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Abstract

If recidivism is defined as rearrest within a finite period following re-

lease from prison, then the kinds of outcomes typically available to re-

searchers include: (i) whether or not the individual was rearrested within

the follow-up period; (ii) how many times the individual was rearrested;

and (iii) what was the duration from release to first (or subsequent) re-

arrest. Since these outcomes are all different manifestations of the same

underlying stochastic process, they provide multiple analogies from which

to recover information about it. This paper develops a semi-parametric

approach for utilizing information in these, and several other related out-

comes, to predict criminal recidivism and presents preliminary findings.

1. OVERVIEW

The statistical analysis of criminal recidivism performs two critical functions

within the field of criminal justice research. First, it is typically a key measure
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used for evaluating the efficacy of crime control policy and practice (Lipton,

Martinson and Wilks 1975; Sherman et al. 1997). Second, it is used almost ex-

clusively as the measure with which to develop and validate actuarial risk as-

sessment instruments for offender populations (Glaser 1955; Gottfredson and

Gottfredson 1986). The contribution that the analysis of criminal recidivism

can make to our understanding of criminal justice policy and practice, there-

fore, cannot be overstated.

Criminal recidivism can best be thought of as a process that results in one or

more events. Defined nominally as “the reversion of an individual to criminal

behavior after he or she has been convicted of a prior offense, sentenced and

(presumably) corrected” (Maltz 1984, pg 1), the empirical study of recidivism

usually requires operationalizing, measuring, and modeling this concept.

The first of these components—operationalization—is informed largely by

the purpose of the analysis. What do we wish to study when we analyze crimi-

nal recidivism? The answer to this is theoretically motivated and typically leaves

little room for an empirical analyst’s subjective interpretation; either the opera-

tionalization is appropriate or is not. The second component—measurement—is

a function of the availability of accurate measures of an appropriate operational-

ization. Again, there is little room for analysts’ subjective assessment here; ei-

ther measures are accurate or they are not. It is at the modeling stage—the last

component—where an analyst confronts a crucial choice: If a process yields sev-

eral manifestations, which one(s) to analyze? This seemingly innocuous choice

can play a surprisingly influential role in the ensuing results.

This paper seeks to demonstrate the utility of an information theoretic frame-

work for constructing and estimating semi-parametric models of criminal recidi-

vism which build on the fundamental recognition that multiple manifestations

of a process provide multiple analogies about it. As such, models consistent with

several related analogies ought to yield keener insights into the process.

Although the framework builds on contributions from two fairly volumi-

nous literatures in the social sciences—Information Theory and Event-History
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Analysis—it offers more than a marriage of these two sub-fields. It makes novel

contributions to each of these sub-fields independently, while advancing the

state-of-the-art in predicting criminal recidivism. Preliminary findings, using

a real world data set, suggest that the analytical strategy works well in within-

sample, out-of-sample, as well as off-the-support prediction problems.

The rest of this paper is organized as follows. The next section motivates

the work and reviews the relevant literature. Following that, the information

theoretic framework is described. To demostrate the potential of the analytical

strategy, the paper then discusses an empirical application. As the work is ongo-

ing, only preliminary findings are presented and discussed. The paper concludes

with a brief discussion of the findings and enumerates promising directions for

future work. Technical details are provided in a mathematical appendix.

2. MOTIVATION AND BACKGROUND

Suppose re-arrest within a finite period following some punishment is an appro-

priate operationalization of recidivism and suppose an analyst is able to obtain

accurate dated re-arrest information from a police department’s electronic data

system. How should (s)he proceed? The statistics literature offers several seem-

ingly distinct approaches for analyzing the evidence. For example, the analyst

could dichotomize the recidivism measured within the follow-up period and an-

alyze that as a binary choice. Similarly, the analyst could count up the number

of times the individual recidivates within the follow-up period and analyze that

as a count measure. The analyst could also compute the duration from release

to first (or subsequent) re-arrest and analyze that using survival analysis tech-

niques. Despite the general recognition that, mathematically, these outcomes

(and, it can be shown, several others) are all related to one another, current prac-

tice (and most software) require analysts to choose among them. Scholars not

comfortable making that choice sometimes analyze several of the outcomes in-

dependently and, not surprisingly, can reach conflicting conclusions (Mitchell

and Moore 2002).
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This is an unfortunate situation for the empirical analyst since these out-

comes (binary, count, and duration, among others) are all different manifes-

tations of the same underlying stochastic process thereby providing multiple

analogies from which to recover information about it. The main motivation of

this research effort is to develop and assess the utility of an information theoretic

framework for incorporating information from several related manifestations—

the multiple analogies—into a single model describing the stochastic process of

criminal recidivism. Presumably, the more structure we can build into this

model, the keener its insights will be regarding the process under study.

Scholars from most social science disciplines recognize well that event his-

tory data can be presented and analyzed in numerous ways (Kalbfleisch and

Prentice 1980; Allison 1982, 1984; Mayer and Tuma 1990; Lancaster 1990; Yam-

aguchi 1991; Beck 1998; Box-Steffensmeier and Jones 2004). They also recognize

that these seemingly disparate approaches are all connected through the underly-

ing hazard (failure, arrival, or event) rate. Texts or other expositional materials,

for example, typically begin with an explication of the hazard rate and its various

transformations—the survival rate and event probability function. Monographs

covering criminal recidivism are no exception (Maltz 1984; Schmidt and Witte

1988).

