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Abstract
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nomically appealing comparative statics results are proved. We also
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1 Introduction

Storage models are hard to tackle. Even the simplest specification of the pro-
duction and storage technologies leads to intractable equations. Most results
involve proving existence and uniqueness of the equilibrium, together with
some qualitative properties (prices are monotonic in stock and in storage cost,
stockouts happen with positive probability and stocks have an upper limit).
As far as simulation based econometrics (GMM estimators as in Deaton and
Laroque, 1992, 1996) or the illustration of a theoretical possibility are con-
cerned (convenience yield,1 analysis of the Samuelson effect,2 backwardation3

as in Routledge et al, 2000), this is a suitable approach. Our aim is not to
extend the existing models but rather to propose a simple case set in con-
tinuous time to facilitate the parameterization of shock persistence, and to
characterize finely the behavior of the economy.
Our approach is innovative as it does not rely on fixed point methods, but

directly constructs the equilibrium, assuming that agents observe the random
occurrence of the so-called abundance and scarcity periods. We focus on a
Markov economy, so the competitive equilibrium consists of price functions
that only depend on the current state. We fully describe the dynamics of
accumulation and drainage by means of a system of differential equations.
Relying on the phase diagram, we identify a number of economic border con-
ditions and prove existence and uniqueness of the equilibrium. Technically,
we confront a Boundary Value Problem with conditions imposed on singular
points.
In such an equilibrium, stocks are smoothly piled up in an abundance

state and smoothly drained in a crisis state. The relationship between the
state of the economy (the endogenous stocks and the exogenous random
variable) and the price is informative about behavior of the economy. For
example, we can see that the upper bound of the stocks is never reached in
finite time and we can also evaluate the speed at which stocks are drained
out. Besides such qualitative results, we provide comparative statics on the
upper bound of the stocks and equilibrium price schedules with respect to
all the parameters of the model.

1The notion of convenience yield was introduced by the economists Kaldor and Working
who studied the theory of storage. In the context of commodities, the convenience yield
captures the benefit from owning a commodity minus the cost of storing it. The flow of
benefits from storage (the reduction in production costs) drives a wedge between the price
of a commodity today and its value in the future.

2The Samuelson effect arises when, for a given commodity, forward price volatility
declines with the contract horizon.

3Backwardation occurs when the price of a commodity for the actual period exceeds
the price for future periods.

2



Price functions give a logically complete picture of the equilibrium. Nev-
ertheless, the characterization of the stationary distribution of states has an
intuitive appeal as it directly informs as to where the economy is likely to
be. The frequency of stockouts as well as the propensity of the economy to
adjust stocks can thus be assessed. The stationary distribution is described
by differential equations, which opens up the way to qualitative analysis and
comparative statics. The dependency of the shape of the state density to the
parameters is addressed.
Our model is motivated by two economic issues placed high on the Euro-

pean policy agenda. Storage as determined in response to persistent shocks
is instructive for the energy policy debate about the role of gas or petroleum
strategic reserves to manage supply disruptions, especially when dependency
on foreign resources raises serious concerns. The existing theoretical litera-
ture on energy supply security, mostly inspired by the theory of exhaustible
resources, considers either the extraction rate of one country when foreign
import, though needed to complement national production, can suddenly de-
fault,4 or strategic behavior of consuming countries confronting oligopolistic
or cartelized supply.5 However useful these analyses may be for the long run,
they ignore the question of how to reach any desired stock level and how
to deal with uncertainty about the duration of supply disruption. Efficiency
loss of recommended policies may be underestimated.
We also shed some light on the banking of CO2 pollution permits, a fi-

nancial mechanism whose application is being discussed in the context of
the European Trading Scheme, i.e. a market-based approach to environ-
mental control. A number of research works have already analyzed the role
of uncertainty in emission permit markets, studying in particular the SO2
banking mechanism allowed by the American Clean Air Act. Most results
concern optimum individual strategy and not the equilibrium. This limi-
tation notwithstanding, several aspects of risk-averse utilities’ are studied.6

4This trade-off has been analyzed by several authors (for example Stiglitz, 1977,
Sweeney, 1977, Hillman and Van Long, 1983, Hugues Hallet, 1984).

5See for instance Nichols and Zeckhauser (1977), Crawford et al (1984), Devarajan and
Weiner (1987), Hogan (1983).

6On the role of banking in smoothing permit prices, see Carlson and Sholtz (1994)
and Godby et al (1997), on its effect on control costs, see Montero (1997). Hennessy
and Roosen (1999), Ben-David et al (2000) and Baldursson and von der Fehr (2004)
examine the impact of stochastic pollution on production decisions in competitive markets,
showing that the existence of uncertainty as to the magnitude of pollution tends to reduce
production activities to the situation of non-stochastic pollution with the same mean rate
of emissions. Rousse and Sévi (2006) use a methodology similar to the one proposed by the
models on precautionary saving with uncertainty on future income. Econometric estimates
on US data provide evidence that utilities bank in response to uncertainty, particularly
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The study of equilibrium in Schennach (2000) assumes that risk-neutral firms
minimize their expected discounted costs. When firms anticipate the possi-
bility of a permit stockout, the expected change in marginal abatement costs
could be negative. Potential permit stockout could partially explain normal
backwardation in permit prices; the same mechanism is at the core of the
results in Routledge et al (2000). Our analysis is not focused on financial
phenomena, though the model could serve that purpose; this said, we can
illustrate the precautionary motive for banking emission rights, when the
output market alternates between booms and busts (namely, when electric-
ity demand is influenced by unexpected climate constraints) or there is a
sudden but temporary increase in input costs.
The economic relevance of our model and its practicality are illustrated

by three extensions.
First, we study the impact of a constant price policy. This apparently

extreme choice is instructive for both gas and pollution permit markets be-
cause a regulatory authority could be tempted to stabilize gas or permit prices
around a particular target (or path) of prices. Understanding the mechanisms
of equilibrium and comparison with more interventionist policy could serve as
a modest guide (or a development thereof) for market design and regulation.
In contrast to the previous abundant literature on storage and price stabi-
lization,7 results are clear-cut: perfect price stabilization can be reached only
if the economy is prepared to let stocks go to infinity. This simple prediction
gives a partial answer to doubts as to price stabilization models raised by
Williams and Wright (1991), who affirm: “[...] the possible permutations of
demand curvature, disturbance structure, initial conditions, supply elasticity
and so forth seem nearly infinite. [...] That is the main point: few, if any,
general propositions are possible.”
In a second extension of the model, we consider the impact of nonneg-

ligible injection and release costs. This better characterizes natural gas or
oil storage. Starting from the observation that the commodity is different

when their power is mainly coal-generated.
7Massel (1969), generalizing previous results by Waugh (1944) and Oi (1961), considers

stabilization at exactly the mean price as a decision made to eliminate price fluctuations,
presumably enhancing welfare. A costless stock established by an authority achieves the
objective and enhances welfare. Welfare analysis of price stabilization has been extended
to encompass alternative assumptions about price expectations, risk attitudes (Newbery
and Stiglitz, 1981), and nonlinearities (Turnovsky, 1974, 1976, among others). Storage
in this literature is made by a public authority, which is in charge of managing a buffer
stock. Helmberger and Weaver (1977) is the only model that questions the optimality
of stabilization schemes. The private storage industry and arbitrage opportunities are
considered, instead, in modern dynamic stochastic models with i.i.d disturbances (Williams
and Wright, 1991).
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depending on whether it lies outside or inside the reservoir, we show that
the results of our analysis are unaffected by this generalization.
Limited storage capacity is also a crucial issue. For instance, gas is often

stored in specific natural facilities (such as salt caverns) that are scarce. Also,
market rules for emission programmes could impose the use of banking CO2
permits up to a given threshold only. Consistently with the idea of scarcity
rent, we show that in the accumulation phase, the price for storage service
suddenly jumps above marginal cost when the capacity saturates. Interest-
ingly, we find that, in contrast with the unconstrained case, the maximal
stock is attained in finite time if the state of abundance is sustained.
The paper is organized as follows. Section 2 sets up the model and section

3 describes the methodology we follow to solve it. Section 4 characterizes the
solution qualitatively and quantitatively and proposes comparative statics.
Section 5 exposes the statistical properties of the model. Section 6 is devoted
to applications and extensions of the model, while Section 7 concludes on the
notion of economic flexibility. Proofs are relegated to the Appendix.

