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Abstract

It is commonly accepted that some financial data may exhibit long-range dependence,

while other financial data exhibit intermediate–range dependence or short–range depen-

dence. These behaviours may be fitted to a continuous–time fractional stochastic model.

The estimation procedure proposed in this paper is based on a continuous–time version of

the Gauss–Whittle objective function to find the parameter estimates that minimize the

discrepancy between the spectral density and the data periodogram. As a special case,

the proposed estimation procedure is applied to a class of fractional stochastic volatility

models to estimate the drift, standard deviation and memory parameters of the volatility

process under consideration. As an aplication, the volatility of the Dow Jones, S&P 500,

CAC 40, DAX 30, FTSE 100 and NIKKEI 225 is estimated.

KEYWORDS: Continuous–time model, diffusion process, long–range dependence, stochas-

tic volatility.
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1. Introduction

There is a long history about the study of stochastic volatilities. More than thirty

years ago, Black and Scholes (1973) assume a constant volatility to derive their famous

option pricing equation. The implied volatility values obtained from this equation show

skewness, suggesting that the assumption of constant volatility is not feasible. In fact, the

volatility shows an intermittent behaviour with periods of high values and periods of low

values. In addition, the asset volatility cannot be directly observed. Stochastic volatility

(SV) models deal with these two facts. Taylor (1986) and Hull and White (1987) were

amongst the first to study the logarithm of the stochastic volatility as an Ornstein–

Uhlenbeck process. A review and comparative study about modeling SV up to 1994

has been given by Taylor (1994). Andersen and Sørensen (1996) examine generalized

moments of method for estimating stochastic volatility model. Andersen and Lund

(1997) extend the CIR model proposed by Cox, Ingersoll and Ross (1985) to associate

the spot interest rate with stochastic volatility process through estimating the parameters

with the efficient method of moments. The main assumption of the SV model is that the

volatility is a log–normal process. The probabilistic and statistical properties of a log–

normal are well known. However, parameter estimation has not been uncomplicated due

to the difficulty finding the maximum likelihood (ML) function. The authors also like

to mention the nonuniqueness of the log–normal distribution as reviewed by Stoyanov

(2004). In addition to the log–normal distribution, Barndorff–Nielsen and Leonenko

(2005) study other possible distributions of the volatility process, such as the Gamma and

inverse Gaussian distributions. A recent review about the development of multivariate

stochastic volatility is given in Asai, McAleer and Yu (2006).

Recent studies show that some data sets may display long–range dependence (LRD).

See, for example, the recent surveys by Beran 1994, Baillie and King 1996, Anh and

Heyde 1999, and Robinson 2003. Since about ten years ago, there has been some work

on studying stochastic volatility with LRD. Breidt, Crato and De Lima (1998), Comte

and Renault (1998), and Harvey (1998) were among the first to consider long–memory

stochastic volatility (LMSV) models. Meanwhile, Breidt, Crato and De Lima (1998), and

Harvey (1998) independently consider a LMSV case where the log–volatility is modelled

as a fractionally integrated ARMA (ARFIMA) process. Comte and Renault (1998)

consider a continuous–time fractionally stochastic volatility (FSV) model of the form

dY (t) = v(t) dB(t) and dx(t) = −αx(t) dt+ σ dBβ(t), (1)

where x(t) = ln(v(t)), Y (t) = ln(S(t)) with S(t) being the stock price process, B(t) is a

2



standard Brownian motion, α is the drift parameter involved in the stochastic volatility

process, σ > 0 is the volatility parameter involved in the stochastic process, and Bβ(t)

is a fractionally Brownian motion process of the form: Bβ(t) =
∫ t
0

(t−s)β

Γ(1+β)
dB1(s), where

B1(t) is another standard Brownian motion and Γ(x) is the usual Γ function. A process

displays LRD if 0 < β < 1
2
. When β = 0, the process is called short–range dependent.

The process is called intermediate–range dependent if −1
2
< β < 0 (see §12.4 of Brock-

well and Davis 1990 for more precise definitions). Comte and Renault (1998) propose

a discretization procedure to approximate the solution of their continuous–time FSV

model. An estimation procedure for 0 < β < 1
2

is then developed for a discretized ver-

sion of the solution Y (t) based on the so–called log–periodogram regression. Recently,

Deo and Hurvich (2001) also study such an estimation procedure based on the log–

periodogram regression method, and then establish the mean–squared error properties

as well as consistency results for an estimator of β using the so–called GPH estimator

initially proposed by Geweke and Porter–Hudak (1983). Gao (2004) points out that

it is possible to estimate all the parameters involved in model (1) using the so–called

continuous–time version of the Gauss–Whittle contrast function method proposed in

Gao, et al. (2001) and Gao, Anh and Heyde (2002). Other closely related papers in-

clude Giraitis and Surgailis (1990), Hosoya (1997), Sun and Phillips (2003), Andrews

and Sun (2004), Anh, Leonenko and Sakhno (2004), and Leonenko and Sakhno (2006).

This paper considers a class of stochastic volatility models of the form

dY (t) = V (t) dB(t) (2)

with V (t) being given by V (t) = eX(t), in which

X(t) =
∫ t

−∞
A(t− s) dB1(s), (3)

where A(·) is a deterministic function such that X(t) is stationary, and the explicit

expression of A(·) is determined by the spectral density of X(t). Let γ(τ) = E[X(t)X(t+

τ)]. In addition, we assume that the spectral density function of X(t) is defined by

φX(ω) = φX(ω, θ) =
1

2π

∫ ∞

−∞
e−iτωγ(τ)dτ =

ψ(ω, θ) σ2

|ω|2β (ω2 + α2)
, ω ∈ (−∞,∞), (4)

where θ = (α, β, σ) ∈ Θ =
{
0 < α <∞,−1

2
< β < 1

2
, 0 < σ <∞

}
, ψ(ω, θ) is a either a

parametric function of θ or a semiparametric function of θ and an unknown, continuous

and positive function satisfying 0 < limω→0 or ω→±∞ ψ(ω, θ) < ∞ for each given θ ∈ Θ,

α is normally involved in the drift function of the stochastic volatility process, β is
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the memory parameter, and σ is a kind of volatility of the stochastic volatility process.

In this paper, we also assume that B(s) and B1(t) are mutually independent for all

−∞ < s, t <∞. The case where B(s) and B1(t) may be dependent is mentioned below

Assumptions 2.1 and 2.2.