Recently Alt, King, and Signorino (2001) have explicitly pointed out the

connection between the choice of outcome analyzed and the ensuing inferences.

Their work builds on an extensive literature dealing with aggregation bias and

the ecological inference problem (King 1977; King, Rosen and Tanner 2004).

Their main concern, however, is that “they [we] do not want the form in which

the data is collected to influence the substantive idea they [we] can explore”

(Alt, King, and Signorino 2001, pg 22). As a solution, the authors define models

that—under some special conditions—allow them to recover the same underly-

ing parameters regardless of the manifestation analyzed. But what if analysts

have access to multiple manifestations? Surely, any attempt to use only one or

two of them in isolation would be a tremendous waste of available evidence.
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To be sure, methods for including information in more than one manifes-

tation of a process do exist. For example, researchers oftentimes estimate zero-

inflated or hurdle models of event-counts that analyze count and binary manifes-

tations of the events simultaneously (Cameron and Trivedi 1998; Greene 2000).

Similarly, an impressive array of models dealing with inter-event duration de-

pendence in event-count models have been invented (King 1989; Winkelmann

1995); as have methods for combining duration information in recurring failure

events (Lin, Wei and Ying 1998; Ezell, Land and Cohen 2003).

This ability to incorporate information in multiple manifestations comes at a

price, however. Some restrictive assumptions must be tolerated. Unfortunately,

the estimation and inferential implications of these assumptions are not benign

(Dean and Balshaw 1997), especially as they relate to the form of unobserved

heterogeneity (Heckman and Singer 1984a,b). In order to develop and estimate

models that are robust to some of these limitations—while, at the same time, able

to incorporate information from multiple analogies—it would be helpful to rely

less on unverifiable assumptions and more on a full utilization of all available ev-

idence. Such a strategy would approach crucial aspects like proportionality and

duration dependence in an agnostic fashion and be more concerned about prof-

itably utilizing all available manifestations of the process. One such approach is

explained next.

3. ANALYTICAL STRATEGY

Consider, as a point of departure, the following scenario. A cohort of individ-

uals is released from prison and followed for a period of T years. We wish to

study their failure process to better understand and predict this behavior. Sup-

pose we define re-arrest as “failure” and suppose we have available re-arrest dates

for each individual through the follow-up period. Let us ignore, for the mo-

ment, the problems associated with re-incarceration (when individuals are taken
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off the street and are therefore not at risk of failing again).1 Let us also assume

explicitly, as is typically done implicitly, that the stochastic process we are inter-

ested in studying does not change during the follow-up period. If the individual

is re-arrested within the follow-up period T , then let b denote a binary outcome

coded 1; let c denote the number of times the individual is re-arrested; and let d

denote the duration to the first re-arrest event. If the individual is not re-arrested

during this period, let each of these manifestations be set to 0. Now, define

y(t ) = 1[t = d] and f (t ) = 1[t ≤min(d ,T )] ∀t ∈ T

where T = R+ and 1[·] is an indicator function returning 1 if the condition

inside [·] is satisfied, else 0. Consequently, y(t ) is simply a function flagging

when the event actually occurs and f (t ) is a function flagging when the event is

at risk of occurring.2

Suppose, next, that we define r (t ) as the unknown hazard that reflects the

stochastic process resulting in the event flagged by y(t ). Since an individual

cannot fail if (s)he is not at risk of failing, we can use both y(t ) and f (t ) to

derive conditional links between the hazard and the event as:

f (t )y(t )≈ f (t )r (t ) ∀t ∈ T . (1)

Besides yielding the familiar non-parametric hazard rate estimates,3 this approx-

imation allows us to derive analogies between the hazard rate and several of its

manifestations.

1This is for expositional purposes only. The framework may be readily adapted to account
for such not at risk spells, should they exist.

2By altering the definition of y(t ) and f (t ) we can characterize multiple events and by re-
defining f (t ) appropriately we can characterize spells when an individual is not at risk of expe-
riencing the event. For ease of exposition, these nuances are omitted here.

3Assuming that the hazard is fixed across individuals, taking the unconditional expectation of
(1) and re-arranging terms yields r̂ (t ) = E[ f (t )y(t )]/E[ f (t )]∀t ∈ T . This is a non-parametric
estimate of the hazard rate—the number of people expected to fail at t divided by the number of
people expected to be at risk of failing at t .
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3.1. Identifying Suitable Analogies

First, suppose that we integrate both sides of (1) over the domain T and assume

that this procedure converts the approximation into an equality. Since y(t ) = 1

if and only if f (t ) = 1, clearly, this integration will yield the binary outcome b

on the left hand side. Hence, this procedure yields our first analogy linking the

hazard to a manifestation.

b =

∫

T

f (t )r (t )d t

Next, consider, pre-multiplying both sides of (1) by t and then taking the inte-

gral. The left hand side of this equation would now yield d—the duration to

first re-arrest (and 0 if the observation is censored)—since the only time when

f (t ) = y(t ) = 1 is when t = d . Consequently, we would have identified another

analogy.

d =

∫

T

t f (t )r (t )d t

Of course, there may be reason to believe that the hazard of recidivism is

independently affected by a stochastic process that progresses with age (e.g., the

age-crime curve). Hence, the age at first rearrest event, and not duration to first

rearrest event, may be the more appropriate quantity to model. Denoting age

at release as g , we define a = g + d . Multiplying both sides of (1) by a + t and

integrating yields another analogy linking the hazard to age at first rearrest.

a =

∫

T

[g + t] f (t )r (t )d t

Quadratic or cibic transformation of an outcome like age at first rearrest can

also be introduced in a parallel fashion.

