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ABSTRACT 

 

This paper presents a “Generalized Nested Logit Model for a Combined Airport and Access 

Mode Choice”. The paper starts with a description of the airport system in Germany and some 

empirical findings concerning access mode and airport choice. The second part of this paper deals 

with the estimation of the aforementioned model. 

 

The aim is to develop a generally applicable airport and access mode choice model. Thereby it is 

possible to analyse future scenarios not existing today. Kohonen’s Self-Organizing-Maps are 

used to identify different airport categories. Based on these airport categories the aforementioned 

nested logit model is estimated. 

 

KEYWORDS: Access mode choice, airport choice, airport cluster, air traveller survey, artificial 

neural networks, grouping of alternatives, independence from irrelevant alternatives, Kohonen’s 

Self-Organizing Maps, nested logit model 

 

 

1. Introduction 
 

Modelling airport choice has been a subject of interest to air transport scientists and airport 

planners already for a while. The authors have reported of a market segment specific model 

approach to airport choice in Germany in a paper entitled “Airport Choice in Germany – New 

Empirical Evidence of the German Air Traveller Survey 2003 –“ presented at the ATRS 2005 

Conference in Rio de Janeiro, Brazil. In continuation of the analysis of airport choice, based on 
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the evidence coming from the data of the survey mentioned, this paper deals with the attempt to 

model the combined airport and access mode choice in Germany by market segment. 

 

Why model the combined airport and access mode choice? Our hypothesis was that an airport 

with good rail accessibility attracts passengers from a greater influential area, because they can 

reach the airport within a relatively short time by means of fast trains. This would at the same 

time mean that the modal split of the feeder travel flows would have higher portions of fast train 

usage. 

 

As we have seen from the data of the German Air Traveller Survey 2003 potential air travellers 

will prefer to choose an airport with good train service accessibility, given a good offer of flight 

services at that airport. Indeed, an airport with fast train access attracts passengers from other 

cities and urban areas served by fast inter-city trains, and these passengers will prefer these 

services when travelling to the airport in order to start the air journey proper there. A model 

describing the combined choice of access mode and airport may be a tool therefore for railway 

companies to forecast patronage of trains serving directly airports. In planning routes of trains 

serving airports the German railway company Deutsche Bahn has a great interest to study route 

alternatives and thus optimise the routing and scheduling process for future airport trains. The 

development of the model dealt with in this paper stems from this interest, testing of the model 

for practical planning purposes of the Deutsche Bahn is about to commence. 

 

The prime objective of the paper is to report on the methodological progress in devising and 

calibrating a so called generalized nested logit model of a combined access mode and airport 

choice for seven different market segments of the total air travel demand in Germany based upon 

the doctoral thesis of one of the authors, Marc Gelhausen. In supporting the model approach we 

will describe shortly the actual situation of airport choice in Germany, that is describe the 

different roles that airports play with respect to attracting passengers due to varying levels of rail 

infrastructure at German airports, the fast train utilisation in feeder travel to and from airports and 

describe some general characteristics of airport and access mode choice in Germany. 

 

The outline of the paper is as follows: 

 

• Airports in Germany: Functions and modal access 

• Access mode and airport choice: Some findings in Germany 

• Grouping of alternatives in models of discrete choice 

• Database and grouping of clusters: Kohonen’s self-organizing maps 

• Preparing the data set for model estimation and estimation results 

• Conclusions and further research needs 

 

2. Airports in Germany: Functions and Modal Access  
 

Germany, a country with a population of about 82 million people and a size of nearly 360 000 

km², has a rather dense network of classified airports. There are first of all 17 international 

airports (with the Berlin airport system consisting of three single airports counting as one) 

which – together with some ten regional airports – serve primarily the public air transport system 

with scheduled and non-scheduled services on domestic and international traffic relations. In 

2005, the international airports handled a traffic volume of 164 million passengers enplaned and 
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deplaned and of about 2.2 million air transport movements (ATM’s) on mainly scheduled 

services. 

 

Commercial air traffic in Germany is rather concentrated on a few airports, Frankfurt alone 

accounts with 52 million passengers for almost one third of the total passenger volume of 

Germany. The six airports with the highest traffic volumes, Frankfurt, München, Düsseldorf, 

Berlin, Hamburg and Stuttgart handle about 133 million passengers, which make up for more 

than 80 % of the total traffic. Only these airports have already now or face in the near future 

capacity problems, the other 11 international and the five regional airports, which carry less than 

20 % of the traffic, have sufficient capacity surplus. 

 

While most of the airports offer a mixture of scheduled, charter and tourism services and other 

non-scheduled services, there are several airports that rely more or less on low cost carriers. Hahn 

is an airport almost exclusively used by one low cost carrier, namely Ryanair; although this 

airport is located in rural areas and far from any agglomeration Ryanair succeeded within 4 years 

to generate a traffic volume of three million passengers in 2005. Other airports with high portions 

of low cost carrier traffic are Köln/Bonn, Berlin-Tegel and –Schönefeld, München, Stuttgart and 

Düsseldorf. Frankfurt as an airport with severe capacity problems does not provide any low cost 

carrier services, one reason being the scarcity of available slots. 

 

The two biggest airports, Frankfurt (52 million pass.) and München (29 million pass.) function as 

important airports for the origin-destination traffic as well as Lufthansa-hubs for corresponding 

traffic. In Frankfurt, more than 50 % of all passengers are transfer passengers taking advantage of 

the hub function, while in München this portion is smaller (35 %), however, growing from year 

to year with the still growing hub function of the airport. 

 

Access conditions to international German airports vary with their function and traffic 

importance. Clearly, all airports have more or less good road and motorway connections, and a 

growing number is equipped with rail terminals for urban transit or regional trains (Bremen, 

Hannover, Berlin-Tempelhof and –Schönefeld, Dresden, Leipzig/Halle, Düsseldorf, Köln/Bonn. 

Frankfurt, Stuttgart, Nürnberg and München). There are thus less international airports still 

lacking direct rail access, they are Hamburg, Berlin-Tegel, Hahn, Dortmund, Münster/Osnabrück, 

Erfurt and Saarbrücken. Among these, Berlin-Tegel and Hamburg are important airport carrying 

11.5 resp. 10.6 million passengers in 2005, the other airports have much lower traffic volumes. 

All airports except Bremen are served by scheduled bus lines, maintaining regional access to the 

urban area of the airport and inter-modal connections, in particular to main rail stations. 

 

From an integrated transport planning standpoint it is interesting to connect airports directly with 

inter-city trains so that short distance flights may be substituted by high speed trains and the 

modal split of trips complementary to air trips be changed to a higher degree of rail usage. Only 

three airports in Germany are multi-modal centers in a sense that they have next to the air 

terminal one or two rail terminals which serve regional trains as well as form part of the inter-

regional rail network. Köln/Bonn has the train station next to the terminal early since 2004. 

 

An example par excellence is Frankfurt airport with a terminal for trains serving the regional 

network and a separate rail terminal (next to the terminal for regional trains) with high speed 

inter-city trains serving the northern and southern networks of Deutsche Bahn in Germany. There 

are several high speed trains (so called ICE-trains, the highest train category of Deutsche Bahn) 
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per hour departing from and arriving in Frankfurt airport with destinations in a great number of 

urban areas in Germany. Since 2003 a new high speed line has been in service between the 

Rhein/Main and the Rhein/Ruhr Region, interconnecting Frankfurt airport not only with Köln and 

cities further north, but also directly with Köln/Bonn airport since 2004, and the same in the other 

direction, the urban area of Köln is not only connected with the Frankfurt region but also directly 

with Frankfurt airport. This of course includes a direct rail link between the two airports. 

 

Lufthansa is using reserved seats in these trains in order to feed long distance flights from 

Frankfurt with passengers from the Köln region, thus saving costs for otherwise providing short 

haul flights between Köln/Bonn and Frankfurt. The travel time by train is with one hour almost as 

short as the flight time, there is, however, a much denser frequency of services by train. 

Lufthansa has therefore created check-in facilities at Köln main station so that passengers can 

check through their luggage from Köln to the final destination and vice versa. This rail-air service 

can be regarded as an example for further inter-modal connections primarily connecting cities 

without direct access to the air transport system with hub airports by means of high speed trains, 

which serve as a “feeder flight” to typical flight connections with European and inter-continental 

destinations from the hub airport. 

 

The two other airports with direct inter-city train services are Düsseldorf and Leipzig/Halle. 

