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Abstract

This paper looks at competition in the Telecommunications industry
with non-linear tariffs and network based price discrimination. Allowing
for asymmetric networks and non-cooperatively chosen access prices si-
multaneously allows to explicitly derive non-reciprocal equilibrium access
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1 Introduction

The recent literature on the network interconnection and pricing strategies in the
Telecommunications Industry originating in the work of Armstrong (1998) and
Laffont, Rey, and Tirole (LRT 1998a,b) has generically assumed that competi-
tion takes place between symmetric networks. Within this symmetric framework
the analysis of Gans and King (2001) has shown that with non-linear tariffs and
network based price discrimination the optimal (i.e. profit-maximizing) choice
of negotiated and reciprocal access charges will imply a negative markup so that
call termination is in fact subsidized.
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These theoretical findings seem unable to explain the existing concern among
competition authorities about such charges being ’too high’ from a welfare
perspective which is supported by results of Behringer (2004). The German
Monopolkommission (2003, p.91) has published the following table for access
charges (in cent per minute) charged by the mobile phone networks

1998 1999 2000 2001 2002
T-Mobile 27,86 27,86 17,09 14,39 14,30
Vodafone 28,44 28,44 28,51 15,42 14,30
E-Plus 42,60 42,60 42,68 19,03 16,94
O2 29,24 29,24 29,32 18,77 17,88

These access charges were based on the individual firm’s request for access
to its network and are clearly non-reciprocal reflecting the fact that the former
were established incumbents and the later two new entrants using a different
transmission technology. Based on a study by the Competition Commission for
the UK, the Monopolkommission suggests that the cost for such termination
services are only about half of the charges, i.e. between 7 and 7,8 cent and
hence these charges are also clearly above cost.

This paper shows that one can indeed find non-reciprocal equilibrium access
charges with a positive markup on termination cost by simultaneously assuming
that such charges are chosen non-cooperatively and that networks are potentially
asymmetric. It thus fills a critical gap in the literature as a tractable theoretical
analysis of non-reciprocal access charges in asymmetric settings has been con-
sidered ”one of the most valuable areas for future research”, (see Armstrong,
(2002, p.373)).

Regarding the assumption of independence, as it is clearly in the interest of
governments and consumers that mobile phone networks in fact do interconnect,
regulatory agencies have not prevented negotiations over access prices per se.
On the other hand these agencies are aware of the danger that such negotiations
could spill over into negotiations of retail prices and hence they have not been
mandated either as has been noted in LRTa, (1998a, p.13) already. Furthermore
access charges that are set non-cooperatively constitute the outside option of
any interconnection agreement and they will also be relevant if considerations
of deregulating mature telecommunications industries arise.

Visible outcomes of this access price setting process also suggests that firms
do not seem to have set them according to the predictions of the pure coopera-
tive price setting models. Consequently firms’ concerns for private information
regarding costs, technology, and pricing strategy as well as the mere complexity
of such negotiations (which were required to succeed by law) may have prevented
them from actively negotiating access charges in practice.
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Non-cooperatively chosen access charges have been investigated previously
by Gans & King, (2001). In Proposition 1, in a symmetric setting they show
that in equilibrium there will be a positive markup on termination cost. The
latter has been argued to be related to the problem of ”double marginalization”
of complementary product pricing and has found its way into recent regulatory
arguments (see for example RTR, (2007, p.65)). The present paper, following
the findings in Armstrong & Wright (2008) for the symmetric setting, argues
that due to the presence of multi-part tariffs the reasons underlying the result
are more complex.

The assumption of symmetry of the two networks in previous models is a
most welcome simplifying device to keep the analysis of the pricing vectors that
form the Nash equilibrium of the game tractable. However, in many cases of
regulatory concern it is a new entrant who competes against an incumbent with
an established market share and hence the assumption ,being at the source of
various "neutrality results", see LRT, (1998a) and Dessein, (2003) seems to be
unfortunate.

Previous research in asymmetric environments is scarce however. Carter
& Wright, (2003) is the most complete and the closest to our model but as
Gans and King, (2001) for the symmetric case, they are only able to show that
firms would want to deviate from cost based access prices and cannot give a
prediction of how the asymmetry of the setting is reflected in the equilibrium
non-cooperative access charges. Peitz, (2005), also investigates the issue but
focuses on the impact of asymmetric regulation. Hoernig, (2007), finds evidence
that larger firms will tend to have a larger price differential between its on- and
off-net prices but does not model access charges explicitly.

The present paper thus sets out to determine the profit-maximizing choice of
unregulated non-cooperative access prices of potentially asymmetric networks
using the technology of Armstrong (1998). Whereas both, non-cooperative ac-
cess and asymmetry have been investigated individually in previous workings,
this is the first attempt to consider both features at the same time. The model
analysed represents, so far, the only robust method of generating non-reciprocal
equilibrium off-net prices that are above the efficient level and allows, for the
first time, to investigate the issue of how the asymmetry affects firms’ optimal
access pricing strategies and its regulatory implications.

3



2 The Model

The setup builds upon LRT, (1998b) in using a product differentiation model
with mass one consumers distributed uniformly on the unit interval with two
networks located at the extremes.

Using the technology of Armstrong (1998), the additively separable quadratic
utility function of a consumer located at some x ∈ [0, 1] purchasing from network
j located at unity is

u(q, x) = q(1− 1
2
q) + ηxt (1)

with a horizontal preference parameter t > 0 the benefit of which is independent
of the amount of costly calls initiated q. We order the unit mass of consumers
such that the difference of their ’address’ x to a network is proportional to their
individual fixed benefit from being connected, with the consumer furthest away
from the network at the origin receiving exactly zero fixed benefit. Hence t
represents the maximum pure benefit of being connected to a network (without
initiating any costly calls but including calls received) and is assumed to be
exogenous.

The asymmetry parameter is η > 0, where η > 1 implies an exogenous
advantage for the (incumbent) network j over network i located at the origin
whose consumers incur an exogenous benefit of (1 − x)t. This advantage has
a multiplicative feature and consumers that are located close to unity and use
network j0s services are, ceteris paribus, even more happy to do so if η increases.

This modelling is slightly different from Carter & Wright, (2003) where the
advantage is additive to the location and thus provides for "vertical" differen-
tiation that would affect preferences of all consumers from j equally which is
interpreted as ”brand loyalty” (or a simple switching cost). Here the asymmetry
is introduced in a "horizontal" way implying that the benefit difference between
any two given consumers buying from j strictly increases with an increase in η.
Note that both specifications share the feature that within a simple Hotelling
product differentiation model, a large asymmetry, again ceteris paribus, implies
that the disadvantaged firm is driven out of the market.

