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NONPARAMETRIC AND SEMIPARAMETRIC

REGRESSION MODEL SELECTION 1

By Jiti Gao2 and Howell Tong

The University of Western Australia; The London School of Economics and The

University of Hong Kong

Abstract: It is known that semiparametric time series regression is often used without check-

ing its suitability and compactness. In theory, this may result in dealing with an unnecessarily

complicated model. In practice, one may encounter the computational difficulty caused by the

spareness of the data. This is partly because the curse of dimensionality problem may still arise

from using a semiparametric time series regression model. This paper suggests that in order to

provide more precise predictions we need to choose the most significant regressors for both the

parametric and nonparametric time series components. We develop a novel cross-validation

based model selection procedure for the choice of both the parametric and nonparametric time

series components in semiparametric time series regression, and then establish some asymp-

totic properties of the proposed model selection procedure. In addition, we demonstrate how

to implement the model selection procedure in practice through using both simulated and real

examples. Our empirical studies show that the proposed cross-validation selection procedure

works well numerically.

1. Introduction

In modelling nonlinear time series data one of the tasks is to study the structural

relationship between the present observation and the history of the data set. The prob-

lem then is to fit a high dimensional surface to a nonlinear time series data set. Since

the publication of Tong (1990), nonparametric techniques have been used extensively to

model nonlinear time series data (see the two review papers: Tjøstheim 1994; Härdle,
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Lütkepohl and Chen 1997; Chapter 6 of Fan and Gijbels 1996; and the references in-

cluded in both the papers and the book). Although nonparametric techniques appear

to be feasible, there is a serious problem: the so-called curse of dimensionality. For the

independent and identically distributed (i.i.d.) case, this problem has been discussed

and illustrated in several monographs and many papers (see Fan and Gijbels 1996 for

example). In order to deal with the curse of dimensionality problem for the time series

case, several nonparametric and semiparametric approaches have been proposed. These

include: (i) nonparametric time series single–index and projection pursuit modelling (see

Xia, Tong, Li and Zhu 2002 for the time series case); (ii) additive nonparametric time

series modelling (see Chen and Tsay 1993; Masry and Tjøstheim 1995, 1997; Gao, Tong

and Wolff 2002a, 2002b for the time series case); (iii) semiparametric time series mod-

elling (see Gao 1998; Chapter 6 of Härdle, Liang and Hua 2000 for example); and (iv)

nonparametric time series variable selection (see Cheng and Tong 1992, 1993; Tjøstheim

and Auestad 1994a, 1994b; Yao and Tong 1994; Tjøstheim 1999; Gao, Wolff and Anh

2001, and others).

In theory, one may suggest using one of the methods to deal with the dimensionality

reduction problem. In practice, however, one needs to check whether the method used is

appropriate for a given set of data before using the method. For example, before apply-

ing additive nonparametric time series regression modelling, a crucial problem is whether

an additive nonparametric time series model is appropriate for a given set of time series

data. In other words, we should test for nonparametric additivity before using an ad-

ditive nonparametric time series model to fit a given set of time series data (see Chen,

Liu and Tsay 1995; Gao, Tong and Wolff 2002b for the time series case). If an additive

nonparametric time series model is appropriate (once the additivity is tested and not

rejected) for a high-dimensional time series data, then it can be entertained. Otherwise,

we could check whether a partially linear time series model is appropriate. Although

partially linear time series modelling may not be capable of reducing the nonparametric

time series regression into a sum of one-dimensional nonparametric functions of indi-

vidual lags, they can reduce the dimensionality significantly for some cases. Moreover,

a feature of partially linear time series modelling is that it takes the true structure of

the time series data into account and avoids neglecting some existing information on the
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linearity of the data. This paper then suggests combining semiparametric time series

modelling and nonparametric time series variable selection together to deal with the

dimensionality reduction problem. We assume that a time series data set (Yt, Ut, Xt)

satisfies a partially linear time series model of the form

Yt = U τ
t β + φ(Xt) + et, (1.1)

where Ut = (Ut1, . . . , Utp)
τ and Xt = (Xt1, . . . , Xtq)

τ are both time series, Ut and Xt may

be two different time series, β = (β1, . . . , βp)
τ is a vector of unknown parameters, φ(·)

is an unknown and possibly nonlinear function defined over Rq, and the error process

et satisfies E[et] = 0, 0 < E[e2t ] < ∞ and some other mild conditions to be specified

later. In model (1.1), the linear time series component is U τ
t β and φ(Xt) is called the

nonparametric time series component.