Düsseldorf is the third biggest airport in Germany with a traffic volume of 15.5 million 

passengers in 2005. Because of capacity problems Düsseldorf has not succeeded to build up hub 

functions. The airport is located at the Western edge of the Rhein-Ruhr District, an industrialised 

region with about 10 million people, predominantly living in urban areas. This catchment area is 

the biggest of its kind in Germany, Düsseldorf has to share it, however, with two other airports, 

that is Dortmund (1.7 million passengers) and Köln/Bonn (9.4 million passengers). Leipzig/Halle 

on the other side is a relatively small airport in East-Germany, which handled in 2005 about two 

million passengers. In contrast, the second biggest airport in Germany, München, is connected 

only to the urban rail network, the next inter-city rail terminal in München is more than 45 

Minutes travel time away. 

 

3. Access Mode and Airport Choice: Some Findings in Germany 
 

The aforementioned paper (Wilken et al. 2005) has reported in extenso of the findings of the 

German air traveller survey 2003 regarding airport choice behaviour. The main conclusions have 

been, that – on the basis of the regional structure given by 97 Spatial Planning Regions (SPR’s) 

in Germany (see also chapter 4) with an average population of 850 thousand inhabitants each– air 

travellers of any region choose on average between eight airports, with a standard deviation of 

two airports. Interestingly, the demand of the SPR Düsseldorf, in which Düsseldorf airport is 

located, is using 14 airports for commencing a flight; no other region in Germany is served by so 

many airports. On the other hand, the minimum number of airports used by the demand of one 

region – and thus the highest concentration of selecting airports in the revealed choice behaviour 

- is three airports. There is not a single zone the demand of which is served by just one airport. 

We can conclude that although there is a concentration of demand in selecting the nearest or most 

attractive airport -in fact, 67 % of the demand of an airport region chooses that airport -, in a 

decentralized airport environment like in Germany air travellers of a given region are selecting 

between a great number of airports - actually eight - for departing for an air journey. 
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We have seen as a result of an airport choice model estimation that airport choice varies with the 

type of air journey. A market segmentation according to the trip purpose (business, holiday and 

short stay personal) and trip distance (domestic, European and intercontinental) has shown that 

overall the two main factors influencing airport choice are the travel time to the airport and the 

existence of a direct flight connection to the destination airport, with the access travel time 

having the strongest influence on airport choice. For long haul flights the number of destinations 

served plays a role, too. The shorter the flight the more passengers choose an airport with a 

shorter access time. Business travellers are more time-sensitive than private travellers. The 

existence of a direct flight connection is more important for private travellers than for business 

travellers and the shorter the flight distance the more important this attribute becomes for 

international flights.  

 

One question in the German air traveller survey 2003 referred to the mode of transport used to 

reach the airport. The prespecified options and their modal share over all airports were 

 

• private car driver: 18 % 

• car passenger: 34 % 

• rental car driver: 4 % 

• taxi passenger: 19 % 

• bus passenger: 9 % 

• regional transit passenger: 11 % 

• train passenger: 5 % 

 

Three quarters of all air passengers in Germany reached the airport by car, however, only 18 % 

by driving a private car, most of the travellers coming to the airport by car have been car 

passengers. Only one quarter of all travellers came by public mode, most of them by public 

transit. Since access mode conditions vary from airport to airport the overall modal split can give 

only a general picture of mode choice, each airport has a specific modal distribution depending 

on the spectrum of access mode services and the importance of the airport in terms of supply of 

air services. In addition, individual preferences of travellers depend on personal factors, like car 

availability, locational conditions, like relative and absolute accessibility of airports, the type of 

journey, of modal supply conditions and air service quality of each airport. 

 

To demonstrate the modal variation between airports we can select a few rather unique examples, 

Frankfurt as an airport with a rich supply of regional and inter-city trains, Hahn as a low cost 

carrier airport relying solely on road (car and bus) access and Hamburg as an airport lying in an 

urban agglomeration without public rail transit, however, good regional bus services. 

 

The public mode portion in Frankfurt lies with 32 % clearly above average (25 %), most of the 

passengers arriving at Frankfurt airport by means of a public mode have chosen a train. In fact, 

18 % arrive by intercity train, thus coming from journey origins lying in greater distances away 

from the airport than typically found. Indeed, Frankfurt has the greatest influential area of any 

airport in Germany, also caused to a great deal by the great number of flight destinations and 

frequencies offered at that airport (490 thousand ATM’s in 2005). This modal concentration on 

trains verifies empirically the working hypothesis that fast train services will influence travellers’ 

behaviour regarding the choice set “access mode and airport”, in this case in favour of the 

intercity train to Frankfurt airport.  
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In contrast, passengers to Hahn airport, flying primarily for non-business reasons on low cost 

services, use in nine out of ten cases the private car, a taxi or rented car, only 11 % arrive by bus. 

Although the modal choice is limited to car and bus (offered only on a small number of routes) 

people come from places partly far away in order to catch low price flights. For the most part, 

people have to cover long ways to Hahn airport, since this airport is lying in a somewhat remote 

location, the nearest urban area being more than 100 kms away. Would Hahn airport be 

interconnected with the intercity rail network patronage would be much higher, since people 

prefer to take the train on longer distances. This will be shown when we look into the modal split 

of a sample of access relations to and from Frankfurt. 

 

Although Hamburg airport is located in an urban area of about 1.7 million people the site is not 

connected yet with the otherwise good rail transit network. Busses serve the airport, their modal 

share is therefore twice as high as on average. Nevertheless, the modal share of the car (private 

car, rented car, taxi) is with over 80 % higher than normally found at airports in Germany. One 

reason is the high patronage of taxis: Distances within the Hamburg region to the airport are 

comparatively short, the portion of passenger arriving by taxi is therefore with over 30 % 

relatively high, in fact, this portion is the highest modal share at German airports. 

 

As has been stated access mode choice varies with the trip purpose, too. Business travellers rely 

much more on taxi and rented car when going to the airport, 42 % of them use these modes, 

whereas private travellers are brought by private car to a much greater deal (45 %) to the airport, 

a taxi and rented car is chosen only in 15 % of all trips. 

 

For obvious reasons, passengers arriving at an airport by flight choose more than passengers 

commencing their air journey there, taxi and rented car in order to reach their final destination 

(35 % versus 16 %), passengers beginning the journey prefer to take a private car more often 

(23 % as opposed to 3 % of arriving passengers). 

 
Urban Area Share of Passengers Using 

Intercity Trains (%) 

Distance to 

Frankfurt (kms)

Hamburg 83 495 

Bremen 57 445 

Hannover 68 350 

Berlin 36 545 

Dortmund 57 225 

Düsseldorf 70 220 

Köln 68 180 

Leipzig 82 385 

Stuttgart 50 205 

Nürnberg 44 225 

München 66 390 

 

Tab. 3.1: Share of Passengers Using Intercity Trains to Frankfurt Airport 

 

As has been shown Frankfurt airport attracts the highest portion of passengers arriving by 

intercity trains (18 %). This average shades the high portions of train passengers coming from 

other cities, which are typically much better served by intercity trains than rural areas. All big 

urban areas in Germany are more or less served and interconnected by intercity trains, and since 

these areas of population and economic concentrations are at the same time important demand 
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generators, we find in most of them airports as well. It might be interesting therefore to analyse 

the modal share of passengers coming from these urban areas and choosing the train to Frankfurt 

airport to either begin or finish the flight. Based on the German air traveller of 2003 survey we 

can derive these data for a selection of 12 urban areas (see table 3.1). 

 

As can be seen passengers coming from other urban areas and choosing Frankfurt as airport take 

in most cases the intercity train, the train share varies between 36 % for Berlin passengers and 

83 % for Hamburg passengers. The variation may be partly caused by differences in train speed, 

train speeds between Hannover, Düsseldorf and Köln, and Stuttgart and München and Frankfurt 

are much higher than on the other routes. The combined preference for fast trains and Frankfurt 

as departure airport suggests to simulate this behaviour in a single model of access mode and 

airport choice. 

 

4. Grouping of Alternatives in Discrete Choice Models 
 

The fundamental hypothesis of discrete choice models is the assumption of individual utility 

maximisation. Alternatives are evaluated by means of an utility function and the one with the 

highest utility is supposed to be chosen. From an external point of view the utility of an 

alternative for a specific individual is a random variable, so that the utility Ui for alternative i is 

composed of a deterministic component Vi and a random component εi (Maier et al. 1990, p. 

100): 

 

(4.01) 
iii VU = + ε

 

The random component of the utility function is introduced for various reasons, e.g. a lack of 

observability of the relevant attributes of the alternatives or their incomplete measurability (Maier 

et al. 1990, pp. 98f.). 

