov Chain as determined by TimeStep below. The ith row is then used to determine the

state grid in the ith stage.

TimeStep:

This determines the number of decision stages and their associated times.

TimeStep is a vector of step lengths that partition the interval [0,T]; i.e. , their sum should be T.

The number of elements of TimeStep is the number of decision stages in the Markov decision

chain, which we denote S.

ProblemFile:

A string containing the name (with no extension) of the problem. This name is used to store

the solution on disk. SOCSol produces two files with this name: one with the extension .DPP,

which contains the parameters used to compute the Markov decision chain, and one with the

extension .DPS, which contains the solution itself.

These files are used by GenSim to produce the continuous-time, continuous-state control rule.

Note that the routines GenSim, ContRule and ValGraph (all explained below) require that these

.DPP and .DPS files still exist and remain unchanged.

Options:

This vector (in fact, a cell array) of strings controls various internal settings that need only

be adjusted infrequently. Two types of options can be set using the Options vector: options

directly related to SOCSol4L, and options used by fmincon, a MATLABR© routine employed by

SOCSol4L.
4

The user need only specify those options that are to be changed from their default values. If all

options are to remain at their default values, then Options should be passed as empty, i.e. as {}.

In order to alter an option from its default value, the option should be named (in a string)

followed directly by the value to which it is to be set (in another string). For example, if it was

desired to set the ControlDimension option to 2 and turn on the Display, then Options could

be set as:

Options = {‘ControlDimension’ ‘2’ ‘Display’ ‘on’};

Note that the number 2 is entered as the string ‘2’. While it is important that an option be

followed directly by the value to which it is to be set, option-value pairs can be given in any

order. So it would be equally valid to set the above as:

Options = {‘Display’ ‘on’ ‘ControlDimension’ ‘2’};

The options related directly to SOCSol4L are:

1. ControlDimension. This contains the value c for your problem. It must be given as a natural

number (in a string). The default value is 1.

2. StochasticProblem. This should be set to ‘yes’ if your problem is stochastic. The default

value is ‘no’, i.e. the problem is assumed to be deterministic.

3. NoisyVars. This should be set to the number N (in a string) if N < d. The default value is

d, i.e. all variables are assumed to be noisy. If the problem is deterministic, SOCSol ignores

the value of NoisyVars.

4. LagrangeMaps. This specifies whether SOCSol should produce an output file containing the

Lagrange multipliers associated with the problem’s constraints. If so, LagrangeMaps should

be set to ‘yes’. The default value is ‘no’. This option must be enabled if the user later wishes

to utilise the LagranMap routine.

In general, fmincon can use either large-scale or medium-scale algorithms. While large-scale

algorithms are more efficient for some problems, the use of such an algorithm requires differen-

tiability of the function to be minimised. This is not generally true of the cost-to-go functions that

SOCSol4L passes to fmincon. Consequently, SOCSol4L employs only fmincon’s medium-scale

algorithms.

As a result of this, those fmincon options specific to large-scale algorithms are not set through

the Options vector, but instead passed their default values by SOCSol4L. However, the fmincon

options specific to medium-scale algorithms may be set through the Options vector. These

include:
5

1. Diagnostics. This controls whether fmincon prints diagnostic information about the cost-

to-go functions that it minimises. The default value is ‘off’, but Diagnosticsmay also be set

to ‘on’.

2. Display. This controls fmincon’s display level. The default value is ‘off’ (no display), but

Display may also be set to ‘iter’ (display output for each of fmincon’s iterations), ‘final’

(display final output for each call to fmincon) and ‘notify’ (display output only if non-

convergence is encountered).

3. MaxFunEvals. This sets fmincon’s maximum allowable number of function evaluations. The

default value is 100c, but MaxFunEvalsmay be set to any natural number (in a string).

4. MaxIter. This sets fmincon’s maximum allowable number of iterations. The default value

is 400, but MaxItermay be set to any natural number (in a string).

5. MaxSQPIter. This sets fmincon’s maximum allowable number of sequential quadratic pro-

gramming steps. The default value is∞, but MaxSQPItermay be set to any natural number

(in a string).

6. TolCon. This sets fmincon’s termination tolerance on constraint violation. The default value

is 10−6, but TolConmay be set to any positive real number (in a string).

7. TolFun. This sets fmincon’s termination tolerance on function evaluation. The default value

is 10−6, but TolFunmay be set to any positive real number (in a string).

8. TolX. This sets fmincon’s termination tolerance on optimal control evaluation. The default

value is 10−6, but TolXmay be set to any positive real number (in a string).

