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Abstract: This paper evaluates the use of the nonparametric kernel method for

testing specification of diffusion models as originally considered in Aı̈t-Sahalia (1996).

A serious doubt on the ability of the kernel method for diffusion model testing has

been cast in Pritsker (1998), who observes severe size distortion of the test proposed

by Aı̈t-Sahalia and finds that 2755 years of data are required in order for the kernel

density estimator to attain a level of accuracy achieved with 22 years of independent

data. We introduce in this paper a set of measures to formulate a new test based on the

kernel method and show that the severe size distortion observed by Pritsker (1998) can

be overcome. The meaures include targeting at the transitional desnity of the process,

using the empirical likelihood to formulate the test statistics, properly smoothing of

model-implied transtional densities and employing a parametric bootstrap procedure

in approximating the distribution of test statistics. Our simulation for both the

Vasicek and Cox-Ingersoll-Ross diffusion models indicates that the proposed test has

reasonable size and power under various degrees of data dependence for as little as 10

years of data. We then apply the proposed test to a monthly Federal Fund rate data

and find that there is some empirical support for several of the one-factor diffusion

models proposed in the literature.

KEYWORDS: Bootstrap, Continuous–time interest rate model, Diffusion process,

Empirical likelihood, Goodness-of-fit test, Kernel method.
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1. Introduction. Let X1, · · ·Xn+1 be n + 1 equally spaced (with spacing ∆ in

time) observations of a diffusion process

dXt = µ(Xt)dt + σ(Xt)dBt (1.1)

where µ(·) and σ2(·) > 0 are, respectively, the drift and diffusion functions, and Bt is

the standard Brownian motion. Suppose a parametric specification of model (1.1) is

dXt = µ(Xt; θ)dt + σ(Xt; θ)dBt, (1.2)

where θ is a parameter within a parameter space Θ ⊂ Rd for a positive integer d. The

focus of this paper is testing the validity of the parametric specification (1.2) based

on the discretely observed data {Xt}n+1
t=1 .

In a pioneer work that represents a major break-through in financial economet-

rics, Aı̈t-Sahalia (1996) proposes using the nonparametric kernel method to test the

parametric specification (1.2). The test statistic is a L2–distance between the kernel

stationary density estimator and the stationary density implied by model (1.2). The

test is based on the asymptotic normal distribution of the test statistic.

In a comprehensive investigation, Pritsker (1998) evaluates Aı̈t-Sahalia’s test and

finds a large discrepancy between the simulated and nominal sizes of the test under

a set of Vasicek (1977) diffusion models with various degrees of dependence. He

observes that both the form of the density estimator and its asymptotic distribution

are the same for both independent and dependent observations, which is due to the so-

called ‘pre-whitening’ by a smoothing bandwidth in nonparametric curve estimation.

Hence, the asymptotic nature of the Aı̈t-Sahalia’s test prevents capturing dependence

existed in the process. Pritsker shows that to attain the same level of accuracy for

the kernel estimator with 22 years of independent data would require 2755 years of

dependent data under the Vasicek model. In a separate study, Chapman and Pearson

(2000) reveal that the finding of non-linear drift in Stanton (1997) is largely due to
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the boundary and truncation bias associated with the kernel regression estimator.

These findings have illustrated the challenge when applying the kernel estimator for

inference of diffusion processes, and have inevitably projected rather negatively on

the ability of the kernel method to model data dependence induced by a diffusion

process in general and testing of the diffusion process in particular.

We think other aspects contribute to the performance of Aı̈t-Sahalia’ test in addi-

tion to its asymptotic nature observed by Pritsker. One is that the test targeted at the

stationary density. It can take long time for a process to settle on the stationary dis-

tribution which is specially the case for the Vasicek models with weak mean-reversion

considered in Pritsker’s simulation. As pointed out in Aı̈t-Sahalia (1996), a test on

the stationary density is not conclusive as two different processes may share the same

stationary density. As diffusion processes are Markovian, testing should be aimed at

the transitional density. The second aspect is that the kernel estimator introduces a

bias which needs to be considered. Aı̈t-Sahalia proposed undersmoothing to prevent

the bias from getting into the limiting distribution. However, it may not be easy to

check on the effect of a particular bandwidth used on the bias. Another aspect is

that parameter estimates under the hypothesized process are needed in the formu-

lation of a test statistic. However, the maximum likelihood estimators for the drift

parameters are subject to large bias when the process is weak mean-reverting. This

is a well–known problem in diffusion process estimation (Yu and Phillips, 2001) and

further reduces the performance of Aı̈t-Sahalia’s test.

We implement a set of measures in developing a new test based on the kernel

method. First of all, the proposed test is targeted at the transitional density to

have a conclusive test and to fully capture the dynamics. The second measure is

to properly smooth the model implied transitional density so as to cancel out the

bias induced by the kernel estimation, which avoids undersmoothing and simplifies
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the theoretical analysis. In order to put the difference between the kernel estimator

and the smoothed model-implied transitional density in the context of its variation,

the test statistic is formulated via the empirical likelihood of Owen (1988, 1990).

Furthermore, to make the test robust against bandwidth choice, we formulate the

test statistic based a set of bandwidths. Finally, a parametric bootstrap procedure is

used to profile the distribution of the test statistic and to obtain the critical value of

the test.

A continuous-time diffusion process and a time series model share some important

features althought one is a continuous time model and the other is a discrete model.

Time series and diffusion processes can be both Markovian and weakly dependent

satisfying certain mixing conditions. Kernel–based tests have been shown to be able

to effectively test for discrete time series models as demonstrated in Robinson (1989),

Hjellvik and Tjøstheim (1995), Fan and Li (1996), Hjellvik and Yao and Tjøstheim

(1998), Kreiss, Neumann and Yao (1998), Li (1999), Aı̈t-Sahalia, Bickel and Stoker

(2001), Gozalo and Linton (2001). See the books by Hart (1997) and Fan and Yao

(2003) for extended lists of references. For estimation of diffusion models, in addi-

tion to Aı̈t-Sahalia (1996) and Stanton (1997), Jiang and Knight (1997) proposed a

semiparametric kernel estimator for the drift. Fan, Jiang, Zhang and Zhou (2003)

examined effects of high order stochastic expansions. Bandi and Phillips (2003) con-

sider a two–stage kernel estimation procedure for the drift and diffusion functions

without the strictly stationary assumption. For testing of diffusion processes, Hong

and Li (2005) developed a test via a conditional probability integral transformation.

Although the kernel estimator is employed, the transformation leads to asymptot-

ically independent uniform random variables under the correct model. Hence, the

issue on the ability of the kernel method to model dependence induced by diffusion

models is avoided. Fan and Zhang (2003) apply the generalized likelihood ratio test
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for the drift and diffusion functions. See review articles by Cai and Hong (2003) and

Fan (2005) for more detailed accounts.

The paper is structured as follows. Section 2 outlines the hypotheses and the kernel

estimation of the transitional densities. The proposed EL test is given in Section 3.

Section 4 reports main results of the test. Section 5 considers computational issues.

Results from simulation studies are reported in Section 6. A Federal fund rate data

is analyzed in Section 7. All the proofs are given in the appendix.

2. The hypotheses and kernel estimators. Let π(x) be the stationary density

and p(y|x; ∆) be the transitional density of Xt+1 = y given Xt = x under model (1.1)

respectively; and πθ(x) and pθ(y|x, ∆) be their parametric counterparts under model

(1.2). To simplify notation, we suppress ∆ in the notation of the transitional densities.

Let X be the state space of the process.

Although πθ(x) has a close form expression via Kolmogorov forward equation

πθ(x) =
ξ(θ)

σ2(x, θ)
exp

{
∫ x

x0

2µ(t, θ)

σ2(t, θ)
dt

}

,

where ξ(θ) is a normalizing constant, pθ(y|x) implicitly defined by the Kolmogorov

backward-equation may not admit a close form expression. However, this problem is

overcome by Edgeworth type approximations developed by Aı̈t-Sahalia (1999, 2002)

for general diffusion processes. As the transitional density fully describes the dynam-

ics of a diffusion process, the hypotheses we would like to test are

H0 : p(y|x) = pθ0(y|x) for some θ0 ∈ Θ and all (x, y) ∈ S ⊂ X 2 versus

H1 : p(y|x) �= pθ(y|x) for all θ ∈ Θ and some (x, y) ∈ S ⊂ X 2, (2.1)

where S is a compact set within X 2 and can be chosen upon given observations

as demonstrated in simulation and case studies in Sections 6 and 7. As we choose

S within the support of the density, the boundary bias associated with the kernel
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estimators (Müller, 1991; Fan and Gijbles, 1996; and Müller and Stadtmüller, 1999)

is avoided.

Let K(·) be a kernel function which is a symmetric probability density function,

h is a smoothing bandwidth such that h → 0 and nh2 → ∞ as n → ∞, and

Kh(·) = h−1K(·/h). The kernel estimator of p(y|x) is

p̂(y|x) = n−1

n
∑

t=1

Kh(x − Xt)Kh(y −Xt+1)/π̂(x). (2.2)

where π̂(x) = (n + 1)−1
∑n+1

t=1 Kh(x − Xt) is the kernel estimator of the stationary

density used in Aı̈t-Sahalia(1996). The local polynomial estimator introduced by Fan,

Yao and Tong (1996) can be also employed without altering the main results of the

paper. It is known (Hydman and Yao, 2002) that

E{p̂(y|x)− p(y|x)} = 1
2
σ2

kh
2
(

∂2p(y|x)
∂x2 + ∂2p(y|x)

∂y2 + 2π′(x)
π(x)

∂p(y|x)
∂x

)

+ o(h2) and(2.3)

Var{p̂(y|x)} =
R2(K)p(y|x)

nh2π(x)
(1 + o(1)), (2.4)

where σ2
K =

∫

u2K(u)du and R(K) =
∫

K2(u)du.

