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in Anh, Angulo and Ruiz-Medina (1999). We systematically consider the case where the spectral

density of nonstationary Gaussian processes with stationary increments is of a general and flexible

form. The spectral density function of fRBm is thus a special case of this general form. A contin-

uous version of the Gauss-Whittle objective function is proposed. Estimation procedures for the

parameters involved in the spectral density function are then investigated. Both the consistency
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1. Introduction

Many recent studies have indicated that data in a large number of fields display long-

range dependence (LRD) (Beran 1994, Baillie and King 1996, Anh and Heyde 1999). A

basic process which has commonly been used to model LRD is fractional Brownian motion

(fBm) BH with Hurst index 1/2 < H < 1. This is a Gaussian process which has stationary

increments and spectral density of the form

φ1(ω) =
c

|ω|2H+1
, c > 0, 0 < H < 1, ω ∈ R1. (1.1)

In (1.1), the ”spectral density” φ1(ω) must be understood in some specific sense (e.g. in the

sense of time-scale analysis (Flandrin 1989) or in a limiting sense (Solo 1992)) since BH is a

nonstationary process.

Anh, Angulo and Ruiz-Medina (1999) introduced fractional Riesz-Bessel motion (fRBm),

which is a Gaussian process with stationary increments and the spectral density of the

increments is given by

φ2(ω) =
η

|ω|2β(1 + ω2)α
, ω ∈ R1, (1.2)

where η > 0, −1/2 < β < 1/2 and α ≥ 0 are parameters. It is noted that model (1.2) is

well-defined and that the spectral density of the increments of fBm is given by (1.2) with

α = 0.

The significance of fRBm (via Eq. (1.2)) is in its behaviour when |ω| → ∞. It is noted

that the φ2(ω) of (1.2) is well-defined as |ω| → ∞ due to the presence of the component

(1 + ω2)−α, α > 0, which is the Fourier transform of the Bessel potential. As a result,

the covariances R(t) of the increments of fRBm are strong for small |t|. That is, large

(resp. small) values of the increments tend to be followed by large (resp. small) values

with probability sufficiently close to one. This is the clustering phenomenon observed in

stochastic finance (e.g. Shiryaev 1999, p. 365). This phenomenon is referred to as (second-

order) intermittency in the turbulence literature (e.g. Frisch 1995). Summarisingly, the

increments of fRBm display both LRD and intermittency, while those of fBm have LRD but

no intermittency.

In this paper, we shall consider the case where the spectral density of nonstationary

Gaussian processes with stationary increments is of a general and flexible form. The spectral

density function of fRBm is thus a special case of this general form. A continuous version of

the Gauss-Whittle objective function is proposed. Estimation procedures for the parameters

involved in the spectral density function are then investigated. Both the consistency and

the asymptotic normality of the estimators of the parameters are established. In addition,

a real example is presented to demonstrate the applicability of the estimation procedures.

The organisation of this paper is as follows. Section 2 proposes the estimation proce-

dures and the corresponding asymptotic properties. A real example is given in Section 3.

Mathematical proofs are given in the Appendix.

2. The Estimation Procedures
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Let {X(t) : t ∈ R1 = (−∞,∞)} be a zero-mean Gaussian process. Denote the increments

of X(t) by ∆X(t, τ) = X(t+ τ) −X(t) for t, τ ∈ R1. The Gaussian process X(t) is said to

have second-order stationary increments if

D(t, τ1, τ2) = E{[∆X(t+ s, τ1)][∆X(s, τ2)]}

are independent of s for all s, t, τ1, τ2 ∈ R1. The function D(t, τ1, τ2) then has the spectral

representation

D(t, τ1, τ2) =
∫ ∞

−∞
eitω(1 − e−iτ1ω)(1 − eiτ2ω)

1 + ω2

ω2
F (dω), (2.1)

where F (dω) is a nonnegative measure on R1 such that
∫∞
−∞ F (dω) <∞ (e.g. Yaglom 1986).

We shall assume that F (dω) is absolutely continuous with derivative of the form

f(ω) = f(ω, µ) =
η

|ω|2γ(1 + ω2)α

ω2

1 + ω2
π(ω;α, γ), ω ∈ R1, (2.2)

where µ = (α, γ, η) ∈ Ω = [0,∞) × (1/2, 3/2) × (0,∞), and π(ω) = π(ω;α, γ) is a positive

and continuous function to be specified in Condition 2.1. When π(ω) ≡ 1, model (2.2)

corresponds to the fractional Riesz–Bessel motion case.

According to (2.1) and (2.2), we can define the spectral density of X(t) by

g(ω) = g(ω, µ) =
1 + ω2

ω2
f(ω) =

η

|ω|2γ(1 + ω2)α
π(ω), ω ∈ R1.

Let µ0 be the true value of µ. We assume that µ0 is in the interior of Ω0, a compact subset

of Ω.

We now define the estimator of g(ω) by

IX
N (ω) =

1

2πN

∣

∣

∣

∣

∣

∫ N

0
e−iωtX(t)dt

∣

∣

∣

∣

∣

2

,

where N > 0 is the upper bound of the interval [0, N ], on which each X(t) is observed.

Throughout this paper, the stochastic integrals are limits in mean square of appropriate

Riemann sums. We assume that X(0) = 0. It can be easily shown that the conclusions of

Theorems 2.1 and 2.2 below are not affected when X(t) is replaced by X−(t) = X(t)−X(0)

if X(0) 6= 0.

Note that the question of whether IX
N (ω) is a consistent estimate of g(ω) has not been

answered in the literature.

We need to introduce the following condition.

Condition 2.1. (i) Assume that π(ω;α, γ) is a positive and continuous function in both ω

and (α, γ), bounded away from zero and chosen to satisfy

∫ ∞

−∞
f(ω, µ)dω <∞ for µ ∈ Ω.
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In addition, π(ω;α, γ) is a symmetric function in ω satisfying 0 < limω→0 π(ω;α, γ) < ∞
and 0 < limω→∞ π(ω;α, γ) <∞ uniformly in (α, γ) ∈ [0,∞) × (1/2, 3/2).

(ii) limω→0 ω
2g(ω, µ0) = 0.

(iii) For ǫ ≤ ||µ− µ0|| < 1
4

with any small ǫ > 0,

∫ ∞

−∞

g(ω, µ0)

g(ω, µ)

1

1 + ω2
dω <∞.

Now we state the following result and its proof is relegated to the Appendix.

Theorem 2.1. Assume that Condition 2.1 holds. In addition, if

1/2 < γ < 1 and α ≥ 0, (2.3)

then we have as N → ∞
E
[

IX
N (ω)

]

→ g(ω, µ0), (2.4)

E
{

IX
N (ω) − E

[

IX
N (ω)

]}2
= g2(ω, µ0) + o(1) (2.5)

and

E
{(

IX
N (ω) − E

[

IX
N (ω)

]) (

IX
N (λ)) − E

[

IX
N (λ)

])}

= o(1) (2.6)

for all ω 6= 0, λ 6= 0 and ω 6= λ.