Unlike most existing studies assuming a particular form for the volatility process

V (t), we only implicitly impose certain conditions on the distributional structure of the

volatility process. First, the volatility is a log–normal process with a vector of parameters

involved. Second, the vector of parameters is specified through a corresponding spectral

density function. Third, the parameters involved in the spectral density function may be

explicitly interpreted and fully estimated. Fourth, the generality of the spectral density

function of the form (4) implicitly implies that the class of log–normal volatility processes

can be quite general. As a matter of the fact, the class of models (2)–(4) is quite general

to cover some existing models. For example, when ψ(ω, θ) = 1
Γ2(1+β)

, model (4) reduces

to

φX(ω) = φX(ω, θ) =
σ2

Γ2(1 + β)

1

|ω|2β

1

ω2 + α2
, (5)

which is just the spectral density of the solutions of the second equation of (1) given by

x(t) =
∫ t

0
A(t− s) dB1(t) with A(x) =

σ

Γ(1 + β)

(
xβ − α

∫ x

0
e−α(x−u)uβ du

)
. (6)

Its stationary version is defined as X(t) =
∫ t
−∞A(t − s) dB1(t). Existence of some

other models corresponding to (3) has been established by Comte and Renault (1996),

Anh, Heyde and Leonenko (2002), Anh and Inoue (2005), and Anh, Inoue and Kasahara

(2005). As discussed in the these papers, models with solutions given by (3) and having

a spectral density of the form (4) include a mean–reverting model with a fractional noise

of the form

dX(t) = a(b−X(t))dt+ c dB2(t), (7)

where a, b and c are probably unknown parameters and B2(t) or its stationary version

is driven by B2(t) =
∫ t
−∞C(t − s) dB3(t), in which B3(t) is also a standard Brownian

motion and C(·) is a deterministic function. Model (7) is indeed the natural extension

of the seminal model by Vasicek (1977) to a long–range dependent setting.

Instead of further discussing such existence, we concentrate on the parameter estima-

tion of the stochastic volatility process (3) through estimating the parameters involved

in the spectral density function (4). We then demonstrate how to implement such an

estimation procedure in practice through using both simulated and real sets of data.

The main contribution of this paper can be summarized as follows: (i) it considers a

general class of stochastic volatility models with either long–range dependence (LRD),
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intermediate–range dependence (IRD), or short–range dependence (SRD); (ii) it proposes

an estimation procedure to deal with cases where a class of non–Gaussian processes

may display LRD, IRD or SRD; (iii) our comprehensive simulation studies show that

the proposed estimation procedure works well numerically not only for the memory

parameter β, but also for both the drift parameter α and the variance σ2; and (iv) the

methodology is also applied to the estimation of the volatility of several well–known

stock market indexes.

This paper is organised as follows. Section 2 proposes an estimation procedure for

non–Gaussian processes with possible LRD, IRD and SRD. Asymptotic properties for

such an estimation procedure are established in Section 2. The numerical implementa-

tion of the proposed estimation procedure is given in Section 3. Section 4 gives some

application of the proposed estimation procedure to several well–known stock market

indexes. These results are compared with those based on the GPH estimation. Section 5

concludes the paper with some remarks. Mathematical details are relegated to Appendix

A. Appendix B contains all the tables and figures.

2. Estimation Procedure

Since observations on Y (t) are made at discrete intervals of time in many practical

circumstances, even though the underlying process may be continuous, we propose an

estimation procedure based on a simple first–order approximate version of Y (t) in (2).

It should be mentioned that other types of approximations may also be possible. We

also like to point out that using a higher–order approximate version may not be optimal

in terms of minimizing approximate biases as studied in Fan and Zhang (2003).

Consider a discretized version of model (2) of the form

Yt∆ − Y(t−1)∆ = V(t−1)∆ (Bt∆ −B(t−1)∆), t = 1, 2, · · · , T, (8)

where ∆ is the time between successive observations and T is the size of observations.

In theory, we may study asymptotic properties for our estimation procedure for either

the case where ∆ is small but fixed or the case where ∆ is varied according to T (see

Arapis and Gao 2006). We focus on the case where ∆ is small but fixed throughout the

rest of this paper, since this paper is mainly interested in estimating stochastic volatility

process V (t) using either monthly, weekly, daily or higher frequency returns.

Let Wt =
Yt∆−Y(t−1)∆

∆
, Ut = V(t−1)∆ and ǫt =

√
∆(Bt∆ − B(t−1)∆). Then model (8)

may be re–written as

Wt = Ut

√
∆−1 ǫt, t = 1, 2, · · · , T, (9)
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where {ǫt} is a sequence of independent and identically distributed (i.i.d.) normal errors

drawn from N(0, 1). Letting Zt = log(W 2
t ), Xt = log(Ut), et = log (ǫ2t ) −E [log (ǫ2t )] and

µ = E [log (ǫ2t )] − log(∆), model (9) implies that

Zt = µ+ 2Xt + et, t = 1, 2, · · · , T, (10)

where {Xt} is a sequence of stationary Gaussian time series with LRD, and {et} is a

sequence of i.i.d. random errors with E[et] = 0 and σ2
e = E[e2t ] =

π2

2
.

Such a simple linear model has been shown to be pivotal for establishing various

consistent estimation procedures (Deo and Hurvich 2001). Our estimation procedure is

also based on model (10).

Since both Zt and Xt are stationary, their corresponding spectral density functions

fZ(·, ·) and fX(·, ·) satisfy the following relationship:

fZ(ω, θ) = 4fX(ω, θ) +
σ2

e

2π
= 4fX(ω, θ) +

π

4
. (11)

As {Xt} is a sequence of discrete observations of the continuous–time process {X(t)},
existing results (Priestley 1981, §7.1.1) show that the spectral density function fX(ω, θ)

of the discrete process for − π
∆

≤ ω ≤ π
∆

is the superposition of the spectral density of

the continuous process φX(ω, θ) for frequencies ω, ω± 2kπ
∆
, ω± 4kπ

∆
, . . .. This is expressed

as

fX(ω, θ) =
∞∑

k=−∞

φX

(
ω +

2kπ

∆
, θ

)
, (12)

which, together with (11), implies that the spectral density function of Zt is given by

f(ω, θ) ≡ fZ(ω, θ) = 4
∞∑

k=−∞

φX

(
ω +

2kπ

∆
, θ

)
+
π

4
− π

∆
≤ ω ≤ π

∆
. (13)

In practice, we can approximate fX(ω, θ) arbitrarily well by

f̂M(ω, θ) =
M∑

k=−M

φX

(
ω +

2kπ

∆
, θ

)
, (14)

where M = M(T ) is a sufficiently large integer. We can easily show that as M → ∞,

f̂M(ω, θ) converges to fX(ω, θ) uniformly over ω 6= 0 and θ.

The spectral density f(ω, θ) of (13) can be estimated by the following periodogram

IT (ω) = IZ
T (ω) =

1

2πT

∣∣∣∣∣

T∑

t=1

e−iωtZt

∣∣∣∣∣

2

. (15)
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This paper proposes using a Whittle estimation procedure. Since the exact maximum

likelihood estimation (MLE) procedure for short–range dependent Gaussian time series

poses computational problems, Whittle (1951) proposes a so–called Whittle estimation

method to approximate the exact MLE for parameter estimation of short–range depen-

dent Gaussian time series. The Whittle estimation method has since been extensively

studied in the literature for both Gaussian and non–Gaussian cases. See Robinson (2003)

for a recent review.

The Whittle contrast function used in this paper is as follows:

WT (θ) =
1

4π

∫ π

−π

{
log(f(ω, θ)) +

IT (ω)

f(ω, θ)

}
dω. (16)

We thus estimate θ by

θ̃T = arg min
θ∈Θ0

WT (θ), (17)

where Θ0 is a compact subset of the parameter space Θ.

