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Semiparametric Penalty Function Method in Partially
Linear Model Selection

By Chaohua Dong, Jiti Gao1 and Howell Tong

Shanxi University of Economics and Finance; The University of Western Australia;

The London School of Economics

Abstract: Model selection in nonparametric and semiparametric regression is of both

theoretical and practical interest. Gao and Tong (2004) proposed a semiparametric leave–

more–out cross–validation selection procedure for the choice of both the parametric and

nonparametric regressors in a nonlinear time series regression model. As recognized by the

authors, the implementation of the proposed procedure requires the availability of relatively

large sample sizes. In order to address the model selection problem with small or medium

sample sizes, we propose a new model selection procedure for practical use. By extending

the so–called penalty function method proposed in Zheng and Loh (1995, 1997) through

the incorporation of features of the leave-one-out cross-validation approach, we develop a

semiparametric consistent selection procedure suitable for the choice of optimum subsets in

a partially linear model. The newly proposed method is implemented using the full set of

the data, and simulations show that it works well for both small and medium sample sizes.

1. Introduction

The problem of model selection in linear, nonlinear and partially linear regression models

has attracted much attention in recent years. Many selection methods have been developed

since the pioneering notions of Akaike’s information criterion (AIC) (Akaike (1974); Shibata

(1981)) and Mallows’ Cp (Mallows (1973)). Recent developments that address the nonlinear

and partially linear cases include leave–one–out cross-validation (CV1) (e.g. Cheng and

Tong (1992); Vieu (1994); Yao and Tong (1994)), and leave–more–out cross–validation (e.g.

Shao (1993); Zhang (1993); Gao and Tong (2004)). Usually a model selection method is to

select the true subset of covariates for either a given dependent variable or a collection of

covariates. The most commonly adopted strategy consists of two components: the residual

1Correspondence to: Jiti Gao, School of Mathematics and Statistics, The University of Western Australia,

Crawley, WA 6009, Australia. Email: jiti.gao@uwa.edu.au
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sum of squares (RSS) (as a measure of the goodness of fit) and some function of the number

of covariates in the candidate model (as a measure of the penalty for model complexity). By

minimizing the sum of these two components, sometimes called the final prediction error,

we aim to identify the true model.

Asymptotic consistency is obtained for the fully nonparametric CV1 model selection

(e.g. Cheng and Tong (1992)), but in a parametric setting the leave–one–out cross–validation

tends to lead to an inconsistent selection and is considered to be too conservative in the sense

that it tends to select an unnecessarily large model. In order to restore consistency, Shao

(1993) proposed the so–called leave–more–out cross–validation, denoted by CV (Tv) with
Tv

T
→ 1, where T is the number of observations and Tv the number of observations removed

for cross-validation. Recently, Gao and Tong (2004) extended this method to semiparametric

time series modelling. As observed in the simulations in both Shao (1993) and Gao and Tong

(2004), the number of observations, Tc, used to fit the model is quite small (with T = 40

and Tc = 15 in Shao (1993), and T = 288 and Tc = 69 in Gao and Tong (2004)), while the

number of observations, Tv, used to validate the proposed method is relatively large (with

Tv = 25 and Tv = 219, respectively). This may impede the implementation of the above

methodology in practice because the theory requires Tc → ∞. To ensure that more data

are used to construct the model, Zheng and Loh (1995, 1997) proposed using a parametric

penalty function method. Such observations have motivated us to consider combining the

penalty function method proposed in Zheng and Loh (1995, 1997) with the CV1 method

for semiparametric modelling. The use of semiparametric models has become increasingly

popular in statistical modelling, mainly because these models are quite effective in dealing

with the problem of curse of dimensionality, that often arises from using fully nonparametric

models.

Specifically, we consider a partial linear model of the form

Yt = U τ
t β + φ(Xt) + et, t = 1, · · · , T, (1.1)

where Ut = (Ut1, . . . , Utp)
τ and Xt = (Xt1, . . . , Xtq)

τ are vectors of either independent or

dependent observations (Ut and Xt may be two different time series), β = (β1, . . . , βp)
τ is a

vector of unknown parameters, φ(·) is an unknown and possibly nonlinear function defined

over Rq, and the error process {et} satisfies E[et] = 0, 0 < E[e2
t ] < ∞ and some other

mild conditions to be specified later. We propose a semiparametric penalty function based
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model selection criterion, by incorporating essential features of the CV 1 selection method

for the choice of both the parametric and the nonparametric regressors in model (1.1). Our

contributions include proposing a new selection criterion, developing the associated theory,

and demonstrating the key feature of easy implementation of the proposed semiparametric

penalty function method through using simulated examples. The organization of this paper

is as follows. Section 2 proposes the penalty–function–based selection criterion and develops

its asymptotic theory. Two simulated examples are given in Section 3. Assumptions and

proofs are given in the appendix.