Let θ̃ be a
√

n–consistent estimator of θ under model (1.2) for instance the maxi-

mum likelihood estimator under H0, and

wt(x) = Kh(x − Xt)
s2h(x) − s1h(x)(x− Xt)

s2h(x)s0h(x)− s2
1h(x)

(2.5)

be the local linear weight with srh(x) =
∑n

s=1 Kh(x − Xs)(x − Xs)
l for r = 0, 1 and

2. In order to cancel the bias in p̂(y|x), we smooth pθ̃(y|x) as

p̃θ̃(y|x) =

∑n+1
t=1 Kh(x −Xt)

∑n+1
s=1 ws(y)pθ̃(Xs|Xt)

∑n+1
t=1 Kh(x − Xt)

. (2.6)

Here we apply the kernel smoothing twice: first for each Xt using the local linear

weight to smooth pθ̃(Xs|Xt) and then employing the standard kernel weight to smooth

the resulting function with respect to Xt. This is motivated by Härdle and Mammen
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(1993). It can be shown following the standard derivations as those demonstrated in

Fan and Gijbels (1996) that, under H0

E{p̂(y|x)− p̃θ̃(y|x)} = o(h2) and (2.7)

Var{p̂(y|x)− p̃θ̃(y|x)} = Var{p̂(y|x)}{1 + o(1)}. (2.8)

Hence the bias of p̂(y|x) cancels that of p̃θ̃(y|x) in the leading order whileas smoothing

the parametric density does not effect the asymptotic variance.

3. Formulation of a test statistic. The test statistic is formulated by the

empirical likelihood (EL) (Owen, 1988, 1990). Despite its being intrinsically non-

parametric, EL posesses two key properties of a parametric likelihood: the Wilks’

theorem and Bartlett correction. Qin and Lawless (1994) established EL for parame-

ters defined by generalized estimating equations which is the broadest framework for

EL formulation, which was extended by Kitamura (1997) to dependent observations.

Chen and Cui (2004) show that the EL admits Bartlett correction under this general

framework. An extension of Qin and Lawless’s framework is given in Hjort, McKeague

and Van Keilegom (2005) to include nuisance parameters/functions. Fan and Zhang

(2004) propose a sieve EL test for varying-coefficient regression model that extends

the test of Fan, Zhang and Zhang (2001). Tripathi and Kitamura (2003) propose an

EL test for conditional moment restrictions. See also Li and Van Keilegom (2002)

and Li (2003) for EL goodness-of-fit tests for survival data.

Let us now formulate the EL for the transitional density at a fixed (x, y). For

t = 1, · · · , n, let qt(x, y) be non-negative weights allocated to (Xt, Xt+1). The EL

evaluated at p̃θ̃(y|x) is

L{p̂θ̃(y|x)} = max
n
∏

t=1

qt(x, y) (3.1)

subject to
∑n

t=1 qt(x, y) = 1 and
n
∑

t=1

qt(x, y)Kh(x − Xt)Kh(y − Xt+1) = p̃θ̃(y|x)π̂(x). (3.2)
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By introducing a Lagrange multiplier λ(x, y), the optimal weights as solutions to

(3.1) and (3.2) are

qt(x, y) = n−1{1 + λ(x, y)Tt(x, y)}−1, (3.3)

where Tt(x, y) = Kh(x −Xt)Kh(y − Xt+1) − p̃θ̃(x, y) and λ(x, y) is the root of

n
∑

t=1

Tt(x, y)

1 + λ(x, y)Tt(x, y)
= 0. (3.4)

The overall maximum EL is achieved at qt(x, y) = n−1 which maximize (3.1) without

the constraint (3.2). Hence, the log-EL ratio is

ℓ{p̃θ̃(y|x)} = −2 log ([L{p̃θ̃(y|x)}nn]) = 2
∑

log{1 + λ(x, y)Tt(x, y)}. (3.5)

It may be shown by similar derivations to those given in Chen, Härdle and Li (2003)

that

sup
(x,y)∈S

|λ(x, y)| = op{(nh2)−1/2 log(n)}. (3.6)

Let Ū1(x, y) = (nh2)−1
∑

Tt(x, y) and Ū2(x, y) = (nh2)−1
∑

T 2
t (x, y). From (3.4) and

(3.6), λ(x, y) = Ū1(x, y)Ū−1
2 (x, y) + Op{(nh2)−1 log2(n)} uniformly with respect to

(x, y) ∈ S. This then leads to

ℓ{p̃θ̃(y|x)} = nh2Ū2
1 (x, y)Ū−1

2 (x, y) + Op{n−1/2h−1/2 log3(n)}

= nh2{p̂(y|x)− p̃θ̃(y|x)}2

V (y|x)
+ Op{h2 + n−1/2h−1/2 log3(n)} (3.7)

uniformly for (x, y) ∈ S, where V (y|x) = R2(K)p(y|x)π−1(x). Hence, the EL

ratio is a studentized local goodness-of-fit measure between p̂(y|x) and p̃θ̃(y|x) as

Var{p̂(y|x)} = V (y|x)
nh2 .

Integrating the EL ratio with a weight function ω(·, ·) supported on S, the global

goodness–of–fit measure based on a single bandwidth is

N(h) =

∫ ∫

ℓ{p̃θ̃(y|x)}ω(x, y)dxdy. (3.8)

8



To make the test less dependent on a single h, we extend N(h) over a bandwidth

set H = {hk}J
k=1 where hk+1/hk = a for some a ∈ (0, 1), whose choice can be guided by

the cross-validation method of Fan and Yim (2005). This formulation is motivated by

Horowitz and Spokoiny (2001) who considered achieving the optimal convergence rate

of the local alternative hypothesis in testing regression models. A similar approach

was applied in Fan (1996) using wavelets.

The final test statistic that bases on the bandwidth set H is

Ln = max
1≤k≤J

N(h) − 1√
2h

.

The standardization reflects that Var [N(h)] = O(2h2) as elaborated in the appendix.

4. Main Results. This section establish both asymptotic distribution and

asymptotic consistency for Ln. In order to state the main results, we need to introduce

the following conditions.

Assumption 1. (i) Assume that the process {Xt} is strictly stationary and α-

mixing with the mixing coefficient α(t) = Cααt defined by α(t) = sup{|P (A ∩ B) −

P (A)P (B)| : A ∈ Ωs
1, B ∈ Ω∞

s+t} for all s, t ≥ 1, where 0 < Cα < ∞ and 0 < α < 1

are constants, and Ωj
i denotes the σ-field generated by {Xt : i ≤ t ≤ j}.

(ii) K(·) is a bounded symmetric probability density supported on [−1, 1] and has

bounded second derivative; and let σ2
K =:

∫∞
−∞ x2K(x)dx and R(K) =:

∫∞
−∞ K2(x)dx.

(iii) The bandwidth set H =
{

hk = hmaxa
k, k = 0, 1, 2, . . . , J

}

, where 0 < a < 1,

h1 = cminn
−γ1 and hmax = hJ = cmaxn

−γ2 , in which 1
7

< γ2 ≤ γ1 < 1
2
, cmin and cmax

are constants satisfying 0 < cmin, cmax < ∞, and J is an integer not depending on n.

(iv) ω(x, y) is a bounded probability density supported on S.

Assumption 2. (i) Each of the diffusion processes given in (1.1) and (1.2)

admits a unique weak solution such that the boundaries of X is not attainable in finite
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time. In addition, each of the processes possesses a transitional density with p(y|x) =

p(y|x, ∆) for model (1.1) and pθ(y|x) = pθ(y|x, ∆) for model (1.2), respectively.

(ii) Let ps1,s2,···,sl
(·) be the joint probability density of (X1+s1 , . . . , X1+sl

) (1 ≤ l ≤

6). Assume that each ps1,τ2,···,sl
(x) is three times differentiable in x ∈ X l for 1 ≤ l ≤ 6.

(iii) The parameter space Θ is an open subset of Rd and pθ(y|x) is three times

differentiable in θ ∈ Θ. For every θ ∈ Θ, µ(x; θ) and σ2(x; θ), and µ(x) and σ2(x)

are all three times continuously differentiable in x ∈ X , and both σ(x) and σ(x; θ) are

positive for x ∈ S and θ ∈ Θ.

Assumption 3. (i) There is a positive and integrable function G(x, y) satisfying

E[max1≤t≤n G(Xt, Xt+1)] < ∞ uniformly in n ≥ 1 such that supθ∈Θ |pθ(y|x)|2 ≤

G(x, y) and supθ∈Θ || ▽j
θ pθ(y|x)||2 ≤ G(x, y) for j = 1, 2, 3, where ▽θpθ(·|·) = ∂pθ(·|·)

∂θ
,

▽2
θpθ(·|·) = ∂2pθ(·|·)

(∂θ)2
and ▽3

θpθ(·|·) = ∂3pθ(·|·)
(∂θ)3

.

(ii) p(y|x) > c1 > 0 for all (x, y) ∈ S and that the stationary density π(x) > c2 > 0

for all x ∈ Sx which is the projection of S on X for some ci > 0 i = 1, 2.

(iii) there is a finite C > 0 such that for every ε > 0

E

(

inf
θ,θ′∈Θ:||θ−θ′||≥ε

[pθ(Xt+1|Xt) − pθ′(Xt+1|Xt)]
2

)

≥ Cε2.

Assumption 4. (i) Let H0 be true. There exists a θ0 ∈ Θ such that E
[

||θ̃ − θ0||2
]

≤

C1Ln−1 for all sufficiently large n and a suitable constant C1L > 0.

(ii) Let H1 be true. Then there is a θ1 ∈ Θ such that E
[

||θ̃ − θ∗||2
]

≤ C2Ln−1 for

all sufficiently large n and a suitable constant C1L > 0.

Assumption 1(i) imposes the strict stationarity and the α–mixing condition on

{Xt}. Under certain conditions, such as Assumption A2 of Aı̈t-Sahalia (1996) and

Conditions (A4) and (A5) of Genon–Catalot, Jeantheau and Larédo (2000), Assump-

tion 1(i) holds. Assumption 1(ii)(iii) is a quite standard condition imposed in kernel

estimation. Assumption 2 is needed to ensure the existence and uniqueness of a solu-

tion and the transitional density function of the diffusion process. Such an assumption
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may be implied under Assumptions 1–3 of Aı̈t-Sahalia (2002), which also cover non-

stationary cases. For the stationary case, Assumptions A0 and A1 of Aı̈t-Sahalia

(1996) ensure the existence and uniqueness of a stationary solution of the diffusion

process. Assumption 3 imposes additional conditions to ensure the smoothness of

the transitional density and the identifiability of the parametric transitional density.

Assumption 4(i) requires the usual rate of convergence for θ̃ to θ0. Such a rate is

achievable when θ̃ is the maximum likelihood estimator. The θ∗ in Assumption 4(ii)

can be regarded as a projection of the parameter estimator θ̃ under H1 onto the null

parameter space.