As the minimization problem (17) involves the continuous–time version WT (θ), in

practice we propose using an evolutionary algorithm to find the global minimizer θ̃T in

Sections 3 and 4 below based on a discretized version of WT (θ) of the form

W T (θ) =
1

2T

T−1∑

s=1

{
log(f(ωs, θ)) +

IT (ωs)

f(ωs, θ)

}
, (18)

where ωs = 2π s
T

. The resulting estimate θT = (ᾱ, β̄, σ̄)T has the same asymptotic

behavior as θ̃T , because Lemma A.2 in Appendix A remains true when WT (θ) is replaced

by W T (θ).

Equations (15)–(18) have been working well both in theory and practice for the case

where the underlying process {Zt} is Gaussian. See, for example, Gao, et al. (2001),

Gao, Anh and Heyde (2002), and Gao (2004). Our theory and simulation results below

show that such an estimation also works well both theoretically and practically for the

case where {Zt} is stationary but non–Gaussian.

To state the main theoretical results of this paper, we need to introduce the following

assumptions. For simplicity, we denote θ = (α, β, σ)⊤ = (θ1, θ2, θ3)
⊤.

Assumption 2.1. (i) Consider the general model structure given by (2)–(4). Sup-

pose that the two standard Brownian motion processes B(s) and B1(t) are mutually

independent for all −∞ < s, t <∞.

(ii) Assume that ψ(ω, θ) is a positive and continuous function in both ω and θ,

bounded away from zero and chosen to satisfy
∫ π

−π
fX(ω, θ) dω <∞ and

∫ π

−π
log (fX(ω, θ)) dω > −∞ for θ ∈ Θ.
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In addition, ψ(ω, θ) is a symmetric function in ω satisfying 0 < limω→0 ψ(ω, θ∗) < ∞
and 0 < limω→±∞ ψ(ω, θ∗) <∞ for each given θ∗ ∈ Θ.

(iii) Assume that K(θ, θ0) is convex in θ on an open set C(θ0) containing θ0, where

θ0 ∈ Θ0 is the true value of θ and

K(θ, θ0) =
1

4π

∫ π

−π

{
f(ω, θ0)

f(ω, θ)
− 1 − log

(
f(ω, θ0)

f(ω, θ)

)}
dω.

Assumption 2.2. The functions fX(ω, θ) and giX(ω, θ) = −∂f−1
X

(ω,θ)

∂θi
for 1 ≤ i ≤ 3

satisfy the following properties:

(i)
∂2
∫ π
−π log(fX(ω, θ)) dω

∂2θ
does exists and equals

∫ π

−π

∂2 log(fX(ω, θ))

∂2θ
dω;

(ii) fX(ω, θ) is continuous at all ω 6= 0 and θ ∈ Θ, f−1
X (ω, θ) is continuous at all (ω, θ);

(iii) the inverse function f−1
X (ω, θ), ω ∈ (−π, π], θ ∈ Θ, is twice differentiable with

respect to θ and the functions ∂
∂θi
f−1

X (ω, θ) and ∂2

∂θj∂θk
f−1

X (ω, θ) are continuous at all

(ω, θ), ω 6= 0, for 1 ≤ i, j, k ≤ 3;

(iv) the functions giX(ω, θ) for 1 ≤ i ≤ 3 are symmetric about ω = 0 for ω ∈ (−π, π]

and θ ∈ Θ;

(v) giX(ω, θ) ∈ L1((−π, π]) for all θ ∈ Θ and 1 ≤ i ≤ 3;

(vi) fX(ω, θ)giX(ω, θ) for 1 ≤ i ≤ 3 are in L1((−π, π]) and L2((−π, π]) for all θ ∈ Θ;

(vii) there exists a constant 0 < k ≤ 1 such that |ω|kfX(ω, θ) is bounded and giX(ω,θ)
|ω|k

for 1 ≤ i ≤ 3 are in L2((−π, π]) for all θ ∈ Θ;

(viii) the matrix { ∂
∂θ

log(fX(ω, θ))}{ ∂
∂θ

log(fX(ω, θ))}⊤ is in L1((−π, π]) × Θ1, where

Θ1 ∈ Θ. In addition, the matrix is continuous uniformly in θ ∈ Θ for each given

ω ∈ (−π, π).

Assumption 2.1(i) assumes that V (t) and B(t) of model (2) are mutually independent.

In other words, it implies that there is no leverage effect. In many cases, one may need

to consider the case where the relationship between the returns and the volatility is

asymmetric. In this case, one would need to allow some kind of dependence between

B(s) and B1(t). Sections 1, 2.2, 3 and 4 of the original version of this paper by Casas

and Gao (2006) give some discussion.

Assumption 2.1(ii)(iii) imposes some conditions to ensure the identifiability and ex-

istence of the spectral density function fX(ω, θ) and thus the Gaussian time series {Xt}.
Assumption 2.2 requires that the spectral density function fX(ω, θ) needs to satisfy cer-

tain smoothness and differentiability conditions in order to verify conditions (A2) and

(A3) of Heyde and Gay (1993).
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Both Assumptions 2.1 and 2.2 are necessary for us to establish the following asymp-

totic consistency results. The assumptions are justifiable when the form of ψ(ω, θ) is

specified. For example, when ψ(ω, θ) = 1
Γ2(1+β)

, Assumptions 2.1 and 2.2 hold automat-

ically. In this case, it is obvious

∫ π

−π
fX(ω, θ) dω = 4

∫ π

−π




∞∑

k=−∞

φX(ω − 2kπ, θ)


 dω = 4

∫ ∞

−∞
φX(ω, θ) dω <∞.

For the second part of Assumption 2.1(i), using the following decomposition

fX(ω, θ) = 4
ψ(ω, θ)σ2

|ω|2β (ω2 + α2)
+ 4

∞∑

k=1

ψ(2kπ − ω, θ)σ2

|2kπ − ω|2β ((2kπ − ω)2 + α2)

+ 4
ψ(2kπ + ω, θ)σ2

|2kπ + ω|2β ((2kπ + ω)2 + α2)
≡ f1(ω, θ) + f2(ω, θ) + f3(ω, θ),

we have ∫ π

−π
log(fX(ω, θ)) dω ≥

∫ π

−π
log(f1(ω, θ)) dω > −∞

when ψ(ω, θ) is specified as ψ(ω, θ) = 1
Γ2(1+β)

.

For the case of ψ(ω, θ) = 1
Γ2(1+β)

, Assumption 2.2 may be justified similarly as in the

proof of Lemma B.1 of Gao, et al. (2001). Instead of giving such detailed verification,

we establish the following theorem.

Theorem 2.1. Suppose that Assumptions 2.1 and 2.2 hold. Then

(i) θ̃T is a strongly consistent estimator of θ0.

(ii) Furthermore, if the true value θ0 is in the interior of Θ0, then as T → ∞
√
T (θ̃T − θ0) → N(0,Σ−1(θ0)),

where

Σ(θ) =
1

4π

∫ π

−π

(
∂

∂θ
log(f(ω, θ))

)(
∂

∂θ
log(f(ω, θ))

)⊤

dω,

which is consistently estimated by Σ̃ = Σ(θ̃T ).