2. Semiparametric penalty function method

First we introduce some notation. Let Ap = {1, · · · , p}, Dq = {1, · · · , q}, A denote

all nonempty subsets of Ap, and D denote all nonempty subsets of Dq. For any subset

A ∈ A, UtA is defined as a column vector consisting of {Uti, i ∈ A}, and βA is the column

vector consisting of {βi, i ∈ A}. For any subset D ∈ D, XtD is the column vector consisting

of {Xti, i ∈ D}. We use dE = |E| to denote the cardinality of a set E. Let

A1 = {A : A ∈ A such that at least one nonzero component of β is not in βA}

A2 = {A : A ∈ A such that βA contains all nonzero component of β}

D1 = {D : D ∈ D such that E[Yt|XtD] = E[Yt|Xt]}

D2 = {D : D ∈ D such that E[U τ
t β|XtD] = E[U τ

t β|Xt]}

B1 = {(A, D) : A ∈ A2 and D ∈ D1 ∩ D2}.

Obviously, the subsets A ∈ A1 and D ∈ Dc
1 = D−D1 correspond to incorrect models. The

correct models correspond to (A0, D0) ∈ B1 such that both A0 and D0 are of the smallest

dimension. To ensure the existence and uniqueness of such a pair (A0, D0), we need the

same conditions as required in Gao and Tong (2004). For the sake of being self–contained,

we recite them here.

Assumption 2.1. (i) ∆A,D = E{UtA−E[UtA|XtD]}{UtA−E[UtA|XtD]}τ is a positive definite

matrix of order dA × dA for each given pair of A ∈ A and D ∈ D.

(ii) Let B0 = {(A0, D0) ∈ B1, such that |A0| + |D0| = min(A,D)∈B1 [|A| + |D|]}. The pair

(A0, D0) is the unique element of B0, denoted by (A∗, D∗).
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Assumption 2.2. There is a unique pair (β∗, φ∗) such that the true and compact version

of model (1.1) is

Yt = U τ
tA∗

β∗ + φ∗(XtD∗) + et, (2.1)

where et = Yt − E[Yt|Ut, Xt].

Assumption 2.3. Define θj(Xtj) = E[φ∗(XtD∗)|Xtj] for j ∈ Dq − D∗. There exists an

absolute constant M0 such that

min
j∈Dq−D∗

min
α,β

E [θj(Xtj) − α − βXtj]
2 ≥ M0. (2.2)

Assumption 2.1 is a standard condition in this kind of problem. Assumption 2.2 is to

ensure the existence and uniqueness of the true model. Assumption 2.3 is imposed to ensure

that model (2.1) is identifiable and to exclude the case in which φ∗ itself is a linear function

in Xtj for j ∈ Dq − D∗. More details are available in Gao and Tong (2004).

For any given pair A ∈ A and D ∈ D, we consider a partial linear model of the form

Yt = U τ
tAβA + φD(XtD) + et(A, D), (2.3)

where et(A, D) = Yt − E[Yt|UtA, XtD], βA is as defined before, and φD(·) is an unknown

function on R|D|.

To use CV1, we introduce some notation to smooth and linearize the semiparametric

model (2.3):

φ̂1t(D) =
T∑

s=1,s 6=t

W
(−t)
D (t, s)Ys, φ̂2t(A, D) =

T∑

s=1,s 6=t

W
(−t)
D (t, s)UsA,

Zt(D) = Yt − φ̂1t(D), Z(D) = (Z1(D), · · · , ZT (D))τ ,

Vt(A, D) = UtA − φ̂2t(A, D), V (A, D) = (V1(A, D), · · · , VT (A, D))τ ,

φ1(Xt) = E[Yt|Xt], φ2(Xt) = E[Ut|Xt],

Vt = Ut − φ2(Xt), V = (V1, · · · , VT )τ , (2.4)

where

W
(−t)
D (t, s) =

KD((XtD − XsD)/h)
∑T

l=1,l 6=t KD((XtD − XlD)/h)
,

4



in which T is the number of observations, KD is a multivariate kernel function defined on

R|D|, and h = hD is a bandwidth parameter satisfying h ∈ HTD = [hmin(T,D), hmax(T,D)],

where both 0 < hmin(T,D), hmax(T,D) ≤ 1 are suitable functions of (D, T ) such that the

optimal order T− 1
4+|D| is included in HTD. In the conventional cross–validation selection of

an optimal bandwidth for the autoregressive case, the optimal bandwidth is proportional to

σ T− 1
5 for example, where σ is the standard deviation of the data.

A technical advantage of using HTD over previous assumptions of this type, such as an

interval of the form
[
c1 T− 7

6(4+|D|) , c2 T− 5
6(4+|D|)

]
with 0 < c1 < c2 < ∞, as proposed in Gao

and Yee (2000), is that the range of h under consideration has been extended considerably.