A multiplicative advantage may similarly be interpreted as "brand loyalty"
but the degree to which this perceived benefit matters is proportional to the
consumer’s overall benefit of being connected to that network. In other words:
a consumer of j who derives very little benefit from being connected to j will
not be affected by j0s efforts to increasing loyalty (or switching costs) to the
same degree that a high valuations consumer of j is.

Utility maximization implies that individual demand for the service is

q(p) = 1− p (2)
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which is analytically more convenient than the constant elasticity variant in
LRT and the indirect utility function is

v(p) ≡
Z ∞

p

q(ζ)dζ = q(p)

µ
1− 1

2
q(p)

¶
− pq(p) (3)

which (with p ≤ 1 for non-negative quantities) is decreasing and strictly convex
in price.

The networks use a two-part tariff consisting of a unit price (e.g. per minute
of the service) p and a fixed charge (e.g. a monthly rental charge) G and thus
the total per capita consumer j valuation given location x ∈ [0, 1] is

Ux = v(p)−G+ ηxt (4)

A consumer is indifferent between the two networks given his location x ∈
[0, 1] with networks using two-part tariffs and network-based price discrimination
with on-net prices pon and off net prices poff if and only if the utility of this
marginal consumer satisfies

Ux = (1− x)v(pjon) + xv(pjoff )−Gj + ηxt = (5)

xv(pion) + (1− x)v(pioff )−Gi + (1− x)t

which we call the ’Hotelling indifference condition’. The introduction of network-
based price discrimination implies that despite interconnection there are ’tariff-
mediated network externalities’ present given that prices for on- and off-net calls
differ. Consumers of network i are better off if more consumers join the net-
work if on-net prices are below off-net prices and vice versa. The location of the
indifferent consumer who expects a given market share gives the network’s equi-
librium market shares if expectations are correctly fulfilled at the equilibrium
price vector.

We specify marginal costs as c ≡ 2c0 + c1 < 1 for a call within one network
resulting from origination and termination (c0) and the intermediate line service
cost c1 which we assume to occur at the originating end of the call. Network i

0s
marginal cost for a call from its network to the other network are c+ aj − c0 as
it has to pay the access charge aj to network j, whereas the actual cost of the
call is c due to the networks’ identical technologies. Firms also face a fixed cost
F > 0 and a per-capita cost H > 0. Profits Πk of some firm k are given by

Πk = msk
£
Gk −H + (pkon − c)mskqkon + (p

k
off − (c+ a−k − c0))ms−kqkoff

¤
(6)

+mskms−k(ak − c0)q
−k
off − F

where msk ∈ (0, 1) is k0s market scale (where with two players −k = j if k = i
or vice versa).
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The two networks are assumed to be playing a non-cooperative two-stage
game in which they first choose their optimal access price parameter ak simul-
taneously and in the second stage their price vector

Ξk(ak, a−k) ≡
©
pkon(a

k, a−k), pkoff (a
k, a−k), Gk(ak, a−k)

ª
k = i, j (7)

simultaneously in order to maximize profits Πk(Ξk,Ξ−k) , taking as given the
parameter vector of the other network. A vector Ξk is a best response for player
k to his rivals’ vector Ξ−k at this stage if

Πk(Ξk(ak, a−k);Ξ−k(a−k, ak)) ≥ Πk(Ξ0k(ak, a−k);Ξ−k(a−k, ak)) (8)

for all Ξ0k(ak, a−k) 6= Ξk(ak, a−k) in the multidimensional support of the price
space.

The solution concept for the full game is pure strategy subgame perfect Nash-
equilibrium (SPNE) and the game is solved by backward induction. The price
vector Ξk(ak, a−k) and the access charge ak∗ constitute a subgame perfect Nash
equilibrium strategy of the game if and only if for all ak and k,

Πk(Ξk(ak, a−k), ak∗;Ξ−k(a−k, ak), a−k∗) ≥ Πk(Ξk(ak, a−k), ak;Ξ−k(a−k, ak), a−k∗).
(9)

3 Analysis

Following the backward induction procedure we begin by solving the second
stage of the game. Network j will solve the program

max
Ξj

©
Πj(Ξj ;Ξi)

ª
= max
Ξj




(1− x)×

"
Gj −H +

¡
pjon − c

¢
(1− x)qjon+³

pjoff − (c+ ai − c0)
´
xqjoff

#

+

x(1− x)(aj − c0)q
i
off − F





(10)
subject to the ’Hotelling indifference condition’ (5)

x =
v(pjon)− v(pioff )−Gj +Gi − t

v(pion) + v(pjon)− v(pjoff )− v(pioff )− t(1 + η)

and given the vector Ξi of network i. The choice of network i with scale x is
symmetric.

Here (1− x)qjon gives the individual demand for on-net calls for a customer
of network j with scale or market share (1−x). The pure termination profit for
network j under a balanced-traffic assumption is denoted as x(1 − x)πjT (a

j) ≡
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x(1− x)(aj − c0)q
i
off as for equal off-net prices the percentage of cross-network

calls will be the product of the fraction of the consumers on each network which
is symmetric even if networks differ in their respective scales. However only
under reciprocal access charges does this assumption imply that payment flows
between potentially asymmetric networks also balance.

A larger advantage for network j, i.e. a large choice of η will then push the
marginal consumer closer to the origin of the unit interval leading to a larger
market share for the advantaged network. We first determine the network’s
optimal on-net and off-net prices.

Lemma 1 Any best response of network i to network j satisfies

Πi(pi∗on = c, pioff , G
i;Ξj) ≥ Πi(p0ion, pioff ,Gi;Ξj)

for all p0ion 6= pi∗on in the support of the price vector space. Similarly, for given
access charges āi, āj any best response of network i to network j satisfies

Πi(pion, p
i∗
off = c0 + c1 + āj , Gi;Ξj) ≥ Πi(pion, p0ioff (āj), Gi;Ξj)

for all p0ioff 6= pi∗off in the support of the price vector space. The symmetric
result holds for network j.

Proof:
Standard, see for example LRT 1998a.¥

We thus find that it is a (weakly) dominant strategy for any network to set
its own on-net price and off-net price markup at the cost levels. In other words,
setting the on-net price equal to cost, i.e. pk∗on = p−k∗on ≡ p∗on = c and the off-net
price equal of network k to perceived marginal cost pk∗off = c0+ c1+ ā−k will be
optimal for each network k independently of the price vector of the other network
−k and not just for the equilibrium price vector as in a Nash equilibrium and
thus does not require solving any additional equations.

We now proceed to calculate the equilibrium fixed charge for each network.