Similarly to some existing results (Heyde and Gay 1993; Robinson 1995; Hosoya

1997; Deo and Hurvich 2001; Gao 2004 and others), Theorem 2.1 shows that θ̃T is still

a
√
T–consistent estimator of θ0 even when {Zt} is non–Gaussian. In addition, we can

use Theorem 2.1 to establish a consistent test statistic of the form

LT = T θ̃⊤T C⊤
(
C⊤Σ̃−1C

)−1
C θ̃T (19)

for testing the null hypothesis H0 : C θ0 = 0, where C is an appropriate matrix.

Theorem 2.1(ii) implies that LT →D χ2
1 as T → ∞. When the null hypothesis is true,
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it is an indication that one or more components of θ0 may be zero. The case where

long–range dependence is absent can be included as a special case under H0.

In Section 3 below, we apply our theory and estimation procedure to model (1). Our

simulation results show that both the proposed theory and the estimation procedure

work quite well numerically.

3. Simulation Results

Consider a simple model of the form

dY (t) = eX(t) dB(t) with X(t) =
∫ t

−∞
A(t− s) dB1(s), (20)

where A(x) = σ
Γ(1+β)

(
xβ − α

∫ x
0 e

−α(x−u)uβ du
)
. Note that X(t) is a stationary version

of x(t) =
∫ t
0 A(t− s) dB1(s), which is the solution of

dx(t) = −αx(t) dt+ σ dBβ(t). (21)

The stationary version of x(t) has a spectral density function of the form

φX(ω) = φX(ω, θ) =
σ2

Γ2(1 + β)

1

|ω|2β

1

ω2 + α2
. (22)

In order to implement our estimation procedure, we need to generate {Xt} from such a

Gaussian process with possible LRD. A relevant simulation procedure is given in Comte

(1996), who proposes a discrete approximation to the solution of the continuous–time

process X(t). The addition of one more parameter does not provide additional informa-

tion. Our simulation procedure based on the simulation of the covariance function of

X(t) is summarized as follows:

(i) Generate CT , a T×T auto–covariance matrix, using the auto–covariance function

given by γX(τ) = 2
∫∞
0 fX(ω, θ) cos(ωτ) dω with ∆ = 1

250
. CT is then a symmetric

non–negative definite matrix with spectral decomposition CT = V ΛV ⊤, where Λ =

diag {λ1, . . . , λT} is the diagonal matrix of the eigenvalues and V is the orthogonal matrix

of the eigenvectors such that V ⊤V = I with V ⊤ being the matrix transpose of V ;

(ii) Generate a sample G = (g1, g2, . . . , gT )⊤ of independent realisations of a multi-

variate Gaussian random vector with the zero vector as the mean and the identity matrix

as the covariance matrix; and

(iii) Generate (X1, . . . , XT ) = V Λ1/2V ⊤G as the realization of a multivariate Gaus-

sian random vector with the zero vector as the mean and CT as the covariance matrix.

The sample path of {Xt} generated with the initial parameter values θ0 = (0.1, 0.1, 0.1)

is illustrated in Figure 1. The periodogram IX̃
N and the spectral density φX̃ of the simu-

lated data set are illustrated in Figure 2.

10



Figures 1 and 2 near here

We then generate {Zt} from (10) with ∆ = 1
250

. To consider all possible cases, the

proposed estimation procedure was applied to the LRD case of 0 < β < 1
2
, the IRD

case of −1
2
< β < 0 and the case of β = 0. Sample sizes of T = 512, 1024 and 2048

were considered. The number of 400 replications was used for each case. The function

(16) is symmetrical respect to ω, this reduce the number of computational operations in

half. Simulation results are displayed in Tables 1 and 2 below. The results in Tables 1–2

show the empirical means, the empirical standard deviations and the empirical mean

squared errors (MSEs) of the estimators. The empirical mean of the absolute value of

the corresponding estimated bias is given in each bracket beneath the corresponding

estimator. Each of the MSEs is computed as a sum of two terms: the square of the

estimated bias and variance.

Tables 1–2 near here

The first section of Table 1 provides the corresponding results for the cases where θ0 =

(0.8, 0, 0.5) and θ0 = (0.001, 0, 0.01). These results show that the estimation procedure

works well for the SRD case where the initial parameter value for β is zero as well as for

small σ0 and α0.

From the third section of Table 1 to Table 2, several different pairs of positive and

negative β values are considered. The corresponding results show that the MSEs for

both α0 and σ0 remain stable when β0 changes from a positive value to its negative

counterpart.

Individually, we have considered both relatively large and small values for β to assess

whether the estimation procedure is sensitive to the choice of β values. These results in

Table 1 show that there is some MSE distortion in the case of T = 512 for β0 when β0

is as small as either 0.01 or −0.01. When T increases to 1024 and then 2048, the MSEs

become stable. For the case of β0 = 0.45 which appears in Table 3, the MSEs look quite

stable and very small.

In Table 2, both relatively large and relatively small values for σ0 have been consid-

ered. For the case of σ0 = 10 in the first part of Table 2, the MSEs for the estimates of

all the components of θ0 are quite stable and very small particularly when T = 2048.

Since empirical financial evidence also suggests that very small volatility parameter

values make precise estimation quite difficult, we also consider two cases in the second

part of Table 2 that the volatility parameter value is as small as σ0 = 0.01. These results
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show that the MSEs become quite reasonable even when the sample size is as medium

as T = 512. It is also observed from Table 2 that the change of the memory parameter

value from β0 = 0.2 to β0 = −0.2 does not affect the estimates of α0 and σ0 significantly.

Tables 3–4 near here

The memory parameter β is commonly estimated using the so–called GPH method

proposed by Geweke and Porter–Hudak (1983) and then extended in Robinson (1995)

and others. It has the property of being easily implemented and very fast. Deo and

Hurvich (2001) study the bias and variance of this estimator for the memory parameter

β based on the fact that the periodogram of Z1, Z2, . . . , ZT is calculated for certain

Fourier frequencies ωj = 2πj
T

for j = 1, 2, . . . ,m, where m is chosen such that m
T
→ ∞ as

m → ∞ and T → ∞. Discussion about the choice of m may be found from Robinson

(1994).

Tables 3–4 compare the memory parameter estimators derived from the Whittle

procedure with the GPH estimators for m = T 0.3 and m = T 0.5. The motivation behind

the choice of m comes from Deo and Hurvich (2001) that study the GPH estimation

method for m = T 0.3, T 0.4 and T 0.5. The GPH estimation method is appropriate for

positive values of β which are those displayed in these tables. As in Deo and Hurvich

(2001), the bias of the estimator β̃GPH increases when m increases, however, the variance

decreases as m increases. In other words, the bias of the GPH estimator with m = T 0.5

is greater than the bias with m = T 0.3. However the MSE is smaller for m = T 0.5 than

that for m = T 0.3 due to smaller variance in each case. As expected, the MSE decreases

as the sample size T increases.

Tables 3–4 show that the Whittle procedure performs better than the GPH method

in all the cases under consideration. Our experience also shows that the computing time

for using the GPH method is much shorter than that for the Whittle method. It is our

opinion that the GPH method may not be applicable to estimate all the parameters α,

β and σ involved in the model as the estimation method was proposed to estimate the β

parameter only. Our study however shows that the proposed estimation method based

on the Whittle method is applicable to the estimation of all the parameters and works

well numerically in all the cases under consideration.