Model (1.1) covers some existing nonlinear time series cases. See for example, Robin-

son (1988), Teräsvirta, Tjøstheim and Granger (1994), Gao and Liang (1995), Gao

(1998), Gao and Yee (2000), and others. In theory, model (1.1) can be used to over-

come the dimensionality problem. In practice, however, model (1.1) itself may still suffer

from the ”curse of dimensionality”. Thus, before using model (1.1) one needs to con-

sider a model selection problem. In other words, we need to determine whether both

the linear component and the nonparametric component are of the smallest possible

dimensions. For the partially linear model case, the conventional nonparametric cross-

validation model selection function simply cannot take the given linear component into

account but treats each linear regressor as a nonparametric regressor. As a result, the

conventional nonparametric cross-validation model selection function could neglect exist-

ing information about the linear component and therefore cause model misspecification

problem. Hence, we need to consider an extension of existing parametric and nonpara-

metric cross-validation model selection criteria to the semiparametric time series setting.

Recently, Gao and Tong (2004) develop a simultaneous semiparametric leave–more–out

cross–validation selection method for the optimum choice of both Ut and Xt. As observed

in the simulations in Section 3.1 of Gao and Tong (2004), the number of observations

used to fit the model is, however, quite small (with Tc = 69 in Section 3.1 for the semi-

parametric case), while the number of observations used to validate the proposed method
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is relatively large (Tv = 219, respectively). This may impede the implementation of the

semiparametric–based selection method in practice because the theory requires Tc → ∞.

In order to avoid using more data for model validation, this paper develops a novel

model selection procedure combining the leave–one–out cross-validation (abbreviated

as CV1) function for the choice of the nonparametric regressors and the leave–Tv–out

cross-validation (abbreviated as CVTv) function for the choice of parametric regressors,

where Tv > 1 is a positive interger satisfying Tv → ∞ as the number of observations, T ,

converges to ∞. Our proposed semiparametric cross-validation (CV) based time series

model selection procedure has the following features:

(i) It provides a general model selection procedure in determining asymptotically

whether both the linear time series component and the nonparametric time series com-

ponent are of the smallest possible dimensions. The procedure can select the true form

of the linear time series component. Moreover, it could overcome the difficulty known as

the ”curse of dimensionality” arising from using nonparametric techniques to estimate

the nonparametric time series component in (1.1).

(ii) It extends the leave–Tv–out cross-validation (CV) selection criterion for classical

linear regression (see Shao 1993; Zhang 1993) and the leave-one-out cross-validation

selection criterion (see Vieu 1994; and Yao and Tong 1994) for purely nonparametric

regression to the semiparametric time series setting.

(iii) It is applicable to a wide variety of models, which include additive partially lin-

ear models for both the i.i.d. case and the time series case. As a result, the proposed

model selection procedure is capable of selecting the most significant lags for both the

parametric and nonparametric components. Both the methodology and theoretical tech-

niques developed in this paper can be used to improve statistical model building and

forecasting.

In this paper, we propose the combined cross-validation (CV) based nonparamet-

ric and parametric regression model selection procedure and develop the related theory.

Moreover, we illustrate the CV criterion with simulated and real data sets. The organ-

ization of this paper is as follows. Section 2 proposes two CV based selection criteria.

Applications and illustrations of the criteria are given in Section 3. The paper con-

cludes with a discussion in Section 4. Assumptions and mathematical proofs are given
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in Appendices A–C.

2. CV criteria for semiparametric time series regression

Although concepts like the Akaike’s information criterion (AIC) and maximum like-

lihood do not carry over to the nonparametric situation in a straightforward fashion, it

makes sense to talk about prediction error and cross-validation in the general framework.

The equivalence of AIC and CV criterion for the parametric autoregressive model selec-

tion was alluded by Tong (1976) and established by Stone (1977). Since then, Zhang

(1991), Bickel and Zhang (1992), Cheng and Tong (1992, 1993), Vieu (1994), Yao and

Tong (1994), and others have studied the behavior of the CV criterion in nonparametric

regression for both the i.i.d. and time series cases.

Before establishing our general framework for the semiparametric time series case,

we need to introduce some notation.

Let A0 = {1, 2, . . . , p}, Dq = {1, 2, . . . , q}, A denote all nonempty subsets of A0 and

D denote all nonempty subsets of Dq. For any subset A ∈ A, UtA is defined as a column

vector consisting of {Uti, i ∈ A}. For any subset D ∈ D, XtD is defined as a column

vector consisting of {Xti, i ∈ D}. Throughout this paper, B ⊆ C means that B can be

the maximum subset C, and B ⊂ C means that B cannot attain the maximum subset

C. We use dE = |E| to denote the cardinality of a set E.

In this paper, we assume that there is a unique pair (A∗, D∗) with A∗ ∈ A and

D∗ ∈ D such that there is a true and compact version of model (1.1) defined by

Yt = U τ
tA∗
β∗ + φ∗(XtD∗) + e∗t , (2.1)

where β∗ is a vector of unknown parameters, φ∗(·) is an unknown function over R|D∗|,

and e∗t = Yt − E[Yt|Ut, Xt].