This provides more security and theoretical underpinning for consideration of h both large

and small, as initially discussed in Härdle, Hall and Marron (1992). In addition, Lemma

A.1(i) in the appendix shows that an optimal choice of h depends mainly on the choice of D

and T . This is why we do not involve h in the penalty function ΛT (A, D) to be introduced

in Assumption 2.4 below.

We set up the linearized model

Zt(D) = Vt(A, D)βA + et(A, D), (2.5)

and give the least squares estimator of βA as

β̂(A, D) =
(
V (A, D)τV (A, D)

)+
V (A, D)τZ(D), (2.6)

where (·)+ is the Moore-Penrose inverse.

After fitting (2.5) to the data {(Yt, Ut, Xt) : t = 1, · · · , T}, the residual sum of squares is

RSS(A, D; h) =
T∑

t=1

[
Zt(D) − Vt(A, D)τ β̂(A, D)

]2
(2.7)

=
(
Z(D) − V (A, D)β̂(A, D)

)τ(
Z(D) − V (A, D)β̂(A, D)

)

= ετR(A, D)ε + Φ̃(D)τR(A, D)Φ̃(D) + (V β)τR(A, D)(V β) + ∆T (A, D; h),

where ε = (e1, · · · , eT )τ , P (A, D) = V (A, D)(V (A, D)τV (A, D))+V (A, D)τ , R(A, D) = IT −

P (A, D), Φ̃(D) = (φ̃1(D), · · · , φ̃T (D))τ , φ̃t(D) = φ1(Xt) − φ̂1t(D), IT is the identity matrix

of order T × T , and the reminder term is

∆T (A, D; h) = 2ετR(A, D)Φ̃(D) + 2Φ̃τ (D)R(A, D)(V β) + 2ετR(A, D)(V β). (2.8)
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It may be shown from (2.7) that the following equations hold uniformly in h ∈ HTD,

RSS(A,D;h) = ετR(A,D)ε + Φ̃(D)τR(A,D)Φ̃(D) + (V β)τR(A,D)(V β) + oP (RSS(A,D;h)) ,

MT (A,D; h) = E [RSS(A,D;h)] = (T − |A|)σ2 + PT (A,D) + NT (A,D) + o (MT (A,D)) , (2.9)

where PT (A,D) = E [(V β)τR(A,D)(V β)] and NT (A,D) = E
[
Φ̃(D)τR(A,D)Φ̃(D)

]
. Then equa-

tions in (2.9) reflect the errors incurred in model selection and estimation. The proof of (2.9)

is relegated to Lemma A.3 in the appendix.

The penalty function ΛT (A, D) is now defined as

ΛT (A, D) : A×D → R,

and satisfies the following assumption.

Assumption 2.4. (i) Let ΛT (∅, D) = 0 for D = ∅ or any given D ∈ D.

(ii) For any subsets A1, A2 ∈ A, D1, D2 ∈ D satisfying A2 ⊃ A1, D2 ⊃ D1,

lim
T→∞

inf
ΛT (A1, D1)

ΛT (A2, D2)
< 1.

(iii) For any nonempty sets A and D,

lim
T→∞

ΛT (A, D) = ∞ and lim
T→∞

ΛT (A, D)

T
= 0.

Remark 2.1. (i) It should be noted that ΛT (A, D) can be chosen quite generally. It is a

function of sets in theory, but in practice we can define the penalty function as a function

of |A| and |D| satisfying Assumption 2.4. Obviously, the definition of ΛT (A, D) generalizes

the function hn(k) in Zheng and Loh (1997).

(ii) Assumption 2.4 regularizes the penalty function so as to avoid any problem of over-

fitting or under-fitting.

We now extend the penalty function method from linear model selection to the partial

linear model selection. Define

(Â, D̂, ĥ) = arg min
A∈A,D∈D,h∈HTD

{RSS(A, D; h) + ΛT (A, D)σ̂2}, (2.10)

where σ̂2 = 1
T−p

RSS(Ap, Dq; h) is the usual consistent estimate of Var[et] = σ2. It may be

shown from equation (14) of Zheng and Loh (1997) that

σ̂2 = σ2 + oP (1) (2.11)
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uniformly in h ∈ HTD. The proof of (2.11) is similar to, but simpler, than that of (2.9) and

is therefore omitted.

Remark 2.2. The method proposed in this paper generalizes those in Zheng and Loh (1995,

1997), Yao and Tong (1994), and Vieu (1994). For example, if D∗ is already identified, then

the problem becomes a model selection problem for linear models as discussed in Zheng and

Loh (1995,1997). If A is already identified as A∗, and we need only to select D for (A∗, D),

then the model selection reduces to a purely nonparametric leave–one–out cross–validation

selection problem. This is because, as shown in Section 2.1 of Gao and Tong (2002), the

leading term 1
T
RSS(A∗, D; h) is asymptotically equivalent to a CV 1(D, h) function of (D, h)

defined as

CV1(D, h) =
1

T

T∑

t=1

{
Yt − U τ

t β̂(Ap, D) − φ̂t(XtD, β̂(Ap, D))
}2

, (2.12)

where φ̂t(XtD, β) = φ̂1t(D) − φ̂2t(A, D)τβ and β̂(A, D) are given at (2.6). Thus, in the case

where A is already identified as A∗, we may choose (D, h) as follows:

(D̂, ĥ) = arg min
D∈D,h∈HTD

CV1(D, h).