Next, let us consider the number of rearrests within a follow-up period. If

the duration to an event is η years,4 what knowledge does that provide about the

4In this paragraph, I resort to using the notation η to denote duration to first event instead
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number of events likely to be accumulated through some follow-up period T ?

To motivate this link, note that an increase in the duration to first re-arrest

event can be expected to reduce the total number of events (rearrests) that an

individual should accumulate over any fixed follow-up period. Moreover, this

decrease should be proportional to the annual offending rate. Why? Because if

duration to the first event increases by one year, then the total number of events

that can be accumulated should be reduced by the re-arrest rate of that one year.

A crude proxy for the annual offending rate, on the other hand, can be obtained

by inverting the duration to first event. In other words, we can postulate the fol-

lowing first order differential equation connecting the total number of rearrests

to the duration to first rearrest:

d c

dη
=−

1

η

Solving this equation by integration yields

c = −

∫

1

η
dη

= − log(η)+κ

where κ is the constant of integration. Noting the terminal condition that c = 1

if η = T , we can solve for the constant of integration to get κ = 1+ log(T ).

Reverting back to the original notation d to denote duration to first event, we

can now write

c = 1+ log
T

d
.

This link between c and d allows us to derive another analogy. Suppose we

multiply both sides of (1) by 1+ log(T /t ) and then integrate over the relevant

domain. The left hand side would yield c and we would have derived another

of d . Otherwise, the differential of the duration variable ends up being denoted d d .
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analogy between the hazard and a manifestation.

c =

∫

T

[1+ log(T /t )] f (t )r (t )d t

Just as age at first rearrest event could be derived from the duration variable,

one can derive another analogy relating the hazard to the total number of events,

since career initiation, accumulated by the end of the follow-up period. Denot-

ing the number of prior (pre-release) arrests by h, the total number of arrests

by follow-up as e , and multiplying bother sides of (1) by h + 1+ log(T /t ), we

obtain

e =

∫

T

[h + 1+ log(T /t )] f (t )r (t )d t .

In general, of course, we can derive a host of other analogies. Given that

these outcomes are different manifestations, at least potentially, of the same un-

derlying hazard process, let us generically denote the set of analogous claims, say

J of them, as:

µ j =

∫

T

φ j (t ) f (t )r (t )d t ∀ j ∈ J (2)

where φ j (t ) are appropriate transformation of t and µ j are the correspond-

ing manifestations. Provided that the analogies satisfy the basic identifying

restriction—that none of them are exactly implied by, or imply, another—each

of them provides information about a different piece of the model that we are

attempting to construct.

The analogies derived above merely provide restrictions on the shape and val-

ues that the hazard function can take. We still need some agnostic way to recover

information from them (i.e., learn from them without making too many as-

sumptions). Fortunately, information theory provides a foundation from which

to approach this problem.
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3.2. Learning from Multiple Analogies

Information theory builds on the pioneering work of Shannon (1948). He de-

rived a measure of uncertainty—which he called Information Entropy—for quan-

tifying a channel’s capacity to communicate information. Faced with the prob-

lem of inferring individual features from aggregate properties, Edwin Jaynes, an-

other pioneer in this field, proposed to use Shannon’s Information Entropy as

an agnostic criterion to maximize (since it measures uncertainty) in order to be

very conservative in what we can (or cannot) infer from these aggregate proper-

ties (Jaynes 1957a,b). Viewing an experiment (or a sample) as a communication

device, the Maximum Entropy procedure—as it has come to be known—is there-

fore a very general and powerful procedure for learning from statistical evidence

(e.g., the type of analogies we have derived above).

The links between Information Theory and statistics has been very thor-

oughly explored (Diamond 1959; Kullback 1959; Jaynes 1979, 1986, 1988; Jus-

tice 1986; Levine and Tribus 1979; Mathai 1975; Skilling 1989; Zellner 1988;

Soofi 1994, 2000). Since Shannon’s measure of uncertainty was probabilistic,

naturally, much of this literature develops and uses measures of information

based on proper probabilities. However, if we are to learn from analogies of

the type defined in (2), what we need is a measure of information that is based

on the hazard rate.5

There is a growing statistical literature utilizing information theoretic con-

cepts in reliability analysis (Ebrahimi, Habibullah and Soofi 1992; Soofi, Ebrahimi

and Habibullah 1995; Ebrahimi and Kirmani 1996; Ebrahimi and Soofi 2003;

Asadi et al. 2005). These scholars derive hazard models by utilizing the links

between the hazard rates and probability functions (or survival rates) thereby

converting the information-recovery problem about the hazard into one about

proper probabilities. Unfortunately, this strategy is less than helpful in our cur-

5Some measures of information relying on positive quantities (that do not integrate to 1) have
been informally proposed in the literature. They are used, for example, in image reconstruction
problems (Gull and Daniell 1978; Gull 1989; Donoho et al. 1992) or for recovering regression
functions (Ryu 1993).
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rent situation since any transformation of the derived analogies would result

in intractable transformation of the manifestations themselves (µ j ). We need a

criterion that measures information in the hazard rate directly.