2 The model

2.1 Assumptions and parameters

The economy can be in two states, abundance (A) or scarcity (C, for cri-
sis). A generic state is denoted σ. Time is continuous and the state changes
following conditional Bernoulli processes: the passage from A to C occurs
with probability rate λC , and the passage from C to A with probability
rate λA. This simple Markov structure captures the fact that regimes have
uncertain nature and duration that can be quantified statistically. The un-
conditional probabilities of states A and C are, respectively, Pr[A] = λA

λC+λA

and Pr[C] = λC
λC+λA

. The ratio λA/λC represent the relative frequencies of

the two states whereas 2(λ−1A + λ−1C )
−1 measures the global rate of change.8

Primary production and final demand at a given date are assumed to
be nonstrategic (price-taking behavior), they vary with the state and the
current price. Consequently, the fundamental data are, for every σ = A,C
and every price p, the excess supply functions, i.e. the difference, denoted

8The unconditional rate of change is twice the harmonic mean of the conditional rates
of change

Pr[A]× λC +Pr[C]× λA =
2

1/λA + 1/λC
. (1)
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∆σ[p], between production and final consumption.
9 These functions measure

variations per unit of time, thus conservation of matter imposes that ∆σ[p].dt
be the variation of the stocks in a time interval of length dt during which
state σ would be sustained.10 These two functions are assumed to be strictly
increasing and to have unique, finite, zeros in R+ denoted by p

∗
σ. These zeros

are the prices at which primary production and final consumption would be
balanced at each instant, were state σ sustained. To clarify matters, p∗C > p

∗
A.

Storage is assumed to be competitive and to exhibit constant returns to
scale, with carrying costs being the (constant) opportunity cost of capital r
and a unit flow cost c (paid per unit of commodity and per unit of time).11

Storers are assumed to be risk-neutral so prices satisfy the following relation-
ships

pt + cdt = (1− rdt)Etpt+dt if S > 0, (2)

pt + cdt ≥ (1− rdt)Etpt+dt if S = 0. (3)

The LHS is acquisition price plus stockholding cost over interval dt and the
RHS is the expected present value (as for date t) of the stock at date t+ dt.

Definition 1 A competitive equilibrium is an initial state (C or A and a
certain stock) at date 0 (without loss of generality), plus a sequence of prices
{pC [S, t], pA[S, t]}t≥0 such that (1) all agents (consumers, producers, storers)
are price-takers and form rational expectations; (2) in each state, conserva-
tion of matter imposes that current production minus current final consump-
tion equals the variation in the stocks.

Definition 2 A Markovian competitive equilibrium is such that the equilib-
rium sequence of prices only depends on the current state (σ, S), but neither
the date nor the past.

The following focuses on Markovian equilibria, summarized by functions
pC [S] and pA[S] (time as an argument can be dropped).

9These assumptions as similar to those in Deaton and Laroque (1992, 1996) and Rout-
ledge et al (2000). They are consistent with general equilibrium if, for example, infinite
horizon consumers have quasi-linear utility (this supposes two goods per period, the stor-
able commodity plus a numéraire that could be leisure); the rate of interest is then directly
given by the discount rate.
10Shocks can be interpreted as demand or supply shocks. Only the net shock matters.
11The assumption in Deaton and Laroque (1992, 1996) and Routledge et al (2000) is that

a constant fraction of the stock vanishes every period. This type of cost can be included,
via a renaming of variables, in r. Our variation is well suited to natural resources.
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2.2 Fundamental equations

The price functions are necessarily continuous in S over the support of the
equilibrium. This simply means that as long as the state σ doesn’t change,
the absence of news leave the market evolve smoothly. Otherwise, a pre-
dictable discontinuity would create an arbitrage opportunity, e.g. massive
buys/sales just before an almost certain discrete upward/downward jump.
For all S > 0 and a time increment dt, the no-arbitrage equations derived

from (2) read

pC[S] + cdt = (1− rdt) ((1− λAdt) · pC[S + dS] + λAdt · pA[S + dS]),(4)

pA[S] + cdt = (1− rdt) ((1− λCdt) · pA[S + dS] + λCdt · pC[S + dS]).(5)

This is a first-order approximation. We let dt converge to 0 and neglect
second-order terms, thus (4) and (5) become

∆C [pC ] ·
dpC
dS

= (r + λA)pC − λApA + c, (6)

∆A[pA] ·
dpA
dS

= (r + λC)pA − λCpC + c. (7)

The boundary value problem basically states that the solution must verify
equations (6), (7), pC [0] = p

∗
C and pA[S

∗] = p∗A, where S
∗ is the maximum

stock. One difficulty is that ∆C [pC [0]] = 0, meaning that dpC [0]
dS

is infinite.
Another difficulty is that S∗ is only implicitly defined, its value being de-
termined as the point where accumulation stops (pA[S

∗] = p∗A implies that
∆A[pA[S

∗]] = 0); moreover, at S∗, the RHS of (7) and both factors in the
LHS are null, meaning that one condition is imposed at a singular point.

2.3 Summary of the notation

t : time;
σ : generic exogenous state; C : Scarcity/Crisis; A : Abundance;
λC : probability rate that state passes from A to C ;

λA: probability rate that state passes from C to A ;
∆σ[p] : excess supply for price p in state σ (per unit of time);
p∗σ : zero of ∆σ;
S : stocks at a given date;
c : marginal storage cost (per unit of time);
r : riskfree interest rate.
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3 The equilibrium

This section establishes that in a Markovian equilibrium, stocks are smoothly
piled up in state A and smoothly drained in state C. Moreover, stocks vary
between 0 and the upper bound S∗ to be determined, whereas the price is
bounded below by p∗A and above by p

∗
C .

We analyze the system of equations in a phase diagram (pC , pA) in which
S is the underlying parameter. This representation facilitates the demon-
stration of existence and uniqueness of the equilibrium. Most importantly
for economic intuition, it enables qualitative results and comparative statics.

3.1 Phase diagram

Let us define xσ, a function of S, by differential equation x0σ = ∆σ[pσ] · p
0

σ,
with xC [0] = 0 and xA[S

∗] = 0. Using this notation in equations (6) and (7),
we obtain

x0C = (r + λA)pC − λApA + c, (8)

x0A = −λCpC + (r + λC)pA + c. (9)

We have an autonomous (S is not in the equations) system of separated
variables. We draw the two-dimensional phase diagram with pC ≤ p∗C on the
horizontal axis and pA ≥ p∗A on the vertical one. This quadrant is partitioned
into three regions, separated by the isoclines where x0C = 0 and x

0

A = 0 are
null, i.e.