Let K(2)(z, c) =
∫

K(u)K(z + cu)du be a generalization to the convolution of K,

ν(t) =
∫

{K(2) (tu, t)}2
du
∫

{K(2) (v, t)}2
dv and ΣJ = 2

R4(K)

∫ ∫

ω2(x, y)dxdy (ν(ai−j))J×J

be a J × J matrix where a is the fixed factor used in the construction of H. Further-

more, Let 1J be a J -dimensional vector of ones and β = 1
C(K)R(K)

∫ ∫ p(x,y)
π(y)

ω(x, y)dxdy.

We now state the following asymptotic normality; its proof is given in Appendix

A.

Theorem 1. Under Assumptions 1–4 and H0, Ln
d→ max1≤k≤J Zk as n → ∞

where Z = (Z1, . . . , ZJ)T ∼ N(β1J , ΣJ).

Theorem 1 brings a little surprise in that the mean of Z is non-zero. This is

because, although the variance of p̃θ(x, y) is at a smaller order than that of p̂(x, y), it

contributes to the second order mean of N(h) which emerges after the standardization.

However, this will not affect the test as shown in Theorem 2.

We are reluctant to formulate a test based on Theorem 1 as such a test would be

slow converging too. Instead we propose the following parametric bootstrap procedure

to approximate lα, the 1−α quantile of Ln where α ∈ (0, 1) is the nominal significance

level:
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Step 1: Generate an initial value X∗
0 from the estimated stationary density πθ̃(·).

Then simulate a sample path {X∗
t }n+1

t=1 at the same frequency ∆ according to dXt =

µ(Xt; θ̃)dt + σ(Xt; θ̃)dBt.

Step 2: Let θ̃∗ be the estimate of θ based on {X∗
t }n+1

t=1 . Compute the test statistic

Ln based on the resampled path and denote it by L∗
n.

Step 3: For a large positive integer B, repeat Steps 1 and 2 B times and obtain

after ranking L1∗
n ≤ L2∗

n ≤ · · · ≤ LB∗
n .

Let l∗α be the 1 − α quantile of L∗
n satisfying P

(

L∗
n ≥ l∗α|{Xt}n+1

t=1

)

= α. A Monte

Carlo approximation of l∗α is L
[B(1−α)]+1∗
n . The proposed test rejects H0 if Ln ≥ l∗α.

The next theorem shows that the proposed EL test based on the bootstrap calibra-

tion has correct size asymptotically and is consistent. The proof is given in Appendix

A.

Theorem 2. Under Assumptions 1–4, then limn→∞ P (Ln ≥ l∗α) = α under H0;

and limn→∞ P (Ln ≥ l∗α) = 1 under H1.

5. Computation. The computation of the test statistic Ln involves first com-

puting the EL ratio ℓ{p̃θ̂(y|x)} over a grid of (x, y)-points within the set S ⊂ X 2.

Then, N(h) in (3.8) is computed by its Riemann sum over a set of grid points in S

upon given the weight function ω(·, ·). The EL test statistic Ln is obtained by taking

the maximum of N(h) over h ∈ Hn. The critical value lα is approximated via the

bootstrap procedure.

Despite being computationally intensive in each of these steps, implementing the

proposed test for a single data set is not a problem with a standard computing capacity

these days. However, when carrying out simulations, we would like to speed up the

computation as a large number of replications are required.

In the simulation, we use the least squares empirical likelihood (LSEL) to replace

the full EL when formulating N(h). The LSEL is easier to compute as there are
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closed-form solutions for the weights qt(x, y) and hence avoids expensive nonlinear

optimization. The log LSEL ratio evaluated at p̃θ̃(y|x) is

lsl{p̃θ̃(y|x)} = min

n
∑

t=1

{nqt(x, y)− 1}2

subject to
∑n

t=1 qt(x, y) = 1 and
∑n

t=1 qt(x, y)Tt(x, y) = 0. According to Brown and

Chen (1998), the LSEL weights are given by

qt(x, y) = n−1 + {n−1T (x, y)− Tt(x, y)}τS−1(x)T (x, y)

where T (x, y) =
∑n

t=1 Tt(x, y) and S(x, y) = n−1
∑n

t=1 T 2
t (x, y). And

lsl{m̃θ̃(x)} = S−1(x, y)T 2(x, y)

is readily computable. The LSEL counterpart to N(h) is N ls(h) =
∫

lsl{m̃θ̃(x)}π(x, y)dx.

The final test statistic Ln = maxh∈H
N ls(h)−1
C(K)h

. It can be shown from Brown and

Chen (1998) that N ls(h) and N(h) are equivalent to the first order. Therefore, those

first-order results in Theorems 1 and 2 continue to hold for the LSEL.

6. Simulation studies. We report results of simulation studies which designed

to evaluate the empirical performance of the proposed EL test. To gain information

on its relative performance, Hong and Li’s test is performed over the same simulation.

Throughout the paper, the biweight kernel K(u) = 15
16

(1 − u2)2I(|u| ≤ 1) was

used in all the kernel estimation. In simulation, we set ∆ = 1
12

implying monthly

observations which coincides with that of the Federal fund rate data to be analyzed.

We chose n = 125, 250 or 500 respectively corresponding roughly 10 to 40 years of

data. The number of simulations was 500 and the number of bootstrap resampled

paths was B = 250.

6.1. Size Evaluation.

Two simulation studies were carried out to evaluate the size of the proposed test.

The first one includes three Vasicek models from Pritsker’s study, whereas in the
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second study three Cox, Ingersoll and Ross (CIR) (1985) models are considered. We

want to see if the severe size distortion observed by Pritsker (1998) is present for our

proposal.

6.1.1 Vasicek Models

We first consider, like Pritsker (1998), testing the Vasicek model

dXt = κ(α − Xt)dt + σdBt.

The vector of parameters θ = (α, κ, σ2) takes three sets of values which correspond

to Model -2, Model 0 and Model 2 of Pritsker (1998). The baseline Model 0 assigns

κ0 = 0.85837, α0 = 0.089102 and σ2
0 = 0.0021854 which matches estimates by Aı̈t-

Sahalia (1996) for an interest rate data. Model -2 is obtained by quadrupling k0 and

σ2
0 and Model 2 by halving k0 and σ2

0 twice while keeping α0 unchanged. These three

models were part of the five models used in Pritsker (1998). Note that the three

models have the same marginal distribution N(α0, VE), where VE = σ2

2κ
= 0.01226

is the same. Despite the stationary distribution being the same, the models offer

different levels of dependence as quantified by the mean-reverting parameter κ. From

Models -2 to 2, the process becomes more dependent as κ gets smaller. This is

carefully designed by Pritsker to allow the effects of dependence to be investigated

without changing the marginal density.

The region S was chosen based on the underlying transitional density so that the

region attained more than 90% of the probability. In particular, for Models -2, 0 and

2, it was chosen by rotating respectively [0.035, 0.25] × [−0.03, 0.03], [0.03, 0.22] ×

[−0.02, 0.02] and [0.02, 0.22] × [−0.009, 0.009] 45 degrees anticlock-wise. The weight

function ω(x, y) = |S|−1I{(x, y) ∈ S} where |S| is the area of S.

Both the cross-validation (CV) (Silverman 1986) and the reference to a bivariate

normal distribution (the Scott Rule, Scott 1992) methods were used to guide the
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selection of the bandwidth set H whose values are reported in Table 1. Table 1 also

contains the average bandwidths obtained by the two methods. We observed that,

for each given n, regardless of which method was used, the chosen bandwidth became

smaller as the model was shifted from Model -2 to Model 2. This indicated that

both methods took into account the changing level of dependence induced by these

models. The maximum likelihood estimator was used to estimate θ in each simulation

and each resample in the bootstrap. Table 2 summarizes the quality of the parameter

estimation.

The average sizes of the proposed test at the nominal size of 5% are reported

in Table 3. It shows that the sizes of the proposed test were quite close to the

nominal level for Vasicek Model -2 and Model 0 consistently for the three sample

sizes considered. For Model 2, which has the weakest mean-reversion, there was

some size distortion when n = 125. However, it was significantly alleviated when n

was increased. The message conveyed by Table 3 is that we need not have a large

number of years of data in order to achieve a reasonable size for the test. Table 3 also

reports the single-bandwidth based test based on N(h) and the asymptotic normality

as conveyed by Theorem 1 with J = 1. Like Pritsker’s study, this asymptotic test

has severe size distortion too and highlights the need for implementing the bootstrap

procedure.

The size distortion for Model 2 at n = 125 was partly due to the poor quality of

parameter estimates. It is well known that the estimation of κ is subject to severe

bias when the mean-reversion is weak. This is indeed confirmed in Table 2. The

deterioration in the quality of the estimates, especially for κ when the dependence

became stronger, is alarming. The relative bias of the κ-estimates was more than

200% for Model 2 at n = 125. It is nice to see that the proposed test did a very good

job in producing a size of 12.6% under the severe circumstances. This indicates that
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the proposed test is robust against poor parameter estimates.

We also carried out simulation for the test of Hong and Li (2005). The Scott rule

adopted by Hong and Li was used to get an initial bandwidth (hscott). We then chose

4 equally spaced bandwidths below and above the average hscott. The nominal 5%

test at each bandwidth was carried out with the lag values 1 and 4. We only report

the results for lage value 1 in Table 4 as those for the other case were the same.

For sample size not larger than 500, the sizes of the test did not settle well at the

nominal level as reflected by the sizes being quite high for smaller bandwidths and

then dropped quite quickly for larger bandwidths. The performance may be due to a

combination of (i) the varying quality in parameter estimation as reported in Table

2 may affect the nature of the transformed series and (ii) the slow convergence to

normality of the test statistic.

6.1.2 CIR Models

We then conduct simulation on three CIR models to see if the pattern of results

observed for the Vasicek models holds for the CIR models. The CIR models are

dXt = κ(α −Xt)dt + σ
√

XtdBt, (6.1)

where the parameters were: κ = 0.89218, α = 0.09045 and σ2 = 0.032742 in the first

model (CIR 0); κ = 0.44609, α = 0.09045 and σ2 = 0.16371 in model CIR 1 and

κ = 0.22305, α = 0.09045 and σ2 = 0.08186 in model CIR 2. CIR 0 was the model

used in Prisker (1998) for power evaluation, which we used for power study as well.

The three models mirror the Vasicek models 0, 1 and 2 of Pritsker (1998).

The region S was chosen by rotating 45-degrees anti-clockwise [0.015, 0.25]×[−0.015, 0.015]

for CIR 0, [0.015, 0.25]× [−0.012, 0.012] for CIR 1 and [0.015, 0.25]× [−0.008, 0.008] for CIR

2 respectively. All the regions have a coverage probability of at least 0.90.