Proposition 2 Any best response in fixed charges of network i must satisfy

Gj = H + (1− 4x)v(p∗on) + 2xv(pj∗off ) +
(2x− 1)v(pi∗off ) + (2x− 1)πiT (ai) + (2x(η + 1)− 1) t

and any best response in fixed charges of network j must satisfy

Gi = H + (4x− 3)v(p∗on) + 2(1− x)v(pi∗off ) +

(1− 2x)v(pj∗off ) + (1− 2x)π
j
T (a

j) + (2 + η − 2x(η + 1)) t
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where from the ’Hotelling indifference condition’ (5)

x(Gi,Gj) =
v(p∗on)− v(pi∗off )−Gj +Gi − t

2v(p∗on)− v(pj∗off )− v(pi∗off )− t(1 + η)

Proof:
Network j0s total profit is given as

Πj =





(1− x)×



 (1− x)

³
v(pjon)− v(pioff )

´
+

x
³
v(pjoff )− v(pion)

´


+

t(x(1 + η)− 1) +Gi −H


+

x(1− x)πjT (a
j)− F





(11)

where x(1− x)πjT (a) denotes the termination profit of network j. We now take
the derivative with respect to the optimal scale of network j

∂Πj

∂x
= −





 (1− x)

³
v(pjon)− v(pioff )

´
+

x
³
v(pjoff )− v(pion)

´


+

t(x(1 + η)− 1) +Gi −H


+ (12)

(1− x)





³
v(pjoff )− v(pion)

´
−

³
v(pjon)− v(pioff )

´


+ (1 + η)t


+ (1− 2x)πjT (aj)

!
= 0

which by using optimal pricing parameters and realizing that v(pi∗on) = v(pj∗on) =
v(p∗on), j 6= i yields a condition for the best response Gj(Gi) for firm j which is
implicit in x(Gi, Gj(Gi)). The Proposition follows from symmetry and second
order conditions will hold for t and/or η large enough as shown at the end of
the Appendix.¥

The system of equations in the above proposition is linear and can be solved
for its explicit solution which is unique but the expressions for the equilibrium
fixed charges are quite involved and not necessary for what follows.

Taking the derivative with respect to scale and solving for it is isomorphic
to the solution of the first order necessary condition for the optimal choice of
the fixed charge (holding the other network’s fixed charge constant) using their
connection via the Hotelling indifference condition but more convenient, espe-
cially when we look at second order conditions below. Clearly the assumption
of full market coverage allows us to interchange the scales of the two networks
as choice variables of the first order necessary conditions.

As any equilibrium must satisfy the three equations in the previous Propo-
sition simultaneously we can derive the equilibrium scale of network i (and thus
of network j). The explicit derivations of equilibrium fixed charges can be found
in the Appendix.
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3.1 Multiple effects of symmetric access charges on profits

From Lemma 1 we know that the maximization program is reduced to the
sequential optimal choice of access charges and fixed charges. Thus networks
total profit at the first, access pricing stage of the game can be written as

Πj = (1− x∗)(Gj∗ −H + x∗πjT (a
j))− F (13)

and
Πi = x∗(Gi∗ −H + (1− x∗)πiT (a

i))− F (14)

Taking the total derivative condition for finding an optimal access charge for
network i we find

dΠi

dai
=

∂Πi

∂ai
+

∂Πi

∂Gi∗
∂Gi∗

∂ai
+

∂Πi

∂Gj∗
∂Gj∗

∂ai
=

∂Πi

∂ai
+

∂Πi

∂Gj∗
∂Gj∗

∂ai
= 0 (15)

by the envelope condition. The ”direct effect” is given (for some given Gi∗) as

∂Πi

∂ai
=

∂x∗

∂ai
(Gi∗ −H + (1− 2x∗)πiT (ai)) + x∗(1− x∗)

∂πiT (a
i)

∂ai
) (16)

The second part of the direct effect is resulting from the increase in termination
profit and the first part from the increase in market share (holding constant
both firms fixed charges) that results from the fact that higher access charges
will be passed on to the consumers of the other network directly by an increase
in the off-net price thus reducing their total benefit.

The ”indirect” or ”strategic effect” is given by

∂Πi

∂Gj∗
∂Gj∗

∂ai
=

∂Πi

∂Gj∗ (
∂Gj∗

∂v(pjoff )

∂v(pjoff )

∂ai
+

∂Gj∗

∂πiT (a
i)

∂πiT (a
i)

∂ai
) (17)

and describes how a change in the own access charge will influence own profits
by the effect on the other network’s optimal fixed charge.

In the symmetric case, with fixed access charges equal to cost the above
optimality condition (15) reduces to

dΠi

dai

¯̄
¯̄
ai=aj=c0

=
∂x∗

∂ai
(Gi∗ −H) +

1

4

∂πiT (a
i)

∂ai
+

∂Πi

∂Gj∗
∂Gj∗

∂ai
=

1

4
qjoff (a

i) +
1

4
qjoff (a

i)− 1
3
qjoff (a

i) =
1

6
qjoff (a

i) > 0(18)

as shown in Armstrong and Wright, 2008.

Based on the finding that this derivative is strictly positive with charges
at cost, Gans and King, 2001, Proposition 1, conclude that in any symmetric
equilibrium the access charge will be strictly above cost and attribute this effect
to a problem of "double marginalization".
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We also find that:

Lemma 3 The equilibrium scale x∗(ai, aj) is strictly increasing in access charge
ai and decreasing in aj for equally advantaged networks and sufficiently large t.

Proof:
See Appendix.¥

The intuition for this result is straightforward: A higher access charge raises
the other network’s perceived marginal cost that will be passed on to its con-
sumers via the off-net call price thus moving the marginal consumer closer to
the other network and increasing own market share and thus demand from the
Hotelling indifference condition. The reverse holds for the other network’s ac-
cess charge. The change in relative optimal fixed charges will not counteract
this effect for large t.

If networks are strongly asymmetric it may be that an advantaged network’s
scale is still increasing in its optimal access charge parameter but that of the
disadvantaged network is not. Here an increase in the access charge charged to
the advantaged network can change the optimal fixed charge such that the own
scale is in fact decreasing. The same may happen if networks are not sufficiently
differentiated.

Lemma 4 Higher access charges ai, aj increase demand cross-elasticities for
sufficiently large t.

Proof:
See Appendix.¥

We show that calls from firm i and on-net calls of firm j are complementary
and that calls from firm i and off-net calls of firm j are substitute products. As
a sufficiently large t limits the effects of changing prices on equilibrium scales
but a higher access charge is directly passed on via higher off-net prices demand
cross-elasticities increase. This implies that with higher access charges calls
from one firm become better substitutes for calls from the other firm.
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3.2 Large asymmetries

What happens if the advantage of the incumbent is very strong? We first find
the following result:

Lemma 5 The equilibrium scale x∗(ai, aj , ) is strictly decreasing in η and has
a strictly positive lower bound for sufficiently large t.