Detailed conditions for the existence and the uniqueness of A∗ and D∗ are discussed

in Sections 2.1 and 2.2 below. This paper then considers the following cases:

• Case I: If the linear component of model (1.1) is already compact but the non-

parametric component is not compact, we then take A∗ = A0 = {1, 2, . . . , p} and

estimate D∗ in Section 2.1 below. We will use the notation of D∗ = D0 = D0(A0)

in Section 2.1.
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• Case II: If both the linear and nonparametric components are not compact, we

then estimate both A∗ and D∗ In Section 2.2 below. Note that the notation of

D∗ = D0(A∗) will be used in Section 2.2.

• Case III: If model (1.1) is already compact, then A∗ = A0 and D∗ = Dq. For this

case, no model selection is needed.

• Case IV: If the nonparametric component of model (1.1) is already compact but

the parametric component is not component, we take D∗ = Dq and then estimate

A∗. As this is a special case of Case II with D∗ = Dq and the detailed discussion

for this case is very similar but less difficult than that for Case II, we shall not

discuss it in detail.

For Case I, Theorem 2.1 in Section 2.1 below extends some existing results for the

nonparametric time series case under the β–mixing condition to the semiparametric

time series case under the α–mixing condition. For Case II, Theorem 2.3 in Section 2.2

below shows that if a given data set (Yt, Ut, Xt) satisfies a partially linear model of the

form (1.1), the proposed nonparametric CV1 and parametric CVTv selection procedure

suggests that we need only to consider the selection of (2q −1)× (2p−1) possible models

of the form (1.1). If we choose to use either the purely nonparametric CV1 selection

procedure or the completely parametric CVTv selection procedure for the selection of an

optimum set of (Ut, Xt), we need to consider the selection of 2p+q − 1 possible models.

Consequently, in theory a completely linear model or a purely nonparametric regression

model may be either too simple or too general for a given time series data. In practice,

the computation of selecting 2p+q − 1 possible models is more expensive than that of

selecting (2q − 1) × (2p − 1) possible models when p and q are large.

2.1. CV criterion for nonparametric regressors

Assume that the data set {(Yt, Ut, Xt) : t ≥ 1} satisfies model (1.1). In this section, we

assume that the linear component is already compact in the selection of nonparametric

regressors.

Assume that the data set {(Yt, Ut, XtD) : t ≥ 1} satisfies

Yt = U τ
t β(D) + φD(XtD) + etD, (2.2)
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where etD is an error process, β(D) = (β1(D), . . . , βp(D))τ is a vector of unknown para-

meters, and φD(·) is an unknown function over RdD . Note that β(D) is still a vector of

p unknown parameters, but may depend on D.

In order to ensure that model (2.2) is identifiable for each given D ∈ D, one needs

to define (see §1.2 of Härdle, Liang and Gao 2000)

β(D) = {E (Ut − E[Ut|XtD]) (Ut − E[Ut|XtD])τ}−1
E (Ut − E[Ut|XtD]) (Yt − E[Yt|XtD])

and

φD(XtD) = φD(XtD, β(D)) = E {(Yt − U τ
t β(D))|XtD} = φ1(XtD) − φ2(XtD)τβ(D),

(2.3)

under Assumption 2.1(i) below, where φ1(XtD) = E[Yt|XtD] and φ2(XtD) = E[Ut|XtD].

For anyD ∈ D, define ψD(Ut, XtD) = U τ
t β(D)+φD(XtD) and Ψ(Ut, Xt) = E[Yt|Ut, Xt].

The following assumption imposes some existence and uniqueness conditions on model

(2.2).

Assumption 2.1. (i) Assume that ∆D = E {Ut − E[Ut|XtD]} {Ut − E[Ut|XtD]}τ is

a positive definite matrix with order dD × dD for each given D ∈ D.

(ii) Let D1 = {D ∈ D, such that ψD = Ψ} and D0 = {D0 ∈ D1, such that |D0| =

minD∈D1 |D|}. Assume that D0 is the unique element of D0 and that φD0(XtD0) is an

unknown nonparametric function.

Remark 2.1. (i) Assumption 2.1(i) then requires the positivity of the matrix even

when both Xt and Ut are dependent time series. When Xt and Ut are two independent

time series, ∆D = E {Ut − E[Ut]} {Ut − E[Ut]}τ , which corresponds to the linear time

series case. We should point out that when Ut and Xt have common components, As-

sumption 2.1 needs to be slightly modified. An obvious remedy for this case is to put

βj(D) = 0 when Utj is equal to a component of XtD.