We now state the main result of this paper; its proof is relegated to the Appendix.

Theorem 2.1. If the Assumptions 2.1–2.4 and A.1–A.5 of the Appendix hold, then

lim
T→∞

P
(
Â = A∗, D̂ = D∗

)
= 1 and

ĥ

h∗
→P 1

as T → ∞, where h∗ = c∗T
− 1

4+|D∗| and c∗ is a positive constant.

3. Some simulation results

In this section we illustrate Theorem 2.1 using two simulated examples. Our simulation

results support the asymptotic theory and the use of the semiparametric penalty function

method for practical partial linear model selection.

Example 3.1. Consider a nonlinear time series model of the form

Yt = 0.47Ut−1 − 0.45Ut−2 +
0.5Xt−1

1 + X2
t−1

+ et,

where Ut = 0.55Ut−1 − 0.12Ut−2 + δt and Xt = 0.3 sin(2πXt−1) + ǫt, in which δt, ǫt and

et are mutually independent and are identically distributed as uniform (−1, 1), uniform
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(−0.5, 0.5) and N(0, 1), respectively, U1, U2, X1, X2 are independent and identically distrib-

uted as uniform (−1, 1), Us and Xt are mutually independent for all s, t ≥ 3, and the

processes {(δt, ǫt, et) : t ≥ 3} are independent of both (U1, U2) and (X1, X2).

For Example 3.1, the strict stationarity and mixing condition can be justified by using

existing results (e.g. Masry and Tjøstheim (1995, 1997)). Thus, Assumption A.1 holds. For

an application of Theorem 2.1, let

β = (β1, β2)
τ = (0.47,−0.45)τ and φ(Xt−1) =

0.5Xt−1

1 + X2
t−1

.

In this example, we consider the case where Xt and Xt−1 are selected as candidate non-

parametric regressors and Ut−1 and Ut−2 as candidate parametric regressors. Then we use

(2.10) to check if (Ut−1, Ut−2, Xt−1) is the true set of semiparametric regressors. For this

case, there are 22 − 1 = 3 possible nonparametric regressors and 22 − 1 = 3 possible para-

metric regressors, respectively. Thus, there are 9 posisble candidates for the true model,

since Ut and Xt are independent. Let D0 = {1}, D1 = {0}, D2 = {0, 1},D = {Di : 0 ≤

i ≤ 2}, XtD0 = Xt−1, XtD1 = Xt, XtD2 = (Xt, Xt−1)
τ , A0 = {1, 2}, A1 = {1}, A2 = {2},A =

{Ai : i = 0, 1, 2}, UtA0 = (Ut−1, Ut−2)
τ , UtA1 = Ut−1, and UtA2 = Ut−2. It follows that both

D∗ = D0 and A∗ = A0 are unique. Assumptions 2.1–2.3 therefore hold.

We use ΛT (A, D) = (|A| + |D|) · T 0.5 as the penalty function. Thus, Assumption 2.4

holds automatically. In addition to this choice of ΛT (A, D), we also considered several other

forms for ΛT (A, D). As the resulting simulated frequencies are very similar, we do not refer

them here. Throughout Example 3.1, we use

h ∈ HTD0 =
[
c1 T

− 7
6(4+|D0|) , c2 T

− 5
6(4+|D0|)

]
=

[
T− 7

30 , 2 · T− 1
6

]

based on the method proposed in Gao and Yee (2000) with c1 = 1 and c2 = 2.

For the multivariate kernel function K(·) involved in WD(t, s), define k(u) = 1√
2π

e−
u2

2

and K(u1, . . . , uj) = Πj
i=1k(uj) for j = 1, 2, 3.