Proof:
See Appendix.¥

Given our specification of asymmetry, a higher inequality parameter η pivots
the fixed benefit line such that those consumers close to the incumbent receive
more extra benefit than those that are marginal. Hence there will be a trade-
off for each network: On the one hand having a larger scale allows to collect
more per capita fixed fees from consumers. On the other hand giving up on
some consumers allows to extract an even higher fixed fee from those that are
infra-marginal, and it is the latter effect that dominates at large η and implies
a strictly positive lower bound.

This lemma has an important implication for the form that competition
between two networks takes. For any magnitude of the relative initial advantage
of one of the two networks (possibly the incumbent), there is always a strictly
positive market share larger than one-third of the market for the second network
which is unlike in the standard Hotelling model where, ceteris paribus, a large
advantage of one firm drives the other out of the market.

Having a higher access revenue (resulting from higher access charges) will
make the advantaged firm (the incumbent) a softer competitor. Having a large
advantage by the previous lemma implies that the network will already have a
large scale and hence obtain much of the total per-capita fixed fee revenue. If
the weight of the termination profit term πkT (a

k), k = i, j in the profit functions
is increased, a large firm will be more willing to tolerate a slightly lower share
of the fixed fee revenue for a higher share of the termination revenue resulting
from a higher cross-scale traffic term. By analogy, the disadvantaged firm i
(the entrant) is tougher competitor trying to increase x more vigorously (by
some, ai, Gi combination) than the advantaged firm j (the incumbent) tries to
decrease x further.

Note that these findings do not depend on the simple linear demand specifi-
cation we have used but also holds in the setting of LRT with constant elasticity
demand. A constant elasticity setting does not allow us to check for second order
sufficient conditions when we consider potentially asymmetric equilibria how-
ever. This can be done using our linear demand specification and is undertaken
at the end of the Appendix.
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We also find that:

Lemma 6 If the advantage of network j (η > 1) is large, demand elasticity is
reduced.

Proof:
See Appendix.¥

We then find that contrary to previous attempts using a linear technology
we can approximate the limit access charges explicitly:

Lemma 7 If the advantage of network j (η > 1) is large, non-cooperative access
charges are approximately equal to

∆j∗ ≡ aj∗ − c0 ≈
1

2
(1− c) > 0 (19)

and

∆i∗ ≡ ai∗ − c0 ≈
2

7
(1− c) > 0. (20)

Proof:
See Appendix.¥

With large η, optimal scales converge to a strictly positive constant and hence
the incumbent’s residual demand elasticities go to zero. As a first intuition find
this seems to be supported by the fact that what the network may gain in terms
of market share by changing the access charge decreases to zero and thus the
incumbent will simply charge the monopoly termination charge. However this
neglects the effect that the access charge has on the equilibrium fixed charge of
the other network and also the pure termination profit itself.

For the entrant on the other hand a high access charge implies that it will
be tougher relative to the incumbent, i.e. pricing more aggressively and hence
losing out on profits. With a large advantage for the incumbent, this strategic
effect dominates and in order to avoid being tough the entrant will set its access
charge below the monopoly rate in order to be a softer competitor in fixed
charges.

The details underlying these effects are investigated in the next section.
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We are also able to look at the components of each firm’s price vector for
extreme asymmetry. We find the following result:

Lemma 8 If the advantage of network j (η > 1) is large we find that the
components of the price vectors satisfy

∆j > ∆i

and
πjT (a

j) > πiT (a
i)

and
Gj > Gi

and
Πj > Πi.

Proof:
See Appendix.¥

The analysis thus shows that for large asymmetries a disadvantaged network
which targets a smaller market scale will chose a relatively lower access charge
markup than an advantaged network. On the other hand a disadvantaged firm
will also set a lower fixed charge negating any ”waterbed” effect in this strongly
asymmetric setting. This theoretical result on markups empathizes the role of
the different marginal costs (of the entrants’ 1800 Mhz versus the incumbents’
900 Mhz technology in the introduction) which will influence the empirical mag-
nitude of access charge differences.
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3.3 Multiple limit effects of asymmetric access charges on

profits

The above decomposition of different effects of symmetric access charges on
profits can be investigated also for the large asymmetry case. This is done in
the following section. Analogous to (15) we first have for the disadvantaged firm
that

dΠi

dai
=

∂x∗

∂ai
(Gi∗ −H + (1− 2x∗)πiT (ai)) + x∗(1− x∗)

∂πiT (a
i)

∂ai
+ (21)

∂Πi

∂Gj∗ (
∂Gj∗

∂v(pjoff )

∂v(pjoff )

∂ai
+

∂Gj∗

∂πiT (a
i)

∂πiT (a
i)

∂ai
) = 0

has to hold.

The individual limits exist and the limit effect can be calculated as: the
direct increase in termination profit

lim
η→∞

(
∂x∗

∂ai
(x∗(1− x∗)

∂πiT (a
i)

∂ai
) =

2

9

∂πiT (a
i)

∂ai
(22)

the direct increase in market share (holding constant both firms fixed charges)

lim
η→∞

(
∂x∗

∂ai
(Gi∗ −H + (1− 2x∗)πiT (ai))) =

1

9
qjoff (a

i) (23)

and the indirect limit effect

lim
η→∞

(
∂Πi

∂Gj∗ (
∂Gj∗

∂v(pjoff )

∂v(pjoff )

∂ai
+

∂Gj∗

∂πiT (a
i)

∂πiT (a
i)

∂ai
)) =

1

3
(
2

3

∂v(pjoff )

∂ai
−1
9

∂πiT (a
i)

∂ai
)

(24)
which, for an increase in ai describes how the resulting higher off-net price of
j will be accommodated by a lower optimal fixed charge Gj∗ that will lead to a
lower scale x∗ and thus has an indirect effect on i0s profits.

As a check of result (20), i.e. the optimal access price of the disadvantaged
firm, one finds the necessary condition

dΠi

dai
=
1

9
qjoff (a

i)+
2

9

∂πiT (a
i)

∂ai
+
1

3
(
2

3

∂v(pjoff )

∂ai
−1
9

∂πiT (a
i)

∂ai
) =

5

27

∂πiT (a
i)

∂ai
−1
9
qjoff (a

i) = 0

(25)
in equilibrium. For the given linear specification this results in

5

27
(1− c1 − 2ai)−

1

9
(1− (c0 + c1 + ai)) = 0 (26)

which is indeed solved by

ai − c0 =
2

7
(1− c) > 0. (27)
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Lemma 9 There exist a solution to (25) for general demand forms such that
ai is within the cost (zero markup) and the monopoly level.

Proof:
See Appendix.¥

For the advantaged firm j we find the following result:

dΠj

daj
= −∂(x

∗)
∂aj

(Gj∗ −H + 2x∗πjT (a
j)) + (1− x∗)x∗

∂πjT (a
j)

∂aj
) + (28)

∂Πj

∂Gi∗ (
∂Gi∗

∂v(pioff )

∂v(pioff )

∂aj
+

∂Gi∗

∂πjT (a
j)

∂πjT (a
j)

∂aj
)

by the envelope condition.