Table 5 reports the sizes of the proposed EL test as well as the single bandwidth

based tests based on the bootstrap and the asymptotic normality. The bandwidth
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sets were chosen based on the same principle as outlined for the Vasicek models and

are reported in the table. The parameter estimation under these CIR models has the

same pattern of quality as the Vasicek model as reported in Table 2. We find that the

proposed test continued to have reasonable size for the three CIR models despite that

there were severe bias in the estimation of κ. The size of the single bandwidth based

tests as well as the combined test were quite respectable for a sample size of 125. We

continue to see poor performance for the asymptotic test. It is interesting to see that

despite the quality of the parameter estimation still being poor for the CIR 2, the

severe size distortion observed earlier for Vasicek 2 was not present. Overall, the sizes

for the CIR models were better than the corresponding Vasicek models, which seemed

to suggest that the extra volatility offered by the CIR models “lubricates” the test

performance. Hong and Li’s test was also performed for the three CIR models and

are reported in Table 7. The performance was similar to that of the Vasicek models.

6.2. Power evaluation

To gain information on the power of the proposed test, we carried out simulation

that tested for the Vasicek model while the real process was the CIR 0 as in Pritsker’s

power evaluation of Aı̈t-Sahalia’s test:

dXt = κ(α −Xt)dt + σ
√

XtdBt, (6.2)

where κ = 0.89218, α = 0.09045 and σ2 = 0.032742. The region S was obtained by

rotating [0.015, 0.25] × [−0.015, 0.015] 45 degrees anti-clock wise. The average CV

bandwidths based on 500 simulations were 0.0202 (the standard error of 0.0045) for

n = 125, 0.016991 (0.00278) for n = 250 and 0.014651 (0.00203) for n = 500.

Table 7 reports the power of the EL test and the single bandwidth based tests, as

well as the bandwidth sets used in the simulation. We find the tests had quite good

power. As expected, the power increased as n increased. One striking feature was that
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the power of the test tends to be larger than the maximum of the single bandwidth

based tests. This indicates that it possess attractive power properties. Table 7 also

reports the power of the Hong and Li’s test. It is found that the proposed test had

better power for all the sample sizes considered.

7. Case studies. We apply the proposed test on the Federal fund rates between

January 1963 and December 1998 which has n = 432 observations. Aı̈t-Sahalia

(1999) uses this data set to demonstrate the performance of the maximum likelihood

estimation. We test for five popular one-factor diffusion models which have been

proposed to model the dynamics of interest rates:

dXt = κ(α − Xt)dt + σdBt, (7.1)

dXt = κ(α − Xt)dt + σ
√

XtdBt, (7.2)

dXt = Xt{κ − (σ2 − κα)Xt}dt + σX
3/2
t dBt, (7.3)

dXt = κ(α − Xt)dt + σXρ
t dBt, (7.4)

dXt = (α−1X
−1
t + α0 + α1Xt + α2X

2
t )dt + σX

3/2
t dBt. (7.5)

They are respectively the Ornstein-Uhlenbeck process (7.1) proposed by Vasicek

(1977), the CIR model (7.2), the inverse of the CIR process (7.3), the constant elastic-

ity of volatility (CEV) model (7.4) and the nonlinear drift model (7.5) of Aı̈t-Sahalia

(1996).

The data are displayed in Figure 1, which indicates a strong dependence as they

scattered around a narrow band around the 45-degree line. There was an increased

volatility when the rate was larger than 12%. The model-implied transitional densities

are displayed in Figure 2 using the MLEs given in Aı̈t-Sahalia (1999), which were used

in the formulation of the proposed test statistic. Figure 2 shows that the densities

implied by the Inverse CIR, the CEV and the nonlinear drift models were similar

to each other, and were quite different from those of the Vasicek and CIR models.
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The bandwidths prescribed by the Scott rule and the CV for the kernel estimation

were respectively href = 0.007616 and hcv = 0.00129. Plotting the density surfaces

indicated that a reasonable range for h was from 0.007 to 0.02, which offered a range

of smoothness from slightly undersmoothing to slightly oversmoothing. This led to

a bandwidth set consisting of 7 bandwidths with hmin = 0.007, hmax = 0.020 and

a = 0.8434.

Kernel transitional density estimates and the smoothed model-implied transitional

densities for the five models are plotted in Figure 3 for h = 0.007. By comparing

Figure 2 with Figure 3, we notice the effect of kernel smoothing on these model-

implied densities.

In formulating the final test statistic Ln, we chose

N(h) =
1

n

n
∑

t=1

ℓ{p̃θ̃(Xt+1|Xt)}ω1(Xt, Xt+1), (7.6)

where ω1 is a uniform weight over a region by rotating [0.005, 0.4] × [−0.03, 0.03] 45

degree anticlock-wise. The region contains all the data pairs (Xt, Xt+1). As seen

from (7.6), N(h) is asymptotically equivalent to the statistic defined in (3.8) with

ω(x, y) = p(x, y)ω1(x, y), and has the same flavor with the test statistic of Aı̈t-Sahalia

(1996).

The p-values of the proposed tests as well as the tests based on single bandwidth

for each of the five diffusion models are reported in Table 8, which were obtained

based on 500 bootstrap resamples. It shows little empirical support for the Vasicek

model and quite weak support for the CIR. What is surprising is that there was quite

some empirical support for the inverse CIR, the CEV and the nonlinear drift models.

In particular, for CEV and the nonlinear drift models, the p-values of the single

bandwidth based tests were all quite supportive even for small bandwidths. Indeed,

by looking at Figure 3, we see quite noticeable agreement between the nonparametric

kernel density estimates and the smoothed densities implied by the CEV and nonlinear
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drift models.

8. Conclusion. The proposed test differs from the test of Hong and Li (2005)

in three aspects. The proposed test is based on a direct comparison between the

kernel estimate and the smoothed model-implied transitional density, whereas Hong

and Li’s test is an indirect comparison via data transformation. An advantage of the

direct approach is its robustness against poor quality parameter estimation which is

often the case for weak mean-reverting diffusion models. This is because both the

shape and the orientation of the transitional density are much less affected by the

poor quality parameter estimation. The second aspect is that Hong and Li’s test is

based on asymptotic normality and can be under the influence of slow convergence

discussed earlier although the transformed series is asymptotically independent. The

last aspect is that our proposed test is based on a set of bandwidths, which makes

the test robust against the choice of bandwidths.

The conclusion we draw from our studies is that the kernel method works effec-

tively for testing of diffusion models and is capable of modeling dependence induced

by a diffusion model. It is clear from the studies of Pritsker (1998) and this paper

that a proper implementation is vitally important. After all, the kernel method is

just an instrument for constructing nonparametric curve estimates. For a complex

task of testing a diffusion model, it will not work automatically by itself and requires

other procedures to make it work. However, what is working is the idea of comparing

the kernel estimate of a characteristic curve and the corresponding model-implied

curve of a diffusion model. This is the main idea of Aı̈t-Sahalia (1996). The role

of the kernel method is in translating the idea into some raw discrepancy measure.

Anything beyond it, for instance, the test statistic formulation and the choice of the

critical value should be the responsibilities of the other procedures.
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Appendix. As the Lagrange multiplier λ(x, y) is implicitly dependent on h,

we need first to extend the convergence rate for a single h-based sup(x,y)∈S λ(x, y)

conveyed in (3.6) uniformly over the bandwidth set H. To prove Theorem 1, we need

the following lemmas first.

Lemma A.1. Under Assumptions 1–4, maxh∈H sup(x,y)∈S λ(x, y) = op{n−1/4 log(n)}.
Proof: For any δ > 0

P

(

max
h∈Hn

sup
(x,y)∈S

hλ(x, y) ≥ δn−1/2 log(n)

)

≤
∑

h∈H
P

(

sup
(x,y)∈S

hλ(x, y) ≥ δn−1/2 log(n)

)

.

As the number of bandwidths in H is finite, by checking the relevant derivations in Chen,

Härdle and Li (2002), it can be shown that

P

⎛

⎝

∑

(x,y)∈S

hλ(x, y) ≥ δn−1/2 log(n)

⎞

⎠→ 0

as n → ∞. This implies that maxh∈H sup(x,y)∈S hλ(x, y) = op{δn−1/2 log(n)}. Then the

lemma is established by noting that hmin, the smallest bandwidth in Hn, is of order n−γ1

where γ1 ∈ (0, 1/4) as assumed in Assumption 1.

Before introducing the next lemma, we present some expansions for the EL test statistic

N (h). Let

p̃θ(x, y) = p̃θ(y|x)π̂(x) and p̃(x, y) = n−1
n+1
∑

t=1

Kh(x− Xt)
n+1
∑

s=1

ws(y)p(Xs|Xt)

be kernel smooths of the parametric and real underlying joint densities pθ(x, y) and p(x, y)

respectively. Due to the relationship between transitional and joint densities, from (3.8)

N (h) = (nh2)

∫ ∫ {p̂(x, y)− p̃θ̃(x, y)}2

R2(K)p(x, y)
ω(x, y)dxdy + Õp{h2 + (nh2)−1/2 log3(n)}

= (nh2)R−2(K)

∫ ∫ [{p̂(x, y)− p̃(x, y)}2

p(x, y)
+

2{p̂(x, y)− p̃(x, y)}{p̃(x, y)− p̃θ̃(x, y)}
p(x, y)
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+
{p̃(x, y)− p̃θ̃(x, y)}2

p(x, y)

]

ω(x, y)dxdy + Õp{h2 + (nh2)−1/2 log3(n)}

=: N1(h) + N2θ̃(h) + N3θ̃(h) + Õp{h2 + (nh2)−1/2 log3(n)} (A.1)

Here and throughout the proofs, õ(δn) and Õ(δn) denote stochastic quantities which are

respectively o(δn) and O(δn) uniformly over S for a non-negative sequence {δn}.
Using Assumptions 3.3 and 3.4, we have Nlθ̃(h) = Nlθ∗(h) + Õp(n

−1/2) where θ∗ = θ0

under H0 and θ1 under H1. Thus,

N (h) = N1(h) + N2θ∗(h) + N3θ∗(h) + Õp{h2 + (nh2)−1/2 log3(n)}

We start with some lemmas on p̂(x, y), p̃(x, y) and p̃θ(x, y). Let K(2) be the con-

volution of K, MK(2)(t) =
∫ ∫

uK(u)K(t + u)du and p3(x, y, z) be the joint density of

(Xt, Xt+1, Xt+2).