It follows that Assumptions A.1–A.4 are all satisfied. Now we prove that Assumption A.5

is also satisfied. Assumption A.5 (i) is checked in Gao and Tong (2004). The independence

between Ut and Xt implies that E[UtAi
|XtDj

] = E[UtAi
] for all i, j = 0, 1, 2. Thus, we

need only to introduce the following notations. For i = 0, 1, 2, let ηt(Ai) = UtAi
− E[UtAi

],

η(Ai) = (η1(Ai), . . . , ηT (Ai))
τ , ηt = ηt(A0), and η = (η1, . . . , ηT )τ .
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Let ηβ = (α1, . . . , αT )τ , where αt = ηt(A1)β1 + ηt(A2)β2. A calculation yields that

(ηβ)τ [I − Q(A, D)](ηβ) = (ηβ)τ
(
I − η(Ai)(η(Ai)

τη(Ai))
−1η(Ai)

τ
)

(ηβ)

=

∑T
t=3 η2

t (Ai)
∑T

t=3 α2
t −

[∑T
t=3 ηt(Ai)αt

]2

∑T
t=3 η2

t (Ai)
> 0

with probability one for all i = 1, 2, because P (ηt(Ai) = αt) = 0. Thus Assumption A.5

holds. In order to assess both the small and medium sample properties of our theory, we

took T = 52 and T = 552. For the four sample sizes of T = 52, 127, 272 and 552, Table

3.1 gives the relative frequencies of the selected parametric and nonparametric regressors in

1000 replications.

Table 3.1. Frequencies of semiparametric model selection

Parametric and Nonparametric Frequencies

subset T = 52 T = 127 T = 272 T = 552

{Ut−2, Ut−1, Xt−1} 0.609 0.746 0.873 0.971

{Ut−2, Ut−1, Xt} 0.350 0.235 0.123 0.028

{Ut−2, Xt−1, Xt} 0.024 0.014 0.002 0.001

{Ut−1, Xt−1, Xt} 0.017 0.005 0.002 0.000

Remark 3.1. As can be seen from Table 3.1, the true set of regressors {Ut−2, Ut−1, Xt−1}

is selected with increasing frequencies from 0.609 to 0.971 as the sample size increases from

T = 52 to T = 552. The model {Ut−2, Ut−1, Xt}, one of the closest to the true model, is

selected with frequencies decreasing from 0.350 to 0.028. This lends support to the efficacy

of combining the penalty function method with the leave–one–out cross validation (CV1).

Table 3.1 shows that the proposed semiparametric model selection method works well

numerically when the true model is a partial linear model. Tables 3.2 and 3.3 show that

the proposed model selection method is much more effective than existing model selection

methods by comparing it with the penalty function method for linear models proposed

by Zheng and Loh, as well as with the conventional nonparametric leave–one–out cross–

validation function CV1. The candidate variables are still {Ut−2, Ut−1, Xt−1, Xt}. Both the

penalty function method for linear model selection and the CV1 selection procedure consider

all possible 15 models. As many insignificant regressors have tiny probabilities of being

selected, Tables 3.2 and 3.3 below provide only the relevant frequencies for the significant

regressors.
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Table 3.2. Frequencies of parametric model selection

Parametric Frequencies

subset T = 52 T = 127 T = 272 T = 552

{Ut−2, Ut−1, Xt−1} 0.055 0.142 0.383 0.684

{Ut−2, Ut−1} 0.238 0.464 0.525 0.310

{Ut−1, Ut−2, Xt} 0.024 0.013 0.009 0.003

{Ut−2} 0.180 0.096 0.015 0.000

{Ut−1} 0.193 0.112 0.020 0.000

{Xt−1} 0.178 0.101 0.025 0.000

{Xt} 0.067 0.024 0.001 0.000

{Ut−2, Xt−1} 0.019 0.014 0.007 0.000

{Ut−1, Xt−1} 0.022 0.024 0.008 0.000

{Ut−2, Ut−1, Xt−1, Xt} 0.003 0.004 0.005 0.003

Table 3.3. Frequencies of nonparametric model selection

Nonparametric Frequencies

subset T = 52 T = 127 T = 272 T = 552

{Ut−2, Ut−1, Xt−1} 0.103 0.288 0.464 0.652

{Ut−2, Ut−1, Xt−1, Xt} 0.050 0.103 0.184 0.196

{Ut−2, Ut−1} 0.135 0.205 0.194 0.117

{Ut−2} 0.064 0.022 0.002 0.000

{Ut−1} 0.102 0.035 0.004 0.000

{Xt−1} 0.102 0.048 0.008 0.000

{Xt} 0.059 0.011 0.000 0.000

{Ut−2, Xt−1} 0.053 0.028 0.009 0.000

{Ut−1, Xt−1} 0.058 0.060 0.014 0.002

{Ut−1, Ut−2, Xt} 0.038 0.019 0.092 0.001

Remark 3.2. Tables 3.2 and 3.3 show that the penalty function method for linear models

and the conventional nonparametric CV1 method have highest frequencies that the true

model is selected of 0.383 and 0.464, respectively when the sample size is T ≤ 272. Although

their performance improves when the sample size increases to 552, there is still a huge

difference between their performance and the performance here. Our findings justify the
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new efficient selection method for problems that cannot be solved using existing selection

methods for either completely linear models or fully nonparametric models.