If necessary, it is also possible to set:

11. DerivativeCheck. This controls whether fmincon compares user-supplied analytic deriva-

tives (e.g. gradients or Jacobians) to finite differencing derivatives. The default value is ‘off’,

but DerivativeCheckmay also be set to ‘on’.

12. DiffMaxChange. This sets fmincon’s maximum allowable change in variables for finite

difference derivatives. The default value is 0.1, but DiffMaxChangemay be set to any positive

real number (in a string).

13. DiffMinChange. This sets fmincon’s minimum allowable change in variables for finite

difference derivatives. The default value is 10−8, but DiffMaxChange may be set to any

positive real number (in a string).

14. OutputFcn. A string containing the name (no .m extension) of a file containing a MATLABR©

function that is to be called by fmincon at each of its iterations. Such a function is typically

used to retrieve/display additional data from fmincon.

See Optimization Toolbox: Function Reference: Output Function in MATLABR© help for more

information on output functions.

For more information on fmincon, and fmincon options in particular, see Optimization Toolbox:

fmincon and Optimization Toolbox: Function Reference: Optimization Parameters in MATLABR© help.
6

InitialControlValue:

In general, a vector of initial values for the control variables. This is used by SOCSol4L as an

approximate starting point in its search for an optimal discrete-state, discrete-time decision

rule. Consequently, it may be chosen with some inaccuracy.

A and b:

These allow for the imposition of the linear inequality constraint(s) Au 6 b on the control

variable(s). In general, A is a matrix and b is a vector. If there are no linear inequality constraints

on the control variable(s), both A and b should be set to [].

Aeq and beq:

These allow for the imposition of the linear equality constraint(s) Aeq · u = beq on the control

variable(s). In general, Aeq is a matrix and beq is a vector. If there are no linear equality

constraints on the control variable(s), both Aeq and beq should be set to [].

ControlLB and ControlUB:

In general, vectors of lower and upper bounds (respectively) on the control variables. If a

control variable has no lower bound, the corresponding entry of ControlLB should be set to

-Inf. Similarly, if a control variable has no upper bound, the corresponding entry of ControlUB

should be set to Inf.

UserConstraintFunctionFile:

A string containing the name (no .m extension) of a file containing a MATLABR© function

representing problem constraints (in particular, non-linear problem constraints).

This function should return the value of inequality constraints as a vector Value1 and the value

of equality constraints as a vector Value2, where inequality constraints are written in the form

k
(

u, x, t
)

6 0 and equality constraints are written in the form keq
(

u, x, t
)

= 0.

The function should have a header of the form:

function [Value1, Value2] = Constraint(Control, StateVariables,

TimeStep)

where Control is a vector of length c, StateVariables is a vector of length d, and TimeStep is

a scalar.
7

Note that the TimeStep argument makes the time step for the relevant Markov chain time

readily available for incorporation in constraints. It should not be confused with the Time

arguments of the other user-specified functions, which correspond to the Markov chain times

themselves.

In the absence of constraints requiring the use of UserConstraintFunctionFile,

UserConstraintFunctionFile should be passed as empty: [].

See Optimization Toolbox: fmincon in MATLABR© help for further information about solution

starting points, A, b, Aeq, beq, bounds and the specification of non-linear problem constraints.

2. ContRule

2.1. Purpose. ContRule produces graphs of the continuous-time, continuous-state control rule

derived from the solution computed by SOCSol2. Each control rule graph is produced for a

given time and holds all but one state variable constant.

2.2. Syntax.

ContRule(‘ProblemFile’, Time, InitialCondition, VariableOfInterest,

LineSpec);

ControlValues = ContRule(...);

Calling ContRule without any output arguments produces control rule profiles for the given

time and displays some technical information in the MATLABR© command window. However,

ContRule may also be called with a single output argument. In this instance, ContRule also

assigns the output argument the values of the control rules in the form of an M× c array, where:

M =
StateUBVariableOfInterest − StateLBVariableOfInterest

StateStepVariableOfInterest
+ 1

So rows of this array correspond to points of the VariableOfInterestth dimension of the state

grid, while its columns correspond to control dimensions.

ProblemFile:

A string containing the name (with no extension) of the problem. This name is used to retrieve

the solution produced by SOCSol from the disk. ContRule requires that the files produced by

SOCSol still exist and remain unchanged.

2Analogous graphs of the Lagrange multipliers associated with problem constraints can be obtained via

LagranMap - see section 5.