The three limit effects are the direct increase in termination profit

lim
η→∞

((1− x∗)x∗
∂πjT (a

j)

∂aj
)) =

1

3

2

3

∂πjT (a
j)

∂ai
=
2

9

∂πjT (a
j)

∂aj
(29)

which reveals the same cross-product term as that for the disadvantaged firm.

More involved to calculate are the direct increase in market share effect

lim
η→∞

(−∂(x
∗)

∂aj
(Gj∗ −H + 2x∗πjT (a

j))) =
4

9
qioff (a

j) (30)

which has more weight than that for the disadvantaged firm.

Finally the indirect effect

lim
η→∞

(
∂Πj

∂Gi∗ (
∂Gi∗

∂v(pioff )

∂v(pioff )

∂aj
+

∂Gi∗

∂πjT (a
j)

∂πjT (a
j)

∂aj
)) =

2

3
(
2

3

∂v(pioff )

∂aj
+
1

9

∂πjT (a
j)

∂aj
)

(31)
that is also more pronounced for the advantaged firm with weights given by own
scales. We thus find

dΠj

daj
=
4

9
qioff (a

j)+
2

9

∂πjT (a
j)

∂aj
)+

2

3
(
2

3

∂v(pioff )

∂aj
+
1

9

∂πjT (a
j)

∂aj
) =

8

27

∂πjT (a
j)

∂aj
= 0

(32)
and it is interesting to note that the effect of qioff (a

j) on this optimality condi-
tion cancel out completely so that the condition for the given linear specification
this is indeed solved by the monopoly termination charge (19).

aj − c0 =
1

2
(1− c) > 0. (33)
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In other words, the positive own market share effect on profit that an increase
in the access charge to the other firm implies will be exactly offset by the negative
first part of the indirect effect on profit, i.e. the effect that an increase has on
the other firm’s optimal fixed charge (via the lower indirect utility for off-net
calls from the other network) and hence the condition becomes identical to the
pure monopoly termination profit maximizing condition. The advantaged firm
will thus act as if its choice of the access charge did not have any implication
for the other equilibrium magnitudes.

These decompositions allow for a comparison with the symmetric case which
has been investigated in Armstrong and Wright, 2008. They show that the
independently chosen symmetric termination charge has to satisfy the necessary
first-order condition

dΠi

dai

¯̄
¯̄
ai=aj=a

=
∂Πi

∂ai

¯̄
¯̄
ai=aj=a

+
∂Πi

∂Gj∗
∂Gj∗

∂ai

¯̄
¯̄
ai=aj=a

= (34)

1

4

∂πT (a)

∂a
+
1

4
qoff (a)−

qoff (a)

4

4t+ 4v(poff (a))− 4v(pon) + 3πT (a)
3t+ 3v(poff (a))− 3v(pon) + 2πT (a)

= 0

The equilibrium termination charge thus has to satisfy

∂πT (a)

∂a
= qoff (a)

t+ v(poff (a))− v(pon) + πT (a)

3t+ 3v(poff (a))− 3v(pon) + 2πT (a)
(35)

but even for our simple linear specification an explicit solution is involved.

As Armstrong and Wright, 2008 note, (35) can be rewritten as

∂πT (a)
∂a

qoff (a)
=

t+ v(poff (a))− v(pon) + πT (a)

3(t+ v(poff (a))− v(pon)) + 2πT (a)
(36)

and if a = c0 this reduces to

∂πT (a)
∂a

qoff (a)

¯̄
¯̄
¯
a=c0

= 1 >
t+ v(poff (a))− v(pon) + πT (a)

3(t+ v(poff (a))− v(pon)) + 2πT (a)

¯̄
¯̄
a=c0

=
1

3
(37)

whereas at the monopoly charge the LHS is zero by definition. Here the RHS
is positive by the satisfaction of the second order condition (see (91)) and thus
the equilibrium termination charge exists in between.

Given our linear specification, the LHS of (36) is decreasing in a. The deriv-
ative of the RHS is

(t+ v(poff (a))− v(pon))
∂πT (a)
∂a + qoff (a)πT (a)

(3(t+ v(poff (a))− v(pon)) + 2πT (a))2
> 0 (38)

i.e. positive by the satisfaction of the second order condition (see (91)) as
∂πT (a)
∂a ≥ 0 in the relevant range. Hence there exists a unique optimal access

charge that satisfies the condition (36) in the symmetric case.
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4 Equilibrium

Performing a local analysis around the symmetric equilibrium using a Taylor
approximation we find that:

Proposition 10 At the symmetric equilibrium η = 1 both firms will charge a
strictly positive non-cooperative access charge markup. In a neighbourhood of the
symmetric equilibrium an advantaged network charges a relatively higher access
charge.

Proof:
See Appendix.¥

Again we find the same underlying effects as above: A higher access charges
implies that the entrant will be tougher relative to the incumbent, i.e. pricing
more aggressively in the fixed charge dimension. Even with only a small relative
advantage for the incumbent this strategic effect dominates and the slightly
smaller entrant will set its access charge below that of the incumbent in order
not to be the tougher competitor.

We therefore find that, as in the investigations of the symmetric setting, the
non-cooperative access charge markup with asymmetric networks is positive,
both in the limit analysis (where contrary to the previous attempts a limiting
access charge can be approximated) and in the local analysis around the sym-
metric equilibrium case η = 1. This result may be contrasted with that of Carter
& Wright, (2003, Proposition 1) for reciprocal access charges and an alternative
specification of asymmetry where both firms, a very small and a large firm prefer
a zero markup.

Interestingly in both analyses, given a relative advantage η 6= 1 for any
network, an advantaged network having the larger market share will optimally
choose a relatively larger access charge than a disadvantaged network both if
the advantage is small and if the advantage is very large.

At the end of the Appendix we show in two further lemmata the conditions
under which the second order necessary conditions hold, i.e. that the vector of
potentially asymmetric pricing parameters Ξ∗ is indeed maximizing the profit
of each network for any access charges given that the pure benefit of being
connected t is sufficiently large and/or the degree of asymmetry η is sufficiently
large.
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5 Conclusion

In the preceding analysis we find that the simultaneous introduction of potential
asymmetry and of non-cooperatively chosen access prices will lead to above-cost,
non-reciprocal equilibrium off-net prices that are above the efficient level. The
reasons underlying these findings are more complex than in the standard "double
marginalization" problem of complementary duopoly product competition due
to the presence of multi-part tariffs.