Remark 2.1. (i) The conditions of Theorem 2.1 are quite natural and mild. Condition

2.1(i) allows the dependence of π(ω) on α and γ in model (2.2). This provides more flexible

models than the following form

f(ω) = f(ω, µ) =
f ∗(ω)

|ω|2γ(1 + ω2)α
,

where f ∗(ω) is just a positive and continuous function of ω. A similar model for time series

with only long-range dependence has already been discussed. See model (1) of Hurvich, Deo

and Brodsky (1998). Both Conditions 2.1(ii) and 2.1(iii) hold automatically when π(ω) is

just a function of ω.

(ii) It is possible to further generalise model (2.2) to a form similar to model (1.4) of

Robinson (1997). For this case, one needs to impose some more detailed conditions on π(ω).

As the main objective of this paper is to estimate the parameters η, α and γ, we shall use

only the decomposed form (2.2).

(iii) For the processX(t), Theorem 2.1 shows that IX
N (ω) is asymptotically unbiased while

IX
N (ω) is not a weakly consistent estimator of g(ω). In addition, equation (2.4) justifies the

fact that g(ω) can be defined as a spectral density of X(t). Recently, Solo (1992) established

(2.4) for the case where

g(ω) = |ω|−2γ for 1/2 < γ ≤ 1.
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This part of the paper considers estimating the parameters involved in the spectral density

of the nonstationary process X(t). For this case, we define the following continuous version

of the Gauss-Whittle objective function

LX
N(µ) =

1

4π

∫ ∞

−∞

{

log(g(ω, µ)) +
IX
N (ω)

g(ω, µ)

}

dω

1 + ω2
(2.7)

and the minimum contrast estimator of µ by

µ̂N = arg min
µ∈Ω0

LX
N(µ),

where Ω0 is a compact subset of Ω.

Remark 2.2. This paper considers using the continuous version of the Gauss-Whittle con-

trast function to estimate the spectral density g(ω) with its frequency defined on (−∞,∞).

For the continuous case, due to the slow decay of the spectral density at ∞, the weight

function 1
1+ω2 must be used in (2.7) to ensure that equation (2.7) is well-defined. Equation

(2.7) can also be justified by applying the entropy theory discussed in Dym and McKean

(1976).

The weak consistency is given below and its proof is postponed to the Appendix.

Theorem 2.2. Assume that the conditions of Theorem 2.1 hold. In addition, if the true

value parameter µ0 of µ is in the interior of Ω0, then

µ̂N →p µ0 as N → ∞.

Remark 2.3. It is worthwhile to point out that condition (2.3) covers the important case

where 1/2 < γ < 1 and 0 < α < 1. More recently, Gao, Anh, Heyde and Tieng (2001)

consider another important case where X(t) is a stationary Gaussian process and the pa-

rameters involved in its spectral density g(ω) satisfy 0 < γ < 1/2 and α ≥ 1/2. The latter

case allows a stationary process to display both LRD and second-order intermittency.

As pointed out in Anh, Heyde and Tieng (1999), it is more useful to establish a consistent

estimator for µ for the case where

1 ≤ γ < 3/2 and α ≥ 0. (2.8)

Due to the fact that (2.4) and (2.5) are only true under condition (2.3), we can only

establish a weakly consistent estimator for µ under condition (2.3). Therefore, in order to

construct a consistent estimation procedure for the case of (2.8), we need to transform the

nonstationary processX(t) into a stationary process. This paper suggests using the following

transform.

Define the Haar wavelet function

h(u) =















1 0 ≤ u < 1
2

−1 1
2
≤ u < 1

0 otherwise.
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We have its Fourier transform ψ̂ given by

ĥ(t) =
it

4
e−

it

2

(

sin(t/4)

t/4

)2

.

We now define a new process

Y (t) =
∫ ∞

−∞
X(s)h(s− t)ds =

{

∫ 1

2

0
X(t+ u)du−

∫ 1

1

2

X(t+ u)du

}

, t ∈ R1.

Then, it follows from (2.1) and (2.2) that

E[Y (t+ τ)Y (t)] =
∫ ∞

−∞

∫ ∞

−∞
E[X(u+ t+ τ)X(v + t)]h(u)h(v)dudv

=
∫ ∞

−∞

∫ ∞

−∞

(

∫ ∞

−∞
(1 − e−i(u+τ)ω)(1 − eivω)

1 + ω2

ω2
f(ω)dω

)

h(u)h(v)dudv

=
∫ ∞

−∞

(∫ ∞

−∞
(1 − e−i(u+τ)ω)h(u)du

∫ ∞

−∞
(1 − eivω)h(v)dv

)

1 + ω2

ω2
f(ω)dω

=
∫ ∞

−∞
e−iτx|ĥ(ω)|2 1 + ω2

ω2
f(ω)dω,

which is independent of t. Consequently, the process Y (t) is a stationary Gaussian process

with the following spectral density

φ(ω) = φ(ω, θ) = |ĥ(ω)|2 1 + ω2

ω2
f(ω) =

1

16

η

|ω|2β

π(ω;α, β)

(1 + ω2)α

(

sin(ω/4)

ω/4

)4

,

where ω ∈ R1, β = γ−1 and θ = (α, β, η) ∈ Θ = [0,∞)× [0, 1/2)× (0,∞). For convenience,

we use π(ω) = π(ω;α, β) = π(ω;α, γ) throughout the rest of the paper. Let θ0 be the true

value of θ. We assume that θ0 is in the interior of Θ0, a compact subset of Θ.

Remark 2.4. (i) We believe that both the wavelet transform and the resulting estimation

procedure provide a general approach to the estimation of (locally) self-similar processes. In

addition, as pointed out in Vergassola and Frisch (1991), the wavelet transform is continuous

and linear, and the process Y (t) is itself Gaussian when the process X(t) is Gaussian. By

contrast, the usual increments do not necessarily retain the Gaussianity property.

(ii) We also need to point out that this paper adopts a simple form of the Haar wavelet

function for the stationarity transform. When using a more complicated form, the structure

of f(ω) will remain unchanged. The only change is the form of ĥ(·), which will not affect

the estimation of the parameters. See Anh, Heyde and Tieng (1999). In addition, our

experience suggests that the choice of the simple form of h(·) can provide stable simulation

and numerical results.