8

Time:

A scalar in the interval [0, T] telling ContRule the time for which a control profile is to be

computed. If Time is not a Markov chain time, ContRule computes a control profile for the last

Markov chain time before Time.

InitialCondition:

A vector determining the values of the fixed state variables. A value must be given for the

VariableOfInterest as a placeholder, although this value is not used.

VariableOfInterest:

A scalar telling the routine which of the state variables to vary, i.e. , numbers like “1” or

“2” etc. have to be entered in accordance with the state variables’ ordering in the function

DeltaFunctionFile. The control rule profile appears with the nominated state variable along

the horizontal axis.

LineSpec:

This specifies the line style, marker symbol and colour of timepaths. It is a string of the format

discussed in the MATLABR© Functions: LineSpec section of MATLABR© help.

If LineSpec is not specified, it defaults to ‘r-’ (a solid red line without markers).

3. GenSim

3.1. Purpose. GenSim takes the solution computed by SOCSol, derives a continuous-time,

continuous-state control rule and simulates the continuous system using this rule. It returns

graphs of the timepaths of the state and control variables and the associated performance

criterion values for one or more simulations.

3.2. Implementation. The derivation of the continuous-time, continuous-state control rule

from the solution computed by SOCSol requires some form of interpolation in both state and

time. In an effort to keep the script simple the interpolation in state is linear. States that are

outside the state grid simply move to the nearest state grid point. For times between Markov

chain times, the control profile for the most recent Markov chain time is used.

The differential equation that governs the evolution of the system is simulated by interpolation

of its Euler-Maruyama approximation. The performance criterion integral is approximated

using the left-hand endpoint rectangle rule.
9

3.3. Syntax.

SimulatedValue = GenSim(‘ProblemFile’, InitialCondition,

SimulationTimeStep, NumberOfSimulations,

LineSpec, TimepathOfInterest, UserSuppliedNoise)

ProblemFile:

A string containing the name (with no extension) of the problem. This name is used to retrieve

the solution produced by SOCSol from the disk. GenSim requires that the files produced by

SOCSol still exist and remain unchanged.

InitialCondition:

This is a vector of length d that contains the initial condition: the point from which the simulation

starts.

SimulationTimeStep:

This is a vector of step lengths that partition interval [0,T]; i.e. , their sum should be T.

With more simulation steps there is less error from approximating the equations of motion

using the Euler-Maruyama scheme and from approximating the performance criterion using

the left-hand endpoint rectangle method. In general, the simulation step is much smaller than

the time step used to compute the solution (i.e. smaller than the TimeStep argument given to

SOCSol).

If no SimulationTimeStep vector is given, the SimulationTimeStep vector defaults to the

TimeStep vector used for computing the ProblemFile.

NumberOfSimulations:

This is the number of simulations that should be performed. If NumberOfSimulations is

passed as negative, GenSim performs |NumberOfSimulations| simulations, but does not plot

any timepaths.

Multiple simulations are normally performed when dealing with a stochastic system. Each

simulation uses a randomly determined noise realisation (unless this is suppressed by the

UserSuppliedNoise argument).

If NumberOfSimulations is not specified, it defaults to 1.
10

LineSpec:

This specifies the line style, marker symbol and colour of timepaths. It is a string of the format

discussed in the MATLABR© Functions: LineSpec section of MATLABR© help.

If LineSpec is not specified, it defaults to ‘r-’ (a solid red line without markers).

TimepathOfInterest:

This is an integer between 0 and d + c (inclusive) that specifies which timepath(s) GenSim is

to plot. If TimepathOfInterest is passed the value 0, GenSim plots timepaths for all state and

control variables. Otherwise, if TimepathOfInterest is passed the value i > 0, GenSim plots the

timepath of the ith variable, where state variables precede control variables.

If TimepathOfInterest is not specified, it defaults to 0.

UserSuppliedNoise:

This entirely optional argument enables the user to override the random generation of noise

realisations. If UserSuppliedNoise is passed the value 0, a constantly 0 noise realisation is

used. Otherwise, UserSuppliedNoise should be passed a matrix with N columns and a row

for each entry of SimulationTimeStep.

Note that NumberOfSimulations should be 1 if UserSuppliedNoise is specified. If

UserSuppliedNoise is left unspecified, GenSim randomly selects a standard Gaussian noise

realisation for each simulation. Naturally, UserSuppliedNoise has no effect on deterministic

problems.

SimulatedValue:

The MATLABR© output consists of a vector of the values of the performance criterion for each

of the simulations performed.