 

From an external point of view, only evidence in terms of the probability of an alternative being 

the one with the highest utility can be given, because of the random component in the utility 

function. Specific discrete choice models differ in terms of their assumptions of the random 

component. The most prominent member of this class of models is the logit-model with 

independently and identically distributed random components. The choice probability of an 

alternative i is computed as (Train 2003, p. 40): 

 
( )(4.02) 
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This property of the logit-model is called “Independence from Irrelevant Alternatives” (IIA) and 

it is both a weakness and a strength of the model. Due to the distribution assumptions of the 

random component of the utility function it is not possible to model correlations among 

alternatives owing to unobserved factors. A major advantage of the IIA-property is the possibility 

to estimate the model parameters, excluding alternative-specific variables, on a subset of the 

alternatives (McFadden 1974, p. 113; McFadden 1978, pp. 87ff.; Ortuzar et al. 2001, pp. 227f.; 

Train 2003, pp. 52f.) and the possibility of an evaluation of new alternatives without the need to 

re-estimate alternative-unspecific model parameters (Domencich et al. 1975, p. 69f.). The 

problem of estimating alternative-specific variables from a subset of alternatives will be 

discussed below. 

 

The nested logit-model relaxes the IIA-restriction to some extent without losing the closed-form 

expression of the choice probabilities. For this purpose the random component in (4.01) is split 

up into a part , which varies over all alternatives i and a part , which is identical for all 

alternatives of a nest k (Maier et al. 1990, p. 154f.): 
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Each cluster k is characterised by an individual scale parameter  and an identical non-negative 

covariance for all alternatives i within a cluster k. Alternatives of different clusters are assumed 

not to be correlated. 
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For technical reasons the choice probabilities P(ai = aopt) are decomposed into an unconditional 

choice probability P(ck = copt) that cluster k is chosen, and a conditional choice probability P(ai = 

aopt | ai ∈ ck), that alternative i from cluster k is chosen (Maier et al. 1990, p. 156): 
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The hierarchical structure of (4.08) does not imply a sequential decision process. An extension to 

more than two levels is possible (see e.g. Ben-Akiva et al. 1985, p. 291ff.). 

 

In the nested logit-model the IIA-property does only hold for two alternatives of the same cluster: 

 
( ) ( ) 
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The ratio of the choice probabilities for two alternatives of different clusters depends on the 

characteristics of all alternatives of those two clusters: 
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As the nested logit-model lacks the IIA-property for some pairs of alternatives, a model 

estimation on a subset of the choice set equal to the logit-model is not possible. 

 

If it is feasible to form groups of at least approximatively similar clusters and to assign an 
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group of clusters must be represented by at least one member in this subset to enable the 

estimation of all cluster-specific scale parameters. (4.11) shows a covariance-matrix for six 

alternatives belonging to three groups, with two alternatives per group. Figure 4.1 shows the 

dependence between a group and a cluster for this example. 
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The letters A, B and C represent the covariance structure of a cluster. Same letters indicate an 

equal covariance structure for different clusters. Figure 4.1 illustrates the assignment of clusters 

to groups. 

 

Cluster 1 

Group 1 Group 2 Group 3

Cluster 5 Cluster 2 Cluster 3 Cluster 4 Cluster 6 

 

 

 

 

 

 

 
 

Fig. 4.1: Dependence between Clusters and Groups 

 

If identical alternative-specific model-parameters, especially alternative-specific constants, can 

be assumed reasonably well for different clusters of the same group, an estimation of all model-

parameters is feasible on a subset of all alternatives as described above. 

 

Applying the concept of grouping in the logit-model is possible, however, serves only to 

estimating alternative-specific variables, as there are no different scale parameters due to 

independently and identically distributed random components in the utility function. 

 

The main advantage of this approach does not only lie in the reduction of computational costs for 

very large choice sets, as many econometric software packages limit the maximum number of 

clusters and alternatives for nested logit estimations, but also in a better way of developing a 

more generally applicable choice model beyond the alternatives of the estimation dataset, e.g. in 

the context of scenario analysis. 

 

5. Database and Grouping of Clusters: Kohonen’s Self-Organizing Maps 
 

Database 

 

For the considered problem the German Air Traveller Survey 2003 (Berster et al. 2005) contains 

information on air journeys, especially: 

 

• Journey origin 

• Journey destination 

• Origin airport 

• Access mode to the airport 

• Duration of journey 

• Traveller information 

 

According to the length and purpose of a journey different market segments are defined: 

 

• Journeys to domestic destinations, subdivided into private and business trip purpose 

• Journeys to European destinations for business trip purpose 

• Journeys to European destinations for private short stay reasons up to 4 days 
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• Journeys to European destinations for holiday reasons for 5 days or longer 

• Journeys to intercontinental destinations, subdivided into private and business trip 

purpose 

 

For model estimation only travel demand originated in Germany is considered as air travellers are 

more free to choose airport and access mode to the airport. Table 5.1 shows the airports of the 

German Air Traveller Survey 2003 and the available access modes. 

 

In this study alternatives are characterized by: 

 

• Cost 

• Time 

• Frequency 

• Service 

 

 Car Kiss and Ride Rental Car Taxi Bus Urban Transit Train 

Berlin x x x x x x  

Bremen x x x x  x  

Dortmund x x x x x   

Dresden x x x x x x  

Düsseldorf x x x x x x x 

Erfurt x x x x x   

Frankfurt a. M. x x x x x x x 

Frankfurt Hahn x x x x x   

Friedrichshafen x x x x x x  

Hamburg x x x x x   

Hannover x x x x x x  

Karlsruhe-Baden x x x x x   

Köln/Bonn x x x x x   

Leipzig/Halle x x x x x  x 

Lübeck x x x x x   

München x x x x x x  

Münster/Osnabrück x x x x x   

Niederrhein x x x x x   

Nürnberg x x x x x x  

Paderborn/Lippstadt x x x x x   

Saarbrücken x x x x x   

Stuttgart x x x x x x  

 

Tab. 5.1: Airports and Available Access Modes 

 

Only the access mode “car” includes parking at the airport for the duration of the journey. For 

“kiss and ride” the number of trips is double compared to all other access modes as the car is 

parked at the trip origin. The “taxi” alternative includes taxis and private bus services operating 

on demand only. The access mode “bus” contains scheduled public-transit buses. “Urban transit” 

and “train” are distinguished in terms of the tariff paid. If the tariff of the Deutsche Bahn applies, 

it is a train, otherwise it is an urban railway. 
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Access time and access costs are defined for the double trip length between the origin of the 

journey and origin airport, so that there is no need for an arbitrary allocation of any parking fees 

at the airport to either the outbound or the return trip. Access frequency is defined as the daily 

frequency. Its inverse equals the waiting time in the case of a uniformly distributed arrival time. 

The population density is chosen as a measure for the access time to public transport. The 

evaluation of the access quality from the access mode terminal to the air terminal is measured 

binary because of a lack of information about the chosen parking site and air terminal. 

 
Variable (Abbreviation) Definition 

Access Cost (COST) Cost in € per Person incl. Parking Fees, Double Trip Length 

Access Time (TIME) Time in Minutes, Double Trip Length 

Waiting Time (WAIT) Inverse of the Daily Frequency 

Inverse of the Population Density (INVPD) Inverse of Residents per km2 

Inverse of the Competition on a Direct Flight Connection(COMP) Inverse of the Number of Alliances and Independent Airlines 

Quality of Terminal Access (AAS) binary (good/bad) 

Existence of a Direct Flight Connection (DIRECT) binary (good/bad) 

Frequency of a Direct Flight Connection (DFREQ) Number Flights per week 

Existence of a Low-Cost Connection (LC) binary (yes/no) 

Frequency of a Low-Cost Connection(LCFREQ) Number Low-Cost Flights per week 

Existence of a Charter Flight Connection (CC) binary (yes/no) 

Frequency of a Charter Flight Connection (CCFREQ) Number Charter Flights per week 

 

Tab. 5.2: Definition of Explanatory Variables 

 

The fare level of a direct flight connection to a specific destination is measured via its 

competition. It is assumed that a higher degree of competition indicates a lower fare level. For 

stop-over flights a maximum of competition is reached because of the many possible flights 

between an origin and a destination. The time advantage of a direct flight connection is measured 

via its existence, its quality is assessed by means of its weekly flight frequency. To consider price 

levels, low-cost- and charter-flights are separated additionally. By reasons of a lack of 

information exact air fares are not considered. Table 5.2 summarizes the explanatory variables 

and their definitions. 