(iii) The main assumption of this paper is that the nonstationary process X(t) is Gaus-

sian. If X(t) is not Gaussian but the increments of X(t) are assumed to be Gaussian, we

can still estimate the parameter θ. One can use for example the first difference Y (t) =

6



X(t+1)−X(t) to obtain a stationary process. If Y (t) is Gaussian, then its spectral density

can be proved to be

φY (ω) =
η

|ω|2β

π(ω;α, β)

(1 + ω2)α

(

sin(ω/2)

ω/2

)2

,

where θ is as defined above. It can be seen that the conclusions of Theorems 2.4 and 2.5

below remain true.

For any given ω ∈ (−∞,∞), we define the estimator of φ(ω) = φ(ω, θ) by

IY
N (ω) =

1

2πN

∣

∣

∣

∣

∣

∫ N

0
e−iωtY (t)dt

∣

∣

∣

∣

∣

2

.

For the periodogram IY
N (ω), we have the following consistency result and its proof is

postponed to the Appendix.

Theorem 2.3. Assume that condition (2.8) holds. In addition, Y (0) = 0. Then we have as

N → ∞
E
[

IY
N (ω)

]

− φ(ω, θ0) = O(1/N), (2.9)

E
{

IY
N (ω)) − E

[

IY
N (ω)

]}2
= φ2(ω, θ0) +O(1/N2) (2.10)

and

E
{(

IY
N (ω)) − E

[

IY
N (ω)

]) (

IY
N (λ)) − E

[

IY
N (λ)

])}

= O(1/N2) (2.11)

for all ω 6= 0, λ 6= 0 and ω 6= λ.

Remark 2.5. Equation (2.9) implies that IY
N (ω) is asymptotically unbiased while (2.10)

shows that IY
N (ω) is not a consistent estimator of φ(ω), although Y (t) is now stationary.

The results (2.9)–(2.11) are similar to those for the discrete time processes with short-range

dependence. See for example, Chapter 10 of Brockwell and Davis (1990).

As mentioned earlier, the main objective of this paper concentrates on the estimation

of θ. This paper then considers using an extended version of the Gauss-Whittle contrast

function to estimate the spectral density φ(ω) with its frequency defined on (−∞,∞). When

considering the case where the spectral density is defined on (−π, π], the weight function
1

1+ω2 is not required (see Heyde and Gay 1993 for example).

For the stationary process Y (t), we define the following objective function

LY
N(θ) =

1

4π

∫ ∞

−∞

{

log(φ(ω, θ)) +
IY
N (ω)

φ(ω, θ)

}

dω

1 + ω2
.

The minimum contrast estimator of θ is defined by

θ̂N = arg min
θ∈Θ0

LY
N(θ),

where Θ0 is a compact subset of Θ.

In order to state the asymptotic normality of θ̂N , we need to introduce the following

conditions.
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Condition 2.2. (i) Assume that the first two derivatives of log(φ(ω, θ) in θ exist and are

continuous in ω ∈ (−∞,∞) and θ ∈ Θ.

(ii) Assume that

∫ ∞

−∞

φ2(ω, θ0)

(1 + ω2)2

(

∂ log(φ(ω, θ))

∂θ

)T (
∂ log(φ(ω, θ))

∂θ

)

|θ=θ0
<∞,

where ∂ log(φ(ω,θ))
∂θ

=
(

∂ log(φ(ω,θ))
∂α

, ∂ log(φ(ω,θ))
∂β

, ∂ log(φ(ω,θ))
∂η

)τ
.

(iii) For any real function l ∈ L2(−∞,∞),

∫ ∞

−∞

φ2(ω, θ0)

(1 + ω2)2
l2(ω)

(

∂ log(φ(ω, θ))

∂θ

)T (
∂ log(φ(ω, θ))

∂θ

)

|θ=θ0
<∞.

(iv) Assume that
∑∞

k=−∞ φ(ω − 2kπ, θ) converges uniformly in ω ∈ (−π, π] \ {0} and

θ ∈ Θ0.

Condition 2.3. (i) For θ ∈ Θ,

Γ(θ) =
1

4π

∫ ∞

−∞

(

∂ log(φ(ω, θ))

∂θ

)(

∂ log(φ(ω, θ))

∂θ

)T
1

(1 + ω2)2
dω <∞.

(ii) The inverse matrix, Γ−1(θ0), of Γ(θ0) does exist.

Remark 2.6. (i) Conditions 2.2 and 2.3 are similar to those for the discrete case. See for

example, Condition (A2) of Heyde and Gay (1993).

(ii) Conditions 2.2 and 2.3 indirectly impose some restrictions on the form of π(ω). When

π(ω) ≡ 1, Conditions 2.2 and 2.3 hold automatically. The justification is similar to that of

Lemma B.1 of Gao, Anh, Heyde and Tieng (2001).

(iii) Condition 2.2(iii) is required for an application of a continuous–time central limit

theorem to the proof of the asymptotic normality.

We now state the next result of this paper and its proof is postponed to the Appendix.

Theorem 2.4. (i) Assume that Condition 2.1 holds. In addition, if the true value θ0 of θ is

in the interior of Θ0, then under condition (2.8)

θ̂N → θ0 with probability one

as N → ∞.

(ii) Assume that Conditions 2.1–2.3 hold. In addition, if the true value θ0 of θ is in the

interior of Θ0, then under condition (2.8)

√
N(θ̂N − θ0) →D N

(

0,Γ−1(θ0)
)

,

where Γ−1(θ0) is as defined in Condition 2.3(ii).

Remark 2.7. (i) Theorem 2.4 establishes both the strong consistency and the asymptotic

normality of θ̂N . Previously, we were unable to establish the asymptotic normality of θ̂N .
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Instead, we established the asymptotic normality for a discrete approximation of θ̂N . See for

example, Theorem 2.2 of Gao, Anh, Heyde and Tieng (2001). Similarly, we can now establish

the asymptotic normality of θN of Gao, Anh, Heyde and Tieng (2001). Thus, for both the

nonstationary and stationary cases, we can establish an asymptotically normal estimator for

the vector of parameters involved in the spectral density. This theory is now complete.

(ii) Theorem 2.4 extends and complements some existing results. For example, Dahlhaus

(1989) established asymptotic normality for estimators based the Whittle approach for the

discrete case. Giraitis and Leipus (1995) discussed asymptotic consistency for estimators

based the Whittle approach for the discrete case. Viano, Deniau and Oppenheim (1994)

established some probabilistic and asymptotic results for continuous–time fractional ARMA

processes. Viano, Deniau and Oppenheim (1995) considered a class of extended fractional

ARMA processes, and discussed the asymptotic behaviour of their correlations.

As Y (t) is stationary and Gaussian, we now can study the asymptotic distribution of

IY
N (ω) for any fixed ω. Similar results for the discrete case have been discussed extensively.

See for example, Künsch (1986), Hurvich and Beltrao (1993), and Robinson (1995).

We state the last result of this section and its proof is postponed to the Appendix.