If the problem is stochastic and noise realisations are random, then the average of the values

from a large number of simulations can be used as an approximation to the expected value

of the continuous stochastic system (under the continuous-time, continuous-state control rule

derived from the solution computed by SOCSol). This average is left for the user to compute.

11

4. ValGraph

4.1. Purpose. ValGraph automates the process of computing expected values for the continuous

system (under the continuous-time, continuous-state control rule derived from the solution

computed by SOCSol) as the initial conditions change. In a similar spirit to ContRule above, it

deals with one state variable at a time (indentified by VariableOfInterest), while the other

state variables remain fixed.

4.2. Syntax.

ValGraph(‘ProblemFile’, InitialCondition, VariableOfInterest,

VariableOfInterestValues, SimulationTimeStep,

NumberOfSimulations, ScaleFactor, LineSpec)

ProblemFile:

A string containing the name (with no extension) of the problem. This name is used to retrieve

the solution produced by SOCSol from the disk. ValGraph requires that the files produced by

SOCSol still exist and remain unchanged.

InitialCondition:

A vector determining the values of the fixed state variables. A value must be given for the

VariableOfInterest as a placeholder, although this value is not used.

VariableOfInterest:

A scalar telling the routine which of the state variables to vary. The value graphs appear with

this state variable along the horizontal axis.

VariableOfInterestValues:

A vector containing the values of the VariableOfInterest at which the system’s performance

is to be evaluated.

SimulationTimeStep:

This is as for GenSim above.
12

NumberOfSimulations:

This is the number of simulations that should be performed. NumberOfSimulations behaves

like the similarly-named argument in GenSim above, except if passed the value 1 for a stochastic

problem, it yields a constantly zero noise realisation.

If NumberOfSimulations is not specified, it defaults to 1.

ScaleFactor:

This simply scales all the resulting values by the given factor.

Maximisation problems must have all payoffs replaced by their negatives before entry into

SOCSol, as it assumes that problems require minimisation. Setting the ScaleFactor to -1

‘corrects’ the sign on payoffs for maximisation problems.

Naturally, if ScaleFactor is not specified, it defaults to 1.

LineSpec:

This specifies the line style, marker symbol and colour of timepaths. It is a string of the format

discussed in the MATLABR© Functions: LineSpec section of MATLABR© help.

If LineSpec is not specified, it defaults to ‘r-’ (a solid red line without markers).

5. LagranMap

5.1. Purpose. LagranMap utilises SOCSol’s output to produce graphs of the Lagrange multipli-

ers associated with problem constraints3. Each Lagrange map graph is produced for a given

time and holds all but one state variable constant.

5.2. Syntax.

LagranMap(‘ProblemFile’, Time, InitialCondition, VariableOfInterest,

LineSpec, MultiplierOfInterest);

LagrangeValues = LagranMap(...);

Calling LagranMap without any output arguments produces Lagrange multiplier profiles for

the given time and displays some technical information in the MATLABR© command window.

3Analogous graphs of the problem’s controls can be obtained via ContRule - see section 2.

13

However, LagranMap may also be called with a single output argument. In this instance,

LagranMap also assigns the output argument the values of the Lagrange multipliers in the form

of an M × c array, where:

M =
StateUBVariableOfInterest − StateLBVariableOfInterest

StateStepVariableOfInterest
+ 1

So rows of this array correspond to points of the VariableOfInterestth dimension of the state

grid, while its columns correspond to control dimensions.

ProblemFile:

A string containing the name (with no extension) of the problem. This name is used to retrieve

the solution produced by SOCSol from the disk. LagranMap requires that this solution include

a .DPL file4, and that the files produced by SOCSol still exist and remain unchanged.

Time:

A scalar in the interval [0, T] telling LagranMap the time for which Lagrange map profile is to

be computed. If Time is not a Markov chain time, LagranMap computes a Lagrange map profile

for the last Markov chain time before Time.

InitialCondition:

A vector determining the values of the fixed state variables. A value must be given for the

VariableOfInterest as a placeholder, although this value is not used.

VariableOfInterest:

A scalar telling the routine which of the state variables to vary, i.e. , numbers like “1” or

“2” etc. have to be entered in accordance with the state variables’ ordering in the function

DeltaFunctionFile. The Lagrange map profile appears with the nominated state variable

along the horizontal axis.

LineSpec:

This specifies the line style, marker symbol and colour of timepaths. It is a string of the format

discussed in the MATLABR© Functions: LineSpec section of MATLABR© help.

If LineSpec is not specified, it defaults to ‘r-’ (a solid red line without markers).