In fact, the above analysis presents the only robust analytical way of gener-
ating such prices so far. Contrary to the previous literature, in an asymmetric
setting where one network competes at a perceived disadvantage proportional to
consumer’s fixed benefit we are able to approximate this markup explicitly. We
are thus able to bring the theoretical analysis in line with regulatory concern.
Extending the analysis to asymmetric settings, which are highly prevalent in
practice, we are able to shed light on questions of optimal independent pric-
ing behaviour that were previously left open and that have implications for the
nature of possible negotiated access pricing and for eventual deregulation in
mature industries.

Unlike in the simple Hotelling model of horizontal product differentiation
the advantaged network will not cover the full market, no matter how large
the relative advantage becomes. This implies that due to the complexity of the
optimal pricing strategy involved, the Telecommunications market may be more
’contestable’ than previous studies have suggested. Additionally we find that for
a sufficiently pronounced asymmetry, optimal fixed charges and profits for both
firms are increasing in the asymmetry parameter, i.e. that due to the strategic
interaction of the firms the advantage and the implied asymmetry becomes an
advantage for the ”disadvantaged” firm too.

We eventually find that around the symmetric equilibrium the disadvantaged
network will optimally set access charges markup below that of an advantaged
network covering a larger market in the asymmetric equilibrium which is also the
case for large asymmetries. This finding results from the strategic desire of the
smaller entrant to avoid being the tougher competitor in fixed charges. Having
a lower access charge relative to the incumbent implies that the latter has a
higher incentive to give up scale in order to increase total cross-network traffic
and hence termination revenue and thus will be a softer competitor relative to
the entrant.
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8 Appendix

Simplifying notation as v(pk∗off ) = v(pk∗off (a
−k)) ≡ v−k, v(pon) ≡ v, and πkT (a

k) ≡
πkT , with −k = j if k = i or vice versa. The equilibrium fixed charges and scale
as given in Proposition 2 can be calculated explicitly as

Gj∗ =

2t2η2 + t2 + 2v2i + v2j − 7vtη + 2πjT tη + 4vitη − 7vvi − 5vvj − 5vt+
2vjt+ 2π

j
T vi + πiT (vi + vj + t+ tη) +Ψ

3(vi + vj − 2v) + 3t(1 + η) + 2(πiT + πjT )
(39)

Gi∗ =

t2η2 + 2t2 + v2i + 2v
2
j − 7vt+ 2πiT t+ 2vitη − 7vvj − 5vvi − 5vtη+

4vjt+ 2π
i
T vj + πjT (vi + vj + t+ tη) +Ψ

3(vi + vj − 2v) + 3t(1 + η) + 2(πiT + πjT )
(40)

where Ψ = 6v2+3Hvi+3vivj+3vit+3vjtη−2vπjT −2vπiT +3tH+3vjH−
6vH + 3t2η + 2HπiT + 2HπjT + 3Htη and

x∗ =
vi + 2vj − 3v + 2t+ tη + πiT + πjT

3(vi + vj − 2v) + 3t(1 + η) + 2(πiT + πjT )
(41)

Proof of Lemma 3:

From (41) we have the equilibrium scale as

x∗(ai, aj) =

−3v(p∗on) + 2v(pi∗off (aj)) + v(pj∗off (a
i))+

πiT (a
i) + πjT (a

j) + tη + 2t

−6v(p∗on) + 3v(pj∗off (ai)) + 3v(pi∗off (aj))+
2πjT (a

j) + 2πiT (a
i)) + 3tη + 3t

(42)

Taking derivatives for equally advantaged networks we have

∂x∗(ai, aj)
∂ai

= −2
−ai(aj)2 + (c− 1) (ai)2 +

³
2 (c− 1)2

´
aj + 6t

¡
ai − 1 + c

¢

(−(ai)2 − (aj)2 − 2 (1− c) (ai + aj) + 12t)
2 > 0

(43)
and

∂x∗(ai, aj)
∂aj

= 2
−(ai)2aj + (c− 1) (aj)2 +

³
2 (c− 1)2

´
ai + 6t

¡
aj − 1 + c

¢

(−(ai)2 − (aj)2 − 2 (1− c) (ai + aj) + 12t)
2 < 0

(44)
for sufficiently large t as ai, aj < 1− c by assumption.¥
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Proof of Lemma 4:

Demand cross elasticities of network i are defined as percentage changes of
scale (aggregate demand) over percentage changes in network j0s prices. For
on-net prices we have

εx,p∗on =
∂x∗(ai, aj)

∂p∗on
×

p∗on
x∗(ai, aj)

=
%∆x∗(ai, aj)
%∆p∗on

(45)

with
∂x∗(ai, aj)

∂p∗on
< 0 (46)

so that calls from firm i and on-net calls of firm j are complementary. For
off-net prices we have

εx,pj∗off (ai)
=

∂x∗(ai, aj)

∂pj∗off (a
i)
×

pj∗off (a
i)

x∗(ai, aj)
=
%∆x∗(ai, aj)

%∆pj∗ojj
(47)

with
∂x∗(ai, aj)

∂pj∗off (a
i)

> 0 (48)

so that calls from firm i and off-net calls of firm j are substitutes. As a high t
will allow to control the magnitude of first derivative term, with x∗ converging
the strictly positive constant, i.e. limt→∞ x∗(ai, aj) = (2 + η)/(3 + 3η), we
see that a higher access charge ai will be passed on directly into pj∗off (a

i) thus
increasing the demand cross elasticity that network i faces.¥

Proof of Lemma 5:

From (41) we have the equilibrium scale as

x∗(ai, aj , η) =

−3v(p∗on) + 2v(pi∗off (aj)) + v(pj∗off (a
i))+

πiT (a
i) + πjT (a

j) + tη + 2t

−6v(p∗on) + 3v(pj∗off (ai)) + 3v(pi∗off (aj))+
2πjT (a

j) + 2πiT (a
i)) + 3tη + 3t

(49)

Taking the derivative we find that x∗(ai, aj, η) is strictly decreasing in η if

t > v(p∗on)− v(pi∗off (ā
j))− 1

3
(πiT (a

i) + πjT (a
j)) (50)

and as limη→∞ x∗(ai, aj , η) = 1/3 it has a strictly positive lower bound in η.¥
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Proof of Lemma 6:

Demand elasticities of network j are defined as percentage changes of scale
(aggregate demand) over percentage changes in the network’s prices. For on-net
prices we have

εx,p∗on =
∂(1− x∗(ai, aj))

∂p∗on
×

p∗on
1− x∗(ai, aj)

=
%∆(1− x∗(ai, aj))

%∆p∗on
(51)

and for off-net prices we have

εx,pj∗off (ai)
=

∂(1− x∗(ai, aj))

∂pj∗off (a
i)

×
pj∗off (a

i)

1− x∗(ai, aj)
=
%∆(1− x∗(ai, aj))

%∆pj∗off (a
i)

(52)