(ii) Assumption 2.1(ii) assumes both the existence and uniqueness of D0. It might be

possible that there exists another subset D1 6= D0 such that |D1| = |D0|. This makes our

discussion more complicated. Since it is not a likely case in practice, we agree to discard

this case. In order to avoid this case, Assumption 2.1(ii) requires the uniqueness of the

true nonparametric component and ensures that the true nonparametric component is
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of the smallest possible dimension or compact. Assumption 2.1(ii) is also imposed to ex-

clude the case where φD0(·) is a known parametric function. This is just for rigorousness

consideration. Conventionally, the nonparametric component of a partially linear model

is viewed as a nonparametric and unknown function.

(iii) Assumption 2.1 also implies that if there is another pair (β′(D0), φ
′
D0

) such that

U τ
t β(D0) + φD0(XtD0) = U τ

t β
′(D0) + φ′

D0
(XtD0) almost surely,

then β(D0) = β′(D0) and φD0 = φ′
D0

. Thus Assumption 2.1 guarantees that the true

regression function U τ
t β(D0)+φD0(XtD0) is identifiable, i.e., β(D0) and φD0 are uniquely

determined up to a set of measure zero.

It follows from (2.1)–(2.3) and Assumption 2.1 that for Case I we may define the true

model as

Yt = U τ
t β(D0) + φD0(XtD0) + etD0 , (2.4)

where etD0 = Yt − E[Yt|Ut, Xt]. Note that model (2.4) is a special case of (2.1) where

A∗ = A0, UtA0 = Ut, β∗ = β(D0), φD0 = φ∗, D∗ = D0, XtD0 = XtD∗ , and etD0 = e∗t .

For the given D0, we define the least squares estimator, β̃(D0, h), of β(D0) as the

solution of (see §1.2 of Härdle, Liang and Gao 2000 for example)

T
∑

t=1

{

Yt − U τ
t β̃(D0, h) − φ̂

(

XtD0 , β̃(D0, h)
)}2

= min!, (2.5)

where

φ̂(XtD, β) =
T
∑

s=1

WD(t, s)(Ys − U τ
s β), in which WD(t, s) =

KD((XtD −XsD)/h)
∑T

l=1KD((XtD −XlD)/h)
,

T is the number of observations, KD is a multivariate kernel function, and h is a band-

width parameter satisfying h = hT → 0 as T → ∞.

It follows from (2.4) that

β̃(D, h) = (Σ̃(D, h))+
T
∑

t=1

Ũt(D, h)(Yt − φ̂1(XtD, h)), (2.6)

where (·)+ denotes the Moore–Penrose inverse,

Σ̃(D, h) =
T
∑

t=1

Ũt(D, h)Ũt(D, h)
τ , Ũt(D, h) = Ut − φ̂2(XtD, h),
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φ̂1(XtD, h) =
T
∑

s=1

WD(t, s)Ys and φ̂2(XtD, h) =
T
∑

s=1

WD(t, s)Us.

In order to select both h and D0, we introduce several leave–one–out estimates. For

any D ∈ D, equations (2.3)–(2.4) suggest the leave-one-out estimator

φ̂t(XtD, β) = φ̂1t(XtD, h) − φ̂2t(XtD, h)
τβ,

where

φ̂1t(XtD, h) =
T
∑

s=1,s 6=t

W
(−t)
D (t, s)Ys and φ̂2t(XtD, h) =

T
∑

s=1,s 6=t

W
(−t)
D (t, s)Us,

in which

W
(−t)
D (t, s) =

KD((XtD −XsD)/h)
∑T

l=1,l 6=tKD((XtD −XlD)/h)
.

Then, we define the leave–one–out least squares (LS) estimator β̂(D, h) of β(D) as

the solution of
T
∑

t=1

{

Yt − U τ
t β̂(D, h) − φ̂t(XtD, β̂(D, h))

}2
.

For any given D ∈ D, the leave–one–out LS estimator is

β̂(D, h) = (Σ̃(D, h))+
T
∑

t=1

Ũt(D, h)(Yt − φ̂1t(XtD, h)), (2.7)

where Ũt(D, h) = Ut − φ̂2t(XtD, h), Σ̃(D, h) =
∑T

t=1 Ũt(D, h)Ũt(D, h)
τ . It is noted that

the LS estimator β̃(D0, h) of (2.6) is asymptotically equivalent to the leave–one–out

least squares (LS) estimator β̂(D0, h) of (2.7). In defining the following leave–one–out

cross-validation, we use the latter.

We now introduce a version of the leave–one–out cross-validation, abbreviated as

CV1. For any D ∈ D, we define

CV1(D, h) =
1

T

T
∑

t=1

{

Yt − U τ
t β̂(D, h) − φ̂t(XtD, β̂(D, h))

}2
w(Xt), (2.8)

where w(·) is a weight function defined on Rq.