Denoting r̄ (t ) as a prior (pre-sample or pre-experiment) belief about the haz-

ard rate, and using a simple set of plausibility assumptions, one can derive such a

measure (see the mathematical appendix). Other than a constant scaling factor,

the net information acquired by the analyst in terms of the hazard rate itself can

be computed as:

I =

∫

T

f (t )

�

r (t ) log
r (t )

r̄ (t )
− r (t )+ r̄ (t )

�

d t . (3)

The inferential task of learning from multiple analogies can now be con-

verted into the mathematical problem of minimizing (3), subject to the con-

straints (2). This is a standard variational problem that can be solved by the

method of lagrange. The primal objective function is set up as

L =

∫

T

f (t )

�

r (t ) log
r (t )

r̄ (t )
− r (t )+ r̄ (t )

�

d t

+
∑

j

β j

�

µ j −

∫

T

φ j (t ) f (t )r (t )d t

�

where β j are the lagrange multipliers associated with each of the J constraints.

Solving the first order conditions provides the solution

r (t ) = r̄ (t )exp
�
∑

j

φ j (t )β j

�

∀t ∈ T (4)

and setting r̄ (t ) = 1∀t ∈ T removes the possibility of analyst-induced sub-

jectivity by making the priors completely uninformative. This solution can be

used to derive a dual representation—an unconstrained optimization problem in

β j —that can be solved using standard software (e.g., SAS or GAUSS). The dual
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(unconstrainted) optimization problem is

F =
∑

j

β jµ j −

∫

T

f (t )r (t )d t +

∫

T

f (t ) r̄ (t )d t (5)

where r (t ) is as derived in (4). Note also that since r̄ (t ) is not a function of any

of theβ j , the last component of the objective function is really irrelevant in the

optimization problem.

Individual attributes may be introduced into the strategy in a straightfor-

ward manner by replacing the µ j with the products of individual manifesta-

tions and attributes (e.g., µ j n xkn); by introducing subscripts of n (e.g., rn(t ) and

fn(t )); and by summing the dual over all individuals. The dual objective with

individual attributes included is defined as

F =
∑

n

�

∑

k j

βk jµ j n xkn −

∫

T

fn(t )rn(t )d t +

∫

T

fn(t ) r̄n(t )d t

�

(6)

where each individual’s hazard solution (path) is now defined as

rn(t ) = r̄n(t )exp
�
∑

j

φ j n(t )
∑

k

xknβk j

�

∀t ∈ T . (7)

The unconstrained maximization problem derived above falls under the gen-

eral class of extremum estimators, β̂ = argmaxβF (β,µ,X). The consistency

and asymptotic normality of these estimators can be established under fairly

general regularity conditions (Mittelhammer, Judge, and Miller, 2000:132–139).

Assuming that standard regularity conditions are met, one way to conduct

hypothesis tests is to construct and use the Entropy Ratio Statistic (E ). Since

the value of the objective function measures the amount of uncertainty implied

by the hazards, we can assess the uncertainty reducing contribution of each (or

groups) of the associated parameters by comparing the values of the objective

function from restricted and unrestricted models. Like the Likelihood Ratio

statistic, the Entropy Ratio statistic has a limiting χ 2 distribution with R de-
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grees of freedom (Jaynes, 1979:67). R being the number of parameters that have

values fixed, either to 0 or to some other value. Denoting F∗ and F as the

values of the dual objective function for the restricted and unrestricted models

respectively, we can compute 2× [F∗ −F ] = E ∼ χ
2
R

to test whether or not

specific parameter(s) contribute significantly in reducing uncertainty about the

structure in the data.

In a similar manner, one can obtain an estimate of the asymptotic covariance

matrix of the Lagrange Multipliers by computing the negative inverted Hessian

of the dual objective function. This covariance matrix can then be used to assess

the stability of each of the Lagrange Multipliers without needing to estimate

restricted and unrestricted versions of the models.

4. EMPIRICAL APPLICATION

The model derived in the last section was estimated and assessed using the 1994

BJS Recidivism Study (ICPSR # 3355), which provides dated criminal activi-

ties of roughly 38,000 prisoners released from 15 state prisons in 1994 (Langan

and Levin 2002; BJS 2002). The data set records up to 99 dated arrest events for

each of the released prisoners—including pre-incarceration as well as post-release

arrests (for a follow-up period of at least three years). This allows for the com-

putation of several manifestations of the stochastic process under study (e.g.,

re-arrested within the follow-up period, number of times re-arrested, duration

to first re-arrest, age at first re-arrest, number of arrests accumulated from birth

through the follow-up period, criminal career length, among others).

For the preliminary findings reported here, only a few explanatory variables

were explored. These include age at first arrest, age at prison release, and number

of prior arrests at prison release. Note that the first of these is the only truly

explanatory variable used. Age at release and number of priors are part of the

manifestations utilized in the analysis. More detailed analysis, using a variety of

predictors, is currently lunder way.6

6This includes models that include detailed information for each releasee on the type of
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Table 1: Descriptive Statistics of the California and Florida Samples
Used in the Analysis.

California Florida
Mean Median Mean Median

Full Sample (N) 5,773 ... 2,134 ...
Age at release (yr) 36 35 35 33
Age at 1st Arrest (yr) 26 22 24 21
Number of Prior Arrests 7 4 8 6
2-yr Recidivism Rate (%) 42 ... 55 ...
3-Yr Recidivism Rate (%) 49 ... 63 ...