Regarding the asymptotic normality of the errors, Figures 3–4 show the density

estimates of
√
T (θ̃T − θ0) for T = 512, 1024 and 2048. It is clear that as T increases

the estimated density becomes closer to the density function of a Gaussian process with

mean zero. The package KerSmooth in R was used to estimate the density function.

12



Figures 3–4 near here

In summary, the MSEs in Tables 1–4 demonstrate that both the proposed Whit-

tle estimation procedure and the asymptotic convergence established in Theorem 2.1(i)

work well numerically. Our preliminary simulation results further show that the MSEs

become smaller when ∆ = 1
250

. In addition, Figures 3–4 show graphically the asymp-

totic normality of the errors established in Theorem 2.1(ii). In Section 4 below, both the

proposed theory and the estimation procedure are also applied to several stock market

indexes.

4. Applications to Market Indexes

Market indexes are a guideline of investor confidence and are inter–related to the

performance of local and global economies. Investments on market indexes such as the

Dow Jones, S&P 500, FTSE 100, etc. are common practice. In this section, we apply

model (20) to model the stochastic volatility and then the estimation procedure to assess

both the memory and volatility properties of such indexes. Section 4.1 provides the

explicit expressions of both the mean and the variance functions of stochastic volatility

process V (t). Section 4.2 describes briefly these indexes. Some empirical results are

given in Section 4.3 below. Section 4.4 discusses a direct volatility estimation method.

4.1 Estimation of mean and variance

In addition to finding our estimates for the three parameters α, β and σ involved

in model (20), we are also interested to estimate both the mean µV and the standard

deviation σV of the stochastic volatility process V (t).

Since we are concerned with the stationary version V (t) = eX(t) in model (20), we

are able to express both the mean and variance functions of V (t) as follows:

µV = µV (θ) = exp(σ2
X
/2) and σ2

V
= σ2

V
(θ) =

(
exp(σ2

X
) − 1

)
exp(σ2

X
), (23)

where

σ2
X

= σ2
X
(ϑ) = γX(0) =

σ2π

Γ2(1 + β)α1+2β cos(βπ)
. (24)

We then estimate the mean µV (θ) and the standard deviation σV (θ) by

µ̃V = µV (θ̃T ) and σ̃V = σV (θ̃T ) (25)

with θ̃T being defined before. For the market indexes, the corresponding estimates are

given in Tables 6 and 7 below. We now provide some detailed descriptions about the

data in Section 4.2 below.
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4.2 Data

The data sets chosen for our empirical study are the following daily recorded financial

stock indexes: a) two major American indexes: Dow Jones Industrial Average (from the

1st of October 1928 to the 29th of July 2005) and S&P 500 (from the 3rd of January 1950

to the 29th of July 2005); b) three of the major European indexes: CAC 40 (from the

30th of December 1987 to the 29th of July 2005), DAX 30 (from the 31st of December

1964 to the 29th of July 2005) and FTSE 100 (from the 31st of January 1978 to the

29th of July 2005); and c) the major Asian index, the NIKKEI 225 (from the 4th of

January 1984 to the 29th of July 2005). A vast amount of information about market

indexes is available on the Internet. Wikipedia and InvestorWords.com give easy access

to informative glossaries of the stock market indexes. A figure of each of these indexes

is given in Figure 5. The statistical summary of these financial series in Table 5 shows

that the compounded returns series is stationary and has small standard deviation, small

skewness and large kurtosis.

Figure 5 near here

Table 5 near here

4.3 Empirical Results

We have applied the proposed methodology to the real financial data. The results in

Table 6 contain the estimates of α, β, σ, µV , and σV . The values in brackets correspond

to the empirical MSEs showing that the asymptotic error is small in each case. The

MSE values in Table 6 are indicative and calculated based on 400 replications with the

sample size of T=2048. These values are expected to be smaller for larger sets of data.

Tables 6–7 near here

Results of the estimation for the symmetric volatility case are displayed in Table 6

which shows that the DJIA and the S&P 500 volatility processes display strong LRD.

This result is expected from the studies of Ding et al. (1993) who show that the au-

tocorrelation of the square of the returns of the S&P 500 decrease at a very slow rate.

However, the volatility process of the DJIA has a larger mean and a larger standard

deviation. This difference is due to the difference in periods of the data sets as the DJIA

was studied from 1928 and the S&P 500 from 1950. The former set includes the data

related to the Great Depression which influences the results.
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Results of Table 6 for the European indexes shows that the volatility of these indexes

also displays LRD. The German DAX 30 has the largest mean and the largest standard

deviation of the volatility process with values 1.3587 and 1.2499 respectively. In this

respect, the CAC 40, the FTSE 100 and the S&P 500 have very similar values for the

mean (1.1458, 1.1955 and 1.1550 respectively) and standard variation (0.6410, 0.7833

and 0.6676 respectively). This suggests that the volatility process of these two European

indexes and the S&P 500 behave very similarly. In fact, the CAC 40 and FTSE 100 have

a large percentage of shares belonging to foreign investors.

The long memory parameter estimate of the volatility process of the NIKKEI 225 has

a value of 0.4860, again showing a very strong LRD. The mean (2.0768) and standard

deviation (3.7801) of its volatility process are significatively larger than those of the

European and American indexes. This is not surprising, since the risky behaviour of the

Japanese stock market is a well–known fact.

Results of Table 7 compare the estimation of the β parameter using the Whittle

method and the GPH method with m = T 0.3, T 0.4 and T 0.5. The GPH estimator also

suggests that the volatility process of all the indexes displays some kind of LRD. Again,

the choice of m influences highly on the results.

4.4 Volatility Estimation

Estimating α, β and σ is equivalent to estimating the covariance matrix of {Xt} which

the information necessary to be able to obtain an estimate of the volatility process using

the Kalman filter presented in Harvey (1989) and applied to this particular problem in

Harvey (1998). The estimate X̃t is given by,

X̃t = (I − σ2
eC

−1)Wt + σ2
eC

−1 i k, (26)

where C = 4CX + Ce with CX being the covariance matrix of {Xt} and Ce being the

diagonal matrix with values σ2
e , I is the identity matrix and i is a vector of 1s and k is

estimated by the mean of Wt. Thus, Ṽt = exp(X̃t). A comparison of this Ṽt with the

absolute value of the compounded returns can be found in Figure 6. The dotted line

corresponds to |Wt| and the read line corresponds to the volatility process estimator.

The estimation has been done for the first 500 values of each of the indexes.

In summary, the volatility process of the DJIA, the S&P 500 and the DAX 30 does

display strong LRD for the symmetric volatility case. The CAC 40, the FTSE 100 and

the NIKKEI 225 have a volatility with LRD for both the symmetric and asymmetric

cases. In other words, the volatility processes of all these indexes present statistical
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patterns that repeat at different scales of time. Therefore, investments based on the

prediction of the volatility process of each of these stock market indexes may exploit this

fact.

5. Discussion

This paper has established a general class of stochastic volatility models with either

LRD, IRD, or SRD. An estimation procedure has been proposed to deal with cases

where a class of non–Gaussian processes may display LRD, IRD or SRD. We then have

conducted some comprehensive simulation studies to show that the proposed estimation

procedure works well numerically not only for the LRD parameter β, but also for both the

drift parameter α and the volatility parameter σ. Our theory and estimation procedure

has also been applied to estimate the volatility of some well–known stock market indexes.