Theorem 2.5. Assume that the conditions of Theorem 2.3 hold. Then the normalized

periodogram
IY

N
(ω)

φ(ω,θ0)
is asymptotically distributed as 1

2
χ2

2.

Remark 2.8. For the discrete case, Theorem 6 of Hurvich and Beltrao (1993) shows that
IY

N
(ω)

φ(ω,θ0)
at a given frequency is asymptotically distributed as a quadratic form, and is only

asymptotically distributed as 1
2
χ2

2 for a specific case. By contrast, Theorem 2.5 shows that

for the continuous case the asymptotic distribution of
IY

N
(ω)

φ(ω,θ0)
for any fixed ω is 1

2
χ2

2.

3. Implementation and application

In many practical circumstances, however, observations on Y (t) are made at discrete

intervals of time, even though the underlying process may be continuous. In addition, it

is computationally easier to find a consistent estimate of θ based on a sequence of discrete

observations on Y (t). This section considers the following discrete process

Zt = Y (t), t = 1, 2, . . . (3.1)

According to (3.1), the autocovariance function of Zt is well-defined by

rτ = cov(Zt, Zt+τ ) = cov{Y (t), Y (t+ τ)} =
∫ ∞

−∞
eiτωφ(ω, θ)dω

since
∫∞
−∞ |φ(ω, θ)|dω <∞.

Then it can be shown that

rτ =
∫ ∞

−∞
eiτωφ(ω, θ)dω =

∞
∑

k=−∞

∫ (2k+1)π

(2k−1)π
eiτωφ(ω, θ)dω

=
∞
∑

k=−∞

∫ π

−π
exp{iτ(ω − 2kπ)}φ(ω − 2kπ, θ)dω =

∫ π

−π
exp(iτω)







∞
∑

k=−∞

φ(ω − 2kπ, θ)







dω
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since
∑∞

k=−∞ φ(ω − 2kπ, θ) converges uniformly in ω ∈ (−π, π] \ {0} and θ ∈ Θ0.

Therefore, the spectral density function of Zt can be defined by

fZ(ω) = f(ω, θ) =
∞
∑

k=−∞

φ(ω − 2kπ, θ). (3.2)

We now define the following discrete version of the Gauss-Whittle contrast function

W (θ) = WT (θ) =
1

2T

T−1
∑

s=1

{

log(f(ωs, θ)) +
IZ
T (ωs)

f(ωs, θ)

}

,

where T = [N ] ≤ N is the smallest integer part, ωs = 2πs
T

, and

IZ
T (ω) =

1

2πT

∣

∣

∣

∣

∣

T
∑

t=1

eiωtZt

∣

∣

∣

∣

∣

2

.

Now, the minimum contrast estimator of θ can be defined by

θ̃T = arg min
θ∈Θ0

W (θ). (3.3)

It can be shown that as N → ∞

θ̃T − θ̂N →p 0. (3.4)

The derivation of (3.2)–(3.4) is similar to (2.4)–(2.6) of Gao, Anh, Heyde and Tieng

(2001).

Assume that the solution of (3.3) satisfies

W ′(θ̃T ) = 0. (3.5)

Similar to Appendix C of Gao, Anh, Heyde and Tieng (2001), one can implement (3.5)

in practice.

Example 3.1. In this example, we consider two air pollution data sets provided by the

Environment Protection Authority of New South Wales (NSWEPA) of Australia: the Lid-

combe NOx time series (1) and the Lidcombe ozone time series (2). These are measurements

of maximum daily concentrations and cover the period 2/1/1982–30/4/1994. Lidcombe is

an urban suburb at the centre of Sydney. Lidcombe is chosen because, at this site of the

NSWEPA monitoring network, long series of monitoring data are available in a fairly com-

plete form. We apply our estimation procedure to determine the values of the parameters

and to detect whether the data sets exhibit both long-range dependence and intermittency.

If we assume that the two data sets are stationary and Gaussian, then the spectral density

of the data set (i) can be defined by

φi(ω, θ) =
ηi

|ω|2βi(1 + ω2)αi

(

sin(ω/4)

ω/4

)4

, ω ∈ (−∞,∞), (3.6)

10



where αi ∈ [0,∞), βi ∈ (−1/2, 1/2) and 0 < ηi < ∞ for i = 1, 2. Note that the form of

φi(ω, θ) is the special case of φ(ω, θ) where π(ω) ≡ 16.

The plots and the power spectra of the data sets are given in Figures 3.1–3.4 below. We

should note the singularity at frequency 0 and the power law form of the sample spectra,

indicating the presence of long-range dependence in the data. Applying the estimation

procedure presented in Section 2 and the computational formulae given in (3.1)–(3.5) to the

data sets, we found the solution of (3.5), and the values of the unknown parameters in (3.6)

were α1 = 0.04474, β1 = 0.2668, η1 = 12.571, α2 = 0.07832, β2 = 0.3396 and η2 = 359.618

respectively. These results confirm that the two data sets exhibit both long-range dependence

(βi > 0) and intermittency (αi > 0), although the intermittency is relatively less pronounced.

Figure 3.1 near here

Figure 3.2 near here

Figure 3.3 near here

Figure 3.4 near here

Remark 3.1. This example has described some basic features of the air pollution time series

for a single monitoring station at Lidcombe. The identification of long-range dependence

and intermittency of the time series has facilitated the use of modern regression analysis to

model the dependence of the maximum daily ozone on some factors such as morning tem-

perature and wind speed. Given the complexity of air pollution time series, we suggest using

nonparametric time series regression smoothing techniques [e.g. Fan and Gijbels (1996)] or

semiparametric time series regression methods [e.g. Härdle, Liang and Gao (2001)] to model

the dependence and then to provide better forecasts.

Another issue is the selection of avenues, as there are many avenues for further investi-

gations. The characteristics of air quality at the other sites of Sydney could be investigated

in a similar manner. These characteristics can be used to identify the structural relation-

ships between different monitoring stations and different subregions of the Sydney airshed.

For a more reliable forecasting system, it is worthwhile to investigate a much fuller set of

information over all subregions.

Appendix

Proof of Theorem 2.1. It now follows from (2.1) and (2.2) that

E[X(s)X(t)] =

∫ ∞

−∞

(

1 − eitλ
) (

1 − e−isλ
)

g0(λ)dλ.

Thus

E
[

IX
N (ω)

]

=
1

2πN

∫ ∞

−∞

(

∫ N

0

∫ N

0
(1 − eitλ)e−iωt(1 − e−isλ)eiωsdsdt

)

g0(λ)dλ

=
N

2π

∫ ∞

−∞
|B(ωN) −B((ω − λ)N)|2 g0(λ)dλ, (A.1)

11



where B(x) = (eix − 1)/ix and g0(λ) = g(λ, µ0).