Let D̂0 and ĥ denote the estimators of D0 and h, respectively, which are obtained by

minimising the CV 1(D, h) function over D ∈ D and h ∈ HTD, and written as

(D̂0, ĥ) = argmin{D∈D, h∈HTD}CV1(D, h), (2.9)
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where

HTD =
[

aDT
− 1

4+|D|
−cD , bDT

− 1
4+|D|

+cD

]

,

in which the constants aD, bD and cD satisfy 0 < aD < bD <∞ and 0 < cD < 1
2(4+|D|)

.

Remark 2.2. The cross-validation function CV1 of (2.8) generalises the conventional

CV1 cross-validation function for purely nonparametric regression to the semiparametric

setting. When β(D) = 0, the CV1 function reduces to the conventional leave–one–out

cross-validation for purely nonparametric regression model selection. Similar to Vieu

(1994), we integrate the weight function w not depending on D into CV1. Under an

additional but complicated condition similar to condition (G) of Zhang (1991), however,

we can integrate a weight function wD depending on D into the CV1 function. Cheng

and Tong (1993) also considered a special weight function. Yao and Tong (1994) avoided

using such a weight function by assuming that the marginal density of Xt has a compact

support.

We now state the first result of this paper and its proof is relegated to Appendix B.

Theorem 2.1. Assume that Assumptions 2.1 and A.1–A.4 listed in Appendix A hold

with A = A0. Then

lim
T→∞

P (D̂0 = D0) = 1 and
ĥ

h0

→p 1

as T → ∞, where h0 is the minimizer of the mean average squared error (MASE) given

by

MASE(D0, h) =
1

T

T
∑

t=1

E
{

U τ
t β̃(D0, h) + φ̂

(

XtD0 , β̃(D0, h)
)

− U τ
t β(D0) − φD0(XtD0)

}2
.

Remark 2.3. It can be shown that h0 = CD0T
− 1

4+|D0| and CD0 > 0 is a constant

independent of T . Due to this property, instead of defining h0 as the minimizer of certain

MASE we shall use this explicit form for h0 throughout the rest of the paper. Theorem

2.1 shows that the true and unique subset D0 can be identified asymptotically. Moreover,

the criterion can also determine the bandwidth asymptotically.

When β = 0 in (1.1) and therefore β(D) = 0 in (2.2), we have the following result

for purely nonparametric regression model selection.
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Corollary 2.1. For the purely nonparametric regression case, the conclusion of

Theorem 2.1 holds.

This result extends some existing results for nonparametric regression model selection

for both the i.i.d. case and the β–mixing time series case to the α–mixing time series

case.

Based on D̂0 and ĥ of (2.9), we define the following prediction equation

m̂D̂0

(

Ut, XtD̂0

)

= U τ
t β̃(D̂0, ĥ) + φ̂

(

XtD̂0
, β̃(D̂0, ĥ)

)

. (2.10)

Corollary 2.2. Under the conditions of Theorem 2.1, we have as T → ∞

1

T

T
∑

t=1

{

Yt − m̂D̂0
(Ut, XtD̂0

)
}2 →p σ

2
1D0

= E{Yt − U τ
t β(D0) − φD0(XtD0)}2.

Corollary 2.2 shows that the semiparametric estimator of (2.10) is asymptotically

close to the true regression function. The proofs of Corollaries 2.1–2.2 are relegated to

Appendix B.

In Section 2.1, we have considered Case I where the linear component is already

compact and then propose the leave–one–out cross-validation for the selection of non-

parametric regressors. In Section 2.2 below, we consider the selection of both parametric

and nonparametric regressors. Since for the selection of parametric regressors the leave–

one–out cross-validation is asymptotically inconsistent (see Zhang 1993; Shao 1993), we

need to consider using the leave–Tv–out cross-validation for the selection of parametric

regressors. Moreover, because the theory of the leave–Tv–out cross-validation is different

to that of the leave–one–out cross-validation and much more complicated, we consider

Case II separately.

2.2. CV criterion for the selection of parametric regressors

As can be seen in Section 2.1, the selected D̂0 and ĥ depend on A0. Thus we can

rewrite D̂0 = D̂0(A0) and ĥ = ĥ(A0). Let A denote all nonempty subsets of A0. For

A ∈ A, let βA be a column vector consisting of {βi : i ∈ A}. Denote UtA with A = A0

by Ut and βA with A = A0 by β = (β1, . . . , βp)
τ .
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To extend Assumption 2.1 to the case where both the linear and nonparametric

components are not compact, one needs to restate some notation.

For each A ∈ A and D ∈ D, define ψA,D(UtA, XtD) = U τ
tAβA + φD(XtD) and

Ψ(Ut, Xt) = E[Yt|Ut, Xt]. The following assumption imposes some existence and unique-

ness conditions on the true versions of A and D. Detailed explanation for Assumption

2.2 below will be similar to Remark 2.1.