The above simulations are based on the assumption that the true model is a partial linear

model, for which our method is designed. If the true model is either a parametric model

or a fully nonparametric model, our method performs reasonably well. Example 3.2 below

considers the case where the true model is a parametric linear model and then applies both

the parametric selection proposed by Zheng and Loh (1995) and our own semiparametric

selection procedure. When using the proposed semiparametric selection method, our pre-

liminary computation suggests involving the same kernel function and bandwidth interval

as used in Example 3.1 for the simulation in Example 3.2 below.

Example 3.2. Consider a linear time series model of the form Yt = 0.47Ut−1 − 0.45Ut−2 +

0.5Xt−1 + et, where Ut = 0.55Ut−1 − 0.12Ut−2 + δt and Xt = 0.3 sin(2πXt−1) + ǫt, in which

δt, ǫt and et are mutually independent and identically distributed as uniform (−1, 1), uni-

form (−0.5, 0.5) and N(0, 1), respectively, U1, U2, X1, X2 are independent and identically

distributed as uniform (−1, 1), Us and Xt are mutually independent for all s, t ≥ 3, and the

processes {(δt, ǫt, et) : t ≥ 3} are independent of both (U1, U2) and (X1, X2).

For T = 52, 127, 272 and 552, we chose the penalty function ΛT (A, D) = (|A|+ |D|) T 0.5

and then calculated the relative frequencies of the selected parametric and semiparametric

regressors in 1000 replications. The results are in Tables 3.4 and 3.5.

Table 3.4. Frequencies of semiparametric model selection

Parametric and Nonparametric Frequencies

subset T = 52 T = 127 T = 272 T = 552

{Ut−2, Ut−1, Xt−1} 0.070 0.172 0.432 0.836

{Ut−2, Ut−1, Xt} 0.038 0.040 0.028 0.009

{Ut−2, Xt−1, Xt} 0.002 0.004 0.000 0.000

{Ut−1, Xt−1, Xt} 0.001 0.000 0.000 0.000

{Ut−1, Ut−2, Xt−1, Xt} 0.001 0.001 0.001 0.000

{Ut−2, Xt−1} 0.280 0.293 0.208 0.051

{Ut−2, Xt} 0.147 0.059 0.007 0.000

{Ut−1, Xt−1} 0.310 0.369 0.308 0.104

{Ut−1, Xt} 0.151 0.062 0.016 0.000
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Table 3.5. Frequencies of parametric model selection

Parametric Frequencies

subset T = 52 T = 127 T = 272 T = 552

{Ut−2, Ut−1, Xt−1} 0.086 0.325 0.742 0.942

{Ut−2, Ut−1} 0.213 0.327 0.198 0.035

{Ut−1, Ut−2, Xt} 0.032 0.014 0.006 0.003

{Ut−2} 0.129 0.041 0.003 0.000

{Ut−1} 0.159 0.072 0.004 0.000

{Xt−1} 0.192 0.121 0.012 0.000

{Xt} 0.073 0.006 0.001 0.000

{Ut−2, Xt−1} 0.040 0.019 0.001 0.000

{Ut−1, Xt−1} 0.028 0.038 0.011 0.000

{Xt−1, Xt} 0.013 0.003 0.000 0.000

{Ut−2, Ut−1, Xt−1, Xt} 0.011 0.018 0.022 0.020

Remark 3.3. Tables 3.2 and 3.4 show that semiparametric penalty function method has

a similar performance to that of the parametric penalty function method for the cases of

T = 52, T = 127 and T = 272. When T = 552, the semiparametric penalty function method

does better.
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Appendix

There are several basic assumptions stated here. Throughout this appendix, let C(0 < C < ∞)

denote a constant which may have different values at each appearance.

Assumption A.1. Assume that the stochastic process (Yt, Ut, Xt) is strictly stationary and α–

mixing with mixing coefficient α(T ) ≤ CηT , where 0 < η < 1 is a constant. In addition, assume

{et} is a stationary martingale difference with respect to Ωt = σ{(Ys, Us+1, Xs+1) : 1 ≤ s ≤ t−1}, a

sequence of σ-fields generated by {(Ys, Us+1, Xs+1) : 1 ≤ s ≤ t−1}. Suppose P (E[e2
t |Ωt] = σ2) = 1,

where 0 < σ2 = E[e2
t ] < ∞.
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Assumption A.2. For every D ∈ D, KD is a |D|-dimensional symmetric, Lipschitz continuous

probability kernel function with
∫
‖u‖2KD(u)du < ∞, and KD has an absolutely integrable Fourier

transform, where‖ · ‖ denote the Euclidean norm.

Assumption A.3. Let Sw be a compact subset of R
q, w(x) be a weight function supported on

Sw with 0 < w(x) ≤ C for some constant C. For every D ∈ D, let RX,D ⊂ R
|D| = (−∞,∞)|D|

be the subset such that XtD ∈ RX,D and let SD be the projection of Sw in RX,D (that is, SD =

RX,D∩Sw). Assume that the marginal density function, fD(·), of XtD, and the first two derivatives

of fD(x), ϕ1(x;D) and ϕ2(x;A,D), are all continuous on x ∈ RX,D, and on SD the density function

fD(x) is bounded below by CD and above by C−1
D for some CD > 0, where ϕ1(x;D) = E[Yt|XtD = x]

and ϕ2(x;A,D) = E[UtA|XtD = x] for every A ∈ A and D ∈ D.