Next, using the following identity:

B(ωN) −B((ω − λ)N) = λ(B((ω − λ)N) − eiωNB(ωN))/ω (A.2)

we have

E
[

IX
N (ω)

]

=
N

2πω2

∫ ∞

−∞
ψ((ω − λ)N)2g0(λ)λ2dλ+

N

2πω2

∫ ∞

−∞
ψ(λN)2λ2g0(λ)dλ

− 2N

2πω2

∫ ∞

−∞
ψ((ω − λ)N)ψ(λN)λ2g0(λ)dλ ≡ E1N + E2N − E12N ,

where ψ(ω) = sin(ω/2)
ω/2 , the symbol ” ≡ ” indicates that the terms of the left-hand side are repre-

sented correspondingly by those of the right-hand side.

Now, by Fejer’s theorem (e.g. page 17 of Goldberg 1961), we have as N → ∞

E1N → g0(ω) = g(ω, µ0), E2N → 1

ω2
lim
λ→0

(g0(λ)λ2) = 0

and
ω2

2ψ(ωN)
E12N → lim

λ→0
(g0(λ)λ2) = 0 (A.3)

using Condition 2.1(ii).

Therefore, the proof of (2.3) is finished.

Before proving (2.5), we introduce the following notation and identity:

rX(s, t, u, v) = E[X(s)X(t)X(u)X(v)] and rX(s, t) = E[X(s)X(t)].

rX(s, t, u, v) − rX(s, t)rX(u, v) = rX(s, u)rX(t, v) + rX(s, v)rX(t, u). (A.4)

since X(t) is Gaussian and X(0) = 0.

It follows from (2.1) and (2.2) again that

4π2N2E
{

IX
N (ω) − E

[

IX
N (ω)

]}2

=

∫ N

0

∫ N

0

∫ N

0

∫ N

0
{[rX(s, t, u, v) − rX(s, t)rX(u, v)]} eiω(t−s)+iω(u−v)dsdtdudv

=

∫ N

0

∫ N

0

∫ N

0

∫ N

0
rX(s, v)rX(t, u)eiω(t+u)−iω(s+v)dtdudsdv

+

∫ N

0

∫ N

0

∫ N

0

∫ N

0
rX(s, u)rX(t, v)eiω(t−v)+iω(u−s)dtdvdsdu. (A.5)

Similar to (A.1) and (A.2), we have

1

N

∫ N

0

∫ N

0
rX(t, u)eiω(t+u)dtdu

= −N

ω2

∫ ∞

−∞
[B((λ+ ω)N) + eiωNB(λN)][B((ω − λ)N) + eiωNB(−λN)]λ2g0(λ)dλ

and
1

N

∫ N

0

∫ N

0
rX(s, v)e−iω(s+v)dsdv

12



= −N

ω2

∫ ∞

−∞
[B((λ− ω)N) + e−iωNB(λN)][B(−(λ+ ω)N) + e−iωNB(−λN)]λ2g0(λ)dλ.

Observe that as N → ∞
N

ω2

∫ ∞

−∞
B((λ+ ω)N)B((ω − λ)N)λ2g0(λ)dλ

=
e−iωN

ω2

∫ ∞

−∞
ψ((λ+ ω)N)ψ((ω − λ)N)λ2g0(λ)d(Nλ)

= O(ψ2(ωN)g0(ω)) = O(1/N), (A.6)

N

ω2

∫ ∞

−∞
|B(λN)|2λ2g0(λ)dλ→ 1

ω2
lim
λ→0

(λ2g0(λ)) = 0, (A.7)

and

N

ω2

∫ ∞

−∞
B((λ+ ω)N)B(λN)λ2g0(λ)dλ = O

(

ψ(ωN)

ω2
lim
λ→0

(λ2g0(λ))

)

= o(1/N) (A.8)

for all ω 6= 0.

Analogous to (A.6)–(A.8), we can show that as N → ∞

1

N2

∫ N

0

∫ N

0

∫ N

0

∫ N

0
{rX(t, u)rX(s, v)} eiω(t−s)+iω(u−v)dsdtdudv

= O(1/N2) + o(1/N) + o(1).

On the other hand, similar to (A.1)–(A.3) we have as N → ∞

1

N2

∫ N

0

∫ N

0

∫ N

0

∫ N

0
{rX(t, v)rX(s, u)} eiω(t−v)+iω(u−s)dsdtdudv

=

(

N

2π

∫ ∞

−∞
|B(ωN) −B((ω − λ)N)|2g0(λ)dλ

)(

N

2π

∫ ∞

−∞
|B(ωN) −B((ω + λ)N)|2g0(λ)dλ

)

= g2(ω, µ0) + o(1)

for all ω 6= 0.

Thus, the proof of (2.5) follows from (A.5). Similar to (A.5)–(A.8), we can show that as N → ∞

1

N

∫ N

0

∫ N

0
rX(t, u)eixt+iyudtdu

=
−N
2πxy

∫ ∞

−∞
λ2
(

B((λ+ y)N) + eiyNB(λN)
) (

B((x− λ)N) + eixNB(−λN)
)

g0(λ)dλ→ 0

and
1

N

∫ N

0

∫ N

0
rX(s, v)e−ixs−iyvdsdv

=
−N
2πxy

∫ ∞

−∞
λ2
(

B((λ− y)N) + e−iyNB(λN)
) (

B((−x− λ)N) + e−ixNB(−λN)
)

g0(λ)dλ→ 0

(A.9)

for all x 6= 0 and x 6= y.

Analogously, we have as N → ∞

1

N

∫ N

0

∫ N

0
rX(t, v)eixt−iyvdtdv
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=
N

2πxy

∫ ∞

−∞
λ2
(

B((λ− y)N) + e−iyNB(λN)
) (

B((x− λ)N) + eixNB(−λN)
)

g0(λ)dλ→ 0

and
1

N

∫ N

0

∫ N

0
rX(s, u)e−ixs+iyudsdu

=
N

2πxy

∫ ∞

−∞
λ2
(

B((y − λ)N) + eiyNB(−λN)
) (

B((λ− x)N) + e−ixNB(λN)
)

g0(λ)dλ→ 0

(A.10)

for all x 6= 0 and x 6= y.

Thus, (A.9) and (A.10) imply that as N → ∞

E
{(

IX
N (x) − E

[

IX
N (x)

]) (

IX
N (y) − E

[

IX
N (y)

])}

=
1

N2

∫ N

0

∫ N

0

∫ N

0

∫ N

0
rX(t, u)rX(s, v)eixt+iyue−ixs−iyvdsdtdudv

+
1

N2

∫ N

0

∫ N

0

∫ N

0

∫ N

0
rX(t, v)rX(s, u)eixt+iyue−ixs−iyvdsdtdudv → 0

for all x 6= 0 and x 6= y. Thus the proof of (2.6) is completed.