 
Attributes (Abbreviation) Definition 

Number of Domestic Low-Cost Flights (LCBRD) Flights per Week 

Number of Domestic Charter Flights (CCBRD) Flights per Week 
Number of Domestic Full Service Flights (LBRD) Flights per Week 
Number of European Low-Cost Flights (LCEUR) Flights per Week 
Number of European Charter Flights (CCEUR) Flights per Week 
Number of European Full Service Flights (LEUR) Flights per Week 
Number of Intercontinental Low-Cost Flights (LCINT) Flights per Week 
Number of Intercontinental Charter Flights (CCINT) Flights per Week 
Number of Intercontinental Full Service Flights (LINT) Flights per Week 
Number of Domestic Destinations(NUMBRD) Number of Destinations 

Number of European Destinations (NUMEUR) Number of Destinations 
Number of Intercontinental Destinations (NUMINT) Number of Destinations 

 

Tab. 5.3: Attributes for Airport Categorisation 
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Airports are categorised from a demand-oriented point of view. Relevant attributes for a 

categorisation concern the structure of their flight plan. Table 5.3 summarises the attributes 

utilised and their definitions. 

 

The German Air Traveller Survey contains no information about the explanatory variables and 

attributes described above, so they had to be gathered from different sources. Table 5.4 

summarises the data sources for the variables and attributes. 

 
Variable Data Sources 

Choices Berster et al. (2003) 

Access Time and Access Cost for Car and Kiss and Ride Kraftfahrt-Bundesamt (2003), ADAC (2003), Microsoft (2003), Deutsche 

Flughäfen (2003a), INVERMO (2005) 

Access Time and Access Cost for Rental Car Kraftfahrt-Bundesamt (2003), ADAC (2003), Microsoft (2003), Avis 

(2003), Sixt (2003), INVERMO (2005) 

Access Time and Access Cost for Taxi Taxi (2003), Private Busdienste (2003), Microsoft (2003), INVERMO 

(2005) 

Access Time, Access Cost and Frequency for Bus and 

Urban Railway 

Verkehrsverbünde (2003), Die Bahn (2003a) 

Access Time, Access Cost and Frequency for Train Die Bahn (2003b) 

Population Density Statistisches Bundesamt (2003) 

Quality of Terminal Access Deutsche Flughäfen (2003b) 

Flight Frequency and Level of Competition on a Direct 

Flight Connection and the Number of Destinations of an 

Airport 

OAG (2003) 

 

Tab. 5.4: Database 

 

Due to a lack of information on alternative-specific characteristics some assumptions had to be 

made: 

 

• Basis for the access modes car, kiss and ride and rental car is an averaged car. 

• Parking fees are considered for the cheapest feasible category. 

• For public access modes the connection with the shortest travel time for each mode of 

transport is chosen. 

• Basis for access cost per person for private transport modes is an average of group size. 

 

The general level of spatial abstraction are so called Spatial Planning Regions. Spatial Planning 

Regions with an airport and all Spatial Planning Regions neighbouring an airport region are 

broken down into counties to enable the definition of sensible bus and urban transit connections. 

Figure 5.1 illustrates the segmentation of Germany into Spatial Planning Regions and counties. 

Joining counties of the same colour constitute a spatial planning region. 
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Fig. 5.1: Segmentation of Germany in Spatial Planning Regions and Districts 

 

Grouping of Clusters 

 

Clusters of the same group are characterised by an identical covariance-matrix and alternative-

specific parameters, especially alternative-specific constants. As correlations among alternatives 

and alternative-specific constants represent unobserved factors, a grouping of clusters 

corresponds to an aggregation in terms of similarity of those unobserved factors. Airport and 

access mode choice is a two-dimensional choice problem, so that a categorisation in respect of 

both dimensions is necessary, however, as the access mode choice is sufficiently general, only 

airports are to be categorized. 

 

As mentioned above, airports have been categorised from a demand-oriented point of view by 

means of the general “picture” of flight services at an airport. The flight service of an airport is 

measured on the basis of the number of flights per destination type and flight type and the 

number of different destinations segmented by type of destination. Three types of destinations are 

defined: 

 

• Domestic 

• Europe 

• Intercontinental 

 

Flight types are divided into: 

 

• Low-Cost 

• Charter 
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• Full Service 

 

Table 5.3 summarises the relevant attributes for airport categorization. 
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Fig. 5.2: Self-Organizing Map 

 

Clusters are identified with Kohonen’s Self-Organizing Map (see e.g. Kohonen 2001, pp. 109ff.). 

Figure 5.2 is a schematic illustration of a Self-Organizing Map. The neurons are simple 

computational units connected by weighted edges. Computations in a neuron are performed 

according to a simple transfer function. Input neurons correspond to clustering attributes and 

output neurons represent the clusters. The transfer function of the input neurons is the identical 

function f(x) = x. The output neurons have a “winner-takes-all” transfer function. The neuron 

with the smallest distance between the input vector and its synaptic weight vector wins the 

competition and is activated. During learning of the self-organizing map the synaptic weight 

vector of the output neurons approach the corresponding cluster centroid as the right part of 

figure 5.2 illustrates. 

 

Table 5.5 shows the parameters for an optimal cluster identification. The self-organizing map was 

not highly sensitive with regard to parameter variations. 

 

Parameter Value 

Topology of output neurons Linear 

Measure of distance Euclidean 

Neighbourhood function linear: 2 - 0.002*Iteration 

Learning rate 0.01 

Number of iterations 10 000 

Data normalisation yes, [-1; 1] 

Number of input neurons 12 

Number of output neurons 3 

 

Tab. 5.5: Parameters of a Self-Organizing Map for Airport Categorisation 

 

Three airport categories have been identified. The output neurons are arranged in a linear grid 

and distances between input vectors and output neurons are measured Euclidean. A linear 

neighbourhood function is used and the neighbourhood contains all output neurons at the 

beginning of the learning process. It shrinks to 0 within 1000 iterations. The number of learning 
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iterations is 10 000 and the learning rate is chosen rather small with 0.01. Each element of the 

input vector is normalised to the interval [-1; 1]. 

 

Table 5.6 shows the synaptic weights for the trained self-organizing map. The colour of the 

columns equals the colour of the synaptic weights in figure 5.2. 

 

    Airport   

Attributes Category 1 Category 2 Category 3 

LCBRD 0.054281 0.026181 -0.973566 

CCBRD 0.63343 -0.23698 -0.902359 

LBRD 0.820399 -0.16164 -0.810737 

LCEUR -0.814996 -0.248973 -0.717447 

CCEUR 0.673964 0.145995 -0.811895 

LEUR 0.767974 -0.596754 -0.967617 

LCINT -0.999997 -0.507511 -0.862715 

CCINT 0.459986 -0.679604 -0.986041 

LINT 0.128171 -0.975403 -0.999997 

NUMBRD 0.810002 0.570222 -0.409338 

NUMEUR 0.791409 -0.012681 -0.737397 

NUMINT 0.314031 -0.817745 -0.991489 

 

Tab. 5.6: Cluster Centroids of Airport Categories 

 

Table 5.7 illustrates the assignment of airports of the German Air Traveller Survey 2003 to 

identified categories. 

 
Category Airport (IATA-Code) 

AP 1 Frankfurt a. M. (FRA) 

AP 1 München (MUC) 

AP 2 Düsseldorf (DUS) 

AP 2 Hamburg (HAM) 

AP 2 Köln/Bonn (CGN) 

AP 2 Stuttgart (STR) 

AP 3 Bremen (BRE) 

AP 3 Dortmund (DTM) 

AP 3 Dresden (DRS) 

AP 3 Erfurt (ERF) 

AP 3 Frankfurt Hahn (HHN) 

AP 3 Friedrichshafen (FDH) 

AP 3 Hannover (HAJ) 

AP 3 Karlsruhe/Baden (FKB) 

AP 3 Leipzig/Halle (LEJ) 

AP 3 Lübeck (LBC) 

AP 3 Münster/Osnabrück (FMO) 

AP 3 Niederrhein (NRN) 

AP 3 Nürnberg (NUE) 

AP 3 Paderborn/Lippstadt (PAD) 

AP 3 Saarbrücken (SCN) 

 

Tab. 5.7: Assignment of Airports to Categories 
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Because the three airports of Berlin were interviewed as one single airport, however, airport 

characteristics vary substantially, they are not usable for model estimation. For this reason they 

are not considered in the airport categorization. 

 

Table 5.8 and table 5.9 illustrate some properties of the identified three airport categories in per 

cent and absolute values. The two highest values concerning the flight frequency and the number 

of different destinations are highlighted in colour. 