Lemma A.2. Under Assumptions 1–4, we have,

Cov{p̂(s1, t1), p̂(s1, t1)} =
K(2)

(

s2−s1
h

)

K(2)
(

s2−s1
h

)

p(s1, t1)

nh2

−
MK(2)

(

s2−s1
h

) ∂p(s1,t1)
∂x + MK(2)

(

t2−t1
nh

) ∂p(s1,t1)
∂y

nh

+
p3(s1, t1, t2)K

(2)
(

s2−t1
h

)

+ p3(s2, t2, t1)K
(2)
(

s1−t2
h

)

nh

+ o{(nh)−1}.

Proof: Let Zt(s, t) = Kh(s − Xt)Kh(t − Xt+1) so that p̂(s, t) = n−1
∑n

t=1 Zt(s, t) and

Cov{p̂(s1, t1), p̂(s1, t1)} = n−1Cov{Z1(s1, t1), Z1(s2, t2)} (A.2)

+
1

n − 1
[Cov{Z1(s1, t1), Z2(s2, t2)}+ Cov{Z2(s1, t1), Z1(s2, t2)}]

+ Qn,

where Qn = n−1
∑n−1

l=2 (1−ln−1)[Cov{Z1(s1, t1), Zl+1(s2, t2)}+Cov{Zl+1(s1, t1), Z1(s2, t2)}].
Standard derivations show that

Cov{Z1(s1, t1), Z1(s2, t2)} =
K(2)

(

s2−s1
h

)

K(2)
(

s2−s1
h

)

p(s1, t1)

h2

−
MK(2)

(

s2−s1
h

) ∂p(s1,t1)
∂x + MK(2)

(

t2−t1
h

) ∂p(s1,t1)
∂y

nh
+ Õ(1)

Cov{Z1(s1, t1), Z2(s2, t2)} =
p3(s1, t1, t2)K

(2)
(

s2−t1
h

)

h
+ Õ(1) (A.3)
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Apply Davydov inequality for α-mixing sequences via the same route of Fan and Gijbles

(1996, P.251) that Qn = õ{(nh)−1). This together with (A.2) - (A.3) lead prove the lemma.

That α-mixing leads to Qn = õ{(nh)−1), the pre-whitening effect of smoothing band-

width, is a fact that we will use repeatedly without further mentioning.

Lemma A.3. Suppose that Assumptions 1–4 hold. Let ∆θ(x, y) = {pθ(y|x)−p(y|x)}π(x).

Then

E{p̃θ(x, y)− p̂(x, y)} = ∆θ(x, y) + 1
2h2σ2

K{ ∂2

∂x2 + ∂2

∂y2}∆θ(x, y) + Õ(h3), (A.4)

E{p̃θ(x, y)− p̃(x, y)} = ∆θ(x, y) + 1
2h2σ2

K{ ∂2

∂x2 + ∂2

∂y2}∆θ(x, y) + Õ(h3), (A.5)

Cov{p̃(s1, t1), p̃(s2, t2)} =
K(2)

(

t2−t1
h

)

p(s1, t1)p(s2, t1)

nhπ(t2)
+ õ{(nh)−1}. (A.6)

Proof: As p̃θ(x, y) = n−1
∑n+1

t=1 Kh(x−Xt)
∑n+1

s=1 ws(y)pθ(Xs|Xt), from the bias of the

local linear regression (Fan and Gijbels, 1996) and kernel density estimators, and that the

transitional density has uniformly bounded thrid derivatives in Assumption 3,

E{p̃θ(x, y)} = E{n−1
n+1
∑

t=1

Kh(x − Xt){pθ(y|Xt) + 1
2h2σ2

K
∂2pθ(y|Xt)

∂y2 + Õp(h
3)}

= pθ(y|x)π(x) + 1
2h2σ2

K{ ∂2

∂x2 + ∂2

∂y2 }pθ(y|x)π(x) + Õ(h3).

Then employing the same kind of derivation on E{p̂(x, y)}, we readily establish (A.4).

For the purpose of deriving (A.6), we note the following expansion for p̃(x, y) based on

the notion of equivalent kernel for local linear estimator (Fan and Gijbels, 1996):

p̃(x, y) = n−1
∑

Kh(x − Xt)

n+1
∑

s=1

ws(y)pθ(Xs|Xt)

= n−1
∑

Kh(x − Xt)

n+1
∑

s=1

π−1(y)Kh(y − Xs)pθ(Xs|Xt){1 + õp(h)}

= π(x)π−1(y)

n+1
∑

s=1

π−1(y)Kh(y − Xs)pθ(Xs|x){1 + õp(h)}. (A.7)

Then derivations similar to those used in Lemma A.2 readily establish (A.6).

Lemma A.4. Under Assumptions 1–4, we have

Cov{p̂(s1, t1), p̃(s2, t2)} =
p(s1, t1)

nhπ(t2)

[

K(2)

(

t2 − s1

h

)

p(s2, s1) + K(2)

(

t2 − s1

h

)

p(s2, s1)

]

23



Proof: From (A.7),

Cov{p̂(s1, t1), p̃(s2, t2)}

=
π(s2)

nπ(t2)

[

Cov{Kh(s1 − X1)Kh(t1 − X2), Kh(t2 − X1)p(X1|s2)}

+ Cov{Kh(s1 − X1)Kh(t1 − X2), Kh(t2 − X2)p(X2|s2)}
]

{1 + õ(1)}

=
π(s2)

nhπ(t2)
{K(2)

(

t2 − s1

h

)

p(s1|s2)p(s1, t1) + K(2)

(

t2 − t1
h

)

p(t1|s2)p(s1, t1)}{1 + õ(1)}

which then leads to the statement of the lemma. .

Lemma A.5. If H0 is true, then N2θ∗(h) = N3θ∗(h) = 0 for all h ∈ H.

Proof: Under H0, p(y|x) = pθ0(y|x) and θ∗ = θ0. Hence, p̃(x, y) − p̃θ∗(x, y) =

n−1
∑

Kh(x− Xt)
∑

ws(y){p(Xs|Xt)− pθ0(Xs|Xt)} = 0. This completes the proof.

Lemma A.6. Suppose that Assumptions 1–4 hold. If H1 is true, then

N2θ∗(h) = Õp{(nh2)−1/2 log(n)} ×
∫ ∫

∆θ1(x, y)

p(x, y)
ω(x, y)dxdy and (A.8)

N3θ∗(h) = (nh2)R−2(K)

∫ ∫

∆2(x, y)

p(x, y)
ω(x, y)dxdy{1 + õp(1)} (A.9)

uniformly over the bandwidth set H.

Proof: Under H1, θ∗ = θ1. Standard derivation as those in Lemma A.3 show that

p̃(x, y)− p̃θ1(x, y) = p̃(x, y)− E{p̃(x, y)}+ E{p̃(x, y)}− E{p̃θ1(x, y)}

+ E{p̃θ1(x, y)} − p̃θ1(x, y)

= −∆θ1(x, y) + Õp{(nh)−1/2) log(n) + h2}. (A.10)

This and the fact that p̂(x, y)− p̃(x, y) = Õ{(nh2)−1/2 log(n) + h3} = Õ{(nh2)−1/2 log(n)}
lead to (A.8). And (A.9) can be argued similarly using (A.10).

Let us now study the leading term N1(h). From (A.1) and by hiding the variables of

integrations,

N1(h) =
(nh2)

R2(K)

∫ ∫ {p̂ − p̃}2

R2(K)p
ω

=
(nh2)

R2(K)

∫ ∫ [{p̂− Ep̂}2

p
+

{Ep̃− p̃}2

p
+

{Ep̂− Ep̃}2

p
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+
2{p̂− Ep̂}{Ep̂− Ep̃}

p
+

2{p̂ − Ep̂}{Ep̃− p̃}
p

+
2{Ep̂− Ep̃}{Ep̃− p̃}

p

]

ω

=:

6
∑

j=1

N1j(h) (A.11)

We are to show in the following lemmas that N11(h) dominates N1(h) and N1j(h) for

j ≥ 2 are all negligible except N12(h) which contributes to the mean of N1(h) in the second

order.

Lemma A.7. Under Assumptions 1–4, then uniformly with respect to H

h−1E{N11(h) − 1} = o(1), (A.12)

Var{h−1N11(h)} =
2K(4)(0)

R4(K)

∫ ∫

ω2(x, y)dxdy + o(1), (A.13)

Cov{h−1
1 N11(h1), h

−1
2 N11(h2)} =

2ν(h1/h2)

R4(K)

∫ ∫

ω2(x, y)dxdy + o(1). (A.14)

Proof: From Lemma A.1 and note that MK(2)(0) = 0

E{N11(h)} =
nh2

R2(K)

∫ ∫

V ar{p̂(x, y)}
p(x, y)

ω(x, y)dxdy

=
1

R2(K)

∫ ∫ [

(

K(2)(0)
)2

+ 2hK(2)

(

y − x

h

)

p3(x, y, y)

p(x, y)

]

× ω(x, y)dxdy{1+ o(1)} = 1 + O(h2), (A.15)

which leads to (A.12). To derive (A.13), let

Ẑn(s, t) = (nh2)1/2 p̂(s, t)− Ep̂(s, t)

R(K)p1/2(x, t)
.

It may be shown from the fact that K is bounded and other regularity condition as-

sumed that E{|Ẑn(s1, t1)|2+ǫ|Ẑn(s2, t2)|2+ǫ} ≤ M for some positive ǫ and M . And hence

{Ẑn(s, t)}n≥1 and {Ẑ2
n(s1, t1)Ẑ

2
n(s1, t1)}n≥1 are uniformly integrable respectively. Also,

(

Ẑn(s1, t1), Ẑn(s2, t2)
)T d→ (Z(s1, t1), Z(s2, t2))

T which is a bivariate normal random vari-

able with mean zero and a covariance matrix

Σ =

⎛

⎜

⎝

1 g{(s1, t1), (s2, t2)}

g{(s1, t1), (s2, t2)} 1

⎞

⎟

⎠
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where g{(s1, t1), (s2, t2)} = K(2)
(

s2−s1
h

)

K(2)
(

t2−t1
h

) p1/2(s1,t1)

R(K)p1/2(s2,t2)
. Hence,

Var{N11(h)} =

∫ ∫ ∫ ∫

Cov{Ẑ2
n(s1, s2), Ẑ

2
n(s2, t2)}ω(s1, t1)ω(s2, t2)ds1dt1ds2dt2

=

∫ ∫ ∫ ∫

Cov{Z2(s1, s2), Z
2(s2, t2)}ω(s1, t1)ω(s2, t2)ds1dt1ds2dt2

= 2

∫ ∫ ∫ ∫

Cov2{Z(s1, s2), Z(s2, t2)}ω(s1, t1)ω(s2, t2)ds1dt1ds2dt2

=
2

R4(K)

∫ ∫ ∫ ∫

{K(2)

(

s2 − s1

h

)

K(2)

(

t2 − t1
h

)

}2 p(s1, t1)

R2(K)p(s2, t2)

×ω(s1, t1)ω(s2, t2)ds1dt1ds2dt2

=
2h2K(4)(0)

R4(K)

∫ ∫

ω2(s, t)π−2(t)dsdt (A.16)

the second to fourth equations are valid up to a factor {1 + o(1)}. In the third equation

above, we use a fact regarding the fouth product moments of normal random variables.