Assumption 2.2. (i) Assume that ∆A,D = E {UtA − E[UtA|XtD]} {UtA − E[UtA|XtD]}τ

is a positive definite matrix with order dD × dD for each given A ∈ A and D ∈ D.

(ii) For each given A ∈ A, let D1A = {D ∈ D, such that ψA,D = Ψ} and D0A =

{D0(A) ∈ D1A, such that |D0(A)| = minD∈D1A
|D|}. Assume that D0(A) is the unique

element of D0A and that φD0(A)(XtD0(A)) is an unknown nonparametric function for each

given A ∈ A.

Following Assumption 2.2, for each A ∈ A we can define the corresponding D0(A).

Theorem 2.1 then shows that

lim
T→∞

P
(

D̂0(A) = D0(A)
)

= 1 and
ĥ(A)

h0(A)
→p 1

as T → ∞, where h0(A) = CD0(A)T
− 1

4+|D0(A)| .

For simplicity and convenience, we introduce the following notation:

ψ̂1(t, A) = φ̂1

(

XtD̂0(A), ĥ(A)
)

=
T
∑

s=1

WD̂0(A)(t, s)Ys,

ψ̂2(t, A) = φ̂2

(

XtD̂0(A), ĥ(A)
)

=
T
∑

s=1

WD̂0(A)(t, s)UsA,

ηtA = UtA − E[UtA|XtD0(A)], δtA = E[UtA|XtD0(A)] − ψ̂2(t, A),

VtA = ηtA + δtA = UtA − ψ̂2(t, A), VA = (V1A, . . . , VTA)τ ,

ψ̂1(t) = ψ̂1(t, A0), ψ̂2(t) = ψ̂2(t, A0), ηt = Ut − E[Ut|XtD0 ], δt = E[Ut|XtD0 ] − ψ̂2(t),

Vt = ηt + δt = Ut − ψ̂2(t), V = (V1, . . . , VT )τ , Zt = Yt − ψ̂1(t), and Z = (Z1, . . . , ZT )τ ,

(2.11)

where D0 = D0(A0) is as defined in Assumption 2.1.
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Because some of the components of β may be zero, the following model

Yt = U τ
tAβA + φD0(A)(XtD0(A)) + ǫtA, where ǫtA is an error process, (2.12)

might be more compact than model (2.4) given by Yt = U τ
t β(D0) + φD0(XtD0) + etD0 .

Note that β(D) signifies that β(D) may depend on D while the notation of βA means

that βA is a subset of β.

As mentioned earlier, for each A ∈ A it is natural to estimate each D0(A) by D̂0(A).

The definition of φ̂(XtD, β) of (2.5) then suggests estimating (see §1.2 of Härdle, Liang

and Gao 2000 for example)

φD0(A)

(

XtD0(A)

)

= φD0(A)(XtD0(A), βA) by φ̂
(

XtD̂0(A), βA

)

= ψ̂1(t, A) − ψ̂2(t, A)τβA.

Thus, using (2.11), model (2.12) can be rewritten as

Yt − ψ̂1(t, A) = βτ
A

(

UtA − ψ̂2(t, A)
)

+ φD0(A)(XtD0(A)) − φ̂
(

XtD̂0(A), βA

)

+ ǫtA

= V τ
tAβA + ǫtA + op(1)

using the fact that the rate of uniform convergence of φ̂
(

XtD̂0(A), βA

)

to φD0(A)

(

XtD0(A)

)

is of order op(1) (see Theorem 3.2.2 of Härdle, Liang and Gao 2000 for example).

This suggests using a linear model of the form

Yt − ψ̂1(t, A) = V τ
tAβA + ǫtA (2.13)

to approximate model (2.12) in the selection of A without changing the true version of A.

Obviously, there are 2p−1 possible models of the form (2.13), each of which corresponds

to a subset A and is defined by MA. The dimension of MA is defined to be dA, the

number of predictors in MA. If we know whether each component of β is zero or not,

then the models MA can be classified into two categories:

• Category I: At least one nonzero component of β is not in βA.

• Category II: βA contains all nonzero components of β.

Clearly, the models in Category I are incorrect models, and the models in Category

II may be inefficient because of their unnecessarily large sizes. The optimum model,

denoted by M∗, is the model in Category II with the smallest dimension.
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Let A∗ correspond to M∗. For Case II, we may define the true model as

Yt = U τ
tA∗
βA∗ + φ∗(XtD∗) + e∗t ,

where D∗ = D0(A∗), φ∗ = φD∗ = φD0(A∗), and e∗t is as defined in (2.1). Note that this is

the true model we have assumed in (2.1) for Case II.

Thus, in order to determine the true model (2.1) for Case II, one needs to estimate A∗.