As imposed in Assumption 2.1(i), we have assumed the mutual independence of the

two Brownian motion processes in order to clearly present the main ideas as well as the

estimation procedure. As briefly discussed in Casas and Gao (2006), in order to take

leverage effects into account we would need to impose some kind of dependent structure

on the covariance matrix of the two Brownian motion processes. As expected, such

dependent structure would make the current discussion much more complicated. We

thus wish to leave such an extension for future research.
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Appendix A. Proof of Theorem 2.1

This appendix provides only an outline of the proof of Theorem 2.1, since some

technical details are quite standard but tedious in this kind of proof and therefore omitted

here.

To prove Theorem 2.1, we need to introduce the following lemmas.
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Lemma A.1. Suppose that Assumptions 2.1 and 2.2 hold. Then for every continuous

function w(ω, θ)

∫ π

−π
IT (ω)w(ω, θ) dω →

∫ π

−π
f(ω, θ0)w(ω, θ) dω (27)

with probability one as T → ∞.

Proof: The conclusion in (27) is the same as Lemma 1 of Fox and Taqqu (1986)

for the cases where the process involved is Gaussian. The proof of their Lemma 1

basically follows that of Lemma 1 of Hannan (1973), which does not impose any Gaussian

assumptions on the process involved.

In view of the expression of Zt = µ+ 2Xt + et in (10) as well as Lemma 1 of Hannan

(1973), therefore the proof of Lemma 1 of Fox and Taqqu (1986) remains valid for the

case where {Xt} is the Gaussian time series with LRD, {et} is a sequence i.i.d. random

errors and thus {Zt} is non–Gaussian. This is mainly because of the following two

reasons.

The first reason is that Assumption 2.1(ii) guarantees that {Xt} admits a backward

expansion of the form (see Fox and Taqqu 1986, p.520)

Xt =
∞∑

s=0

bsut−s, (28)

where {bs} is a sequence of suitable real numbers such that {Xt} is a Gaussian process

with its spectral density function being given by fX(ω, θ), and {us : −∞ < s < ∞} is

a sequence of independent and normally distributed random variables with E[us] = 0

and E[u2
s] = 1. Thus, {Zt} can be written into a partial sum of independent random

variables of the form

Zt = µ+ et + 2
∞∑

s=0

bsut−s. (29)

The second reason is that Lemma 1 of Hannan (1973) is applicable to non–Gaussian

time series and thus to {Zt} of the form (29).

Lemma A.2. Suppose that Assumptions 2.1 and 2.2 hold. Then as T → ∞

WT (θ) → W (θ) =
1

4π

∫ π

−π

{
log(f(ω, θ)) +

f(ω, θ0)

f(ω, θ)

}
dω. (30)

Proof: The proof of (30) follows from (27).

Lemma A.3. Suppose that Assumptions 2.1 and 2.2 hold. Then as T → ∞

θ̃ − θ0 → 0 with probability one. (31)
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Proof: Lemma A.2 implies that the following holds with probability one for θ 6= θ0,

WT (θ) −WT (θ0) → K(θ, θ0) =
1

4π

∫ π

−π

{
f(ω, θ0)

f(ω, θ)
− 1 − log

(
f(ω, θ0)

f(ω, θ)

)}
dω > 0 (32)

as T → ∞.

Thus, for any given ǫ > 0

lim inf
T→∞

inf
||θ−θ0||≥ǫ

(WT (θ) −WT (θ0)) > 0 (33)

with probability one. The proof of θ̃T → θ̃0 with probability one follows from Assumption

2.1(iii). Thus, the proof of Lemma A.3 is finished.

Proof of Theorem 2.1(i): The first part of Theorem 2.1 has already been proved

in Lemma A.3.

Proof of Theorem 2.1(ii): The proof of the second part of Theorem 2.1 is a

direct application of Theorem 1(ii) of Heyde and Gay (1993). Note that Assumption 2.1

implies that Condition (A1) of Heyde and Gay (1993) is satisfied because of (28) and the

expression of Zt = µ+ 4Xt + et. Assumption 2.2 implies that conditions (A2) and (A3)

of Heyde and Gay (1993) are satisfied for fX(ω, θ) and then fZ(ω, θ). Thus, by applying

the Mean–Value Theorem and Theorem 1(ii) of Heyde and Gay (1993), the proof of the

asymptotic normality is completed.

Using Assumption 2.2(viii) and Theorem 2.1(i), the proof of Σ(θ̃T ) → Σ(θ0) follows

as T → ∞.
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Figure 1: Sample path for data generated with θ0 = (0.1, 0.1, 0.1) and ∆ = 1.
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Figure 2: The periodogram and the spectral density for θ0 = (0.1, 0.1, 0.1).
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T = 512 T = 1024 T = 2048

θ0 = (0.8, 0, 0.5)

Empirical mean

Empirical std.dev.

Empirical MSE

ᾱ β̄ σ̄

0.7987 9e-04 0.5010

( 0.0303 ) ( 0.0308 ) ( 0.0306 )

0.0348 0.0352 0.0353

( 0.0171 ) ( 0.0170 ) ( 0.0176 )

0.0012 0.0012 0.0012

( 0.0011 ) ( 0.0012 ) ( 0.0012 )

ᾱ β̄ σ̄

0.8012 0.0012 0.4960

( 0.0291 ) ( 0.0312 ) ( 0.0286 )

0.0339 0.0357 0.0331

( 0.0173 ) ( 0.0173 ) ( 0.017 )

0.0012 0.0013 0.0011

( 0.0011 ) ( 0.0012 ) ( 0.0009 )

ᾱ β̄ σ̄

0.7989 -0.0011 0.5010

( 0.0285 ) ( 0.0282 ) ( 0.0304 )

0.0334 0.0331 0.0352

( 0.0174 ) ( 0.0173 ) ( 0.0178 )

0.0011 0.0011 0.0012

( 0.0011 ) ( 0.0010 ) ( 0.0012 )

θ0 = (0.001, 0, 0.01)

Empirical mean

Empirical std.dev.

Empirical MSE

ᾱ β̄ σ̄

0.0010 0.0000 0.0099

( 1.0e-04 ) ( 1.0e-04 ) ( 5.0e-04 )

1.0e-04 1.0e-04 6.0e-04

( 1.0e-04 ) ( 1.0e-04 ) ( 5.0e-04 )

1.0e-08 1.0e-08 3.7e-07

( 2.0e-08 ) ( 2.0e-08 ) ( 4.1e-07 )

ᾱ β̄ σ̄

0.0010 0.0000 0.0100

( 1.0e-04 ) ( 1.0e-04 ) ( 3.0e-04 )

1.0e-04 1.0e-04 5.0e-04

( 1.0e-04 ) ( 1.0e-04 ) ( 3.0e-04 )

1.0e-08 1.0e-08 2.5e-07

( 2.0e-08 ) ( 2.0e-08 ) ( 1.8e-07 )

ᾱ β̄ σ̄

0.0010 0.0000 0.0100

( 1.0e-04 ) ( 1.0e-04 ) ( 2.0e-04 )

1.0e-04 1.0e-04 3.0e-04

( 1.0e-04 ) ( 1.0e-04 ) ( 3.0e-04 )

1.0e-08 1.0e-08 9.0e-08

( 2.0e-08 ) ( 2.0e-08 ) ( 1.3e-07 )

θ0 = (0.3, 0.01, 0.1)

Empirical mean

Empirical std.dev.