Combining (A.15) and (A.16), (A.12) and (A.13) are derived. It is trivial to check that it

is valid uniformly for all h ∈ H.

The proof for (A.14) follows that for (A.13).

Lemma A.8. Under Assumptions 1–4, then uniformly with respect to h ∈ H

h−1N12(h) =
1

R(K)

∫ ∫

p(x, y)

π(y)
ω(x, y)dxdy + op(1), (A.17)

h−1N1j(h) = op(1). for j ≥ 3 (A.18)

Proof: From (A.6) and the fact that K(2)(0) = R(K),

E{N12(h)} =
(nh2)

R2(K)

∫ ∫

Var{p̃}
p

ω

=
h

R(K)

∫ ∫

p(x, y)

π(y)
ω(x, y)dxdy{1+ õ(1)}. (A.19)

Let Z̃n(s, t) = (nh)1/2 p̃(s,t)−Ep̃(s,t)

R1/2(K)p(x,t)
. Using the same approach that derives (A.16) and from

Lemma A.2

Var{N12(h)} =
h2

R2(K)

∫ ∫ ∫ ∫

Cov{Z̃2
n(s1, s2), Z̃

2
n(s2, t2)}ω(s1, t1)ω(s2, t2)ds1dt1ds2dt2

=
2h2

R4(K)

∫ ∫ ∫ ∫

{K(2)

(

t2 − t1
h

)

}2π−2(t2)ω(s2, t2)ds1dt1ds2dt2

=
2h4K(4)(0)

R4(K)

∫ ∫

ω2(s, t)π−2(t)dsdt (A.20)
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up to a factor {1+ õ(1)}. Combining (A.19) and (A.20), (A.17) is derived. It can be checked

that it is valid uniformly for all h ∈ H.

As {Ep̂(x, y)− Ep̃(x, y)}2 = Õ(h6) and h = o(n−1/7) for all h ∈ H, we have (nh2)h6 =

op(h) uniformly for all h ∈ H and hence (A.15) for j = 2.

Obviously E{N14(h)} = 0. Use the same method for Var{N12(h)} and from Lemmas

A.1 and A.2,

Var{N14(h)} =
4(nh2)2

R4(K)

∫ ∫ ∫ ∫

E{p̂− p̃}(s1, t1)E{p̂− p̃}(s2, t2)Cov{p̂(s1, t1), p̂(s2, t2)}
p(s1, t1)p(s2, t2)

×w(s1, t1)w(s2, t2)ds1dt1ds2dt2

As E{p̂−p̃}(s1, t1)E{p̂−p̃}(s2, t2) = O(h6) and the integral over the covariance produces

a h2 in addition to (nh2)−1. Thus, V ar{N14(h)} = O{(nh2)h6h2} = o(h2) uniformly for

all h ∈ H. This means that N14 = op(h) uniformly for all h ∈ H. Using exactly the

same derivation, but employing Lemma A.3 instead of Lemma A.1, we have N16 = op(h)

uniformly for all h ∈ H.

It remians to study N15(h). From Lemma A.3,

E{N15(h)} = −2(nh2)

R2(K)

∫ ∫

Cov{p̂(x, y), p̃(x, y)}
p(x, y)

ω(x, y)dxdy

= − 4h

R2(K)

∫ ∫

K(2)
(y−x

h

)

p(x, y)

π(y)
ω(x, y)dxdy

= − 4h2

R2(K)

∫

K(2)(u)du

∫

π(y)ω(y, y)dy{1+ õ(1)}.

using Assumption 1(iv). It may be shown using the same method that derives (A.20) that

Var{N15(h)} = o(h2) and hence N15(h) = op(h).

Let L(h) = 1
C(K)h{N (h)− 1} and β = 1

C(K)R(K)

∫ ∫ p(x,y)
π(y) ω(x, y)dxdy. In view of Lem-

mas A.5, A.7 and A.8, we have under H0, uniformly with respect to H,

L(h) =
1

C(K)h
{N11(h) − 1}+ β + op(1) (A.21)

Define L1(h) = 1
C(K)h{N11(h)− 1}.

Lemma A.9. Under Assumptions 1–4 and H0, as n → ∞,

(L1(h1), · · · , L1(hJ))
d→ NJ(0, ΣJ).

27



Proof: According to the Cramér–Wold device, in order to prove Lemma A.9, it suffices

to show that
k
∑

i=1

ciL1(hi)
d→ NJ(0, cτΣJc) (A.22)

for an arbitrary vector of constants c = (c1, · · · , ck)
τ . Without loss of generality, we will

consider only the proof for the case of k = 2. To apply Lemma A.1 of Gao and King (2003),

we introduce the following notation. For i = 1, 2, define di = ci√
2hi

and ξt = (Xt, Xt+1),

ǫti(x, y) = K

(

x − Xt

hi

)

K

(

y − Xt+1

hi

)

− E

[

K

(

x − Xt

hi

)

K

(

y − Xt+1

hi

)]

,

φi(ξs, ξt) =
1

nh2
i

∫ ∫

ǫsi(x, y)ǫti(x, y)

p(x, y)R2(K)
ω(x, y)dxdy,

φst = φ(ξs, ξt) =

2
∑

i=1

diφi(ξs, ξt) and L1(h1, h2) =

T
∑

t=2

t−1
∑

s=1

φst. (A.23)

It is noted that for any given s, t ≥ 1 and fixed x and y, E[φ(x, ξt)] = E[φ(ξs, y)] = 0.

Since the asymptotic variance cτΣJc is a non–random quadratic form depending neither on

h nor on n, in order to apply their Lemma A.1, it suffices to verify

max{Mn, Nn}h−2
1 → 0 as n → ∞, (A.24)

where

Mn = max

{

n2M
1

1+δ

n1 , n2M
1

2(1+δ)

n51 , n2M
1

2(1+δ)

n52 , n2M
1
2
n6

}

Nn = max

{

n
3
2 M

1
2(1+δ)

n21 , n
3
2 M

1
2(1+δ)

n22 , n
3
2 M

1
2
n3, n

3
2 M

1
2(1+δ)

n4 , n
3
2 M

1
1+δ

n7

}

,

in which

Mn1 = max
1≤i<j<k≤n

max

{

E|φikψjk|1+δ,

∫

|φikθjk|1+δdP (ξi)dP (ξj, ξk)

}

,

Mn21 = max
1≤i<j<k≤n

max

{

E|φikφjk|2(1+δ),

∫

|φikφjk|2(1+δ)dP (ξi)dP (ξj, ξk)

}

,

Mn22 = max
1≤i<j<k≤n

max

{∫

|φikφjk|2(1+δ)dP (ξi, ξj)dP (ξk),

∫

|φikφjk|2(1+δ)dP (ξi)dP (ξj)dP (ξk)

}

,

Mn3 = max
1≤i<j<k≤n

E|φikφjk|2, Mn4 = max

1 < i, j, k ≤ 2n

i, j, k different

{

max
P

∫

|φ1iφjk|2(1+δ)dP

}

,
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where the maximization over P in the equation for Mn4 is taken over the four probability

measures P (ξ1, ξi, ξj, ξk), P (ξ1)P (ξi, ξj, ξk), P (ξ1)P (ξi1)P (ξi2, ξi3), andP (ξ1)P (ξi)P (ξj)P (ξk),

where (i1, i2, i3) is the permutation of (i, j, k) in ascending order;

Mn51 = max
1≤i<j<k≤n

max

{

E

∣

∣

∣

∣

∫

φikφjkφikφjkdP (ξi)

∣

∣

∣

∣

2(1+δ)
}

,

Mn52 = max
1≤i<j<k≤n

max

{

∫
∣

∣

∣

∣

∫

φikφjkφikφjkdP (ξi)

∣

∣

∣

∣

2(1+δ)

dP (ξj)dP (ξk)

}

,

Mn6 = max
1≤i<j<k≤n

E

∣

∣

∣

∣

∫

φikφjkdP (ξi)

∣

∣

∣

∣

2

, Mn7 = max
1≤i<j<n

E
[

|φij |1+δ
]

.

Due to the fact that φst is only a linear combination of φ1(Xs, Xt) and φ2(Xs, Xt), in

order to verify the above conditions, it suffices to verify that each φi(Xs, Xt) satisfies the

conditions. In the following, we will only deal with the case of i = 1, as the other case

follows similarly.