 

 LCBRD CCBRD LBRD LCEUR CCEUR LEUR LCINT CCINT LINT NUMBRD NUMEUR NUMINT

AP 1 3.18 0.43 20.39 0.87 5.83 55.81 0.00 1.24 12.25 8.31 60.27 31.42 

AP 2 8.97 0.58 28.27 11.65 11.76 37.24 0.02 0.71 0.79 16.23 74.62 9.16 

AP 3 1.29 0.86 39.22 32.57 15.57 10.05 0.02 0.42 0.00 19.94 78.90 1.16 

 

Tab. 5.8: Structure of Flights per Airport Category (in %) 

 

 LCBRD CCBRD LBRD LCEUR CCEUR LEUR LCINT CCINT LINT NUMBRD NUMEUR NUMINT

AP 1 106 16 756 32 225 2138 0 49 517 19 144 83 

AP 2 104 7 348 129 153 487 0 11 11 17 80 12 

AP 3 3 1 80 47 25 39 0 0 0 6 22 1 

 

Tab. 5.9: Structure of Flights per Airport Category (absolute) 

 

Airports of the first category are hubs. They offer mainly full service flights. Their focus is 

mainly on European and intercontinental destinations. The number of domestic destinations is 

relatively low, but they are served with higher frequency. Hub airports offer the highest number 

of flights and destinations. 

 

Airports of the second category serve mainly domestic and European destinations with full 

service flights. The share of European low-cost and charter flights is approximately equal but 

much smaller than the share of full service flights. 

 

The structure of flights and destinations of airports of the third category is similar to those of the 

second category, but their focus is shifted more on domestic full service flights and European 

low-cost and charter traffic. These airports are the smallest in terms of number of flights and 

destinations. 

 

Table 5.10 shows the standard deviation of the attributes for each attribute. Airports of the first 

category exhibit the greatest and airports of the third category the smallest heterogeneity. 

 

 LCBRD CCBRD LBRD LCEUR CCEUR LEUR LCINT CCINT LINT NUMBRD NUMEUR NUMINT

AP 1 96.00 3.50 75.00 8.50 37.50 279.00 0.00 18.00 396.00 1.00 16.50 43.00 

AP 2 77.00 0.00 32.00 164.50 66.50 162.00 0.50 2.00 1.50 2.50 5.50 1.00 

AP 3 0.00 0.00 68.00 9.00 21.00 29.50 0.00 0.00 0.00 2.50 10.50 0.00 

 

Tab. 4.10: Standard Deviation of Attributes 
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6. Preparing the Data Set for Model Estimation and Estimation Results 
 

Preparing the Data Set for Model Estimation 

 

For model estimation the estimation data set is partitioned into several disjoint data subsets. Each 

data subset contains only a subset of the full set of airport-access mode alternatives, namely one 

airport of each category and its access modes. Each data subset includes observations of 

individuals, who have chosen one of the alternatives of the reduced alternative set. By a suitable 

definition of data subsets, it is possible to estimate a model with the full set of seven access 

modes for all three airport categories. For this purpose, the inclusion of the airports 

Frankfurt/Main, Düsseldorf and Leipzig/Halle is necessary, as these are the only airports of their 

category with an access via train in 2003. The individual data subsets are merged into a single 

new estimation data set. The number of alternatives is reduced from 122 to 21. By weighting 

each observation the estimation data set is statistically representative. Figure 6.1 shows the 

definition of the data subsets. The nearest airport of each category is assigned to each data set 

marked in different colours. Every subset is named according to its airport of the third category. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6.1: Data Subsets and Assignment of Airports 

 

General Model Estimation and Application 

 

After selecting the airports and access modes for a specific application case, they are assigned to 

categories with the appropriate model parameters. The model can be applied to any number of 

airports. An application of the estimated model to other airports and airport/access mode 

combinations than those of the estimation data set is possible as a result of the grouping of 

clusters. Figure 6.2 summarises the general process of the model estimation and its application. 

The next chapter deals with the estimation of the group-specific model parameters. 
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Fig. 6.2: Estimation and Application of Airport and Access Mode Choice Model 

 

Estimation Results 

 

Table 6.1 shows the reduced alternative set. Every alternative is being made up of an airport 

category and an access mode to the airport. Figure 6.3 illustrates the nesting structure. Every nest 

consists of one airport category at the top and seven access modes below subdivided into private 

(PR) and public (PU) transport. 

 

The deterministic part of the utility function is of a linear form: 

 

(6.1) ∑+=
k

i,kkii x*baltV

 

where 

 

 alti: Alternative-specific constant of alternative i 

 bk: Coefficient of attribute k 

 xk, i: Value of attribute k for alternative i 

 

Alternative specific constants are denominated according to their alternative abbreviation. One 

alternative-specific constant has to be arbitrarily chosen and set to zero. In this study the constant 

of the alternative AP 3/Train is set to zero. Scale parameters are normalised on the lowest level of 

the nesting structure to a value of one. 
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Alternative Abbreviation 

AP 1/Car AP1CAR 

AP 1/Kiss and Ride AP1KAR 

AP 1/Rental Car AP1RC 

AP 1/Taxi AP1TAXI 

AP 1/Bus AP1BUS 

AP 1/Urban Railway AP1UR 

AP 1/Train AP1TR 

AP 2/Car AP2CAR 

AP 2/Kiss and Ride AP2KAR 

AP 2/Rental Car AP2RC 

AP 2/Taxi AP2TAXI 

AP 2/Bus AP2BUS 

AP 2/Urban Railway AP2UR 

AP 2/Train AP2TR 

AP 3/Car AP3CAR 

AP 3/Kiss and Ride AP3KAR 

AP 3/Rental Car AP3RC 

AP 3/Taxi AP3TAXI 

AP 3/Bus AP3BUS 

AP 3/Urban Railway AP3UR 

AP 3/Train AP3TR 

 

Tab. 6.1: Reduced Alternative Set 

 

 

 

APi 

PRi PUi 

APiCAR APiKAR APiRC APiTAXI APiBUS APiUR APiTR 

i=1, 2, 3 … … 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6.3: Nesting Structure 

 

 

Model parameters are estimated via maximum-likelihood and the BFGS-algorithm is used for 

numerical optimisation (see e.g. Greene 2003, pp. 938ff.). The covariance matrix of the estimated 

parameters is computed by means of the BHHH-estimator (see e.g. Train 2003, pp. 196ff.). The 

significance of model parameters is evaluated by the t-ratio and p-value. The goodness-of-fit is 

assessed by means of the pseudo-R
2
. Benchmark is a model without any variables (R2null) and a 

market share model (R2const). 
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Tables 6.2 - 6.8 show the estimated model parameters, t-ratios and p-value for the seven market 

segments as defined above. Alternative-specific constants and scale parameters are separated by a 

dashed line. 

 

Variable Coefficient Standard Deviation t-ratio p-value 

COST -0.0263035 7.47E-05 -352.091 2.89E-15 

TIME -0.0081889 3.65E-05 -224.172 2.89E-15 

WAIT -28.8061 0.0521136 -552.755 2.89E-15 

INVPD -187.86 2.74598 -68.4127 2.89E-15 

COMP -0.158635 0.0204772 -7.74689 9.33E-15 

AAS 0.920627 0.0109263 84.2575 2.89E-15 

DIRECT 2.29637 0.0252162 91.0672 2.89E-15 

DFREQ 0.00682913 0.00016972 40.2374 2.89E-15 

AP1CAR -0.89308 0.0299652 -29.8039 2.89E-15 

AP1KAR -0.935515 0.0312753 -29.9123 2.89E-15 

AP1RC -4.1011 0.0360866 -113.646 2.89E-15 

AP1TAXI -1.66527 0.0317124 -52.5116 2.89E-15 

AP1BUS -0.0749869 0.0448874 -1.67055 0.0948097 

AP1UR 0.671661 0.0431181 15.5772 2.89E-15 

AP1TR -0.289548 0.0422378 -6.85519 7.12E-12 

AP2CAR -1.42599 0.0497169 -28.6823 2.89E-15 

AP2KAR -0.969869 0.0508523 -19.0723 2.89E-15 

AP2RC -4.31713 0.0554302 -77.884 2.89E-15 

AP2TAXI -1.66024 0.0511273 -32.4727 2.89E-15 

AP2BUS -2.0108 0.0755529 -26.6145 2.89E-15 

AP2UR -0.561955 0.0722517 -7.77775 7.33E-15 

AP2TR -0.628393 0.0717579 -8.75712 2.89E-15 

AP3CAR -2.32656 0.0266369 -87.3434 2.89E-15 

AP3KAR -2.28413 0.0265816 -85.9291 2.89E-15 

AP3RC -4.56071 0.0611955 -74.527 2.89E-15 

AP3TAXI -3.28287 0.0273826 -119.889 2.89E-15 

AP3BUS -5.74305 0.150649 -38.1219 2.89E-15 

AP3UR -2.56922 0.0464991 -55.2532 2.89E-15 

PR1 1.07092 0.0100494 106.566 2.89E-15 

PU1 0.745385 0.00715937 104.113 2.89E-15 

PR2 0.492518 0.00595683 82.6813 2.89E-15 

PU2 0.390636 0.00358923 108.835 2.89E-15 

PR3 0.817955 0.0174313 46.9245 2.89E-15 

PU3 0.428619 0.0104805 40.8967 2.89E-15 

AP1 1.81029 0.0161987 111.755 2.89E-15 

AP2 2.10174 0.0240208 87.4967 2.89E-15 

AP3 2.35248 0.0467621 50.3075 2.89E-15 

     