Assumption A.4. There exists constants 0 < C1, C2 < ∞ such that for any integer l ≥ 1,

sup
x

sup
A∈A,D∈D

E
(
|Yt − E[Yt|(UtA, XtD)]|l|XtD = x

)
≤ C1, sup

x
sup

A∈A,D∈D
E

(
‖UtA‖

l|XtD = x
)
≤ C2.

Assumption A.5. For

ηt(A,D) = UtA − E[UtA|XtD], η(A,D) = (η1(A,D), · · · , ηT (A,D))τ ,

ηt = Ut − E[Ut|Xt], η = (η1, · · · , ηT )τ , Q(A,D) = η(A,D) (η(A,D)τη(A,D))+ η(A,D)τ ,

and P1T (A,D) = 1
T

(ηβ)τ [IT − Q(A,D)](ηβ), assume that for any given A ∈ A1 and D ∈ D,

lim infT→∞ P1T (A,D) > 0 in probability.

Assumptions A.1–A.5 are standard conditions in this kind of problem. Remark A.1 of Gao and

Tong (2002) gives detailed justification for Assumptions A.1–A.5.

To prove Theorem 2.1, the following lemmas are required. Similar to Lemma B.1 of Gao and

Tong (2004) and Lemma B.3 of Gao and Tong (2002), we have Lemmas A.1 and A.2. In addition,

we include Lemma A.3 to ensure that (2.9) holds.

Lemma A.1 (i) Assume that the conditions of Theorem 2.1 hold. If A ∈ A1 and D ∈ D, then

there exists R1T ≥ 0 such that

RSS(A,D; h) =
T∑

t=1

e2
t + T · P1T (A,D) + T · N1T (D,h) + R1T + oP (T ) (A.1)

uniformly in h ∈ HTD, where R1T is independent of (A,D), P1T is as defined in Assumption A.5,

and

N1T (D,h) =





c1(D) 1

Th|D| + c2(D)h4 + op

(
1

Th|D|

)
+ op(h

4) if D ∈ D1 and h ∈ HTD,

E{E[Yt|XtD] − E[Yt|Xt]}
2 + o(1) if D /∈ D1 and h ∈ HTD.
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Here both c1(D) and c2(D) are positive constants depending on D ∈ D1.

(ii) Assume that the conditions of Theorem 2.1 hold. If A ∈ A2 and D ∈ D, then

RSS(A,D; h) =
T∑

t=1

e2
t + dAσ2 + T · N1T (D,h) + op(1) (A.2)

uniformly in h ∈ HTD, where N1T (D,h) is defined as above.

Similar to the proof of Lemma 1(a) of Gao and Tong (2004), it may be shown that for each

given D, there exist some positive constants d1(D) and d2(D) such that h̄D = d1(D)T
− 1

4+|D| and

N1T (D, h̄D) = min
h∈HTD

N1T (D,h) =






d2(D)T
− 4

4+|D| + op

(
T
− 4

4+|D|

)
, if D ∈ D1,

E{E[Yt|XtD] − E[Yt|Xt]}
2 + op(1), if D /∈ D1.

(A.3)

Lemma A.2. Assume that the conditions of Theorem 2.1 hold. If A ∈ A1 and D ∈ D then

lim inf
T→∞

Q1T (A,D) = lim inf
T→∞

P1T (A,D) > 0 in probability, (A.4)

where Q1T (A,D) = 1
T

(V β)τR(A,D)(V β), P1T (A,D) and R(A,D) are defined as before.

Lemma A.3. Assume that the conditions of Theorem 2.1 hold. Then, uniformly in h ∈ HTD,

RSS(A,D;h) = ετR(A,D)ε + Φ̃(D)τR(A,D)Φ̃(D) + (V β)τR(A,D)(V β) + oP (RSS(A,D;h)) ,

(A.5)

MT (A,D;h) = E [RSS(A,D;h)] = (T − |A|)σ2 + PT (A,D) + NT (A,D) + o (MT (A,D;h)) . (A.6)

Proof: Write

∆T (A,D;h) = 2ετR(A,D)Φ̃(D) + 2Φ̃τ (D)R(A,D)(V β) + 2ετR(A,D)(V β). (A.7)

In order to prove (A.5), it suffices to show that for sufficiently large T

sup
h∈HTD

|∆T (A,D; h)|

RSS(A,D;h)
= oP (1), (A.8)

which follows from

sup
h∈HTD

∣∣∣ετR(A,D)Φ̃(D)
∣∣∣

RSS(A,D;h)
= oP (1), sup

h∈HTD

∣∣∣Φ̃τ (D)R(A,D)(V β)
∣∣∣

RSS(A,D;h)
= oP (1), (A.9)

sup
h∈HTD

|ετR(A,D)(V β)|

RSS(A,D;h)
= oP (1). (A.10)
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The proofs of (A.9) and (A.10) are quite standard in this kind of problem. The details are as in

the proof of (A.18) of Gao and Yee (2000) for example, and are omitted here. The proof of (A.6)

follows from (A.5) using the Dominated Convergence Theorem.