From (41) we see that a high η will allow to control the magnitude of first deriv-
ative term, with x∗ converging to some strictly positive constant, we see that a
high asymmetry parameter implies %∆x∗ → 0 and thus εx,p∗on , εx,pj∗off (ai)

→ 0.¥

Proof of Lemma 7:

Using the best responses Gi and Gj from Proposition 2 we find an optimal
scale x∗ that solves the system of equations simultaneously. Firm i0s post-entry
profit level at this first stage can be written as

Πi + F =

½
(x∗(ai, aj))2 ×

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i)) + v(pi∗off (a

j)) + πiT (a
i)

¸¾
(53)

Using the product rule we find that optimal non-reciprocal access charges of
firm i necessarily satisfies

2x∗(ai, aj)
∂x∗(ai, aj)

∂ai

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i)) + v(pi∗off (a

j)) + πiT (a
i)

¸
=

−(x∗(ai, aj))2
∂(v(pj∗off (a

i)) + πiT (a
i))

∂ai
(54)

Note that
∂(v(pj∗off (a

i)) + πiT (a
i))

∂ai
= c0 − ai (55)

so that as η goes out of bounds we have that

2(
1

3
)
∂x∗(ai, aj)

∂ai

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i)) + v(pi∗off (a

j)) + πiT (a
i)

¸
≈ (1

3
)2(ai − c0) (56)

has to hold. As now

∂x∗(ai, aj)
∂ai

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i)) + v(pi∗off (a

j)) + πiT (a
i)

¸
≈ 1
9
(1− c)− 7

18
(ai − c0)

(57)
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we find

ai ≈ c0 +
2

7
(1− c) (58)

approximates the equilibrium access charge in our setting.

Similarly for the strongly advantaged firm j post-entry profits are

Πj +F =

½
(1− x∗(ai, aj))2 ×

·
t(1 + η)− 2v(p∗on)+

v(pi∗off (a
j)) + v(pj∗off (a

i)) + πjT (a
j∗)

¸¾
(59)

so that the optimal access charge a j necessarily satisfies

2(1− x∗(ai, aj))
∂(−x∗(ai, aj))

∂aj

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i)) + v(pi∗off (a

j)) + πjT (a
j)

¸
=

−(1− x∗(ai, aj))2
∂(v(pi∗off (a

j)) + πjT (a
j))

∂aj
(60)

and hence as η goes out of bounds we have that

2(1− 1
3
)
∂(−x∗(ai, aj))

∂aj

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i)) + v(pi∗off (a

j)) + πjT (a
j)

¸
≈ (2

3
)2(aj − c0)

(61)
has to hold. As now

∂(−x∗(ai, aj))
∂aj

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i)) + v(pi∗off (a

j)) + πjT (a
j)

¸
≈ 2
9
(1− c)− 1

9
(aj − c0)

(62)
we find the approximation

aj ≈ c0 +
1

2
(1− c) (63)

as was to be shown.¥

Proof of Lemma 8:

Let the network with the exogenous advantage η > 1 be network j. Then
given the advantage is sufficiently large we find from the previous result that the
marginal consumers is located at 1/3 on the unit interval. The optimal access
charge markups approximately satisfy

∆j∗(x) ≈ 1
2
(1− c) > ∆i∗(x) ≈ 2

7
(1− c) (64)

and by replacing the arguments we find

v(p∗on) ≈
1

2
(1− c)2 (65)
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and

v(pi∗off (a
j∗)) ≈ 1

8
(1− c)2 (66)

and

v(pj∗off (a
i∗)) ≈ 25

98
(1− c)

2
(67)

and

πiT (a
i∗) ≈ 10

49
(−1 + c)

2
(68)

and

πjT (a
j∗) ≈ 1

4
(1− c)2 (69)

If η is sufficiently large, optimal fixed charges satisfy

Gj∗ > Gi∗ (70)

as the last terms in Gj∗and Gi∗ dominate and
µ
2(
1

3
)(η + 1)− 1

¶
t >

µ
2 + η − 2(1

3
)(η + 1)

¶
t (71)

or
2

3
η − 1

3
>
1

3
η +

4

3
(72)

always holds. Trivially total profits are larger for the advantaged firm.¥

Proof of Lemma 9:

The necessary condition (25) can be rewritten as

∂πiT (a
i)

∂ai

1

qjoff (a
i)
=
3

5
(73)

and by definition, at the monopoly termination charge the LHS is zero and the
RHS is strictly positive. Using

∂πiT (∆
i)

∂∆i
= qjoff (∆

i) +∆i
∂qjoff (∆

i)

∂∆i
(74)

the LHS becomes

1 +
∂qjoff (a

i)

∂∆i

∆i

qjoff (a
i)
≡ 1 + ε∆i (75)

so that conversely the LHS is greater than the RHS for general demand speci-
fications if ∆i → 0 or if demand is very inelastic.¥
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Proof of Proposition 10:

Again firm i0s post-entry profit level at the first stage can be written as

Πi + F =

½
(x∗(ai, aj , η))2 ×

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i) + v(pi∗off (a

j)) + πiT (a
i)

¸¾
(76)

The optimal non-reciprocal access charge of firm i for any degree of asymmetry
η > 0 necessarily satisfy

∂Πi(η)

∂ai
= 2x∗(ai, aj , η)

∂x∗(ai, aj , η)
∂ai

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i)) + v(pi∗off (a

j)) + πiT (a
i)

¸
+

(x∗(ai, aj , η))2
∂(v(pj∗off (a

i)) + πiT (a
i))

∂ai
!
= 0 (77)

Setting c0 = 0 from here to simplify notation somewhat we find that a solution
necessarily has to satisfy

x∗
¡
ai, aj , η

¢
Ã

−aix∗
¡
ai, aj , η

¢
+

∂x∗(ai,aj ,η)
∂ai

¡
aj
¡
aj − 2(1− c)

¢
− (ai)2 + 2t(1 + η)

¢

!
!
= 0

(78)
and for an interior solution

Φi(η) ≡ −aix∗
¡
ai, aj , η

¢
+
∂x∗

¡
ai, aj , η

¢

∂ai
¡
aj
¡
aj − 2(1− c)

¢
− (ai)2 + 2t(1 + η)

¢ !
= 0

(79)
Post-entry profits for the other firm are

Πj + F =

½
(1− x∗(ai, aj , η))2 ×

·
t(1 + η)− 2v(p∗on)+

v(pi∗off (a
j)) + v(pj∗off (a

i)) + πjT (a
j∗)

¸¾

(80)
Note that the profit terms are fully symmetric except for the own scale scalar.
We find that a solution to the optimal non-reciprocal access charge of firm j
necessarily satisfies the first order condition

(x∗
¡
ai, aj , η

¢
− 1)

Ã
aj((1− x∗

¡
ai, aj , η

¢
)+

∂(x∗(ai,aj ,η))
∂aj (ai(ai − 2(1− c))− (aj)2 + 2t(1 + η))

!
!
= 0

(81)
or for an interior solution

Φj(η) ≡ aj((1−x∗
¡
ai, aj , η

¢
)+

∂x∗
¡
ai, aj , η

¢

∂aj
(ai(ai−2(1−c))−(aj)2+2t(1+η)) !