(r + λA)pC − λApA + c = 0 and pC ≤ p∗C , pA ≥ p∗A, (CC 0)

−λCpC + (r + λC)pA + c = 0 and pC ≤ p∗C , pA ≥ p∗A. (AA0)

(CC 0) is never empty since by assumption p∗C > p
∗
A. (CC

0) is above (AA0) in
the considered quadrant (see Appendix A.1).
The phase diagram in Figure 1 indicates the shape and relative positions

of the trajectories satisfying the motion equations (8) and (9). We define
the lowest region, I, as the triangle having (AA0) as a side and (p∗C , p

∗
A) as

a vertex; the intermediate region, II, lies between the two lines, and the
highest region III is above (CC 0). In I, p0C < 0 and p

0

A < 0; in II, p
0

C > 0
and p0A > 0; in III, p

0

C > 0 and p
0

A > 0.
12

The intersection between (AA0) and horizontal straight line pA = p∗A is
especially remarkable. We denote it as Ω = ( r+λC

λC
p∗A +

c
λC
, p∗A).

12This comes from the facts that in I, x0
C
> 0 and x0

A
< 0; in II, x0

C
> 0 and x0

A
> 0;

in III, x0
C
< 0 and x0

A
> 0.
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Figure 1: Phase diagram.

3.2 Characterization

Proposition 1

1. In equilibrium, the support of S is an interval [0, S∗].

2. Stocks are drained during scarcity episodes and accumulated during
abundance episodes (∆C [pC [S]] ≤ 0 and ∆A[pA[S]] ≥ 0 over [0, S∗]).

3. The equilibrium trajectory {(pC [S], pA[S])|S ∈ [0, S∗]} is in region I.
The trajectory starts with pC [0] = p

∗
C and stops at (pC [S

∗], pA[S∗]) = Ω.

4. There is storage in equilibrium (i.e. S∗ > 0) if and only if

(r + λC)p
∗
A + c < λCp

∗
C .

5. The equilibrium is unique

The overall behavior of the prices in equilibrium can be summarized as
follows: the unique equilibrium trajectory is necessarily in I, S varies in the
interval [0, S∗) and pA[S] > p∗A and pC [S] < p

∗
C for S > 0 and S < S

∗, and
pA[S] and pC [S] decrease with respect to the level of the stock.
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Figure 1 shows the shape of the equilibrium trajectory. The condition for
positive storage (r+λC)p

∗
A+c < λCp

∗
C has a precise economic meaning: crises

have to be sufficiently likely and/or sufficiently marked to justify storage. If
this condition were not satisfied, there would be no stocks in equilibrium:
the price would alternate back and forth between p∗A in state A and p

∗
C in

state C. To avoid this uninteresting case, we assume that the condition for
positive storage is satisfied.

3.3 Computations

Numerically, the argument used in the proof of Proposition 1 (point 5) has an
extremely useful implication: any starting point close to Ω is on a trajectory
that is closer to the equilibrium as we go to the right (i.e. as S decreases)
in the phase diagram. In other terms, we can control the maximum error on
prices at the starting point (close to Ω) given that the system of equations
is self-correcting as S decreases.
Moreover, the system of equations (8, 9) is autonomous, so leaving aside

boundary conditions, we know that if (pC[S], pA[S]) follows the equilibrium
trajectory for S ∈ [S, S], so does (pC[S + θ], xA[p+ θ]) for S ∈ [S − θ, S − θ]
where θ is an arbitrary real.
We can now suggest the following algorithm.

Algorithm 1 (Trajectory)

1. Fix arbitrarily the upper bound at some arbitrary value S.

2. Choose ε > 0 as small as needed. Consider the trajectory through
(pC [S] =

r+λC
λC
p∗A +

c
λC
, pA[S] = p

∗
A + ε), a point above Ω.

3. Solve the differential equations numerically and find the stock S < S
such that pC[S] = p

∗
C .

4. Shift the calculated functions pC and pA to the left by an amount S;
S∗ε = S − S approximates the upper bound S∗.

The error is controlled by ε (a uniform bound on the error). Remark that
along a trajectory,

dS

dpC
=

∆C [pC ]

(r + λA)pC − λApA + c
(10)
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is well defined over the range of pC i.e. [ r+λC
λC
p∗A +

c
λC
, p∗C ] (trajectory is

bounded away from (CC 0)). Thus we can calculate S∗ as accurately as desired
by computing:

S∗ε =

Z p∗C

r+λC
λC

p∗
A
+ c

λC

∆C [pC ]

(r + λA)pC − λApA + c
dpC . (11)

4 Behavior of the economy

4.1 Comparative statics

In the absence of an explicit expression of price functions and S∗, the com-
parative statics relies on exploitation of the phase diagram.

Proposition 2 (Comparative statics) For all S in the support, and for
all states σ = C,A

∂p∗σ[S]

∂c
< 0;

∂p∗σ[S]

∂r
< 0;

∂p∗σ[S]

∂λA
< 0;

∂p∗σ[S]

∂λC
> 0. (12)

and consequently

∂S∗

∂c
< 0;

∂S∗

∂r
< 0;

∂S∗

∂λA
< 0;

∂S∗

∂λC
> 0. (13)

The interpretations are straightforward. An increase in the unit storage
costs discourages accumulation, thus at any level of the stocks, the value of
the commodity is smaller. Storers will tend to pile up stocks more slowly
in abundance, and to run them down faster during crisis. Also, rarer crises
diminish the expected yield from storing, to the same effect. This logic has
direct consequences on the comparative statics of the limit stock: the value
S∗, defined as the solution to equation p∗A[S] = p

∗
A, must decrease if function

p∗A[S] is diminished.

Linear case. The effects of varying excess supply functions are intricate if
we do not restrict the analysis to a specific parametric family. For example,
in the noteworthy case of linear excess supply functions, precise results can
be found.

Proposition 3 (Linear case) Assume that

∆σ[pσ] = βσ(pσ − p∗σ) with βσ > 0 and p
∗
σ > 0. (14)
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1. For all S in the support and all states σ = C,A

∂p∗σ[S]

∂p∗C
> 0;

∂p∗σ[S]

∂p∗A
> 0;

∂p∗σ[S]

∂βC
> 0;

∂p∗σ[S]

∂βA
< 0. (15)

and consequently

∂S∗

∂p∗C
> 0;

∂S∗

∂βC
> 0;

∂S∗

∂βA
< 0. (16)

The sign of ∂S∗
∂p∗

A

is ambiguous.

2. As a function of βC and βA, p
∗
σ[S] and consequently S

∗ are homogeneous
of degree 1.

It is plain that a bigger p∗C should increase the value of storage, hence
the effect on prices and maximum stocks. In contrast, a bigger p∗A has two
effects: on the one hand, it increases the price at which stocks are built and
thus prices in crisis have to increase altogether to motivate positive holding;
on the other hand, the range of prices tightens, meaning that potential gains
from the occurrence of a crisis could vanish at smaller values of S. This
explains the ambiguity of the impact of p∗A on S

∗.
A higher parameter βC means that a given release has a less depressing

effect on the price. In other terms, the profitability of storing in view of
releasing at high price when state C arises is better warranted. This gives
incentives to store more. A higher parameter βA implies that building stocks
is easier, since piling up has a lesser inflationary effect on the price, hence the
negative effect on the equilibrium price. The second point of the proposition
illustrates that the first effect dominates when βC and βA are increased in
the same proportion.