Empirical MSE

ᾱ β̄ σ̄

0.3008 0.0103 0.1000

( 0.0092 ) ( 0.0085 ) ( 0.0096 )

0.0104 0.0100 0.0109

( 0.0050 ) ( 0.0053 ) ( 0.0052 )

0.0001 0.0001 0.0001

( 9.6e-05 ) ( 9.5e-05 ) ( 0.0001 )

ᾱ β̄ σ̄

0.2996 0.0090 0.1009

( 0.0092 ) ( 0.0086 ) ( 0.0091 )

0.0105 0.0100 0.0104

( 0.0051 ) ( 0.0053 ) ( 0.0051 )

0.0001 0.0001 0.0001

( 0.0001 ) ( 8.6e-05 ) ( 9.3e-05 )

ᾱ β̄ σ̄

0.3006 0.0094 0.0995

( 0.0087 ) ( 0.0087 ) ( 0.0092 )

0.0101 0.0101 0.0107

( 0.0052 ) ( 0.0051 ) ( 0.0053 )

0.0001 0.0001 0.0001

( 9.3e-05 ) ( 9.2e-05 ) ( 0.0001 )

θ0 = (0.3,−0.01, 0.1)

Empirical mean

Empirical std.dev.

Empirical MSE

ᾱ β̄ σ̄

0.2995 -0.0097 0.1003

( 0.0111 ) ( 0.0113 ) ( 0.0112 )

0.0128 0.0129 0.0129

( 0.0063 ) ( 0.0062 ) ( 0.0065 )

0.0002 0.0002 0.0002

( 0.0001 ) ( 0.0002 ) ( 0.0002 )

ᾱ β̄ σ̄

0.3004 -0.0096 0.0985

( 0.0107 ) ( 0.0114 ) ( 0.0105 )

0.0124 0.0131 0.0121

( 0.0063 ) ( 0.0063 ) ( 0.0062 )

0.0002 0.0002 0.0001

( 0.0001 ) ( 0.0001 ) ( 0.0001 )

ᾱ β̄ σ̄

0.2996 -0.0104 0.1004

( 0.0104 ) ( 0.0103 ) ( 0.0111 )

0.0122 0.0121 0.0129

( 0.0064 ) ( 0.0063 ) ( 0.0065 )

0.0001 0.0001 0.0002

( 0.0001 ) ( 0.0001 ) ( 0.0001 )

Table 1: Estimates of θ = (α, β, σ) for different values with 400 samples being generated with ∆ = 1
250

.
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T = 512 T = 1024 T = 2048

θ0 = (0.4, 0.2, 10)

Empirical mean

Empirical std.dev.

Empirical MSE

ᾱ β̄ σ̄

0.4000 0.1995 9.9998

( 0.0199 ) ( 0.0205 ) ( 0.019 )

0.0231 0.0235 0.0223

( 0.0117 ) ( 0.0114 ) ( 0.0117 )

0.0005 0.0006 0.0005

( 0.0005 ) ( 0.0005 ) ( 0.0005 )

ᾱ β̄ σ̄

0.4015 0.1987 10.0006

( 0.0204 ) ( 0.0198 ) ( 0.0204 )

0.0232 0.0233 0.0236

( 0.0111 ) ( 0.0122 ) ( 0.0119 )

0.0005 0.0005 0.0006

( 0.0005 ) ( 0.0005 ) ( 0.0005 )

ᾱ β̄ σ̄

0.4004 0.2008 10.0019

( 0.0206 ) ( 0.0201 ) ( 0.021 )

0.0237 0.0232 0.0239

( 0.0117 ) ( 0.0115 ) ( 0.0115 )

0.0006 0.0005 0.0006

( 0.0005 ) ( 0.0005 ) ( 0.0005 )

θ0 = (0.4,−0.2, 10)

Empirical mean

Empirical std.dev.

Empirical MSE

ᾱ β̄ σ̄

0.4050 -0.1994 9.995

( 0.0600 ) ( 0.0573 ) ( 0.0564 )

0.07 0.0672 0.0661

( 0.0363 ) ( 0.0350 ) ( 0.0346 )

0.0049 0.0045 0.0044

( 0.0043 ) ( 0.0044 ) ( 0.0038 )

ᾱ β̄ σ̄

0.4015 -0.2033 10.0009

( 0.0582 ) ( 0.0594 ) ( 0.0605 )

0.0675 0.0680 0.0697

( 0.0342 ) ( 0.0330 ) ( 0.0345 )

0.0046 0.0046 0.0049

( 0.0044 ) ( 0.0042 ) ( 0.0047 )

ᾱ β̄ σ̄

0.3972 -0.1996 9.9975

( 0.0615 ) ( 0.0584 ) ( 0.0608 )

0.0702 0.0687 0.0698

( 0.0337 ) ( 0.0361 ) ( 0.0343 )

0.0049 0.0047 0.0049

( 0.0046 ) ( 0.0047 ) ( 0.0046 )

θ0 = (0.1, 0.2, 0.01)

Empirical mean

Empirical std.dev.

Empirical MSE

ᾱ β̄ σ̄

0.1002 0.1960 0.0195

( 0.0092 ) ( 0.0150 ) ( 0.0322 )

0.0105 0.0367 0.0545

( 0.0051 ) ( 0.0337 ) ( 0.0449 )

0.0001 0.0014 0.0031

( 0.0001 ) ( 0.0012 ) ( 0.0025 )

ᾱ β̄ σ̄

0.1002 0.1968 0.0088

( 0.0088 ) ( 0.0159 ) ( 0.0198 )

0.0104 0.0608 0.0279

( 0.0055 ) ( 0.0587 ) ( 0.0197 )

0.0001 0.0037 0.0008

( 0.0001 ) ( 0.0036 ) ( 0.0007 )

ᾱ β̄ σ̄

0.1005 0.1965 0.0041

( 0.0093 ) ( 0.0136 ) ( 0.0141 )

0.0110 0.0502 0.0167

( 0.0059 ) ( 0.0484 ) ( 0.0107 )

0.0001 0.0025 0.0003

( 0.0001 ) ( 0.0024 ) ( 0.0002 )

θ0 = (0.1,−0.2, 0.01)

Empirical mean

Empirical std.dev.