4See Options in section 1.2.

14

MultplierOfInterest:

This is an integer between 0 and the number of bounds & constraints (inclusive) that speci-

fies which Lagrange map(s) LagranMap is to plot. If MultplierOfInterest is passed the value 0,

LagranMapplots Lagrange maps for all bounds and constraints. Otherwise, ifMultplierOfInterest

is passed the value i > 0, LagranMap plots the Lagrange map of the ith bound/constraint.

If MultplierOfInterest is not specified, it defaults to 0.

6. T I

6.1. Encoding the State Space. Within the SOCSol routine each point of the state grid is assigned

a unique number. This state number is then used as an index in all the resultant matrices.

For each stage a CodingVector is computed. As a precursor to this, the number of states along

each of the d state variable axes is first computed:

States = round((Maximum - Minimum)./StateStep + 1);

where Maximum, Minimum, and StateStep are vectors appropriate for the current stage. Taking

the product of the entries of States gives TotalStates for the current stage. The CodingVector

is then defined as follows:

c = cumprod(States);

CodingVector = [1, c(1:Dimension - 1)];

where Dimension is the internal name for d, the number of state variables. The CodingVector

is used to compute the state number for each point of the state grid for the current stage.

Suppose that x is a point of the state grid. Then x is converted into a vector of numbers,

StateVector, with 1 ≤ StateVector(i) ≤ States(i):

StateVector = round((x - Min)./StateStep + 1);

Finally, the state number State, for x is computed by taking the dot product of StateVector -

1with the CodingVector and then adding 1:

State = (StateVector - 1)*CodingVector + 1;

This process assigns a unique State to each point of the state grid. Every number between 1 and

TotalStates (inclusive) corresponds to a point of the state grid. By construction, 1 corresponds

to Min and TotalStates to Max.
15

Converting a state number back into a point of the state grid is equally simple. The first step is

to convert the State into a StateVector. This is carried out by a function SnToSVec:

function StateVector = SnToSVec(StateNumber, CodingVector,

Dimension)

StateNumber = StateNumber - 1;

StateVector = zeros(1, Dimension);

for i = Dimension:-1:1

StateVector(i) = floor(StateNumber/CodingVector(i));

StateNumber = StateNumber - StateVector(i)*CodingVector(i);

end;

StateVector = StateVector + 1;

Converting a StateVector to its associated x is as simple as:

x = (StateVector - 1).*StateStep + Min;

6.2. The Solution Files. SOCSolwrites at least two files to disk. The file with the .DPP extension

contains the parameters used to compute the approximating Markov chain. The file with the

.DPS extension contains the solution matrices. These are indexed using the state number encod-

ing of the state space (see section 6.1). Additionally, if SOCSol is called with the LagrangeMaps

option set to ‘yes’, a file with the extension .DPL is produced. This contains the Lagrange

multiplier matrices.

The .DPP File:

The first three lines of this file hold (as strings) the variables DeltaFunctionFile,

InstantaneousCostFunctionFile, and TerminalStateFunctionFile. These variables are re-

trieved using fscanf with a call to fgets after the third fscanf to remove the remaining new

line.

The remaining portion of the file holds the matrices Minimum, Maximum, StateStep, and

TimeStep, with space at the end for any additional information (currently SOCSol appends

Options as specified by the user, the computation time taken to compute the solution (in

seconds) and the number of times that fmincon was called). All these variables (with the

exception of the additional information) are stored and retrieved using the MatWrite and

MatRead functions. These simple functions store the matrices in a binary form that is more time

and space efficient than a text representation.
16

The .DPS File:

This file only contains matrices, written and retrieved by the MatWrite and MatRead functions.

The file begins with the matrices representing the optimal control. There is one such matrix for

each dimension of the control space. These can be retrieved using a call of the form:

for i = 1:ControlDimension

eval([‘ODM’, int2str(i), ‘=MatRead(fid);’])

fclose(fid);

These matrices are followed by a single matrix holding the cost-to-go for each state of each

stage of the Markov chain.

The .DPL File:

This file also contains only matrices, written and retrieved by the MatWrite and MatRead

functions. The file begins with six matrices (in fact, scalars) that respectively give the numbers

of lower bounds, upper bounds, linear inequalities, linear equalities, non-linear inequalities

and non-linear equalities that constrain the controls. These are then followed by matrices

representing each of these constraints,grouped in the order above. The matrices can be retrieved

using a call of the form:

NumLower = MatRead(fid);

NumUpper = MatRead(fid);

NumIneqLin = MatRead(fid);

NumEqLin = MatRead(fid);

NumIneqNonlin = MatRead(fid);

NumEqNonlin = MatRead(fid);

for i = 1:NumLower

eval([‘LagrangeLower’, int2str(i), ‘=MatRead(fid);’]);

end;

for i = 1:NumUpper

eval([‘LagrangeUpper’, int2str(i), ‘=MatRead(fid);’]);

end;
...