Proof of Theorem 2.2. Before proving µ̂N → µ0 in probability, we show that as N → ∞

LX
N (µ) → LX(µ) =

1

4π

∫ ∞

−∞

{

log(g(ω, µ)) +
g(ω, µ0)

g(ω, µ)

}

1

1 + ω2
dω (A.11)

for ǫ ≤ ||µ− µ0|| < 1
4 with any given ǫ > 0.

In order to prove (A.11), it suffices to show that for

p(ω) = p(ω, µ) =
1

1 + ω2
g(ω, µ)−1 = η−1ω2γ(1 + ω2)α−1π(ω)−1

the following
∫ ∞

−∞
IX
N (ω)p(ω, µ)dω →

∫ ∞

−∞
g(ω, µ0)p(ω, µ)dω (A.12)

holds in probability as N → ∞. It is easy to see that (A.12) follows from

∫ ∞

−∞

(

E
[

IX
N (ω)

]

− g(ω, µ0)
)

p(ω, µ)dω → 0 (A.13)

and
∫ ∞

−∞

(

IX
N (ω) − E

[

IX
N (ω)

])

p(ω, µ)dω → 0 (A.14)

in probability for ǫ ≤ ||µ− µ0|| < 1
4 with any given ǫ > 0.

The proof of (A.13) follows from (A.3), Condition 2.1(iii) and

∫ ∞

−∞
g0(ω)p(ω)dω =

∫ ∞

−∞

g(ω, µ0)

g(ω, µ)

1

1 + ω2
dω <∞ (A.15)

for ǫ ≤ ||µ− µ0|| < 1
4 , where g0(ω) = g(ω, µ0).

In order to prove (A.14), it suffices to show that as N → ∞

4π2N2E

{∫ ∞

−∞

(

IX
N (ω) − E

[

IX
N (ω)

])

p(ω)dω

}2
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= 4π2N2
∫ ∞

−∞

∫ ∞

−∞
E
{(

IX
N (x) − E

[

IX
N (x)

]) (

IX
N (y) − E

[

IX
N (y)

])}

p(x)p(y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞

(

∫ N

0

∫ N

0

∫ N

0

∫ N

0
rX(t, u)rX(s, v)eixt+iyue−ixs−iyvdsdtdudv

)

p(x)p(y)dxdy

+

∫ ∞

−∞

∫ ∞

−∞

(

∫ N

0

∫ N

0

∫ N

0

∫ N

0
rX(t, v)rX(s, u)eixt+iyue−ixs−iyvdsdtdudv

)

p(x)p(y)dxdy

= o(N2). (A.16)

Similar to (A.6)–(A.10), and using (A.15) we can show that (A.16) holds.

We now finish the proof of Theorem 2.2. It follows from (A.12) that in probability

LX
N (µ) − LX

N (µ0) → K(µ, µ0),

where for µ 6= µ0

K(µ, µ0) =
1

4π

∫ ∞

−∞

{

g(ω, µ0)

g(ω, µ)
− 1 − log

(

g(ω, µ0)

g(ω, µ)

)}

dω

1 + ω2
> 0

using the fact that for x > 0 and x 6= 1

x− 1 > log(x).

Thus, for any given ǫ > 0

lim inf
N→∞

inf
||µ−µ0||≥ǫ

(LX
N (µ) − LX

N (µ0)) > 0

in probability. This implies that µ̂N → µ0 holds in probability. Thus the proof of Theorem 2.2 is

finished.

Proof of Theorem 2.3. It follows from

IY
N (ω) =

1

2πN

∫ N

0

∫ N

0
Y (s)Y (t)ei(s−t)ωdsdt

that

E
[

IY
N (ω)

]

− φ(ω, θ0) =
1

2π

∫ ∞

−∞
[φ0(λ) − φ0(ω)]ψ2((λ− ω)N)d(Nλ)

=
1

2π

∫ ∞

−∞
[φ0(ω + u/N) − φ0(ω)]ψ2(u)du

=
1

2π

{

∫ −N

−∞
+

∫ N

−N
+

∫ ∞

N

}

[φ0(ω + u/N) − φ0(ω)]ψ2(u)du

≡ C1N + C2N + C3N .

where φ0(ω) = φ(ω, θ0).

It is obvious that for all ω 6= 0

C1N =

∫ −N

−∞
[φ0(ω + u/N) − φ0(ω)]ψ2(u)du = O

(

φ0(ω)

∫ −N

−∞
u−2du

)

= O

(

φ0(ω)

N

)
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and

C3N =

∫ ∞

N
[φ0(ω + u/N) − φ0(ω)]ψ2(u)du = O

(

φ0(ω)

∫ ∞

N
u−2du

)

= O

(

φ0(ω)

N

)

as N → ∞.

For C2N , a second-order Taylor expansion implies that as N → ∞

C2N =

∫ N

−N
[φ0(ω + u/N) − φ0(ω)]ψ2(u)du

=

∫ N

−N

{

φ′0(ω)(u/N) + φ′′0(ξ)(u
2/2N2)

}

ψ2(u)du = O

(

φ′′0(ω)

N2

)

for all ω 6= 0, where ξ lies between ω and ω+u/N and φ′′(ω) is the second derivative of φ0(ω) with

respect to ω.

This completes the proof of (2.9).

In order to prove (2.10), it suffices to show that

E
{

IY
N (ω) − E

[

IY
N (ω)

]}2
= φ2(ω, θ0) +O(1/N2).

Obviously,

4π2N2E
{

IY
N (ω) − E

[

IY
N (ω)

]}2

=

∫ N

0

∫ N

0

∫ N

0

∫ N

0
{rY (s, t, u, v) − rY (s, t)rY (u, v)} eiω(t−s)+iω(u−v)dsdtdudv.

Since {Y (s),−∞ < s <∞} is Gaussian with Y (0) = 0, we have

rY (s, t, u, v) − rY (s, t)rY (u, v) = rY (t, u)rY (s, v) + rY (t, v)rY (s, u). (A.17)

Thus, it follows from (A.17) that

4π2E
{

IY
N (ω) − E

[

IY
N (ω)

]}2

=
1

N2

∫ N

0

∫ N

0

∫ N

0

∫ N

0
ry(t, u)rY (s, v)ei(t+u)ωe−i(s+v)ωdsdtdudv

+
1

N2

∫ N

0

∫ N

0

∫ N

0

∫ N

0
rY (t, v)rY (s, u)ei(t−v)ωei(u−s)ωdsdtdudv. (A.18)

We now look at the first component of (A.18). For all ω 6= 0, we have

1

N

∫ N

0

∫ N

0
rY (t, u)ei(t+u)ωdtdu =

1

N

∫ ∞

−∞

∫ N

0

∫ N

0
ei(t+u)ωei(u−t)λφ0(λ)dtdudλ

= e−iωN
∫ ∞

−∞
ψ(N(2ω − z))ψ(Nz)φ0(ω − z)d(Nz)

= O (ψ(2ωN)φ0(ω)) = O(1/N) (A.19)

and

1

N

∫ N

0

∫ N

0
rY (s, v)e−i(s+v)ωdsdv = eiωN

∫ ∞

−∞
ψ(N(2ω + x))ψ(Nx)φ0(ω + x)d(Nx)

= O (ψ(2ωN)φ0(ω)) = O(1/N) (A.20)
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as N → ∞.