   R2(null) 57.41% 

   R2(const) 43.82% 

 

Tab. 6.2: Nested Logit-Model for Domestic Private Travel (BRD P) 
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Variable Coefficient Standard Deviation t-ratio p-value 

COST -0.0204609 1.08E-05 -1900.36 2.89E-15 

TIME -0.0152572 2.79E-05 -546.331 2.89E-15 

WAIT -18.935 0.0524438 -361.053 2.89E-15 

INVPD -21.8829 1.08584 -20.1529 2.89E-15 

AAS 1.12781 0.00482371 233.805 2.89E-15 

DIRECT 3.64119 0.0137238 265.318 2.89E-15 

DFREQ 0.00601159 8.99E-05 66.8909 2.89E-15 

AP1CAR 0.821324 0.0249217 32.9562 2.89E-15 

AP1KAR -0.205879 0.0254374 -8.09355 2.89E-15 

AP1RC -1.86138 0.0256406 -72.5952 2.89E-15 

AP1TAXI -0.3315 0.0251872 -13.1615 2.89E-15 

AP1BUS -1.47598 0.0298635 -49.4241 2.89E-15 

AP1UR -0.361618 0.0277497 -13.0315 2.89E-15 

AP1TR -1.53084 0.0277493 -55.1667 2.89E-15 

AP2CAR 0.448667 0.0240099 18.6868 2.89E-15 

AP2KAR -1.03968 0.0243685 -42.6648 2.89E-15 

AP2RC -1.5527 0.024637 -63.023 2.89E-15 

AP2TAXI -0.475198 0.0243418 -19.5219 2.89E-15 

AP2BUS -1.74549 0.0306954 -56.8649 2.89E-15 

AP2UR -0.554791 0.0284689 -19.4876 2.89E-15 

AP2TR -0.771201 0.0283786 -27.1755 2.89E-15 

AP3CAR -0.625039 0.0221069 -28.2735 2.89E-15 

AP3KAR -1.73868 0.0222633 -78.0963 2.89E-15 

AP3RC -2.23438 0.025964 -86.0567 2.89E-15 

AP3TAXI -1.82039 0.0224969 -80.9173 2.89E-15 

AP3BUS -3.74058 0.0331825 -112.728 2.89E-15 

AP3UR -2.3761 0.0182418 -130.256 2.89E-15 

PR1 1.02375 0.00561628 182.283 2.89E-15 

PU1 0.978059 0.00470008 208.094 2.89E-15 

PR2 1.00829 0.0054788 184.035 2.89E-15 

PU2 0.992109 0.00421163 235.564 2.89E-15 

PR3 1.00988 0.011452 88.1839 2.89E-15 

PU3 0.999286 0.00799378 125.008 2.89E-15 

AP1 1.01119 0.00545905 185.231 2.89E-15 

AP2 1.00887 0.00552003 182.766 2.89E-15 

AP3 1.01164 0.011702 86.45 2.89E-15 

     

   R2(null) 54.10% 

   R2(const) 40.47% 

 

Tab. 6.3: Nested Logit-Model for Domestic Business Travel (BRD B) 
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Variable Coefficient Standard Deviation t-ratio p-value 

COST -0.0199987 6.35E-05 -315.076 2.89E-15 

TIME -0.0061063 3.08E-05 -197.958 2.89E-15 

WAIT -8.33078 0.101522 -82.0589 2.89E-15 

INVPD -215.876 3.45959 -62.3992 2.89E-15 

COMP -1.22176 0.0143873 -84.9193 2.89E-15 

AAS 0.20336 0.0105667 19.2453 2.89E-15 

DIRECT 3.63327 0.0204966 177.262 2.89E-15 

DFREQ 0.0104684 0.00020263 51.6641 2.89E-15 

LC 0.0863075 0.0103855 8.31037 2.89E-15 

LCFREQ 0.0631856 0.00061005 103.575 2.89E-15 

AP1CAR -0.498688 0.0666011 -7.48768 7.02E-14 

AP1KAR 0.318789 0.0674283 4.72781 2.27E-06 

AP1RC -3.33871 0.0706322 -47.269 2.89E-15 

AP1TAXI -0.435522 0.06765 -6.43788 1.21E-10 

AP1BUS 0.210693 0.0906689 2.32377 0.020138 

AP1UR 1.50982 0.0897749 16.8179 2.89E-15 

AP1TR 0.122875 0.0904775 1.35807 0.174442 

AP2CAR -0.303182 0.0680182 -4.45737 8.30E-06 

AP2KAR 0.278229 0.0686423 4.05333 5.05E-05 

AP2RC -3.171 0.0716133 -44.2795 2.89E-15 

AP2TAXI -0.0993231 0.0688372 -1.44287 0.149057 

AP2BUS 0.65932 0.0990006 6.65975 2.74E-11 

AP2UR 1.27978 0.0981204 13.043 2.89E-15 

AP2TR 0.98543 0.0983198 10.0227 2.89E-15 

AP3CAR 0.40639 0.0634284 6.40707 1.48E-10 

AP3KAR 0.538874 0.0643244 8.37744 2.89E-15 

AP3RC -3.70737 0.0712379 -52.0421 2.89E-15 

AP3TAXI -0.131292 0.0646538 -2.0307 0.0422853 

AP3BUS 0.528475 0.127801 4.13513 3.55E-05 

AP3UR 0.71755 0.126304 5.68113 1.34E-08 

PR1 0.764486 0.0087763 87.1079 2.89E-15 

PU1 0.593257 0.00626677 94.6671 2.89E-15 

PR2 0.767123 0.00715629 107.196 2.89E-15 

PU2 0.543582 0.00583578 93.1464 2.89E-15 

PR3 0.821821 0.00996985 82.4306 2.89E-15 

PU3 0.395656 0.00806925 49.0325 2.89E-15 

AP1 1.80601 0.0199672 90.4489 2.89E-15 

AP2 1.76862 0.0162451 108.871 2.89E-15 

AP3 1.74828 0.0226854 77.0664 2.89E-15 

     

   R2(null) 52.40% 

   R2(const) 41.94% 

 

Tab. 6.4: Nested Logit-Model for European Private Short Stay Travel (EUR S) 
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Variable Coefficient Standard Deviation t-ratio p-value 

COST -0.0173617 2.08E-05 -835.813 2.89E-15 

TIME -0.00857067 1.13E-05 -759.386 2.89E-15 

WAIT -4.40982 0.0215587 -204.549 2.89E-15 

INVPD -235.641 1.1008 -214.064 2.89E-15 

COMP -1.13258 0.00417551 -271.244 2.89E-15 

AAS 0.46823 0.00313156 149.52 2.89E-15 

DIRECT 3.31697 0.00579373 572.511 2.89E-15 

DFREQ 0.0153856 7.51E-05 204.84 2.89E-15 

LC 0.563633 0.00232754 242.158 2.89E-15 

AP1CAR -0.783801 0.0163485 -47.9432 2.89E-15 

AP1KAR 1.19964 0.0166094 72.2267 2.89E-15 

AP1RC -3.24672 0.0176445 -184.008 2.89E-15 

AP1TAXI -0.153202 0.0166854 -9.1818 2.89E-15 

AP1BUS 0.46742 0.0277141 16.8658 2.89E-15 

AP1UR 1.96562 0.0272271 72.1935 2.89E-15 

AP1TR 0.850638 0.027015 31.4876 2.89E-15 

AP2CAR -1.02568 0.0149567 -68.5768 2.89E-15 

AP2KAR 0.903728 0.0152148 59.398 2.89E-15 

AP2RC -3.10541 0.0159476 -194.726 2.89E-15 

AP2TAXI -0.187646 0.0152637 -12.2936 2.89E-15 

AP2BUS -1.32489 0.0236498 -56.0211 2.89E-15 

AP2UR -0.154352 0.0227366 -6.7887 1.13E-11 

AP2TR -0.359231 0.0226828 -15.8371 2.89E-15 

AP3CAR -0.377357 0.0132672 -28.4428 2.89E-15 

AP3KAR 0.315622 0.0135114 23.3597 2.89E-15 

AP3RC -4.37193 0.0182017 -240.194 2.89E-15 

AP3TAXI -0.628438 0.013613 -46.1644 2.89E-15 

AP3BUS -1.77275 0.0123277 -143.803 2.89E-15 

AP3UR -1.44559 0.00937011 -154.277 2.89E-15 

PR1 0.61189 0.00189196 323.417 2.89E-15 

PU1 0.3847 0.00150032 256.412 2.89E-15 

PR2 0.570138 0.0018957 300.753 2.89E-15 

PU2 0.437515 0.0014318 305.569 2.89E-15 

PR3 0.610065 0.00342601 178.069 2.89E-15 

PU3 0.551239 0.00290076 190.033 2.89E-15 

AP1 1.65075 0.0049926 330.639 2.89E-15 

AP2 1.92646 0.00606395 317.691 2.89E-15 

AP3 1.99236 0.0108685 183.315 2.89E-15 

     