Without any confusion, we replace h1 by h for simplicity. To verify the Mn part of

(A.24), we verify only

lim
n→∞

n2h−2M
1

1+δ

n1 = 0. (A.25)

Let q(x, y) = ω(x, y)p−1(x, y) and

ψij =
1

nh2

∫

K((x− Xi)/h)K((y − Xi+1)/h)K((x− Xj)/h)K((y − Xj+1)/h)q(x, y)dxdy

for 1 ≤ i < j < k ≤ n. Direct calculation implies

ψikψjk = (nh2)−2

∫

· · ·
∫

K

(

x − Xi

h

)

K

(

y − Xi+1

h

)

K

(

x − Xk

h

)

K

(

y − Xk+1

h

)

q(x, y)

× K

(

u − Xj

h

)

K

(

v − Xj+1

h

)

K

(

u − Xk

h

)

K

(

v − Xk+1

h

)

q(u, v)dxdydudv

= bijk + δijk,

where δijk = ψikψjk − bijk and

bijk = n−2q(Xi, Xi+1)q(Xj, Xj+1)

× K(2)

(

Xi − Xk

h

)

K(2)

(

Xj − Xk

h

)

K(2)

(

Xi+1 − Xk+1

h

)

K(2)

(

Xj+1 − Xk+1

h

)

,

in which K(2)(x) =
∫

K(y)K(x + y)dy.
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For any given 1 < ζ < 2 and n sufficiently large, we may show that

Mn11 = E
[

|ψijψik|ζ
]

≤ 2
(

E
[

|bijk|ζ
]

+ E
[

|δijk|ζ
])

= 2E
[

|bijk|ζ
]

(1 + o(1))

= n−2ζ

∫ ∫ ∫

|q(x, y)q(u, v)|ζ
∣

∣

∣

∣

K(2)

(

x − z

h

)

K(2)

(

u − z

h

)∣

∣

∣

∣

ζ

×
∣

∣

∣

∣

K(2)

(

y − w

h

)

K(2)

(

v − w

h

)∣

∣

∣

∣

ζ

p(x, y, u, v, z, w)dxdydudvdzdw

= C1n
−2ζh4 (A.26)

where p(x, y, u, v, z, w) denotes the joint density of (Xi, Xi+1, Xj, Xj+1, Xk, Xk+1) and C1

is a constant. Thus, as n → ∞

n2h−2M
1

1+δ

n11 = Cn2h−1
(

n−2ζh2
)1/ζ

= h
2

(2−ζ)
ζ → 0. (A.27)

Hence, (A.27) shows that (A.25) holds for the first part of Mn1. The proof for the second

part of Mn1 follows similarly. As for (A.26), we have that as n → ∞

Mn3 = E |ψikψjk|2 = (nh2)−4h8

∫ ∫ ∫

|q(x, y)q(u, v)|2
∣

∣

∣

∣

K(2)

(

x − z

h

)

K(2)

(

y − z

h

)∣

∣

∣

∣

2

×
∣

∣

∣

∣

K(2)

(

u − w

h

)

K(2)

(

v − w

h

)∣

∣

∣

∣

2

p(x, y, z, u, v, w)dxdydzdudvdw

= C1n
−4h4,

where C2 is a constant. This implies that as n → ∞

n3/2h−2M
1
2
n3 = Cn−1/2 → 0. (A.28)

Thus, (A.28) now shows that (A.24) holds for Mn3. It follows from the structure of {ψij}
that (A.24) holds automatically for Mn51, Mn52 and Mn6. We now start to prove that (A.25)

holds for Mn21. For some 0 < δ < 1 and 1 ≤ i < j < k ≤ n, let Mn21 = E
[

|ψikψjk|2(1+δ)
]

.

Similarly to (A.26) and (A.27), we obtain that as n → ∞

n3/2h−2M
1

2(1+δ)

n21 → 0. (A.29)

This finally completes the proof of (A.25) for Mn21 and thus (A.25) holds for the first part of

{φ1(Xs, Xt)}. Similarly, one can show that (A.24) holds for the other parts of {φ1(Xs, Xt)}.
Thus, we have shown that equation (A.22) holds for the case of k = 2 under H0.
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Proof of Theorem 1: From (A.21) and Lemma A.9, we have under H0

(L(h1), · · · , L(hJ))
d→ NJ(β1J , ΣJ).

Let Z = (Z1, · · · , Zk)
T d∼ NJ(β1k, ΣJ). By the mapping theorem, under H0,

Ln = max
h∈H

L(h)
d→ max

1≤kJ
Zk. (A.30)

Hence the theorm is established. .

Let l0α be the upper-α quantile of max1≤ik Zi. As the distribution of NJ(β1k, ΣJ) is

free of n, so is that of max1≤ik Zi. And hence l0α is a fixed quantity with respect to n.

The following lemmas are required for the proof of Theorem 2.

Lemma A.10. Under Assumptions 1–4 and H1, for any fixed real value x, as n → ∞,

P (Ln ≥ x) → 1.

Proof: Let A = R−2(K)
∫ ∫ ∆2(x,y)

p(x,y) ω(x, y)dxdy. From Lemmas A.6 and A.7, under

H1, (nh2)−1N (h) = A + op(1) uniformly with respect to H. Hence, (nh)−1L(h) = A
C(K) +

op(1) for all h ∈ H. Hence, for some i ∈ {1, . . . , k}, P (Ln < x) ≤ P{L(hi) < x} =

P{(nh)−1L(hi) < (nh)−1x}. As (nh)−1L(hi)
p→ A

C(K) > 0 and (nh)−1x → 0, hence P (Ln <

x) → 0.

We now turns to the bootstrap EL test statistic N ∗(h), which is a version of N (h) based

on {X∗
t }n+1

t=1 generated according to the parametric transitional density pθ̃. Let p̂(x, y) and

p̃∗θ(x, y) are the bootstrap versions of p̂(x, y) and p̃(x, y) respectively, and θ̃∗ be the maximum

likelihood estimate based the bootstrap sample. Then, the following analogue expansion to

(A.2) is valid for N ∗(h)

N ∗(h) = (nh2)

∫ ∫ {p̂∗(x, y)− p̃∗
θ̃∗

(x, y)}2

R2(K)pθ̃(x, y)
ω(x, y)dxdy + õp{h}

= N ∗
1 (h) + N ∗

2θ̃
(h) + N ∗

3θ̃
(h) + õp(h)

where N ∗
j (h) for j = 1, 2 and 3 are the bootstrap version of Nj(h) resepctively. As the

bootstrap resample is generated according to pθ̃, the same arguments which lead to Lemma

5 mean that N ∗
2 (h) = N ∗

3 (h) = 0. Thus, N ∗(h) = N ∗
1 (h) + õp(1) where

N ∗
1 (h) = (nh2)

∫ ∫ {p̂∗(x, y)− p̃∗(x, y)}2

R2(K)pθ̃(x, y)
ω(x, y)dxdy
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And similar lemmas to Lemmas A.7 and A.8 can be established to study N ∗
1j(h) which are

the boostrap version of N ∗
1j(h) respectively.

Let L∗(h) = 1
C(K)h{N (h)− 1} and β̂ = 1

C(K)R(K)

∫ ∫ pθ̃(x,y)

πθ̃(y) ω(x, y)dxdy.

Lemma A.11. Under Assumptions 1–4, as n → ∞, given {Xt}n+1
t=1 ,

(L∗(h1), · · · , L∗(hk))
d→ NJ(β̂1J , ΣJ).

Proof: The proof follows that of Theorem 1 with the real underlying transitional density

pθ̃ to replace p in the proof of Theorem 1.

Let l∗α be the upper-α conditional quantile of L∗
n = maxh∈H L∗(h) given {Xt}n+1

t=1 .

Proof of Theorem 2: (i) Let Ẑ = (Ẑ1, . . . , Ẑk)
T such that its conditional distribution

given {Xt}n+1
t=1 is NJ(β̂1J , ΣJ) and l∗0α be the upper-α conditional quantile of max1≤i≤k Ẑi.

As θ̃ = θ +Op(n
−1/2) as assumed in Assumption 5 (i), β̂ = β +Op(n

−1/2). This means that

max1≤i≤k Ẑi = max1≤i≤k Zi + op(1). Therefore, l∗0α = l0α + op(1). From Lemma A.11, we

have via the mapping theorem again, limn→∞ P{L∗
n ≥ l∗0α|{Xt}n+1

t=1 } = α. Therefore,

l∗α = l0α + op(1). (A.31)

As Ln
d→ max1≤i≤k Zi, by Slutsky theorem,

P (Ln ≥ l∗α) = P (Ln + op(1) ≥ l0α) → P ( max
1≤i≤k

Zi ≥ l0α) = α

which completes the part (i) of Theorem 2. The part (ii) of Theorem 2 is a direct conse-

quence of Lemma A.9 and (A.31).
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Table 1: Smoothing bandwidths in the simulation of the Three Vasicek Models

Model -2 Model 0 Model 2

n hcv href hcv href hcv href

n = 125 0.0319 0.0276 0.0181 0.0161 0.0095 0.0093

(0.005) (0.0017) (0.003) (0.0014) (0.0017) (0.0007)

n = 250 0.0261 0.0247 0.0163 0.0146 0.0090 0.0080

(0.004) (0.0015) (0.002) (0.0012) (0.0014) (0.001)

500 0.0231 0.0220 0.0140 0.013 0.0080 0.0073

(0.003) (0.0013) (0.0017) (0.0007) (0.001) (0.0008)

Table 2: Relative Bias (RBIAS) and Variance of the MLES for the Vasicek Models.

Model -2 κ = 3.334 α = 0.0891 σ2 = 0.093498

n RBIAS VAR RBIAS VAR RBIAS VAR

120 13.78% 1.134 0.088% 6.591e-5 1.004% 5.056e-5

250 5.19% 0.5132 0.382% 3.477e-5 0.393% 2.456e-5

500 3.987% 0.24714 0.057% 1.685e-5 0.1% 9.912e-6

Model 0 κ = 0.429 α = 0.0891 σ2 = 0.033057

120 54.33% 0.347 0.218% 2.612e-4 1% 1.035e-5

250 21.18% 0.125 0.722% 1.396e-4 0.449% 4.911e-6

500 12.31% 0.054 0.102% 6.669e-5 0.008% 2.016e-6

Model 2 κ = 0.215 α = 0.0891 σ2 = 0.023375

120 238.35% 0.240 3.792% 0.0103 0.898% 2.549e-6

250 96.05% 0.056 1.274% 6.640e-4 0.485% 1.134e-6

500 50.96% 0.022 0.122% 2.682e-4 0.001% 4.793e-7
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Table 3: Empirical Size (in percentage) of the Combined EL Test and the Single
Bandwidth Based Test (in the middle) for the Vasicek Models, as well as that of
the Single Bandwidth Test Based on the Asymptotic Normality (in round bracket).