3-Year Recidivists Sample (N) 2,904 ... 1,353 ...
Age at 1st Re-arrest (yr) 34 34 33 32
Number of Rearrests 2 2 3 2
Duration to 1st Rearrest (yr) 0.99 0.76 0.95 0.75

To make the estimation problem feasible (and realistic), data from only the

state of California were used for estimating the model. The models, once es-

timated, were validated using data from the state of Florida. These two states

were selected from the 15 states included in the underlying data for two reasons.

First, they were the largest states in this dataset (in terms of unweighted sample

sizes). Second, the unweighted three-year recidivism rate (one of the chief crite-

rion variables) was roughly 50% for the California sample but roughly 65% for

the Florida sampla. This offers some insights into the out-of-sample predictive

performance of the strategy on a validation sample somewhat more crimino-

genic than the estimation one. Other than that, the two samples seems very

similar (at least in terms of mean characteristics). Table 1 provides a prief sum-

mary of the underlying data used for the two states. With the exception of the

number of prior arrests before release, for which Florida seems a bit higher than

California, the other predictors and manifestations seem very similar across the

two states.

prison admission, type of release, time served in prison, individual demographic attributes, and
details pertaining to the offense for which the releasee was incarcerated.
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A serious limitation of the BJS Recidivism data is the lack of information

on the amount of time that the offender may have served in prison in several

incarceration episodes prior to the current one or post-release. Despite the avail-

ability of adjudication information for each of the arrest cycles, the data do not

contain clear information on the amount of time persons may have served in

prison if they were incarcerated. This problem is not peculiar to this study

alone. Accounting for street-time is a difficult matter in all retrospective or

prospective longitudinal designs. The BJS data do, however, contain adjudica-

tion outcomes of each of the cycles and the type of adjudication at an arrest

event. This information is currently being used to derive additional relevant

analogies for inclusion in the model as well as to include/exclude individuals

from the risk set (i.e. to define f (t ) appropriately). The work is ongoing and

this measure is not included in the analysis reported here.

4.1. Model Estimates

Table 2 provides estimates of the lagrange multipliers from the various analogous

constraints imposed to derive the model. Using the negative inverted hessian,

a standard error was computed and used to derive the Wald χ 2 statistic. The

statistic indicates that almost all of the constraints have informational content.

That is, they provide statistically significant information about the process under

study. The single explnatory variables used in the modeling exercise—age at first

arrest—seems to indicate that offenders who initiate their careers later in life,

compared to those who start earlier, have parmanently lower hazards (negative

coefficient under b ); have an upward pressure on the evolution of the hazard

with age (positive coefficient under a), but at a decreasing rate (negative coeffi-

cient under a2); seem to have higher numbers of crimes accumulated by the end

of the follow-up period, both since release as well as since career initiation (pos-

itive coefficients under c and e); and seem to experience an upward pressure on

the evolution of the hazard with time since release. Note that all of these effects

enter the hazard model simultaneously, along with the intercept terms. Hence,
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Table 2: Multiple Analogy Models of Criminal Recidivism in California, Parameter Estimates and Statisti-
cal Significance for Two-year and Three-year Follow-up Models.

2-Year Follow-up 3-Year Follow-up

Manifestations Lagrange Wald χ 2 p- Lagrange Wald χ 2 p
Predictors Multiplier Statistic value Multiplier Statistic value

a: Age at 1st rearrest
Intercept -0.0453972 328.16 0.00 -0.0571753 627.09 0.00
Age1st 0.0049772 2757.64 0.00 0.0059822 4846.11 0.00

a2: Age at 1st rearrest squared
Intercept -0.0009862 1164.06 0.00 -0.0008453 1009.52 0.00
Age1st -0.0000243 636.53 0.00 -0.0000344 1492.18 0.00

b : Rearrested at all within follow-up
Intercept -2.0000779 35.07 0.00 -4.1362998 144.41 0.00
Age1st -0.2274956 241.95 0.00 -0.2298919 237.84 0.00

c : Times Rearrested within followup
Intercept 0.1826634 4.31 0.04 0.7984504 118.71 0.00
Age1st 0.0068398 3.49 0.06 0.0002495 0.01 0.94

d : Duration to 1st rearrest
Intercept -0.7115693 17.22 0.00 0.7847820 34.15 0.00
Age1st 0.0177117 6.33 0.01 0.0020134 0.13 0.72

e : Times Arrested since Career Initiation
Intercept -0.0327985 14.08 0.00 -0.0281003 11.12 0.00
Age1st 0.0039441 104.80 0.00 0.0036626 96.30 0.00
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the hazard path is an aggregation over all of these decompositions.

With few exceptions, the findings are identical across the two follow-up peri-

ods. Notably, the effects of Age1st are statistically insignificant for the last three

manifestations in the larger follow-up model.

4.2. Model Predictions

The multple analogy models estimated with the California sample were next

used to make predictions. The chief criterion that models’ predictive efficacy is

assessed on is whether they are able to predict failure at the end of the follow-

up period (the binary outcome).In each case, the estimated hazard paths were

integrated over the relevant domain and used to compute the probability of re-

cidivism using the definition:

Pr(bn = 1) = 1− exp(−

∫

T

r̂n(t )d t )

Moreover, in each case, the mean recidivism rate of the criterion of interest was

used to set the cut-off point to convert this predicted probability into a binary

classification.