7. H

7.1. Choosing State Variable Bounds. The formulation of a SOC problem may give rise to

a ‘natural’ choice of bounds on its state variable(s), e.g. x1 ∈ [0, 0.5]. However, SOCSol4L’s

solutions are routinely disturbed close to the bounds specified. Consequently, it may be sensible
17

to specify a larger state grid than might initially appear necessary (e.g. x1 ∈ [−0.2, 0.7]). The

following graph (Figure 1) demonstrates how this can move distortion outside the area of

interest:

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

C
o
n
tr

o
l

State

F 1. Control rules with distortion at the right.

Of course, ceteris paribus, specifying a larger state grid increases computation time. If the SOC

problem has many dimensions, this increase may be considerable.

7.2. Choosing Discretisation Step Sizes. The choice of state step(s) and the choice of time step

are not entirely independent. In particular, the time step should not be ‘too small’ in comparison

to the state step(s). This is because some control û is optimal for the Markov chain at a given

grid point. However, the control chosen at this point is a multiple of the time step. So if the

time step is ‘too small’, û cannot be realised, making the optimal solution unobtainable5.

Empirical evidence suggests that the time step can also be ‘too large’ in comparison to the state

step(s). It is thus desirable to try a variety of discretisations, which may then indicate some

choices of step sizes that are effective for a particular problem. This is easily done by extend-

ing the script suggested in section 1.2 to call SOCSol several times, specifying ProblemFile

differently each time.

7.3. Use of TolFun. If fine discretisation is used (in particular, a small time step), the cost-to-go

functions that fmincon must minimise are relatively flat. Consequently fmincon may make

significant errors when computing controls if TolFun is left at its default level. These errors

often manifest as large ‘steps’ in control rules and/or timepaths.

As a result of this, TolFun should be set to an especially small value (e.g. 10−12) when fine

discretisation is used6.

5See p. 16 of [1] for further discussion.
6See p. 15 of [1] for further discussion.

18

7.4. Relative Magnitudes of Controls. Most numerical optimization methods work most effec-

tively when the solution components (here, the entries of u) are of comparable size. However,

not all problems naturally accommodate this. For example, it may be that u1 ∈ [0, 1] while u2 > 0

realises large values (e.g. 104). In certain cases, it is possible to remove such non-comparability

by rescaling one or more controls. For example, if u2 ∝ x and x realises values comparable to

u2, then replacement of u2 by u′
2

results in both u1 and u′
2

realising comparable values7.

7.5. Enforcing Bounds on Directly Controlled State Variables. Call a state variable whose

derivative explicitly depends on at least one control variable directly controlled. A method of

enforcing bounds on directly controlled variables is sketched below.

Suppose that a state variable xi has:

dxi = gi(x,u)dt

where at least one entry of u appears in gi (i.e. , xi is directly controlled). If the TimeStep is

constant and denoted by δ and t is a Markov chain time, then:

xi(t + δ) = xi(t) + δgi(x,u)

So the lower bound a − xi 6 0 can be enforced by specifying the

UserConstraintFunctionFile as:

function [v1 v2] = ConFun(u, x, ts)

v1 = [a-x(i)-ts*gi(x,u)];

v2 = [];

7.6. Enforcing Bounds on Monotonic State Variables. Suppose that a SOC problem is formu-

lated in such a way that it can be analytically shown that in its optimal solution, some state

variable xi must be monotonic with respect to time. Then if xi is decreasing, enforcing the upper

bound xi 6 a amounts to changing GenSim’s initial condition to xi(0) = a if it was previously

xi(0) = a + p for some positive p.

Naturally, an analogous method applies if xi is increasing. See section 7.7 below for another

way of enforcing bounds on monotonic state variables.

7.7. Enforcing Terminal State Constraints. Suppose that a state variable xi is subject to the

terminal constraint xi(T) 6 a(xi(T),u(T)), where:

xi = (x1, . . . , xi−1, xi+1, . . . , xd)

Such a terminal constraint can be enforced by adding a summand of the form:

k max(0, xi − a(xi,u))2

7See p. 13, 14 of [1] for further discussion.