= 0

(82)
Using first-order Taylor expansions of the form

Φk(η) ≈ Φk(η)
¯̄
η=1

+
∂Φk(η)

∂η

¯̄
¯̄
η=1

(η − 1)∀ k = i, j and i 6= j (83)
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for η close to 1, i.e. around the symmetric equilibrium, we find the linearized
simultaneous equation system for an interior solution can be approximated by

0 = −x∗
¡
ai, aj , η

¢
ai +

∂x∗
¡
ai, aj , η

¢

∂ai

¯̄
¯̄
¯
η=1

¡
4t− (ai)2 − aj(2(1− c)− aj)

¢
+

(84)


∂
∂x∗(ai,aj ,η)

∂ai /∂η

¯̄
¯̄
η=1

¡
4t− (ai)2 − aj(2(1− c)− aj)

¢

− ∂x∗(ai,aj ,η)
∂η

¯̄
¯̄
η=1

ai +
∂x∗(ai,aj ,η)

∂ai

¯̄
¯̄
η=1

2t


 (η − 1)

and symmetrically

0 = (1−x∗
¡
ai, aj , η

¢
)aj+

∂x∗
¡
ai, aj , η

¢
)

∂aj

¯̄
¯̄
¯
η=1

¡
4t− (aj)2 − ai(2(1− c)− ai)

¢
+

(85)


∂
∂x∗(ai,aj ,η))

∂aj /∂η

¯̄
¯̄
η=1

¡
4t− (aj)2 − ai(2(1− c)− ai)

¢

− ∂x∗(ai,aj ,η)
∂η

¯̄
¯̄
η=1

aj + ∂x∗(ai,aj ,η)
∂aj

¯̄
¯
η=1

2t


 (η − 1)

From the above Lemma for the symmetric equilibrium η = 1 we find that for
large t we have

0 = −x∗
¡
ai, aj , 1

¢
ai+

∂x∗
¡
ai, aj , 1

¢

∂ai

¯̄
¯̄
¯
η=1| {z }

+

¡
4t− (ai)2 − aj(2(1− c)− aj)

¢

| {z }
+

(86)

and the RHS is strictly decreasing in ai for given aj and

0 = (1− x∗
¡
ai, aj , 1

¢
)aj +

∂x∗
¡
ai, aj , 1

¢

∂aj

¯̄
¯̄
¯
η=1| {z }

−

¡
4t− (aj)2 − ai(2(1− c)− ai)

¢

| {z }
+

(87)
has the RHS strictly increasing in aj for given ai. Thus for large t, c0 ≥ 0 and
η = 1 we find

ai − c0, a
j − c0 > 0 (88)

has to hold for the system to be satisfied so that markups are strictly positive.

For any η > 0 and large t we have the approximate system of (84) and (85)
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given by the best response functions

0 = −x∗
¡
ai, aj, 1

¢
ai +

∂x∗
¡
ai, aj , η

¢

∂ai

¯̄
¯̄
¯
η=1| {z }

+

¡
4t− (ai)2 − aj(2(1− c)− aj)

¢

| {z }
+

+

1

18

µ
−1 + c+

1

2
ai
¶
(η − 1) (89)

and symmetrically

0 = (1− x∗
¡
ai, aj , 1

¢
)aj +

∂x∗
¡
ai, aj , η

¢

∂aj

¯̄
¯̄
¯
η=1| {z }

−

¡
4t− (aj)2 − ai(2(1− c)− ai)

¢

| {z }
+

+

1

18

µ
−1 + c+

1

2
aj
¶
(η − 1) (90)

as by assumption, ai, aj < 1 − c we find that the additional term for η > 1 is
strictly negative. Hence for η slightly above one, aj has to increase by more than
ai in order to keep the simultaneous equation system satisfied. If the advantage
is reversed, i.e. η < 1 then the additional term is positive and ai has to increase
by more than aj .¥
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Lemma 11 The own second partial derivatives with regard to scale is negative

for any access charges (ai, aj) if

t(1 + η) > 2v(p∗on) (91)

and the condition is sufficient for post-entry profits for networks i,j, to be strictly
positive.

Proof of Lemma 11:

The own second partial derivatives with respect to the optimal scale are

∂2Πi

∂x2
= 4v(p∗on)− 2t(1 + η)− 2v(pi∗off (aj))− 2v(pj∗off (ai))− 2πiT (ai) (92)

and

∂2Πj

∂x2
= 4v(p∗on)− 2t(1 + η)− 2v(pj∗off (ai))− 2v(pi∗off (aj))− 2πjT (aj) (93)

so that the condition is sufficient for the second derivative to be negative for
any ai and aj . By observation, given the optimal post-entry profit functions
(53) and (59) we find that the sufficiency result follows.¥
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Lemma 12 The own second partial derivatives with regard to the access charges
(ai, aj) given the price vector choices Ξi,Ξjat stage one are negative if the value
of the pure benefit of being connected t and/or the degree of asymmetry η is
sufficiently large.

Proof of Lemma 12:

Taking derivatives we find

lim
η→∞

Ã
∂2Πi(pi∗on, p

i∗
off ,G

i∗;Ξj∗, aj)

∂(ai)2

!

= (94)

lim
η→∞




−(x∗
¡
ai, aj , η

¢
)2 − 4∂x

∗(ai,aj ,η)
∂ai aix∗

¡
ai, aj , η

¢
+Ã

x∗
¡
ai, aj , η

¢
∂
∂x∗(ai,aj ,η)

∂ai /∂ai +

µ
∂x∗(ai,aj ,η)

∂ai

¶2!

×

¡
2t+ 2tη − 2aj + 2caj + (aj)2 − (ai)2

¢


 =

lim
η→∞

Ã
∂2Πj(pj∗on, p

j∗
off , G

j∗;Ξi∗, ai)

∂(aj)2

!

=

−16
27

< 0 ∀ t

Also

lim
t→∞

Ã
∂2Πj(pj∗on, p

j∗
off , G

j∗, aj ;Ξi∗)

∂(aj)2

!

= − 1
27

16η2 + 22η + 7

(1 + η)2
< 0 ∀ η (95)

and

lim
t→∞

Ã
∂2Πi(pi∗on, p

i∗
off , G

i∗, aj ;Ξj∗)

∂(ai)2

!

= − 1
27

7η2 + 22η + 16

(1 + η)
2 < 0 ∀ η (96)

and thus sufficiency follows.¥
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