The first set of assessments are for in-sample predictions. That is, models

are assessed on their ability to predict the outcomes using the data they were

estimated with. These are typically the least challenging of prediction problems.

Table 3 provides a cross-tabulation of the models’ predictions (b̂ ) versus what

was actually observed in the sample (b ). The models perform fairly well—both

within the 2-year ar the 3-year follow-up periods.

In the 3-year model, for example, of the 5,773 sample members, roughly

half (2,853) were rearrested within three years of release. The model predicted

roughly 53% (3,093) to be rearrested. Among those predicted to recidivate, two-

thirds (66%) were accurate (actually did recidivate) and only 33% were erroneous

redictions. Similarly, the models were able to correctly identify 72% of those

that were rearrested within the follow-up period, missing about 27% of them.
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Table 3: Within Sample Predictive Efficacy of Multiple Analogy
Models, California Sample.

2-year Follow-up 3-year Follow-up

b = 0 b = 1 b = 0 b = 1

b̂ = 0 2,418 897 3,315 b̂ = 0 1,883 797 2,680

b̂ = 1 953 1,505 2,458 b̂ = 1 1,037 2,056 3,093

3,371 2,402 5,773 2,920 2,853 5,773

The model in-sample predictive efficacy was somewhat lower at the 2-year

window, although it was still good. Of those predicted to recidivate within the

2-year follow up period, nearly 61% did actually recidivate, and the remaining

38% were erroneous (false positives). However, of the 2-year recidivists, the

models accurately identified 62% of them, but missed 38% of them.

Considering that the models used a minimal set of predictors—age at release,

prior criminal history, and age at first arrest—and, of these, the first two were

used to create new dependent variables, the predictive accuracy of the models is

quite surprising. It can be expected that as additional individual level attributes

and, perhaps, demographic attributes are included in the models, they will per-

form better yet.

Although in-sample accuracy is interesting, the more challenging prediction

problems are predicting out-of-sample and off-the-support. Table 4 presents a

cross tabulation for assessing the out-of-sample predictive efficacy of the models

by using the California model estimates (the Lagrange Multipliers) and gener-

ating predictions—both at the 2-year and 3-year follow-up period—for the state

of Florida. As one would expect, the models perform worse when estimating

out-of-sample. Note the out-of-sample predictions being assessed here are for a

different state. This is a different problem—a more realistic one—that taking a

random subset of the estimation sample for validation purposes.

Here we find that the models—both at the 2-year and 3-year follow-up periods—

under predicted the extent of recidivism. The models predicted that only 438
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Table 4: Out-of-Sample Predictive Efficacy of Multiple Analogy
Models, California Models Assessed on Florida Sample.

2-yr Follow up 3-yr Follow up

b = 0 b = 1 b = 0 b = 1

b̂ = 0 876 820 1,696 b̂ = 0 634 678 1,312

b̂ = 1 87 351 438 b̂ = 1 149 673 822

963 1,171 2,134 783 1,351 2,134

and 822 individual would fail within two and three years of release, respectively,

whereas 1,171 nd 1,351 individuals actually recidivated within these respective

follow-up periods. That is, the models predicted recidivism rates nearly half of

what was actually observed. Despite that, the news was not all bad. At least at

the three year window, despite very low aggregate predictions, the models were

fairly good at finding the recidivists. Of those that actually recidivated within

three years of release, the models correctly identified about half of them (49%).

Similarly, of those few predicted to recidivate, nearly 81% were actually accurate

with a false positive rate of only 19%. Therefore, despite predicting a recidi-

vism rate only about half of what was actually observed, the models were fairly

accurate in terms of those few that they did identify as recidivists.

The performance of the model was somewhat less encouraging at the two

year follow-up period, though. Once again, the models only predicted a recidi-

vism rate about half of the actual rate. However, as in the three year case, of

those that the model identified as recidivists, nearly 80% were accurate, with a

20% false positive rate. However, at the two year window, the model missed a

large portion of actual recidivists. Nearly 70% of those that did fail were not

accurately identifed by the models. In some sense, then, the California mod-

els were providing conservative predictions in the Florida sample. The models

did not classify nearly enough sample members as recidivists. When they did,

however, they were surprisingly accurate.

The most challenging prediction problems are those dealing with off-the-
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Table 5: Off-the-Support Predictive Efficacy of Multiple Analogy
Models, California 2 year Follow up Models Assessed on 3 Year
Recidivism.

Recidivism within 3 years Recidivism During 3rd year

b = 0 b = 1 b = 0 b = 1

b̂ = 0 2,080 996 3,076 b̂ = 0 2,080 217 2,297

b̂ = 1 840 1,857 2,697 b̂ = 1 840 234 1,074

2,920 2,853 5,773 2,920 451 3,371

support predictions. Here, models estimated on a 2-year support were used to

make projections for a 3-year window. Table 5 provides cross-tabulation for

assessing the predictive efficacy of the California 2-year models for projecting

3-year recidivism in California. The first cross-tabulation uses predictions of the

three-year recidivism rate were as the second cross-tabulation uses predictions of

the third-year recidivism rate.

The model projected considerably well when considering the three-year re-

cidivism measure. The two year model projected a slightly lower overall 3-year

recidivism rate (47%) than was observed in the sample (49%). Moreover, of the

2,697 individuals predicted to recidivate within three years of release, 68% actu-

ally did. About 31% of these projections were erroneous. On the other hand, of

the 2,852 individuals who did recidivate within three years of release, the mod-

els correctly identified 65% of them. The models only missed about a third of

them.