4.2 Approximate price functions

To better describe the behavior of the economy, we clarify the properties of
the equilibrium when stocks are almost empty or close to their maximum.
We see in particular how stocks are drained down and why the maximum
stocks are not attained in finite time.

Draining out the stock. At S = 0, x0C is finite and different from 0 (see
equation 8); more precisely, xC[S] ∼

0
KCS with KC = (r + λA)p

∗
C + c −

λApA[0] > 0. This implies (see Appendix A.5) that

pC[S]− p∗C ∼
0
−
s

2KC

∆0

C [p
∗
C ]
S1/2 (17)
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pC is vertically tangent at 0 (Figure 2). As a consequence, if the economy
stays in crisis, the complete drainage of the stocks happens in finite time.
To show this, it suffices to integrate in a neighborhood of 0 the differential
equation

dS

dt
= ∆C [pC [S[t]]], (18)

where the RHS can be replaced by its approximation. As long as the economy
stays in crisis, starting–without loss of generality–with S0 at date 0, the
integration of equation (18) yields

S(t) '

Ã
p
S0 −

r
∆0

C [p
∗
C ]KC

2
t

!2
. (19)

Drainage exhibits smooth landing: the limit of the rate of withdrawal is zero;
but drainage time is finite. It is approximately

T0 '

s
2S0

∆0

C [p
∗
C ]KC

. (20)

This implies that the economy is protected only twice as long when stocks
are quadrupled.
The comparative statics onKC is based on (12) in Proposition 2. We have

∂KC

∂λC
< 0, meaning quite naturally, that a larger propensity to return to the

scarcity state slows down drainage (precaution). Also, ∂KC

∂c
> 0 and ∂KC

∂r
>

0, meaning that higher storage costs accelerate drainage for given stocks.

Remark that ∂KC

∂λA
= (p∗C−pA[0])−λA

∂p∗A[0]
∂λA

> 0 : a higher propensity to return
to abundance also accelerates drainage (preservation value is diminished).

Replenishing. The upper bound S∗ corresponds, as we noticed in sub-
section 3.2, to a singular point. The calculation of an approximate solution
requires several steps. We show in the Appendix A.5 that xA[S]−xA[S∗] ∼S∗
K2
A(S−S∗)2, where KA is a non-negative real number. This implies that pA

has a negative finite non-null derivative at S∗ (Figure 2):

pA[S]− p∗A ∼S∗ KA(S − S∗). (21)

Even if the economy stays in a state of abundance, the upper bound S∗

is never reached in finite time. The reasoning reminds us of Zeno’s classical
paradox, Achilles and the Tortoise. As pA covers half its difference with the
limit p∗A, the variation rate of the stock per unit of time, namely ∆A, is ap-
proximately halved (linear approximation of excess demand at p∗A), meaning

13
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Figure 2: Price functions.

that the convergence speed dS/dt is approximately halved. This implies that,
whatever the proximity of the target, the duration to cover half the distance
to the target is approximately constant, thus the target is never attained.

Example. Using the algorithm of subsection 3.3, we solve numerically the
system with the parameters in Table 1. The time unit could be the year. We
find approximately S∗ ' 9.5. See Figure 2.

Table 1: Parameter values
Financial and physical costs r = .1 c = .1
Linear excess supply βC = 1 p∗C = 5 βC = 5 p∗A = 1
Rates of jumps λC = 1 λA = 1

5 Stock statistics

A state is described by the stock S and the conjuncture (C or A). All states
S ∈ [0, S0] with S0 < S∗ are crossed in finite time with probability 1: starting
from an arbitrary state, it is easy to find a history (or a set of histories) that
leads to another arbitrary state in finite time, this history being associated
with positive probability (it suffices to have a long enough accumulation
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followed by a long enough drainage, or the other way around). Since the
equilibrium is Markovian, this property guarantees that there is a unique
stationary distribution. This section is essentially devoted to the analysis of
this stationary distribution.

5.1 Dynamics

The statistical evolution of the system over time when we observe perfectly
the state at a given date is covered in Appendix A.6.
A feature of the model is that in the long run initial information loses

relevance. Interior states (i.e. values of S different from 0 and S∗) are just
crossed as accumulation or drainage goes on; boundary states, if reached,
remain in force until a downward or upward jump occurs. Thus, in the long
run, S = 0 and S = S∗ are associated with probabilities whereas values in
between are associated with densities.

Densities. Assume that, for interior values of the stock S ∈ (0, S∗), a
density fσ[S, t] (with σ = C,A) represents the information we have on the
system. Take σ = C to fix ideas. Choose S1 and S2 (0 < S1 < S2 < S

∗) two
levels of the stocks. By definition

Pr[C, S ∈ [S1, S2], t] =
Z S2

S1

fC [S, t]dS. (22)

This gives

dPr[C, S ∈ [S1, S2], t]
dt

= fC [S1, t] ·∆C [pC [S1]]− fC [S2, t] ·∆C [pC [S2]]

+λC

Z S2

S1

fA[S, t]dS − λA

Z S2

S1

fC [S, t]dS, (23)

where the first two terms represent the endogenous evolution of the stocks if
the economy remains in crisis, and the third and fourth terms represent the
exogenous jumps in and out of the segment due to state changes. Figure 3
illustrates this probability balance.
To find the dynamics of the density, we make S2 converge toward S1 to

get

dfC [S, t]

dt
= − d

dS
(fC [S, t] ·∆C [pC [S]]) + λCfA[S, t]− λAfC [S, t]. (24)

Similarly

dfA[S, t]

dt
= − d

dS
(fA[S, t] ·∆A[pA[S]]) + λAfC [S, t]− λCfA[S, t]. (25)
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Figure 3: Probability balance between t and t+ dt.

Probabilities. States S = 0 or S∗ are associated with probabilities. We
have13

dPr[C, 0, t]

dt
= −λA Pr[C, 0]− lim

S→0
(fC [S, t] ·∆C [pC [S]]) , (26)

where the first-term represents jumps out (jumps in are negligible since
Pr[A, 0, t] = 0 : due to accumulation, this state is left as soon as attained),
and the second term represents the depletion of the last remaining stock.
Similarly,

dPr[A, S∗, t]

dt
= −λC Pr[A,S∗] + lim

S→S∗
(fA[S, t] ·∆A[pA[S]]) . (27)

5.2 Stationary distribution

The study of stationary distribution can use directly the preceding analysis.
We denote the stationary densities by f∗σ [S] for all S ∈ (0, S∗). Define φC[S] ≡
f∗C[S] ·∆C[pC [S]] and φA[S] ≡ f∗A[S] ·∆A[pA[S]] (density flows). Dropping the
time-dependency factor, and replacing the rates of variation of the stocks by
their equilibrium values, equations (24,25) become the system of ordinary

13This expression can be derived from (23) with S1 = 0 and by letting S2 converge to 0.
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differential equations

dφA
dS

= λAf
∗
C − λCf

∗
A, (28)

−dφC
dS

= λAf
∗
C − λCf

∗
A. (29)

We also have from (26,27)

Pr[0] =
1

λA
lim
S→0

φC , (30)

Pr[S∗] =
1

λC
lim
S→S∗

φA. (31)

Remark that
−φC[S] = φA[S]. (32)

Indeed, consider the open system {(C, s), (A, s)|s ∈ [0, S]} , this equation
states that, in a stationary distribution, density flows in (at S for state C)
equal flows out (at S for state A). Jumps do not matter since they happen
within the system.
Equations (28) and (29) collapse to:

dφA
dS

= −
µ

λA
∆C [pC [S]]

+
λC

∆A[pA[S]]

¶
φA. (33)

This first order ordinary differential equation is well defined for S ∈ ]0, S∗[
and can be solved numerically. The Cauchy-Lipschitz theorem is applicable.