The selection of A is carried out by using the data {(Zt, Vt) : t = 1, 2, . . . , T} satisfying

Zt = V τ
t β + ǫt,

where ǫt is an error process. Under model MA, the least squares estimator of βA is

β̂A = (V τ
AVA)+ V τ

AZ,

where Z and VA are as defined in (2.11).

Using model MA fitted based on the data {(Zt, Vt) : t = 1, 2, . . . , T}, the average

squared prediction error is

LT (A) =
1

T

T
∑

t=1

[

Zt − V τ
tAβ̂A

]2
=

1

T

(

Z − VAβ̂A

)τ (

Z − VAβ̂A

)

=
1

T
ǫτǫ+

1

T
ǫτPAǫ+

1

T
(V β)τRA(V β) +

2

T
ǫτRA(V β), (2.14)

where ǫ = (ǫ1, . . . , ǫT )τ , PA = VA (V τ
AVA)+ V τ

A , RA = IT − PA, and IT is the identity

matrix of order T .

It follows from (2.14) that because of Assumption A.1, the conditionally expected

average squared error is

RT (A, V ) = E[LT (A)|V ] =
1

T
E[ǫτǫ|V ]+

1

T
E[ǫτPAǫ|V ]+

1

T
(V β)τRA(V β)+

2

T
E [ǫτRA(V β)|V ]

= σ2
ǫ +

1

T
dAσ

2
ǫ + ∆T,A, with probability one, (2.15)

where σ2
ǫ = E[ǫτǫ] and ∆T,A = 1

T
(V β)τRA(V β).

When MA is in Category I, we assume that

lim inf
T→∞

∆T,A > 0 in probability. (2.16)
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When MA is in Category II, it follows from (2.14) and (2.15) that because V β =

VAβA,

LT (A) =
1

T
ǫτǫ+

1

T
ǫτPAǫ+

2

T
ǫτRA(V β) and RT (A, V ) =

1

T
(T − dA)σ2

ǫ .

We now have the following remark.

Remark 2.4. As argued in Shao (1993), condition (2.16) is a type of asymptotic

model identifiability condition and is very minimal for asymptotic analysis. It can be

shown that for (2.16) to hold, it suffices to assume that for MA in Category I

lim inf
T→∞

1

T
(ηβ)τ (IT − ηA(ητ

AηA)+ητ
A)ηβ > 0 in probability, (2.17)

where η = (η1, . . . , ηT )τ , ηA = (η1A, . . . , ηTA)τ , ηt = Ut − E[Ut|XtD0 ] and ηtA = UtA −
E[UtA|XtD0(A)] are as defined in (2.11). It follows that when Ut and Xt are independent,

we have

ηt = Ut − E[Ut] and ηtA = UtA − E[UtA].

Thus, condition (2.17) imposes only an asymptotic model identifiability condition on

the linear component and is a natural extension of condition (2.5) of Shao (1993) to the

semiparametric time series setting.

We now propose our cross-validation criterion for the selection of A ∈ A. Suppose

that we split the data set into two parts: {(Zt, Vt) : t ∈ S} and {(Zt, Vt) : t ∈ Sc},
where S is a subset of {1, 2, . . . , T} containing Tv integers and Sc is its complement

containing Tc integers, Tv + Tc = T . The model MA is fitted using the construction

data {(Zt, Vt) : t ∈ Sc} and the prediction error is assessed using the validation data

{(Zt, Vt) : t ∈ S}, treated as if they were future values. The average squared prediction

error is

CV(Tv) = CVA,S(Tv) =
1

Tv

∣

∣

∣

∣

∣

∣ZS − ẐA,Sc

∣

∣

∣

∣

∣

∣

2
=

1

Tv

∣

∣

∣

∣

∣

∣(ITv
−QA,S)+(ZS − VA,Sβ̂A)

∣

∣

∣

∣

∣

∣

2
,

where ||x|| =
√
xτx for a vector x, ZS is the column vector containing the components

of Z indexed by t ∈ S, VA,S is the Tv × dA matrix containing the rows of VA indexed by

t ∈ S, ẐA,Sc is the prediction of ZS using the construction data and the least squares

method under model MA, QA,S = VA,S(V τ
AVA)+V τ

A,S, and β̂A is as defined before.
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The CVA,S(Tv) function is called the leave–Tv–out cross-validation, abbreviated as

CV(Tv) = CVTv. From the computational point of view, the simplest CVTv is the one

with Tv ≡ 1 and S = {t}; that is, the CV1. As the CV1 is asymptotically inconsistent,

we adopt the following Monte Carlo CVTv in the selection of A.