These forecasts, although made for a 3-year window using a 2-year model, are

really a blend of in-sample and off-the-support prediction problems. A stricter

criterion for assessing these projections is to compare the predictive efficacy of

the models, conditional on the individual having survived (not recidivated) by

the end of the 2-year follow-up period. The second cross-tabulation in Table 5

provides information for that comparison. The findings are mixed. The mod-

els clearly over-predicted the third year recidivism rate. They predicted that
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1,074 individuals would recidivate within the third year of release where as only

about 451 actually did. With this over-projections also came a high false positve

rate. Of the 1,074 individuals predicted to recidivate during the third year, only

about 22% actually did. The false positve rate was very high (nearly 81%). On

the other hand, the model had a surprisingly decent hit rate. Of the 451 indi-

viduals that did recidivate within the third year of release, the models correctly

identified 52% of them.

5. CONCLUSION

The goal of this paper was to develop and apply a semi-parametric, information

theoretic approach for utilizing knowledge in multiple analogies for studying

and predicting criminal recidivism. It was expected that, despite relying on a

minimal set of predictors, models consistent with several analogies simultane-

ously should perform well. Although the relative performance of multiple anal-

ogy models—both relative to other types of modeling strategies or to models

using fewer/more analogies—is yet to be gauged, preliminary findings presented

in this paper suggest that the strategy holds promise.

5.1. Discussion of Findings

Limited analysis using data from the states of California (for estimation and val-

idation) and Florida (used only for validation) were conducted. A minimal set

of predictors—the age at release, criminal history, and the age at first arrest—

were used in the modeling strategy to simultansously models several outcomes

of interest—including age at first rearrest, age at first rearrest squared, a binary

indicator of failure within a finite follow-up period, a count of the number of

rearrests during the follow-up period, duration to the first rearrest event, and the

number of arrests accumulated from the initiation of the career to the end of the

follow-up period. Tests of statistical significance suggest that each of the multi-

ple analogies included in the models did infact reduce the analysts uncertainty
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about the recidivism process “significantly.”

The estimated models were next used to make predictions. Not surprisingly,

the in-sample predictive performance of the models were very good. The false

positive and false negative rates of the three year model were 34% and 30% re-

spectively and those of the two year model were 38% and 29% repectively. Sim-

ilarly, the hit rates—proportion of actual recidivists correctly identified—for the

three and two year models were, respectively, 72% and 63%.

The estimated California models were also used to predict recidivism among

the Florida sample. These out-of-sample predictions were less enocouraging.

Despite having acceptible false positive and negative rates (respectively, 18% and

51% for the three year predictions and 20% and 48% for the two year predic-

tions), the hit rate was usually low, particularly for the 2 year predictions (50%

and 30% for the three and two year predictions, respectively). The models were

conservative, though. They predicted very few recidivists but, among those pre-

dicted, the error rate was very low.

Finally, the models were gauged on their ability to predict off-the-support.

Here the findings were mixed. The two year models predicted failure within

three years of release fairly well. However, they were not that accurate at pre-

dicting failure within the third year of release. The two-year models predicted

nearly 3 times as many third-year recidivists as there really were in the sample.

An unacceptibly large proportion of these were false positives (78%). However,

even these predictions had a decent hit rate. The predictions were able to accu-

rately identify nearly half of those that actually did recidivate during the third

year.

The analysis conducted here was very limited. However, the preliminary

findings are encouraging and offer several insights.

First, the multiple analogy models performed better when estimated using

three-year samples than when using the two-year samples. This is not suprising

given that each of the analogies have more information when the analyst is able

to follow the cohort thorough a longer priod.
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Second, the out-of-sample predictions were fairly low. This findings is also

not suprising, on hind sight. Table 1 shows that the sample of Florida was very

similar to the sample in California, as least with respect to the attributes used.

However, the failure rate in the Florida sample was considerably higher than

that in the California sample. This suggests, perhaps, that the main differences

between California and Florida samples was not the individual attributes of the

offenders, but the punitiveness of the system or data definition or collecting pe-

culiarities. Since the modeling strategy does not takes these differences into ac-

count, it should be expected that model estimates from California would under-

predict recidivism when used on the Florida sample. The systematic differences

between states can be accounted for by appropriately defining the priors (in this

analysis the r̄n(t )). Such advances are currently being developed. However, it

is encouraging that despite the overall underprediction of the phenomenon in

Florida, the models were conservative (low false positive rates).

Third, the analysis did not take into account various cut-off criteria to make

predictions. Judicious selections of an optimal cut-off point for each model may

further improve the predictive performance of the models.

5.2. Ongoing and Future Research

The preliminary set of models developed in this paper were designed to gain

some insights into the working of the approach and to gauge its predictive per-

formance. Given the minimal set of predictors included, the models seem to

perform surprisingly well. There are several aspects of the strategy that need

further exploration.

First, models that include more individual attributes are currently being

tested. It should be expected that such knowledge may improve the predictive

efficacy of the models as it allows for more flexibility. However, compromising

model parsimony is not without cost. Ultimately, the extent to which additional

predictors will increase the out-of-sample or off-the-support predictive efficacy

of the multiple analogy models is an empirical issue.
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Second, other relevant analogies need to be developed that can allow ana-

lysts to incorporate knowledge about crime-type-specific recidivism manifesta-

tions. For example, a hazard models of general recidivism could have two sub-

components—one relating to violent and another to non-violent crimes. Each of

these sub-components should yield nuanced insights into the process although

the ultimate interest may be in predicting general recidivism. This work is cur-

rently under way.