Algorithm 2 (Stationary distribution)

1. Calculate equilibrium prices pC [S] and pA[S].

2. Fix arbitrarily φ[S] as an initial condition for some S ∈ (0, S∗).

3. Solve numerically the differential equation (33) over ]0, S∗[.

4. Calculate conditional densities f∗A and f
∗
C .

5. Calculate the integrals over ]0, S∗[ of f∗A and f
∗
C.

6. Remark that Pr[S∗] = 0. Use step 5 to calculate the residual Pr[0] using
the facts that Pr[C] = λA/(λC + λA) and Pr[A] = λC/(λC + λA).

7. Normalize f∗A and f
∗
C so that the total probability mass equals 1.
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Step 3 must be analyzed in detail. Indeed, ∆C [pC [0]] = ∆C [p
∗
C ] = 0 and

∆A[pA[S
∗]] = ∆A[p

∗
A] = 0, meaning that φ might diverge in such a way that

normalization is impossible (integrals at step 5 could diverge). In fact, we
check in Appendix A.7, that

Z S∗

0

f∗C[S]dS <∞ and

Z S∗

0

f∗A[S]dS <∞. (34)

Remark also that the integrals in step 5 can be calculated as accurately
as needed, implying that the residual for Pr[0] in step 6 can be computed
with the same accuracy.14

The numerical analysis gives instructive results on the overall behavior
of the economy. How frequent are stockouts, i.e. how much is Pr[S = 0]
compared toPr[C](= λC

λC+λA
)? Is the economy often close to having maximum

stocks or is S∗ a practically unapproachable limit? The last question can
be addressed theoretically by characterizing the shape of the density of the
stationary equilibrium around S∗. Here we can identify which are the critical
parameters that determine the regime of the economy.
Figure 4 shows the stationary densities for the parameters in Table 1. We

find Pr[0] = .1, Pr[S∗] = 0. In fact limS→0 fC = +∞, but fC is approximately
proportional at 0 to 1/

√
S, meaning that the probability of C remains finite

(see equation 30). This high density around 0 comes from the fact that the
rate of consumption of the stocks decreases steeply as S approaches zero.
The high density on the left of S∗ is explained by the fact that accumulation
slows down as the stock approaches S∗(see equations (19,20) about drainage
speed and time).
In contrast to 0, S∗ is never attained, as we mentioned in Subsection

4.2. Nevertheless, as Proposition 4 shows, the probability mass can be quite
concentrated, under precise circumstances, in the neighborhood of the max-
imum.

Proposition 4 Let

KS∗ = 2λC√
(r+λC)2+4∆

0

A
[p∗
A
]λCM−r−λC

(35)

with M =
[(r+λA)(r+λC)−λAλC ]p∗A+(r+λA+λC)c

−λC∆C [
r+λC
λC

p∗
A
+ c

λC
]

> 0. (36)

At S∗, fC is of the order of (S∗ − S)KS∗ and fA is of the order of (S
∗ −

S)KS∗−1.
14The alternative method would be to use property (30); however, the numerical accu-

racy of the limit of φC at 0 is not sufficient to recommend this procedure.
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Consequently,

1. If KS∗ < 1 : fA increases and diverges as S → S∗. Though the maxi-
mum is never attained, any neighborhood of S∗ has a positive proba-
bility.

2. If 1 < KS∗ < 2 : fA converges to 0 at S
∗ with vertical negative slope.

The system is close to the maximum with a positive probability.

3. If KS∗ > 2 : fA converges to 0 at S
∗ with a null slope. The economy is

almost surely far from the upper bound.

Given the discontinuous nature of the comparative statics, singular cases
with either KS∗ = 1 or KS∗ = 2 would require higher order approximations
than the one used in Appendix A.8 to be described.
The understanding of the conditions above is relatively complex since all

the fundamental parameters play a role. In particular, no simple comparative
statics with respect to r or λC emerge. In contrast, the effects of c, λA are
obvious

∂KS∗

∂c
< 0;

∂KS∗

∂λA
< 0. (37)

In the linear case, where in particular ∆0

A[p
∗
A] = βA, we have

∂KS∗

∂βC
> 0;

∂KS∗

∂βA
< 0;

∂KS∗

∂p∗C
< 0;

∂KS∗

∂p∗A
< 0. (38)
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The comparative statics on KS∗ , together with the ones on S
∗ exposed in

the comments of Proposition 2, outline a notion of flexibility: the higherKS∗,
the less flexible the economy is. Excess supply functions measure the response
of prices to given variations in stocks. Small maximum stocks correspond to
flexible economies for which large storage would be useless, and accordingly
the economy has, statistically, enough time to approach this modest target
during abundance period. On the contrary, large maximum stocks mean
that the economy with seize (almost) any opportunity to accumulate, which
happens in economies where building stocks is a costly process. Accordingly,
it is very likely that the random alternation between abundance and scarcity
episodes will keep the economy far from the bliss point.

6 Applications and extensions

In this Section, we extend the model by assessing the impact of three kinds
of constraints: politically imposed bounds on prices, nonnegligible injection
and release costs and limited storage capacity.
Analyzing the impact of a constant price on the dynamic system allows a

comparison of the results with those proposed by the abundant literature on
stabilization. Following on from this, we show that nonnegligible injection
and release fees can be modelled as parallel shifts in the functions pA[S] and
pC [S]. The main results of our analysis are unaffected by this generalization.
Finally, assuming that storage capacity is exogenously constrained, we show
that in the accumulation phase, the maximal stock is attained in finite time.
Moreover, the price for storage service suddenly jumps above marginal cost
when capacity saturates.

6.1 Stabilization, storage and persistent crises

Assume that a central authority imposes a constant price p∗. A price below p∗A
would not be sustainable in the long run (stock will be drained out shortly).
A price above p∗C would cause never ending accumulation, which would be
uneconomical. So, the relevant policies consider p∗A < p

∗ < p∗C . Remark that
if we preclude rationing, the policy is not strictly applicable since the price
must turn to p∗C when stocks are empty in state C.With rationing, the price
may remain formally at p∗, but the marginal shadow value of the commodity
would be p∗C anyway.
To summarize the effect of the policy, the simplest approach is to search
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for stationary distribution. We can solve (33), i.e.

dφA
dS

= −
µ
λA
∆C

+
λC
∆A

¶
φA for all S > 0, (39)

where λA
∆C
+ λC

∆A
here is a constant (with a constant price, ∆C < 0 and ∆A > 0

are constant). Define p∗ as the solution to the equation λA∆A[p]+λC∆C [p] =
0.
If p∗ < p∗, then λA

∆C
+ λC

∆A
> 0 ⇔ λA∆A + λC∆C < 0 : on average,

the economy draws on the stocks. This implies that φA is decreasing and
the density is a decreasing exponential: lower stocks are more likely. The
distribution has an unbounded support, empty stocks in crisis is an event of
positive probability during which the price is p∗C.
If p∗ > p∗, then λA

∆C
+ λC

∆A
< 0 ⇔ λA∆A + λC∆C > 0 : on average, the

economy piles up stocks. This implies that φA is increasing unboundedly
with respect to S. Higher stocks being increasingly likely, normalization is
impossible; in other words there is no well defined stationary distribution.
Stocks diverge to infinity with probability one and stabilization, in this sense,
succeeds.
The case p∗ = p∗ is intriguing. The economy has no tendency to pile up

nor to drain out stocks. All positive levels of the stocks are equally likely
(the stationary density is flat), meaning that the behavior of the system in
the long run is unpredictable.
Stabilization should not be understood in the narrow sense of averaging

the price that would be observed in the absence of storage capabilities. Re-
mark indeed that p∗, which is the critical threshold, could be higher or lower
than the average no-storage price λA

λA+λC
p∗A +

λC
λA+λC

p∗C . This depends on the
sensitivity of excess supply functions to price variations.
The conclusion is straightforward: perfect price stabilization can be reached

only if the economy is prepared to let stocks go to infinity. The analysis above
is easily extended to the case of limited storage capacity. Any upper bound
on stocks leaves positive probability on empty stocks. In that case, the prob-
abilities of full storages and stockouts depends on the policy p∗ chosen.