Analogous to (A.19) and (A.20), we can estimate that the second component of (A.18) is

1

N2

∫ N

0

∫ N

0

∫ N

0

∫ N

0
rY (t, v)rY (s, u)ei(t−v)ωei(u−s)ωdsdtdudv

=

(∫ ∞

−∞
ψ2((ω − λ)N)φ0(λ)dλ

)(∫ ∞

−∞
ψ2((ω + λ)N)φ0(λ)dλ

)

→ φ2(ω, θ0)

as N → ∞.

This finishes the proof of (2.10). Analogously, we can prove (2.11) and therefore we complete

the proof of Theorem 2.3.

Proof of Theorem 2.4. Before proving θ̂N → θ0 with probability one, we show that as N → ∞

LY
N (θ) → LY (θ) =

1

4π

∫ ∞

−∞

{

log(φ(ω, θ)) +
φ(ω, θ0)

φ(ω, θ)

}

dω

1 + ω2
(A.21)

holds with probability one for δ ≤ ||θ − θ0|| < 1
4 with any given δ > 0.

In order to prove (A.21), it suffices to show that for

q(ω) = q(ω, θ) =
1

1 + ω2
φ(ω)−1 = (16η)−1ω2β(1 + ω2)α−1

(

sin(ω/4)

ω/4

)−4

π−1(ω)

the following
∫ ∞

−∞
IY
N (ω)q(ω, θ)dω →

∫ ∞

−∞
φ(ω, θ0)q(ω, θ)dω (A.22)

holds with probability one as N → ∞. It is easy to see that (A.22) follows from

∫ ∞

−∞

(

E
[

IY
N (ω)

]

− φ(ω, θ0)
)

q(ω, θ)dω → 0 (A.23)

and
∫ ∞

−∞

(

IY
N (ω) − E

[

IY
N (ω)

])

q(ω, θ)dω → 0 (A.24)

with probability one for δ ≤ ||θ − θ0|| < 1
4 with any given δ > 0. We first prove (A.23).

It follows from the definition of IY
N (ω) that as N → ∞

∫ ∞

−∞
E
[

IY
N (ω)

]

q(ω, θ)dω →
∫ ∞

−∞
φ(ω, θ0)q(ω, θ)dω

using for δ ≤ ||θ − θ0|| < 1
4 ,

∫ ∞

−∞
φ0(ω)q(ω)dω <∞ (A.25)

due to Condition 2.1(iii).

Hence, (A.25) implies (A.23). In order to prove (A.24), it suffices to show that as N → ∞

E

{∫ ∞

−∞

(

IY
N (ω) − E

[

IY
N (ω)

])

q(ω)dω

}2

= O

(

1

N2

)

. (A.26)

The proof of (A.26) is similar to that of (A.6) of Gao, Anh, Heyde and Tieng (2001).

The remainder proof of Theorem 2.4(i) is similar to that of Theorem 2.2. We shall not repeat

the detail here.

17



We now start proving Theorem 2.4(ii). Note that

∂LY
N (θ)

∂θ
|θ=θ̂N

− ∂LY
N (θ)

∂θ
|θ=θ0

=

[

∂2

∂θ2
LY

N (θ)|θ=θ∗
N

]

(θ̂N − θ0),

where ||θ∗N − θ0|| ≤ ||θ̂N − θ0||. Since θ0 in the interior of Θ, Theorem 2.4(i) implies that θ̂N is in

the interior of Θ for large N . Since θ̂N minimizes LY
N (θ), it follows that

∂LY

N
(θ)

∂θ |θ=θ̂N

= 0 for large

N . Thus for large N
∂LY

N (θ)

∂θ
|θ=θ0

=

[

− ∂2

∂θ2
LY

N (θ)|θ=θ∗
N

]

(θ̂N − θ0).

Thus, in order to prove that as N → ∞
√
N(θ̂N − θ0) →D N

(

0,Γ−1(θ0)
)

,

it suffices to show that as N → ∞
√
N

∫ ∞

−∞

{

IY
N (ω) − E

[

IY
N (ω)

]}

D(ω, θ)dω → N(0, 16π2Γ(θ0)), (A.27)

where Γ(θ) = 1
4π

∫∞
−∞

1
(1+ω2)

{

∂
∂θ log(φ(ω, θ))

}{

∂
∂θ log(φ(ω, θ))

}T
dω and

D(ω, θ) = − 1

1 + ω2

∂φ−1(ω, θ)

∂θ
= − 1

1 + ω2

(

∂φ−1(ω, θ)

∂α
,
∂φ−1(ω, θ)

∂β
,
∂φ−1(ω, θ)

∂η

)T

≡ (D1(ω, θ), D2(ω, θ), D3(ω, θ))
T .

To prove (A.27), it suffices to show that for any fixed c = (c1, c2, c3)
τ ,

√
N

∫ ∞

−∞

{

IY
N (ω) − E

[

IY
N (ω)

]}

H(ω, θ)dω → N(0, σ2(θ0)), (A.28)

as N → ∞, where H(ω, θ) =
∑3

j=1 cjDj(ω, θ) and

σ2(θ) = 4π

∫ ∞

−∞

1

(1 + ω2)





3
∑

j=1

cj
∂

∂θj
log(φ(ω, θ))





2

dω,

in which θ1 = α, θ2 = β and θ3 = γ.

Without loss of generality, we assume that there is a measurable function k(ω, θ) such that

k(ω, θ) is symmetric in ω and

H(ω, θ) =
3
∑

j=1

cjDj(ω, θ) = k2(ω, θ) ≥ 0.

Otherwise, one needs only to consider the positive and negative parts of H(ω, θ) separately.

Let k(ω) = k(ω, θ),

GN (ω) =
k(ω)√

2π

∫ N

0
eiωtY (t)dt and RN (u, v) = E[GN (u)GN (−v)].
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For any function l ∈ L2(−∞,∞), define the integral operator LN ∈ L2(−∞,∞) → L2(−∞,∞)

by

LN l =

∫ ∞

−∞
RN (u, v)l(v)dv.

Let λ
(N)
k be the eigenvalues of LN . Then it follows from the Karhunen–Loéve expansion (e.g.