Proof of Theorem 2.1: Let RSS(A,D) = minh∈HTD
RSS(A,D;h). In view of (A.1)–(A.3), we

can write RSS(A,D) as

RSS(A,D) =






∑T
t=1 e2

t + T · P1T (A,D) + T · N1T (D, h̄D) + R1T + op(T ) A ∈ A1, D ∈ D,
∑T

t=1 e2
t + dAσ2 + T · N1T (D, h̄D) + op(1) A ∈ A2, D ∈ D.

It follows immediately from P1T (A∗, D∗) = 0 that

RSS(A,D) − RSS(A∗, D∗)

=





T · P1T (A,D) − dA∗σ

2 + T (N1T (D, h̄D) − N1T (D∗, h̄D∗)) + op(T ) A ∈ A1, D ∈ D,

(dA − dA∗)σ
2 + T (N1T (D, h̄D) − N1T (D∗, h̄D∗)) + op(1) A ∈ A2, D ∈ D.

If A ∈ A2 and D ∈ D, then as T → ∞,

1 − P
{
RSS(A,D) − RSS(A∗, D∗) + (ΛT (A,D) − ΛT (A∗, D∗))σ̂

2 > 0
}

= P
{
(dA − dA∗

)σ2 + T (N1T (D, h̄D) − N1T (D∗, h̄D∗
)) + op(1) + (ΛT (A,D) − ΛT (A∗, D∗))σ̂

2 ≤ 0
}

= P

{
N1T (D, h̄D) − N1T (D∗, h̄D∗

) ≤ −
dA − dA∗

T
σ2 −

ΛT (A,D) − ΛT (A∗, D∗)

T
σ̂2

}

≤ P

{
N1T (D, h̄D) − N1T (D∗, h̄D∗

) ≤ −
dA − dA∗

T
σ2 −

ΛT (A,D)

T

(
1 −

ΛT (A∗, D∗)

ΛT (A,D)

)
·
1

2
σ2

}
+ o(1)

≤ P

{
N1T (D, h̄D) − N1T (D∗, h̄D∗

) ≤ −
ΛT (A,D)

T

(
1 −

ΛT (A∗, D∗)

ΛT (A,D)

)
·
1

2
σ2

}
+ o(1) → 0 (A.11)

because of N1T (D, h̄D) − N1T (D∗, h̄D∗) > 0 for all A ∈ A1 and either D ∈ D1 or D ∈ D −D1.

If A ∈ A1 and D ∈ D, then we obtain as T → ∞,

1 − P
{
RSS(A,D) − RSS(A∗, D∗) + (ΛT (A,D) − ΛT (A∗, D∗))σ̂

2 > 0
}

= P

{
P1T (A,D) +

(
N1T (D, h̄D) − N1T (D∗, h̄D∗

)
)

+
R1T − dA∗

σ2 + (ΛT (A,D) − ΛT (A∗, D∗)) σ̂2

T
+ oP (1) ≤ 0

}

= P

{
P1T (A,D) + N1T (D, h̄D) − N1T (D∗, h̄D∗

) ≤ −
op(T )

T
+

dA∗
σ2

T
−

R1T

T
−

(ΛT (A,D) − ΛT (A∗, D∗)) σ̂2

T

}

+o(1) = P

{
P1T (A,D) + N1T (D, h̄D) − N1T (D∗, h̄D∗

) ≤ −
ΛT (A,D)

T

(
1 −

ΛT (A∗, D∗)

ΛT (A,D)

)
·
1

2
σ2

}
+o(1) → 0

(A.12)

because of lim infT→∞ P1T (A,D) > 0 and N1T (D, h̄D) − N1T (D∗, h̄D∗) > 0 for all D ∈ D1 or

D ∈ D −D1.
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Consequently, as T → ∞,

1 ≥ P (Â = A∗, D̂ = D∗) ≥ P
{
RSS(A,D) − RSS(A∗, D∗) + (ΛT (A,D) − ΛT (A∗, D∗))σ̂

2 > 0
}
→ 1.

This completes the proof of the first part of Theorem 2.1. Now if ĥ = h̄
D̂

, c∗ = cD∗ and h∗ = h̄D∗ =

c∗T
− 1

4+|D∗| , it follows from the above proof and (A.3) that ĥ
h∗

→p 1 as T → ∞. This completes the

proofs.
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