6.2 Injection and release costs

Denote unit injection cost by i and unit release cost by s. Assume that
in each state σ = A,C, and for any stocks level S, there are markets for
the gas outside and inside the reservoir, the prices being respectively pσ[S]
and pIσ[S]. The (competitive) market equilibrium between outside and inside
gases implies that, whenever S > 0,

pA[S] + i = p
I
A[S] and pC [S] = p

I
C [S] + s. (40)
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The structure of the system of equations is preserved, with pIσ replacing pσ.
No arbitrage conditions read

∆C [p
I
C + s] ·

dpIC
dS

= (r + λA)p
I
C − λAp

I
A + c, (41)

∆A[p
I
A − i] ·

dpIA
dS

= (r + λC)p
I
A − λCp

I
C + c. (42)

Remark that the excess supply functions are shifted, thus boundary condi-
tions are

pIC [0] = p∗C − s, (43)

pIA [S
∗] = p∗A + i. (44)

The range of pIσ is narrower than that of pσ : the minimum is higher, the
maximum is lower. As a result, the condition ensuring that there is storage
in equilibrium is more restrictive than the one in Proposition 1 (Point 4), i.e.
in the linear case

p∗C − s >
µ
r + λ

λC

¶
(p∗A + i) +

c

λC
. (45)

The phase diagram enables us to show that S∗ is decreasing with respect to
the cost parameters s and i. The rest of the comparative statics is identical.

6.3 Limited storage capacity

If the total storage capacity S exceeds S∗, then the unconstrained trajectory
remains sustainable; else, rational storers anticipate that boundary condi-
tions are modified.
As long as some capacity is vacant, then storage price per unit of gas

(per unit of time) remains equal to marginal cost c; the system of equations
is exactly the same as the one without any constraint, so the equilibrium
is described by a trajectory in region I of the phase diagram. Trajectories
below the unconstrained equilibrium start on the vertical axis at a given price
for S = 0 and stop on the horizontal axis on the right of Ω for a maximum
stock which is smaller than S∗. There is a unique trajectory such that this
maximum stock equals exactly S. It describes the unique equilibrium with
limited storage capacity. See for example the dashed trajectory below the
bold one in Figure 1.
In the accumulation phase, the price for storage service suddenly jumps

above marginal cost when capacity is saturated. We denote it by πA.
15 Given

15In case of crisis, the stock immediately starts being used so that state (C,S = S)
does not last. This implies that πC , the price of storage services for congestion during the
crisis, has no measurable economic effect.
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that pA[S] = p∗A, the no-arbitrage argument in state (A, S = S) can be
expressed

λC(pC [S]− p∗A) = rp∗A + πA. (46)

The LHS measures the potential profit from holding stocks and the RHS the
cost. Given that pC [S] >

r+λC
λC
p∗A +

c
λC
(the terminal point is on the right of

Ω in Figure 1), we have πA > c.
In contrast to the unconstrained case, the maximal stock is attained in

finite time if abundance lasts long enough. This explains that the jump in
the price of storage services (a discontinuity) is consistent with a continuous
price function pA[S] (continuity is necessary for no-arbitrage): before the
capacity is full, the price pA[S] decrease steadily; storers incur non-negligible
capital losses if the state does not change; this depreciation term does not
converge to zero as the maximal stocks are reached; this term is relayed by
cost πA > 0 when the constraint becomes binding.

7 Conclusion

Our model has fully described the behavior of a Markov economy in which
storage dynamics are determined by random occurrence of crises. Overall,
we have proposed the quite appealing notion of “flexible economy”. We
have proved that in equilibrium, a more flexible economy (i.e. better able
to absorb shocks via production and consumption changes), is less keen to
build up large stocks and is much more likely (in terms of probability) to
hold maximum stocks. If the reluctance to build large stocks is intuitive,
since overall, the value of stocks (or the convenience yield) decreases when
an economy can promptly react to a shock, release dynamics are less intuitive.
We show that flexible economies go fast towards maximum stocks and just
stay there until a shock leads to fast drainage, while inflexible economies
incur permanent movement of their stocks, and over a wider interval. This
relationship between flexibility and maximum stocks is a result of interest.
On this ground, it could be argued that security of supply policies for energy
or banking rules for emission rights, which are never neutral with respect to
the market equilibrium, should not be set equally across European states,
inasmuch as their capabilities to repond to shocks is heterogeneous.
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A Appendix

A.1 Phase diagram

Compared to (AA0), (CC 0) cuts the horizontal axis with a smaller value of pC . It
suffices to inject pA = p∗A in both equations and to check that

λA
r + λA

p∗A −
c

r + λA
<
r + λC
λC

p∗A +
c

λC
. (47)

This is obvious.

To show that (CC 0) cuts the vertical axis with a larger value of pA than (AA
0),

we inject pC = p∗C into both equations and check that the following equation

remains true (obvious)

r + λA
λA

p∗C +
c

λA
>

λC
r + λC

p∗C −
c

r + λC
. (48)

A.2 Proof of Proposition 1

1. and 2. Price functions are continuous and the stocks vary continuously with

respect to time, thus the support of stocks is necessarily an interval.

Assume that over some interval J of stocks, ∆C [pC [S]] ≥ 0 and ∆A[pA[S]] ≥
0 (accumulation only) or ∆C [pC [S]] ≤ 0 and ∆A[pA[S]] ≤ 0 (drainage only).
Clearly, interval J can be traversed once at most in history. Consequently, interval
J cannot be part of the equilibrium support of the stocks.

If over some interval, ∆C [pC [S]] ≥ 0 (i.e. pC [S] ≥ p∗C) and ∆A[pA[S]] ≤ 0
(i.e. pA[S] ≤ p∗A), accumulation during crises is motivated only by the fact that
the price is expected to rise if the economy stays in crisis (an episode of abun-

dance causes a negative shock on the price). This means that dp∗C [S]/dS > 0.
In consequence, the price in state C is unbounded as well as the support of S,
since any length for an episode of scarcity has positive probability to be exceeded.
Such a bubble is unreasonable since it would imply unbounded storage capacity

(a transversality condition would translate this common sense remark into mathe-

matical language). These arguments show that ∆C [pC [S]] ≤ 0 (i.e. pC [S] ≤ p∗C)
and ∆A[pA[S]] ≥ 0 (i.e. pA[S] ≥ p∗A).
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Remark now that if the lower bound of the support were strictly positive,

this would mean that a certain quantity of the commodity would be permanently

frozen. Denote this level by Smin. Necessarily, pC [Smin] = p∗C , meaning that if
the economy stays in crisis for a long time (a possible event), storers have to pay

storage costs without compensation in potential price movements. Consequently,

support is bounded below by 0 (Smin = 0).
3. If pC [0] < p∗C , final demand would exceed production for S = 0, which

is impossible with empty storages. This proves that the trajectory starts on the

vertical axis (pC [0] = p
∗
C).