19

to TerminalStateFunction, where k > 0 is a constant. It may be necessary to run SOCSol

several times to find a value of k sufficiently large to enforce the constraint.

This method can be used to enforce lower bounds on decreasing state variables and upper

bounds on increasing state variables.

7.8. Retrieving Additional Information. If additional information is required from one of the

SOCSol4L routines, it is often possible to retrieve this by declaring a global variable. For example,

suppose that it were necessary to obtain the state values used by GenSim in plotting a particular

state timepath. Identifying the appropriate internal variable as GenSim’s StateEvolution, one

could procede as follows:

1. Execute the statement global temp in the MATLABR© command window.

2. Append GenSimwith the lines:

global temp

temp=StateEvolution;

and save.

3. Call GenSim in the MATLABR© command window.

The desired state values would then be available in the variable temp. It is recommended that

the name chosen for this variable (here, “temp”) not coincide with the name of any SOCSol4L

internal variable.

20

A A. E    SOCSol4L

A.1. Optimization Problem. We will show how to obtain the results reported in Example 2.3.1

of [1].

The optimization problem is determined in R1 by:

min
u(·)

J =
1

2

∫ 1

0

(

u(t)2 + x(t)2
)

dt +
1

2
x2(1)(3)

Subject to:

ẋ = u(4)

x(0) =
1

2
.(5)

A Markovian approximation to this problem is to be formed and then solved. The optimization

call for the routine that does this is SOCSol(...), where the arguments inside the brackets are

the same as those of Section 1.2. Details of the specification of these arguments for this example

are given below.

The following functions are defined by the user and saved in MATLABR© as .m files in locations

on the path. Each file has a name (for example Delta.m), and consists of a header, followed by

one (or more) commands. For this example we have:

DeltaFunctionFile:

This is called, for example, Delta.m and is written as follows:

function v = Delta(u, x, t)

v = u;

Similarly, for the other functions in this routine:

InstantaneousCostFunctionFile

This is called Cost.m and is written as follows:

function v = Cost(u, x, t)

v = (u ˆ2 + x ˆ2)/2;

TerminalStateFunctionFile:

This is called Term.m and is written as follows:
21

function v = Term(x)

v = x ˆ2/2;

The parameters used in SOCSol are described in Section 1.2. In this example they are given the

following values:

StateLB and StateUB: For this one-dimensional Linear-Quadratic problem we give 0 and 0.5

respectively. This is because it is anticipated that the state value will diminish monotonically

from 0.5 to a small positive value. Consequently smaller or larger values than these are

unnecessary.

StateStep: This is given a value of 0.05, making the discrete state space the set {0, 0.05, 0.1,

. . . , 0.45, 0.5}.

TimeStep: Given by the vector ones(1, 10)/10, this divides the interval [0, 1] into 10 equal

subintervals.

ProblemFile: This is the name for the files that the results are to be stored in, say

C:\results\Test1.

Options: In this example it is not necessary to include this vector: the default {} suffices.

InitialControlValue: This is given a value of 0.5. As this value is only an approximate

starting point for the routine, it may be specified with some inaccuracy.

A, b, Aeq and beq: As there are no linear constraints, these are all passed as empty: [].

ControlLB and ControlUB: As the control variable is unbounded, there are passed as -Inf and

Inf respectively.

UserConstraintFunctionFile: As there are no constraints requiring the use of this argument,

it too is passed as empty: [].

A.2. Solution Syntax. Consequently SOCSol could be called in MATLABR© as follows:

SOCSol(‘Delta’, ‘Cost’, ‘Term’, 0, 0.5, 0.05, ones(1, 10)/10,

‘C:\results\Test1’, {}, 0.5, [], [], [], [], -Inf, Inf, []);

C:\results\Test1 is just the header part (without the .DPS and .DPP extensions) of the two

results files saved from SOCSol and stored for later use (see details Section 6.2).

While the call above is clear for such a simple problem, it is preferable to write MATLABR©

scripts for more involved problems. For this example, a script could be written as follows:
22

StateLB = 0;

StateUB = 0.5;

StateStep = 0.05;

TimeStep = ones(1, 10)/10;

Options = {};

InitialControlValue = 0.5;

A = [];

b = [];

Aeq = [];

beq = [];

ControlLB = -Inf;

ControlUB = Inf;

SOCSol(‘Delta’, ‘Cost’, ‘Term’, StateLB, StateUB, StateStep, TimeStep,

‘C:\results\Test1’, Options, InitialControlValue, A, b, Aeq, beq,

ControlLB, ControlUB, []);

If this script were called work space.m and placed in a directory visible to the MATLABR© path,

it would then only be necessary to call work space in MATLABR©.