Yeh (1973, Theorem 19.4)) that

∫ ∞

−∞
|GN (ω)|2dω =

∞
∑

i=1

λ
(N)
i

(

G
(N)
i

)2
, (A.29)

where for any N , {G(N)
i : i ≥ 1} is a sequence of independent N(0, 1) random variables.

It follows from (A.29) that

mN =

∫ ∞

−∞
E
[

|GN (u)|2
]

du =

∫ ∞

−∞
RN (u, u)du =

∞
∑

i=1

λ
(N)
i

and

∆2
N = Var

(∫ ∞

−∞
|GN (ω)|2dω

)

= 2

∫ ∞

−∞

∫ ∞

−∞
R2

N (u, v)dudv = 2
∞
∑

i=1

(

λ
(N)
i

)2
. (A.30)

Note that

√
N

∫ ∞

−∞

{

IY
N (ω) − E

[

IY
N (ω)

]}

H(ω, θ)dω =
1√
N

∫ ∞

−∞

(

|GN (ω)|2 − E
[

|GN (ω)|2
])

dω. (A.31)

In order to prove (A.28), in view of (A.29)–(A.31), it suffices to show that as N → ∞

maxk λ
(N)
k

√

∑∞
k=1

(

λ
(N)
k

)2
→ 0. (A.32)

To prove (A.32), it suffices to show that as N → ∞
∫ ∞

−∞

∫ ∞

−∞
R2

N (u, v)dudv → ∞ (A.33)

and
∫∞
−∞

(

∫∞
−∞RN (u, v)l(v)dv

)2
du

∫∞
−∞

∫∞
−∞R2

N (u, v)dudv
→ 0. (A.34)

Similar to (A.19), it can be shown that as N → ∞

RN (u, v) = E[GN (u)GN (−v)] =
k(u)k(v)

2π

∫ ∞

−∞

(

∫ N

0

∫ N

0
eit(v−λ)e−is(u−λ)dsdt

)

φ0(λ)dλ

=
k(u)k(v)N2

2π

∫ ∞

−∞
B(N(v − λ))B(−N(u− λ))φ0(λ)dλ

= N(1 + o(1))B(−N(u− v))φ0(v)k(u)k(v),

where B(x) = eix−1
ix .

Thus, as N → ∞
∫ ∞

−∞

∫ ∞

−∞
R2

N (u, v)dudv =
2πN2(1 + o(1))

2π

∫ ∞

−∞

(∫ ∞

−∞
|B(N(u− v))|2φ2

0(v)k
2(v)dv

)

k2(u)du

19



= 2πN(1 + o(1))

∫ ∞

−∞
φ2

0(u)H
2(u)du→ ∞. (A.35)

This implies that (A.33) holds.

Similarly, as N → ∞
∫ ∞

−∞
RN (u, v)l(v)dudv =

2πN2(1 + o(1))

2π

∫ ∞

−∞
B(−N(u− v))φ0(v)h(u)h(v)l(v)dv

= 2πφ0(u)l(u)H(u)(1 + o(1)).

Therefore, as N → ∞
∫ ∞

−∞

(∫ ∞

−∞
RN (u, v)l(v)dudv

)2

du = 4π2(1 + o(1))

∫ ∞

−∞
φ2

0(u)l
2(u)H2(u)du <∞. (A.36)

Equations (A.35) and (A.36) imply that (A.34) holds. Therefore, the asymptotic normality of

Theorem 2.4(ii) is proved.

Proof of Theorem 2.5. For any fixed ω, let

A(ω) =
1√

2πN

∫ N

0
cos(ωt)Y (t)dt, B(ω) =

1√
2πN

∫ N

0
sin(ωt)Y (t)dt,

and

C(ω) =
1√

2πN

∫ N

0
e−iωtY (t)dt.

Similar to (A.19)–(A.20), we have for any fixed ω and λ

E[C(ω)C(λ)] =
1

2πN

∫ N

0

∫ N

0
e−iωse−iλtE[Y (s)Y (t)]dsdt

=
1

2πN

∫ N

0

∫ N

0
e−iωse−iλt

(∫ ∞

−∞
eix(t−s)φ(x)dx

)

dsdt

=
e−(λ+ω)Ni/2

2π

∫ ∞

−∞
ψ((ω + x)N)ψ((λ− x)N)φ(x)d(Nx).

Note that

A(ω)A(λ) =
1

2
Re(C(ω)C(λ) + C(ω)C(−λ)), B(ω)B(λ) =

1

2
Re(C(ω)C(−λ) − C(ω)C(λ)),

and

A(ω)B(λ) =
1

2
Im(C(ω)C(−λ) − C(ω)C(λ)).

We now have

E[A(ω)A(λ)] =
1

4π
cos((ω + λ)N/2)

∫ ∞

−∞
ψ((ω + x)N)ψ((λ− x)N)φ(x)d(Nx)

+
1

4π
cos((ω − λ)N/2)

∫ ∞

−∞
ψ((ω + x)N)ψ((λ+ x)N)φ(x)d(Nx),

E[B(ω)B(λ)] =
1

4π
cos((ω − λ)N/2)

∫ ∞

−∞
ψ((ω + x)N)ψ((λ+ x)N)φ(x)d(Nx)

− 1

4π
cos((ω + λ)N/2)

∫ ∞

−∞
ψ((ω + x)N)ψ((λ− x)N)φ(x)d(Nx),
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and

E[A(ω)B(λ)] =
1

4π
sin((ω − λ)N/2)

∫ ∞

−∞
ψ((ω + x)N)ψ((λ+ x)N)φ(x)d(Nx)

− 1

4π
sin((ω + λ)N/2)

∫ ∞

−∞
ψ((ω + x)N)ψ((λ− x)N)φ(x)d(Nx).

Thus, by the similar reason as in (A.19)–(A.20) we obtain for any fixed ω and λ

E[A(ω)B(λ)] → 0

and

Var(A(ω)) =
1

4π

∫ ∞

−∞
ψ2((ω + x)N)φ(x)d(Nx)

+
1

4π
cos(ωN)

∫ ∞

−∞
ψ((ω + x)N)ψ((ω − x)N)φ(x)d(Nx) → 1

2
φ(ω, θ0)

as N → ∞.

Analogously,

Var(B(ω)) =
1

4π

∫ ∞

−∞
ψ2((ω + x)N)φ(x)d(Nx)

− 1

4π
cos(ωN)

∫ ∞

−∞
ψ((ω + x)N)ψ((ω − x)N)φ(x)d(Nx) → 1

2
φ(ω, θ0)

as N → ∞.

Therefore, the proof of Theorem 2.5 follows from the fact that the normalized coefficients
A(ω)√
φ(ω,θ0)

and B(ω)√
φ(ω,θ0)

are Gaussian, and asymptotically independent.
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