Assume that there is an ε > 0 such that pA stays larger than p
∗
A + ε as S

increases. Given the phase diagram, pA reaches its minimum on the straight line

(AA0), if the trajectory starts in I. In any case, as S increases, the trajectory

enters in II, then in III, implying that pA overshoots
r+λA
λA
p∗C +

c
λA
(intersection

between (CC 0) and vertical axis). In other terms, for any large enough S, pA
overshoots p∗C while pC remains below p

∗
C . Thus, as S continues to grow, x

0

A/x
0

C

remains finite whether or not pA tends towards infinity. We conclude that any
trajectory in III reaches the vertical axis pC = p

∗
C for a finite value of the stock.

At this point, drainage stops in state C, but accumulation continues in state A
(xA > 0)), meaning that the stock is never going to be used in the future, which
is uneconomical (see point 1 in this proof).

We conclude from the contradiction that accumulation must stop in state A for
some stocks S∗; thus necessarily pA[S∗] = p∗A. Remark that this can only happen
in I on the horizontal axis at point Ω.

4. From (AA0), we have

(r + λC)pA[S
∗]− λCpC[S

∗] + c = 0 (49)

i.e.

pC[S
∗] =

r + λC
λC

p∗A +
c

λC
(50)

This corresponds to Ω = ( r+λC
λC
p∗A+

c
λC
, p∗A). For this intersection to exist, i.e. for

I not to be empty, a sufficient and necessary condition is

(r + λC)p
∗
A + c ≤ λCp

∗
C . (51)

5. We show that there is a unique trajectory passing through Ω. The Cauchy-
Lipschitz Theorem cannot be applied since the system is singular at Ω. We use
the following argument: choose any starting point in the interior of I, denoted by

(p0C , p
0
A); it is necessarily nonsingular. The trajectory passing through this point is

unique (Cauchy-Lipschitz). Consider the point (p0C , p
0
A+ ε) where ε is some small

real. Straightforward calculations show that the slope of the trajectory passing

27



through (p0C , p
0
A+ ε), which is positive, decreases as ε increases. One can directly

reason on

dpA/dpC=
∆C [pC ]

∆A[pA]
·
(r + λC)pA − λCpC + c

(r + λA)pC − λApA + c
. (52)

This means that trajectories move apart as S increases, i.e. as they approach Ω.
The consequence is that there cannot be multiple trajectories through Ω. This
proves existence and uniqueness.

A.3 Proof of Proposition 2

We first determine how trajectories move in the phase diagram as parameters

change. Rewrite the system of ODE in compact for as

p0C = PC(pC , pA, c, r,λA,λC) or simply PC ( > 0 in region I), (53)

p0A = PA(pC , pA, c, r,λA,λC) or simply PA ( < 0 in region I). (54)

Note that ∂PC
∂c
= 1/∆C [pC ] < 0 and

∂PA
∂c
= 1/∆A[pA] > 0, thus p

0

A/p
0

C = PA/PC
decreases as c increases (all trajectories in I are flatter). Similar observations prove
that all trajectories in I are also flatter when r increases, when λA increases and
when λC decreases.

We can now position equilibrium trajectories as parameters change. Increasing

c or r, or decreasing λC , move Ω to the right; increasing λA has not effect on Ω.
In all cases, the equilibrium trajectory moves below the former one: to each pC is
associated a smaller pA.

Remark that dS
dpC

= 1/PC < 0, thus

S = −
Z p∗C

pC [S]

dpC
PC

(summation along the equilibrium trajectory). (55)

Since Ω goes to the right as c increases, the range of pC becomes smaller; it remains
to be verified that 1/PC , as a function of pC , is also smaller. For example, along
the equilibrium trajectories, for a fixed pC

dPC
dc

=
1

∆C [pC ]| {z }
−

+
∂pA
∂c|{z}
−

×
∂PC
∂pA|{z}
+

< 0. (56)

(PC grows in absolute value and thus 1/PC decreases in absolute value.) This
proves that as c increases, a given price is associated with a smaller S. Similar
reasonings can be applied to the other parameters to prove the claims.
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A.4 Proof of Proposition 3

We have

PC =
(r + λA)pC − λApA + c

βC(pC − p∗C)
, (57)

PA =
(r + λC)pA − λCpC + c

βA(pA − p∗A)
. (58)

Clearly, trajectories in I are steeper with a higher βC or a smaller βA. Remark
that the frontier of I (Ω in particular) is unchanged in this comparative statics.

Remark also (this concerns point 2) that a proportional increase of βC and βA
does not change the trajectories (but a given point corresponds to a different S).
The type of reasoning used in the proof of Proposition 2 can now be applied to

show the claims.

The comparative statics with respect to p∗C and p
∗
A require further precautions.

In the former, remark that trajectories are steeper with a higher p∗C (pC < p∗C)
and that I is extended to the right (trajectories are simply going further to the

right). These two effects concur to increase the price for given stocks. In the
latter, trajectories are flatter with a (say) smaller p∗A but Ω moves along down

(AA0). The first effect decreases prices, hence point 1, but the second could lead
to a higher S∗ (a smaller function is integrated over a longer interval, since the
range of pC increases, see equation 55).

A.5 Equivalent expressions for prices

On the right of 0. We have

xC [S] =

Z pC [S]

p∗
C

∆C [p]dp, (59)

thus, writing first-order approximation on both sides we get

KCS + o(S) =
1

2
∆0

C [p
∗
C ](pC [S]− p∗C)2 + o(pC [S]− p∗C)2, (60)

which yields

pC[S]− p∗C ∼0 −
s

2KC

∆0

C [p
∗
C ]
S1/2. (61)
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On the left of S∗. Given that, according to (8), p0C [S
∗] 6= 0, we can approximate

pC [S] around S
∗ with pC [S∗] + p0C [S

∗](S − S∗) + o(S − S∗). We denote p0C [S∗]
by −M , with

M = − [(r+λA)(r+λC)−λAλC ]p∗A+(r+λA+λC)c
λC∆C [

r+λC
λC

p∗
A
+ c

λC
]

> 0. (62)

Given that

xA[S] =

Z p∗A

pA[S]

∆A[p]dp, (63)

we can calculate that pA[S]− p∗A + o(pA[S]− p∗A) =
q

2
∆0

A
[p∗
A
]
x
1/2
A [S], or equiva-

lently pA[S]− p∗A =
q

2
∆0

A
[p∗
A
]
x
1/2
A [S] + o(x

1/2
A [S]).

We plug these two equivalent expressions into (9), which yields

x0A = (r + λC)

s
2

∆0

A[p
∗
A]
x
1/2
A + λCM(S − S∗) + o(S − S∗) + o(x1/2A ), (64)

Consider now the ODE

y0 = (r + λC)

s
2

∆0

A[p
∗
A]
y1/2 + λCM(S − S∗) with y[S∗] = 0. (65)

The unique solution to (65) is K2
A(S

∗ − S)2 with

KA =

√
(r+λC)2+4∆

0

A
[p∗
A
]λCM−r−λC

2∆0

A
[p∗
A
]

. (66)

We show now that this exact solution of approximate ODE (65) is an approxima-

tion of the solution to ODE (64).