In each case, the .m extensions are excluded from the filenames.

A.3. Retrieving Results Syntax. The results are communicated by means of three types of

figures: control versus state policy rules, state and control timepaths, and value graphs.

A.3.1. Control vs. state. The MATLABR© routine ContRule is used to obtain a graph of the control

rule at time 0 from SOCSol’s solution. The following values are specified for the parameters

described in section 2.2:

ProblemFile: As above, this is: ‘C:\results\Test1’.

Time: This is given a value of 0, as this is the time for which a control rule is to be computed.

InitialCondition: As there is no need to hold a varying variable fixed, this condition does

not matter in a one-dimensional example, where we only have one state variable (i.e.

IndependentVariable) to vary. Consequently, this is set arbitrarily to 0.5.

IndependentVariable: This is set to 1, as there is only one state variable to vary. If this example

had more than one state dimension, IndependentVariable could be any number beween 1 and

d (inclusive), depending on which dimension/variable was to be varied.

LineSpec: This is left unspecified, assuming its default of ‘r-’.
23

Consequently ContRule is called as follows:

ContRule(‘C:\results\Test1’, 0, 0.5, 1)

This produces the following graph (Figure 2):

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

C
o
n
tr

o
l

State

F 2. Control rules at time t = 0.

Note that in this graph the optimal solution is presented as a dashed line, while our computed

trajectories are presented as solid lines. This convention is followed for subsequent graphs.

A.3.2. State and control vs. time. The files Test1.DPP and Test1.DPS are used to derive a

continuous-time, continuous-state control rule. The system is then simulated using this rule. We

use the MATLABR© routine GenSimwith the following values for the parameters and functions

described in section 3:

ProblemFile: This is ‘C:\results\Test1’ as before.

InitialCondition: As the simulation starts at x0 = 0.5, this is specified as 0.5.

SimulationTimeStep: For 100 equidistant time steps this is given as ones(1, 100)/100.

NumberOfSimulations,LineSpec and UserSuppliedNoise: These are not passed, as the default

values suffice.

Consequently GenSim is called as follows:

SimulatedValues=GenSim(‘C:\results\Test1’, 0.5, ones(1, 100)/100)

SimulatedValue gives the simulated value of the performance criterion. This is 0.1252 with the

choice of parameters given here.

GenSim also produces the following graph of timepaths (Figure 3):
24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

S
ta

te

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

C
o
n
tr

o
l

Time

F 3. Optimal and approximated trajectories.

A.3.3. Value vs state. Finally, the MATLABR© routine ValGraph computes the expected value of

the performance criterion for the continuous system as the initial conditions vary. This routine

has the following values for the parameters described in section 4.2:

ProblemFile, InitialCondition and VariableOfInterest: These are given the same values

as the corresponding arguments in subsection A.3.2 above.

VariableOfInterestValues: This vector determines for what values of the variable of interest

the performance criterion should be calculated. In this example, [0:0.05:0.5] is used.

SimulationTimeStep: For 100 equidistant time steps this is given as ones(1, 100)/100.

NumberOfSimulations and ScaleFactor: These are not passed, as the default values suffice.

Hence ValGraph is called as follows:

ValGraph(‘C:\results\Test1’, 0.5, 1, [0:0.05:0.5], ones(1, 100)/100)

This produces the following graph (Figure 4):

25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

V
a

lu
e

State

F 4. Optimal value function at time t = 0.

R

[1] Krawczyk J.B., 2001, “A Markovian Approximated Solution to a Portfolio Management Prob-

lem”, Information Technology for Economics and Management, Vol. 1, No. 1. Available at:

http://www.item.woiz.polsl.pl/issue/journal1.htm on 2006-12-14.

[2] Krawczyk J.B. & Windsor A., 1997, “An Approximated Solution to Continuous-Time Stochastic Optimal Control

Problems Through Markov Decision Chains”, Research Papers in Economics, [RePEc: wpa:wuwpco:9710001].

[3] Krawczyk J.B., 2005, “Numerical Solutions to Lump-Sum Pension Fund Problems that Can Yield Left-Skewed

Fund Return Distributions”. In: C. Deissenberg and R.F. Hartl (eds.), Optimal Control and Dynamic Games,

Springer, pp. 155-176.

[4] 1992, “MATLABR©. High-Performance Numeric Computation and Visualization Software”, The MathWorks Inc.

26