   R2(null) 52.29% 

   R2(const) 38.22% 

 

Tab. 6.5: Nested Logit-Model for European Holiday Travel (EUR H) 
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Variable Coefficient Standard Deviation t-ratio p-value 

COST -0.0216885 2.66E-05 -816.759 2.89E-15 

TIME -0.00795957 1.99E-05 -399.792 2.89E-15 

WAIT -9.94709 0.0352918 -281.853 2.89E-15 

COMP -0.182127 0.00715126 -25.4678 2.89E-15 

AAS 0.504623 0.00472046 106.901 2.89E-15 

DIRECT 1.43564 0.00850917 168.717 2.89E-15 

DFREQ 0.0177437 0.00010425 170.208 2.89E-15 

LC 0.275153 0.00504501 54.5396 2.89E-15 

LCFREQ 0.0761092 0.00037252 204.307 2.89E-15 

AP1CAR 0.72216 0.0296247 24.3769 2.89E-15 

AP1KAR 0.233292 0.0300636 7.75995 8.44E-15 

AP1RC -0.661771 0.0301596 -21.9423 2.89E-15 

AP1TAXI 0.750386 0.030056 24.9663 2.89E-15 

AP1BUS -0.436805 0.0640814 -6.8164 9.33E-12 

AP1UR 1.33854 0.063386 21.1173 2.89E-15 

AP1TR -0.0557889 0.0635451 -0.877942 0.379975 

AP2CAR 0.393121 0.0291205 13.4998 2.89E-15 

AP2KAR -0.260475 0.0294758 -8.83691 2.89E-15 

AP2RC -0.671533 0.0296515 -22.6475 2.89E-15 

AP2TAXI 0.415442 0.029515 14.0756 2.89E-15 

AP2BUS -1.76693 0.0359288 -49.1786 2.89E-15 

AP2UR -0.855622 0.0343798 -24.8873 2.89E-15 

AP2TR -0.848627 0.0343025 -24.7395 2.89E-15 

AP3CAR -0.300282 0.0223921 -13.4102 2.89E-15 

AP3KAR -0.698722 0.0227567 -30.7041 2.89E-15 

AP3RC -1.05248 0.0239982 -43.8567 2.89E-15 

AP3TAXI -0.609462 0.0226451 -26.9137 2.89E-15 

AP3BUS -2.26991 0.0401428 -56.5459 2.89E-15 

AP3UR -1.49274 0.0246333 -60.5983 2.89E-15 

PR1 0.808397 0.00380609 212.396 2.89E-15 

PU1 0.386155 0.00263013 146.82 2.89E-15 

PR2 0.783306 0.00371673 210.751 2.89E-15 

PU2 0.708662 0.00269609 262.848 2.89E-15 

PR3 0.937914 0.0123815 75.7514 2.89E-15 

PU3 0.805435 0.0108905 73.9574 2.89E-15 

AP1 1.61072 0.00814231 197.821 2.89E-15 

AP2 1.67197 0.0073826 226.474 2.89E-15 

AP3 1.77295 0.0232875 76.1333 2.89E-15 

     

   R2(null) 48.58% 

   R2(const) 35.96% 

 

Tab. 6.6: Nested Logit-Model for European Business Travel (EUR B) 
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Variable Coefficient Standard Deviation t-ratio p-value 

COST -0.0138527 2.31E-05 -600.751 2.89E-15 

TIME -0.00541014 1.71E-05 -316.804 2.89E-15 

WAIT -18.7546 7.06E-05 -265589 2.89E-15 

INVPD -25.6109 1.1622 -22.0365 2.89E-15 

AAS 0.840462 0.00491188 171.108 2.89E-15 

DIRECT 1.85847 0.00516084 360.109 2.89E-15 

AP1CAR -1.67803 0.0043471 -386.012 2.89E-15 

AP1KAR -0.675255 0.00641839 -105.206 2.89E-15 

AP1RC -4.52249 0.0104444 -433.006 2.89E-15 

AP1TAXI -2.24118 0.00699765 -320.276 2.89E-15 

AP1BUS -2.76277 0.0150412 -183.68 2.89E-15 

AP1UR -0.567135 0.00827126 -68.5669 2.89E-15 

AP1TR -0.628369 0.00965685 -65.0698 2.89E-15 

AP2CAR -2.55593 0.00563923 -453.241 2.89E-15 

AP2KAR -0.781095 0.0063191 -123.609 2.89E-15 

AP2RC -5.48899 0.0179425 -305.921 2.89E-15 

AP2TAXI -1.9829 0.00663292 -298.949 2.89E-15 

AP2BUS -1.93506 0.0254801 -75.9441 2.89E-15 

AP2UR -1.75212 0.0212681 -82.3822 2.89E-15 

AP2TR -48.5491 8.61E+10 -5.64E-10 1 

AP3CAR -2.09268 0.00426141 -491.077 2.89E-15 

AP3KAR -0.470189 0.00543666 -86.485 2.89E-15 

AP3RC -3.52639 0.00769235 -458.428 2.89E-15 

AP3TAXI -1.13561 0.00554722 -204.716 2.89E-15 

AP3BUS -1.95589 0.00957575 -204.254 2.89E-15 

AP3UR -0.418627 0.00539374 -77.6136 2.89E-15 

PR1 1.13266 0.00734164 154.278 2.89E-15 

PU1 0.983045 0.00675649 145.496 2.89E-15 

PR2 1.06067 0.0131951 80.3838 2.89E-15 

PU2 0.927296 0.0110789 83.6991 2.89E-15 

PR3 0.813943 0.00281214 289.44 2.89E-15 

PU3 0.137029 0.00165706 82.6942 2.89E-15 

AP1 1.10489 0.00678013 162.959 2.89E-15 

AP2 1.19742 0.0144386 82.9317 2.89E-15 

AP3 1.23031 0.00474654 259.201 2.89E-15 

     

   R2(null) 48.89% 

   R2(const) 32.86% 

 

Tab. 6.7: Nested Logit-Model for Intercontinental Private Travel (INT P) 
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Variable Coefficient Standard Deviation t-ratio p-value 

COST -0.00936472 1.59E-05 -589.728 2.89E-15 

TIME -0.00535887 3.15E-05 -170.349 2.89E-15 

WAIT -35.7591 0.0277649 -1287.92 2.89E-15 

INVPD -32.2589 2.8701 -11.2397 2.89E-15 

AAS 0.382595 0.012889 29.6838 2.89E-15 

DIRECT 0.439344 0.00441956 99.4091 2.89E-15 

AP1CAR -0.059388 0.0754859 -0.786742 0.431433 

AP1KAR 1.17409 0.0772982 15.1891 2.89E-15 

AP1RC -0.823745 0.0767846 -10.728 2.89E-15 

AP1TAXI 1.05928 0.076873 13.7796 2.89E-15 

AP1BUS 2.01162 0.233108 8.62957 2.89E-15 

AP1UR 2.67192 0.232672 11.4836 2.89E-15 

AP1TR 1.3506 0.232603 5.80647 6.38E-09 

AP2CAR -1.04963 0.102518 -10.2385 2.89E-15 

AP2KAR 0.0612584 0.103547 0.591601 0.554118 

AP2RC -2.32606 0.103863 -22.3954 2.89E-15 

AP2TAXI -0.229266 0.103265 -2.22016 0.0264076 

AP2BUS -1.54098 0.174892 -8.81106 2.89E-15 

AP2UR -0.460972 0.169567 -2.71853 0.00655733 

AP2TR -0.625187 0.1686 -3.70811 0.00020881 

AP3CAR -2.00291 0.098986 -20.2342 2.89E-15 

AP3KAR -1.11849 0.0987287 -11.329 2.89E-15 

AP3RC -3.06497 0.10039 -30.5306 2.89E-15 

AP3TAXI -1.18451 0.0991565 -11.9459 2.89E-15 

AP3BUS -3.09884 0.0707277 -43.8137 2.89E-15 

AP3UR -1.9117 0.0408988 -46.7422 2.89E-15 

PR1 1.03073 0.00684748 150.526 2.89E-15 

PU1 0.32899 0.00387138 84.9801 2.89E-15 

PR2 1.3532 0.0265898 50.8917 2.89E-15 

PU2 0.832438 0.0120304 69.1943 2.89E-15 

PR3 0.91783 0.0320818 28.6091 2.89E-15 

PU3 0.718249 0.0410799 17.4842 2.89E-15 

AP1 2.10553 0.0154688 136.115 2.89E-15 

AP2 1.16102 0.0217542 53.3699 2.89E-15 

AP3 1.73837 0.0551256 31.5348 2.89E-15 

     