Empirical MSE

ᾱ β̄ σ̄

0.1006 -0.2004 0.0106

( 0.0091 ) ( 0.0091 ) ( 0.0091 )

0.0104 0.0105 0.0104

( 0.0051 ) ( 0.0052 ) ( 0.005 )

0.0001 0.0001 0.0001

( 9.8e-05 ) ( 0.0001 ) ( 1e-04 )

ᾱ β̄ σ̄

0.1015 -0.2006 0.0104

( 0.0089 ) ( 0.0089 ) ( 0.0089 )

0.0102 0.0103 0.0103

( 0.0053 ) ( 0.0052 ) ( 0.0051 )

0.0001 0.0001 0.0001

( 8.1e-05 ) ( 9.6e-05 ) ( 9.9e-05 )

ᾱ β̄ σ̄

0.0992 -0.2003 0.0096

( 0.0091 ) ( 0.0089 ) ( 0.009 )

0.0105 0.0104 0.0104

( 0.0053 ) ( 0.0054 ) ( 0.0052 )

0.0001 0.0001 0.0001

( 9.7e-05 ) ( 0.0001 ) ( 0.0001 )

Table 2: Estimates of θ = (α, β, σ) for different values with 400 samples being generated with ∆ = 1
250

.
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T = 512 T = 1024 T = 2048

θ0 = (0.1, 0.1, 0.1)

Empirical mean

Empirical std.dev.

Empirical MSE

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.1078 0.1622 0.3608

0.1712 0.4310 0.1510

0.0294 0.1896 0.0908

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.0772 0.1028 0.2661

0.1139 0.3414 0.1192

0.0135 0.1166 0.0418

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.0991 0.1374 0.2397

0.0218 0.2951 0.1155

5.0e-04 0.0885 0.0329

θ0 = (0.3, 0.01, 0.1)

Empirical mean

Empirical std.dev.

Empirical MSE

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.0103 0.0438 0.0197

0.0100 0.4492 0.1717

0.0001 0.2030 0.0296

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.0090 0.0181 0.0005

0.0100 0.3247 0.1534

0.0001 0.1054 0.0236

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.0094 0.0238 0.0066

0.0101 0.3208 0.1142

0.0001 0.1031 0.0130

θ0 = (0.5, 0.45, 0.1)

Empirical mean

Empirical std.dev.

Empirical MSE

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.4499 0.3681 0.3265

0.0056 0.4349 0.1734

3.1e-05 0.1959 0.0453

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.4496 0.4025 0.3600

0.0057 0.3873 0.1355

3.3e-05 0.1523 0.0264

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.4499 0.3685 0.3941

0.0056 0.3236 0.1073

3.1e-05 0.1113 0.0146

Table 3: Estimates of β with the Whittle procedure and the GPH estimation. 400 samples generated with ∆ = 1
250

.
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T = 512 T = 1024 T = 2048

θ0 = (0.4, 0.2, 10)

Empirical mean

Empirical std.dev.

Empirical MSE

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.1995 0.2480 0.2362

0.0235 0.4944 0.1597

0.0006 0.2468 0.0268

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.1987 0.1673 0.2219

0.0233 0.3295 0.1416

0.0005 0.1096 0.0205

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.2008 0.2282 0.22801

0.0232 0.3231 0.1093

0.0005 0.1052 0.0127

θ0 = (0.1, 0.2, 0.01)

Empirical mean

Empirical std.dev.

Empirical MSE

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.1960 0.0546 0.0387

0.0367 0.4103 0.1657

0.0014 0.1895 0.0535

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.1968 0.0482 0.0689

0.0608 0.3397 0.1437

0.0037 0.1384 0.0378

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.1965 0.0167 0.0476

0.0502 0.3268 0.1227

0.0025 0.1404 0.0383

θ0 = (1, 0.2, 0.01)

Empirical mean

Empirical std.dev.

Empirical MSE

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.1999 0.0612 0.0085

0.0220 0.4126 0.1632

0.0005 0.1895 0.0633

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.1991 -0.0130 -0.0132

0.0222 0.3107 0.1234

0.0005 0.1419 0.0607

β̄ β̄GPH β̄GPH

(m = T 0.3) (m = T 0.5)

0.1918 -0.0343 -0.0042

0.0463 0.3135 0.0991

0.0022 0.1532 0.0515

Table 4: Estimates of β with the Whittle procedure and the GPH estimation. 400 samples generated with ∆ = 1
250

.
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DJIA S&P 500 NIKKEI 225 CAC 40 DAX 30 FTSE 100

T 19289 11976 5308 4587 10586 5387

Minimum -0.2563 -0.2290 -0.0721 -0.0951 -0.1306 -0.1303

1st Quantile -0.0046 -0.0042 -0.0066 -0.0052 -0.0062 -0.0053

Median 0.0004 0.0004 0.0002 0.00031 0.0002 0.0006

Mean 0.0002 0.0003 3.4e-05 0.0003 0.0003 0.0003

3rd Quantile 0.0053 0.0049 0.0067 0.0059 0.0070 0.0062

Maximum 0.1427 0.0871 0.1243 0.0689 0.0933 0.0760

Standard dev. 0.0114 0.0092 0.0129 0.0104 0.0123 0.0103

Skewness -0.6671 -1.3747 0.1763 -0.3072 -0.1996 -0.5255

Kurtosis 29.5928 39.6324 7.2741 8.4146 9.0024 11.0712

Table 5: Summary statistics for the DJIA, S&P 500, NIKKEI 225, CAC 40, DAX 30 and FTSE 100 returns.
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Index ᾱ β̄ σ̄ µ̄V σ̄V

DJIA 0.0478 0.4783 0.0055 1.3482 1.2191

(2.7e-05) (3.1e-0.5) (1.7e-05)

S&P 500 0.0732 0.4563 0.0086 1.1550 0.6676

(3.3e-05) (3.6e-05) (2.0e-05)

CAC 40 0.2122 0.4549 0.0237 1.1458 0.6410

(0.0004) (0.0005) (0.0002)

DAX 30 0.0877 0.4841 0.0085 1.3587 1.2499

(9.8e-05) (0.0001) (5.5e-05)

FTSE 100 0.0588 0.4608 0.0073 1.1955 0.7833

( 2.4e-05) (2.7e-05) (1.9e-05)

NIKKEI 225 0.0830 0.4860 0.0115 2.0768 3.7801

(7.1e-05) (7.9e-05) (5.2e-05)

Table 6: Estimates of market indexes volatility parameters when independence between

the two Brownian motions is assumed. The empirical MSE of the estimators is displayed

in brackets.

Index β̄GPH(m = n0.3) β̄GPH(m = n0.4) β̄GPH(m = n0.5) β̄

DJIA 0.5772 0.7033 0.5496 0.4783

S&P 500 0.4892 0.5554 0.4929 0.4563

CAC 40 0.3456 0.2319 0.3257 0.4549

DAX 30 0.6505 0.6300 0.3620 0.4841

FTSE 100 0.4805 0.5034 0.5462 0.4608

NIKKEI 225 0.4522 0.4817 0.3929 0.4860

Table 7: Comparison of the estimation of the LRD parameter of financial market indexes

with the log–periodogram and the Whittle methods.
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Figure 3: Density function estimates of
√
T (ᾱT − α0) and

√
T (β̄T − β0) for θ0 =

(α0, β0, σ0) = (0.1, 0.1, 0.1).
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Figure 4: Density function estimates of
√
T (σ̄T −σ0) for θ0 = (α0, β0, σ0) = (0.1, 0.1, 0.1).
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Figure 5: Financial Stock Indexes under study.
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Figure 6: Estimation of the first 500 values of the volatility process of these stock market

indexes. The dotted line represents the absolute value of the compounded returns divided

by ∆ = 1
250

, i.e. |Wt|.
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