Consider the residual o(S − S∗) + o(x1/2A [S]) in the ODE (64). For all ε > 0,
there is a left neighborhood of S∗, denoted Vε, in which the absolute value of the
residual is smaller than ε× (S∗ − S) and ε× (x

1/2
A [S]). Consider the ODE

y0 =

"

(r + λC)

s
2

∆0

A[p
∗
A]
+ ε

#

y1/2+(λCM−ε)(S−S∗) with y[S∗] = 0. (67)

The solution to this equation is smaller than xA on Vε : indeed, both x
0

A and y
0

are negative, but if y > xA for some S in Vε, it remains so for any larger stock
because y0 > x0A. This is in contradiction with the fact that y[S

∗] = xA[S∗]. In
other terms,

xA[S] ≥

⎡
⎣
r

(r+λC+
q

βA
2
ε)2+4βA(λCM−ε)−r−λC−

q
βA
2
ε

2βA

⎤
⎦
2

(S∗ − S)2. (68)
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A similar reasoning shows that

xA[S] ≤

⎡
⎣
r

(r+λC−
q

βA
2
ε)2+4βA(λCM+ε)−r−λC+

q
βA
2
ε

2βA

⎤
⎦
2

(S∗ − S)2. (69)

These two inequalities give the approximation of xA at S
∗.

A.6 Statistical evolution from a known state

To fix ideas, denote the observed state at, say, date t = 0, by conjuncture A and
stocks S0. Conditionally on staying in state A, the probability mass (initially 1) is
attached to a unique level of the stocks; but this mass itself is eroded by potential

jumps. Other states (except 0 and S∗) are associated with a density, as we shall
develop now.

The mass point Smax[t] (where the index max recalls that the support of the
distribution is bounded above by this time dependent value) evolves following

dSmax
dt

= ∆A[pA[Smax]] > 0 with Smax[0] = S0, (70)

whereas the lower bound of the distribution follows

dSmin
dt

= ∆C [pC [Smin]] < 0 until 0 is reached, with Smax[0] = S0. (71)

Both values move deterministically. Clearly,

Pr[A,Smax[t], t] = e
−λCt, (72)

which is the probability that no crisis has ever happened since date 0.

States inside the interval [Smin[t], Smax[t]] are associated with a positive den-
sity; outside the interval, density is null. States (C, 0, t) and (A,Smax[t], t) are
mass points (the former only after some time has elapsed, so that Smin has reached
0).

To fully characterize the statistical evolution from a known state, we prove the

following preliminary lemma that explains how a pointwise probability becomes a

density.

Lemma 1

lim
S→Smax[t]

fC [S, t] = −
λCe

−λCt

∆C [pC [Smax[t]]] +∆A[pA[Smax[t]]]
, (73)
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Proof. Consider states {(C, S)|S ∈ [Smax[t]− dS, Smax[t]]} with dS small.
To calculate the probability of this event at date t, we have to trace back histories
that lead to these states.

Denote dt and dSA the unique time interval and stock variation such that a
jump from (A, Smax[t] − dSA) to (C, Smax[t] − dSA) at date t − dt followed by
drainage between date t− dt and t has led to state (C,Smax[t]− dS).

Clearly, all the jumps happening from the current mass point between dates

t − dt and t (and only these), give states in [Smax[t] − dS, Smax[t]] at date t.16
So a first-order approximation of the probability we seek is the probability that a

jump from {(A, S)|S ∈ [Smax[t]− dSA, Smax[t]]} to C has taken place between

date t− dt and t. This probability is λCe−λCtdt, thus

Pr[{(C, S)|S ∈ [Smax[t]− dS, Smax[t]]}] =
λC exp[−λCt]dt

dS
. (74)

We have to calculate the relationship between dSC , dSA, and dt. From the stock

dynamics we have

dt =
dS − dSA

∆C [pC [Smax[t]]]
=

dSA
∆A[pA[Smax[t]]]

. (75)

The middle term is the time needed, given drainage speed, to pass from stocks

Smax[t] − dSA to stocks Smax[t] − dS. The RHS is the time needed, given ac-
cumulation speed, to pass from Smax[t] − dSA to Smax[t]. After straightforward
substitutions, we let dS go to 0 and prove the result.

We are now equipped with a complete set of equations to describe the dynamics.

Indeed, (73) and (24,25) can be used to describe statistically the system over time.

The exercise is numerically demanding.

A.7 Proof of convergence of Algorithm 2

Remark that the ODE commanding φA can be written

φ0A
φA

= −
µ
λA
∆C

+
λC
∆A

¶
. (76)

On the right of S = 0, ∆C → 0 so the RHS of (76) is equivalent to − λA
∆C
, i.e.,

using (17), to K0√
S
where K0 is a nonnegative real

K0 =
λA

∆0

C [p
∗
C ]
√
KC

. (77)

16Given the small size of the interval, we can neglect histories involving two
jumps, so relevant histories can only consist of one jump from state A and some
drainage.
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Thus limS→0 φA is finite and strictly positive. Indeed, for all ε > 0, there exists
η such that for all S ≤ η,

(1− ε)
K0√
S
≤ φ0A

φA
≤ (1 + ε)

K0√
S
. (78)

Take S1 and S2 both smaller than η with S1 ≤ S2 and integrate the inequality
above between these two reals. We find

2(1− ε)K0(
p
S2 −

p
S1) ≤ ln

φA[S2]

φA[S1]
≤ 2(1 + ε)K0(

p
S2 −

p
S1). (79)

This proves that φA is bounded away from 0 (fix S2 and let S1 converge to 0).
Given that φA is also monotonic (increasing) in a neighborhood of 0, the limit
that we denote by φA[0] exists and is nonnegative.

So, at 0, fA is finite and nonnegative whereas fC ∼0 KfC√
S
where KfC is some

nonnegative real. This implies that, though the density fC diverges at 0, its

integral is well defined.

A.8 Proof of Proposition 4

On the left of S∗,∆A → 0 so the RHS of (76) is equivalent to − λC
∆A
, i.e. KS∗

S−S∗
where KS∗ is a nonnegative real with

KS∗ =
λC

βAKA
. (80)

For all ε > 0, there exists η such that for all S ≥ S∗ − η,

(1− ε)
KS∗

S∗ − S ≤ −
φ0A
φA
≤ (1 + ε)

KS∗

S∗ − S . (81)

Take S1 and S2 both larger than S
∗−η with S1 ≤ S2 and integrate the inequality

between these two real numbers. We find

−(1− ε)KS∗ ln
S∗ − S2
S∗ − S1

≤ − ln φA[S2]

φA[S1]
≤ −(1 + ε)KS∗ ln

S∗ − S2
S∗ − S1

, (82)

i.e. ∙
S∗ − S2
S∗ − S1

¸(1+ε)KS∗

≤ φA[S2]

φA[S1]
≤
∙
S∗ − S2
S∗ − S1

¸(1−ε)KS∗

. (83)

This implies that limS→S∗ φA = 0, from which we can conclude that Pr[S∗] = 0.
We can now derive a tight condition on the shape of the density function fA

around the upper bound S∗. Indeed, given that φA = fA ·∆A,

fA[S] is proportional to (S
∗−S)KS∗−1. (84)

Equation (84) together with φC = −φA proves Proposition 4.
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