   R2(null) 47.46% 

   R2(const) 28.30% 

 

Tab. 6.8: Nested Logit-Model for Intercontinental Business Travel (INT B) 

 

The generic variables are highly significant. Table 6.9 summarises the generic variables, scale 

parameters, goodness-of-fit-measures and the likelihood-ratio test statistic split up by market 

segment. The restricted version of the likelihood-ratio test is a logit-model. The last row in table 

6.8 shows the critical values for a significance level of 0.5%. Due to an arbitrary fixation of the 

scale parameters on the lowest level of the nesting structure, model parameters can only be 

interpreted comparatively. 
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Variable BRD P BRD B EUR S EUR H EUR B INT P INT B 

COST -0.0263035 -0.0204609 -0.0199987 -0.0173617 -0.0216885 -0.0138527 -0.00936472 

TIME -0.0081889 -0.0152572 -0.0061063 -0.00857067 -0.00795957 -0.00541014 -0.00535887 

WAIT -28.8061 -18.935 -8.33078 -4.40982 -9.94709 -18.7546 -35.7591 

INVPD -187.86 -21.8829 -215.876 -235.641 x -25.6109 -32.2589 

COMP -0.158635 x -1.22176 -1.13258 -0.182127 x x 

AAS 0.920627 1.12781 0.20336 0.46823 0.504623 0.840462 0.382595 

DIRECT 2.29637 3.64119 3.63327 3.31697 1.43564 1.85847 0.439344 

DFREQ 0.00682913 0.00601159 0.0104684 0.0153856 0.0177437 x x 

LC x x 0.0863075 0.563633 0.275153 x x 

LCFREQ x x 0.0631856 x 0.0761092 x x 

PR1 1.07092 1.02375 0.764486 0.61189 0.808397 1.13266 1.03073 

PU1 0.745385 0.978059 0.593257 0.3847 0.386155 0.983045 0.32899 

PR2 0.492518 1.00829 0.767123 0.570138 0.783306 1.06067 1.3532 

PU2 0.390636 0.992109 0.543582 0.437515 0.708662 0.927296 0.832438 

PR3 0.817955 1.00988 0.821821 0.610065 0.937914 0.813943 0.91783 

PU3 0.428619 0.999286 0.395656 0.551239 0.805435 0.137029 0.718249 

AP1 1.81029 1.01119 1.80601 1.65075 1.61072 1.10489 2.10553 

AP2 2.10174 1.00887 1.76862 1.92646 1.67197 1.19742 1.16102 

AP3 2.35248 1.01164 1.74828 1.99236 1.77295 1.23031 1.73837 

pseudo-R2(null) in % 57.41 54.10 52.40 52.29 48.58 48.89 47.46 

pseudo-R2(const) in % 43.82 40.47 41.94 38.22 35.96 32.86 28.30 

LR (MNL) 82414 8740 43774 349740 311756 599974 131576 

α=0.5% 25.19 23.59 23.59 23.59 23.59 23.59 23.59 

 

Tab. 6.9: Overview Estimation Results per Market Segment 

 

In many cases the scale parameters do not decline with ascending level in the nesting structure as 

necessary in a nested logit-model. This is not exceptional in empirical studies (see e.g. Ben-Akiva 

et al. 1985, p. 316; Hensher et al. 2002, pp. 8f.; Pels et al. 2003, p. 77). According to the 

likelihood-ratio test statistic, the nested logit approach is highly significant as compared with a 

simpler logit model illustrated by table 5.9. Table 5.10 shows the t-ratio for the scale parameters 

under the null-hypothesis that the true values are 1, so that the nested logit-model equals a logit 

approach. 

 

    t-ratio    

Scale Parameter BRD P BRD B EUR S EUR H EUR B INT P INT B 

PR1 7.057 4.229 -26.835 -205.136 -50.341 18.070 4.488 

PU1 -35.564 -4.668 -64.905 -410.113 -233.390 -2.509 -173.326 

PR2 -85.193 1.513 -32.542 -226.756 -58.302 4.598 13.283 

PU2 -169.776 -1.874 -78.210 -392.852 -108.059 -6.562 -13.928 

PR3 -10.444 0.863 -17.872 -113.816 -5.014 -66.162 -2.561 

PU3 -54.518 -0.089 -74.895 -154.705 -17.866 -520.784 -6.859 

AP1 50.022 2.050 40.367 130.343 75.006 15.470 71.468 

AP2 45.866 1.607 47.314 152.782 91.021 13.673 7.402 

AP3 28.923 0.995 32.985 91.306 33.192 48.522 13.394 

Critical t-ratio (α=5%): 1.96       

 

Tab. 6.10: Overview of t-ratios for the Scale Parameters 
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Apart from some scale parameters of the model for the market segment of domestic business 

travel, the null-hypothesis can be rejected at a significance level of 5%. Parameters, whose null-

hypothesis can be rejected at the 5% significance level, are highlighted. 

 

The increase of the values of the scale parameters form the middle to the top level of the nesting 

structure is rather strong. This indicates that an increase in utility of one access mode to an airport 

increases the choice probability of that airport independently from the access mode. The 

underlying correlation structure among the alternatives doesn’t fully comply with a nested logit 

approach. However, the nested logit model can be considered as a better approximation to the 

problem structure than a simpler logit approach. Both the likelihood ratio test and the t-test show 

the significance of the nested logit approach as compared with a logit model. 

 

7. Conclusions and further research needs 
 

This paper is subdivided into an empirical and a model estimation part. To better understand the 

real world behind the abstract model world, the first part of the paper describes the functional 

airport and model access situation in Germany. It has been shown that passengers of any origin 

region consider several airports – on average eight – for their air journey itinerary and that the 

choice of the departure airport is influenced by the spectrum and quality of access modes. 

Intercity trains with direct services to and from airport terminals have a positive influence on both 

the catchment area of airports and the modal split by favouring these fast “feeder” trains. The 

paper then presents an airport and access mode choice model based on a nested logit approach. 

Due to a categorisation of airports this model is applicable to any number of airports and 

combinations of airports and access modes and is suitable especially for the evaluation of future 

scenarios of access mode and airport combinations not existing today. 

 

Model quality is evaluated via the pseudo-R
2
. Values of about 0.3 of the pseudo-R

2
 with a market 

share model as benchmark already indicate a decent model quality (Hensher et al. 2005, p. 338f.). 

It was possible to estimate models of at least decent quality for all market segments. The 

estimated nested logit models for domestic private and business travel and the two European 

private travel market segments show a very good fit while the models of European business travel 

and the two intercontinental travel market segments are only of decent quality. 

 

Many of the scale parameters do not decline with ascending level in the nesting structure. This 

indicates a correlation structure among the alternatives beyond the assumptions of a nested logit 

approach, so that the estimated models can be considered as an approximation only. 

 

In his doctoral thesis one of the authors, Marc Gelhausen, is developing a new type of discrete 

choice model based on the General Extreme Value Model framework and on artificial 

feedforward neural networks, which allows to model more complex correlations among the 

alternatives and to apply of the concept of grouping as described above. The usage of artificial 

neural networks enables to model a utility function of arbitrary functional form without a 

parametric specification. Usually a linear utility function is used for reasons of simplicity and a 

lack of knowledge about the functional form of the utility function. This approach might deliver 

interesting results especially for the market segments of intercontinental travel, as the nested logit 

models for these market segments are of decent quality only. 
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