Third, the models, so far, have completely ignored the issues relating to re-

incarceration. This needs to be addressed. Although the data source provides

less than perfect informationn about this aspect of the model, analogies are cur-

rently being developed that will allow the model to learn from such outcomes

as whether or not the individual was reincarcerated within the follow-up period,

how many times, and the duration to first reincarceration event in addition to

outcomes relating to the binary, count, and duration manifestations of rearrest.

Finally, a more elaborate assessment of the predictive efficacy of this mod-

elling strategy needs to be undertaken. This includes comparing the multiple

analogy models with other state-of-the-art survival models as well as using tools

like the receiver operating characteristic curves to compare models across a range

of cut-off points. This work is currently underway.

MATHEMATICAL APPENDIX

Since a key component of the procedure for learning from multiple analogies

outlined in the narrative was the functional form of the information criterion

(3), this appendix provides a brief derivation of this measure based on a minimal

set of plausible assumptions.

Let the information acquired about a counting process at time t be some

function of the divergence between the prior (pre-sample or pre-experiment) as-

sessment of the hazard, r̄ (t ), and its posterior (post-analysis or post-experiment)

assessment, r (t ). Let us denote this quantity as I (t ) = f (r (t ), r̄ (t )). What is

reasonable to assume about this function? In other words, what are reasonable



Avi Bhati / Learning from Multiple Analogies 25

properties for the function f to possess?

The first set of assumptions pertain to the range of values information can

take. Keeping in mind that all quantities are indexed by t (i.e., we are talking

about information at a particular t ), let

f ≥ 0 ∀r, r̄ > 0 (8a)

f = 0 ∀r = r̄ (8b)

Here, (8a) states that information is a non-negative quantity for all values of the

prior and posterior hazard rates and (8b) states that if the posterior is exactly the

same as the prior, then no information has been acquired.

The second set of assumptions deal with how information changes as the

absolute value of the posterior increases. Let

d f

d r
> 0 ∀r > r̄ (9a)

d f

d r
< 0 ∀r < r̄ (9b)

d f

d r
= 0 ∀r = r̄ (9c)

These assumptions simply state that the amount of information increases if the

posterior moves further away from the prior—whether or not r is higher or

lower than r̄ . For example, (9a) implies that if r > r̄ then an increase in r adds

to information since it takes the analyst further away from the prior. Similarly,

(9b) implies that if r < r̄ then an increase in r brings the analyst closer to the

prior. (9c) implies that f is continuous in r .

The last set of assumptions deal with the notion of diminishing marginal

returns. The idea is that the same increase in the posterior hazard should imply

smaller informational gains if the hazard is already high, compared to if the
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hazard were low. This assumptions translates to

d f

d r

�

�

�

�

r=r1

>
d f

d r

�

�

�

�

r=r2

∀r1 < r2 (10a)

or, put another way, it translates to the second order differential equation

d 2 f

d r 2
=
κ0

r
∀r (10b)

where κ0 is the constant of proportionality that can be set to any arbitrary con-

stant without loss of generality. Since the ultimate goal is to derive a measure

that will be optimized (maximized or minimized), a scaling constant will make

no difference to the final solution of this optimization problem.

Given these assumptions, and setting the constant of proportionality to 1,

we can start by integrating (10b) to get

d f

d r
=

∫

R

1

r
d r = log(r )+κ1

where the constant of integration, κ1, can be solved using the initial condition

(9c) to get κ1 =− log( r̄ ). This yields the result

d f

d r
= log

r

r̄

which, it can be verified, satisfies each of the conditions (9a)–(9c). This solution

can be further integrated to obtain

f =

∫

R

log
r

r̄
d r = r log

r

r̄
− r +κ2

where the constant of this integration, κ2, can be solved using the initial condi-

tion (8b) to get κ2 = r̄ .

This procedure yields the final functional form for f , and recognizing the
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conditional (on t ) aspect of this measure, we can compute the net information

acquired over the entire domain T as

I =

∫

T

I (t )d t =

∫

T

�

r (t ) log
r (t )

r̄ (t )
− r (t )+ r̄ (t )

�

d t (11)

Since the analyst modeling criminal recidivism has information only on a

limited support of the domain T (e.g., the follow-up period) the measure in (3)

appropriately restricts the computation in (11) to a limited support.

Note that (11) is a more general measure of information than the Kullback-

Leibler directed divergence measure commonly used in Information Theory

(Kullback 1959). To see this, note that if the prior and posteriors were in fact

proper probabilities (integrating to 1) then the measure in (11) could be simpli-

fied to

I =

∫

T

r (t ) log
r (t )

r̄ (t )
d t −

∫

T

r (t )d t +

∫

T

r̄ (t )d t =

∫

T

r (t ) log
r (t )

r̄ (t )
d t

which is the Kullback-Leibler directed divergence measure between two proper

densities. Moreover, with an uninformative or constant (over the domain) prior,

the minimization of information amounts to the maximization of Entropy—

precisely the procedure Edwin Jaynes initially proposed (Jaynes 1957a,b).
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