A: Model -2

Bandwidth Adaptive Test

n = 125 0.03 0.0320 0.0340 0.0362 0.0386 0.0411

Size 9.4 (40.4) 8.2 (38.8) 5.2 (34.8) 4.6 (34.8) 3 (34.2) 2.4 (34.8) 4.4

n = 250 0.022 0.0231 0.0243 0.0256 0.0269 0.0284

Size 8 (34.4) 5.2 (28.6) 4.6 (24) 4.4 (21) 3.4 (17.4) 2.6 (16) 4.6

n = 500 0.02 0.0210 0.0221 0.0233 0.0245 0.0258

Size 6.2 (29.6) 5.8 (23.6) 5.4 (19) 5.2 (14.6) 5 (10.8) 5 (8.4) 5.4

B: Model 0

Bandwidths Adaptive Test

n = 125 0.016 0.0173 0.0187 0.0203 0.022 0.0237

Size 5.8 (43) 6 (39) 6 (36.6) 4.2 (34.8) 4.4 (36.6) 3 (37) 4.2

n = 250 0.014 0.0153 0.0167 0.0182 0.0198 0.0216

Size 6 (31.6) 6.2 (27) 6.2 (20.6) 3.8 (20) 2.4 (17.8) 2.8 (17.8) 5.2

n = 500 0.0106 0.0114 0.0124 0.0134 0.0145 0.0157

Size 6.8 (36.4) 4.4 (26.8) 5.2 (20.6) 6.4 (13) 5.6 (11.2) 4 (9.2) 5.4

C: Model 2

Bandwidths Adaptive Test

n = 125 0.008 0.009 0.0101 0.0114 0.01281 0.01441

Size 12.6 (60) 11 (53.4) 10 (47.2) 14.6 (46) 14.4 (45) 13.6 (42.2) 12.6

n = 250 0.006 0.0067 0.0076 0.0085 0.0095 0.0107

Size 12.2 (39) 10 (35) 7.4 (31) 8.8 (30) 7 (31) 11 (33.2) 8.8

n = 500 0.004 0.0047 0.0054 0.0063 0.0074 0.0086

Size 8.2 (75.2) 8.4 (63) 8 (51.6) 8.6 (39.8) 7 (32.8) 9 (24.4) 7.2
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Table 4: Empirical Size (in percentage) of Hong and Li’s Test for Vasicek Models.

Bandwidths hscott

n = 125 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.1301 (0.0026)

Vasicek -2 11.8 6.2 3.8 2.4 1.2 0.6 0.6 0.6 0.6

Vasicek 0 13.2 7.8 4.2 2 1.2 1.2 0.8 0.8 0.8

Vasicek 2 11.8 7 4.2 2.4 2 1.6 1.4 1.6 1.6

n = 250 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.1156 (0.0017)

Vasicek -2 15 9.6 6.2 3.8 2.2 1.6 1.6 1.2 1

Vasicek 0 13 8.6 5.8 4.4 3.4 2.6 1.8 1.8 2

Vasicek 2 15 10.6 7.4 4.2 3 2.6 1.6 1.4 1.4

n = 500 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.1026 (0.0010)

Vasicek -2 15.6 12.4 7.6 4.4 2.8 2.2 2.4 1.6 1.2

Vasicek 0 19.4 13 8.4 5.4 3.4 2.6 2.6 2.4 1.6

Vasicek 2 17 14 9 6.2 4.6 3.8 3.2 2.8 2.4

n = 1000 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.09138 (0.00065)

Vasicek -2 22.6 17.2 13.2 7 4.8 3.8 2.4 2.2 1.8

Vasicek 0 22.6 17.8 13.8 8.6 4.8 4 3 3 2.2

Vasicek 2 21.2 16.4 12.8 8 5.2 3.8 3.2 2.8 2.6
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Table 5: Empirical Size (in percentage) of the Combined EL Test and the Single
Bandwidth Based Test (in the middle) for the CIR Models, as well as that of the
Single Bandwidth Test Based on the Asymptotic Normality (in round bracket).

A: CIR 0

Bandwidths Adaptive Test

n = 125 0.022 0.0252 0.0289 0.0332 0.0380 0.0436

Size 4.8 (39.6) 4.8 (38.8) 4.8 (33.6) 3.2 (35.2) 2.4 (34.8) 2 (38.4) 3.0

n = 250 0.018 0.0207 0.0238 0.0275 0.0317 0.0365

Size 5.2 (33) 5.6 (31.4) 5.2 (27.4) 5.2 (23.4) 4 (24.4) 3.8 (28.4) 5.0

n = 500 0.016 0.0182 0.0207 0.0236 0.0269 0.0307

Size 4.2 (31.4) 5.4 (23.8) 4.6 (21) 4.8 (17.6) 3.6 (16) 4.2 (14.6) 4.8

B: CIR 2

Bandwidths Adaptive Test

n = 125 0.017 0.0196 0.0226 0.0261 0.03 0.0346

Size 5.4 (68.4) 3.6 (65.6) 4.0 (63.2) 4.2 (62.6) 3.2 (60.8) 2.6 (52) 3.8

n = 250 0.014 0.016 0.0184 0.0211 0.0243 0.0279

Size 5.2 (54.8) 6.6 (38.2) 5.6 (34.2) 5.6 (32.4) 5.6 (33.6) 3.4 (30.4) 5.2

n = 500 0.012 0.0138 0.0159 0.0183 0.0211 0.0243

Size 5.4 (42) 3.8 (35.2) 4.4 (29) 4.4 (26.6) 4.6 (22.8) 4 (19.8) 5.2

C: CIR 3

Bandwidths Adaptive Test

n = 125 0.012 0.0138 0.0158 0.0182 0.0209 0.024

Size 7.6 (67) 7.2 (61.8) 7.6 (51.8) 6.2 (41.8) 6.6 (41.8) 4.2 (58.4) 6.8

n = 250 0.01 0.0115 0.0132 0.0152 0.0174 0.02

Size 5.6 (59.2) 6.4 (54) 5.8 (50) 6.8 (44.4) 6.2 (43.6) 5.4 (48.6) 6.2

n = 500 0.008 0.0092 0.0105 0.0121 0.0139 0.016

Size 4 (34.4) 4.2 (31.4) 3.6 (25.6) 4 (25.8) 4.8 (22.4) 3.4 (23.6) 4
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Table 6: Empirical Size (in percentage) of Hong and Li’s Test for CIR Models

Bandwidths hscott (SE)

n = 125 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16

CIR -2 9.4 5.8 4.6 3.2 2 1.4 0.6 0.8 0.8 0.129(0.0027)

CIR 0 10.8 8 5.6 3.4 2.8 2.6 1.8 1.6 1.6 0.1288(0.0063)

CIR 2 10 8 6 4.4 4 3.8 3.4 2.6 1.8 0.1272 (0.0153)

n = 250 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

CIR -2 12.2 7.8 5.2 3.6 2.4 1.6 1.8 1.8 1.8 0.1148(0.00172)

CIR 0 12.6 9 5.8 4 2.4 2.4 1.8 1.4 1.2 0.1149(0.00168)

CIR 2 15.6 11 7.4 5.2 3.6 3.2 2.8 2.6 2.6 0.1144(0.0090)

n = 500 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

CIR -2 18.2 15.4 10 5.2 3.2 3 2.4 2.2 2 0.1023(0.00108)

CIR 0 20 15.6 9.6 5.4 4.2 3.4 2.8 2.4 2 0.1024(0.00104)

CIR 2 19.6 14.4 9.8 5 4.6 4 3.6 2.6 2.2 0.1025(0.001018)

n = 1000 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.09138 (0.00065)

CIR -2 21 14.6 11.8 8.6 7 4.2 2.4 2 1.8 0.0910(0.000624)

CIR 0 20.2 14.8 12 10 7.6 4.8 2.6 2.6 2.8 0.0911(0.000606)

CIR 2 21.4 16 10.2 7.8 7.2 5.6 3.8 2.8 2.4 0.0912(0.00060)
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Table 7

A: Power (in percentage) of the Adaptive EL Test

n Single Bandwidth Based Tests Adaptive Test

n = 125 h 0.0199 0.0219 0.0241 0.0265 0.0291

Power 80.4 74 67.2 66.4 65.2 79.8

n = 250 h 0.0141 0.0158 0.0177 0.0199 0.0223

Power 87.6 81.2 76.4 74 72.8 88.6

n = 500 h 0.0113 0.0126 0.0141 0.0157 0.0175

Power 90.8 84.8 82.8 84.4 80.8 96.8

B: Power (in percentage) of Hong and Li’s Test

Single Bandwidth Based Tests hscott(SE)

n = 125 h 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.1283(0.003)

Power 26 21.6 16.4 12.6 9.6 6.6 5.8 5.6 4.8

n = 250 h 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.1135(0.0020)

Power 41 34 29 24.2 18.8 16.6 14.6 12.2 10.4

n = 500 h 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.1007(0.0013)

Power 57.4 54 49 45 40.2 36 34 32.8 31.2
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Table 8: P-values for the Federal Fund Rate Data

Model Single Bandwidth Based Tests Adaptive

0.007 0.0083 0.010 0.012 0.014 0.017 0.020

Test Stats 29.71 23.64 16.81 9.64 3.52 -0.47 -1.18 29.71

Vasicek l∗0.05 -2.49 -2.80 -3.04 -3.45 -3.79 -3.64 -2.19 2.54

P-Values 0.00 0.00 0.00 0.00 0.00 0.00 0.016 0.00

Test Stats 3.40 0.32 -1.74 -2.19 -0.34 4.09 12.80 12.80

CIR l∗0.05 -3.12 -3.66 -3.89 -3.52 -0.45 6.63 22.27 22.27

P-Values 0.00 0.00 0.00 0.014 0.044 0.09 0.142 0.142

Test Stats 5.80 9.13 14.06 21.97 32.72 46.58 66.63 66.63

ICIR l∗0.05 -1.62 2.68 10.84 30.19 66.83 145.5 303.4 303.4

P-Values 0.002 0.018 0.044 0.078 0.146 0.216 0.294 0.294

Test Stats 5.06 8.16 12.86 20.56 31.11 44.76 64.65 64.65

CEV l∗0.05 3.57 14.78 14.78 37.98 88.75 185.3 434.7 434.77

P-Values 0.032 0.10 0.064 0.136 0.238 0.33 0.434 0.434

Test Stats 5.87 9.21 14.22 22.45 33.69 48.15 69.10 69.10

NL l∗0.05 1.00 9.77 27.47 66.06 128.5 281.2 557.5 557.52

P-Values 0.018 0.054 0.11 0.172 0.266 0.344 0.422 0.422
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Figure 1. Scatter Plot of the Federal Fund Rate Data.
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Figure 2 (a). Transitional densities of the Vasicek and CIR models after rotating
45 degree clock-wise. The right panels are the contours of the density surface
explicited in the right panels.
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Figure 2 (b). Transitional densities of the inverse CIR, the CEV and the nonlinear
drift models after rotating 45 degree clock-wise. The right panels are the contours
of the density surface exhibited in the left panels.
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Figure 3 (a). Nonparametric kernel transtional density estimate and smoothed transtional
densities for the Vasicek and CIR models at h=0.007. The right panels are the
contours of the density surface exhibated in the left panels.
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Figure 3 (b). Smoothed transitional densities of the inverse CIR, the CEV and the
nolinear drift models at h=0.007. The right panels are the contours of the density
surface exhibated in the left panels.
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