Randomly draw a collection R of b subsets of {1, 2, . . . , T} that have size Tv and

select a model by minimizing

MCCV(A, Tv) =
1

b

∑

S∈R

CVA,S(Tv) =
1

bTv

∑

S∈R

∣

∣

∣

∣

∣

∣ZS − ẐA,Sc

∣

∣

∣

∣

∣

∣

2
. (2.18)

This method is called the Monte Carlo CVTv, abbreviated as MCCVTv, as (2.18) is

obtained by randomly splitting the data b times and averaging the squared prediction

errors over the splits.

We now have the following result.

Theorem 2.2. Assume that Assumption 2.2 and Assumptions A.1–A.5 hold. Then

we have the following conclusions:

(i) If MA is in Category I, then there exists RT ≥ 0 such that

MCCV(A, Tv) =
1

Tvb

∑

S∈R

ǫτSǫS + ΛT,A + op(1) +RT ,

where ǫS = VS − ZSβ and ΛT,A = 1
T
(ηβ)τ (IT − ηA(ητ

AηA)+ητ
A)ηβ.

(ii) If MA is in Category II, then

MCCV(A, Tv) =
1

Tvb

∑

S∈R

ǫτSǫS +
dA

Tc

σ2
ǫ + op

(

1

Tc

)

.

(iii) Consequently,

lim
T→∞

P (the selected model is M∗) = 1.

Let Â correspond to the selected model. Then, Theorems 2.1 and 2.2 imply the

following main result of this paper.

Theorem 2.3. Assume that the conditions of Theorem 2.2 hold. Then

lim
T→∞

P (Â = A∗, D̂0(Â) = D∗)) = 1 and
ĥ(Â)

h0(A∗)
→p 1
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as T → ∞, where h0(A∗) = CD∗T
− 1

4+|D∗| .

The proofs of Theorems 2.2 and 2.3 are relegated to Appendices B and C.

Remark 2.5. As can be seen, Theorems 2.2 and 2.3 not only extend the model

selection results of Shao (1993) for the fixed design linear model to the selection of both

parametric and nonparametric regressors in semiparametric time series regression, but

also cover the model selection results for the nonparametric time series regression for

the α–mixing case. We should also point out that due to the complexity of a partially

linear model of the form (1.1), the extension of the results of Shao (1993) is not trivial

and direct, but requires the establishment of a novel framework for the semiparamet-

ric time series case. For example, the construction of equations (2.13)–(2.18) requires

some delicate and deep understanding of both parametric model and semiparametric

frameworks, although they look similar to the parametric framework of Shao (1993). In

particular, the key condition (2.17) involves only the main components, Ut −E[Ut|XtD0 ]

and UtA − E[UtA|XtD0(A)], of Ut and UtA rather than Ut and UtA themselves. This is

part of the reason we think that (2.17) is the weakest possible condition and a natural

extension of (2.5) of Shao (1993) to the semiparametric time series setting. The proof

of Theorem 2.2 also requires some delicate reasoning.

Remark 2.6. It should be noted that the multifold cross-validation (MCV) criterion

proposed by Zhang (1993) can also be employed to select the parametric regressors. The

detailed employment of the MCV is very similar to that of the CVTv. Another related

criterion is the modified final prediction error (MFPE) criterion proposed by Zheng and

Loh (1997). We should point out that when p, the number of the parametric regressors

in model (1.1), depends on T and increases as T increases, the parametric leave–one–out

cross-validation is consistent and asymptotically optimal in some sense. The discussion

for this case is quite different and requires some detailed extension of Shao (1997) and

Gao, Tong and Wolff (2001a).

In summary, Theorems 2.1–2.3 not only provide the asymptotic consistency of the

combined nonparametric CV1 and parametric CVTv selection procedure, but also show

that if a partially linear model of the form (1.1) within the context tried is the truth,

then the combined selection procedure will find it asymptotically. In Section 3 below,

we will show how to implement the proposed selection procedure in practice.
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3. Examples and applications

In this section, we apply Theorems 2.1–2.3 to determine simulated models and to fit

a set of real data.

Example 3.1. Consider a nonlinear time series model of the form

Yt = 0.35Yt−1 − 0.15Yt−2 + 0.5
Xt

1 +X2
t

+ et,

where

Xt = 0.3Xt−1 + 0.2Xt−2 + ǫt, t = 3, 4, ..., T,

in which et and ǫt are mutually independent and identically distributed over uniform

distributions (−0.25, 0.25) and (−0.5, 0.5) respectively, X1, X2, Y1, Y2 are i.i.d. over uni-

form distribution (−1, 1), and the processes {(ǫt, et) : t ≥ 3} are independent of both

(X1, X2) and (Y1, Y2).

It follows from the definition of Yt that Assumption 2.1(i) holds. For Example 3.1,

the strict stationarity and mixing condition can be justified by using Assumption 3.3

and Lemma 3.1 of Masry and Tjøstheim (1997). Thus, Assumption A.1 holds. For an

application of Theorem 2.1, denote

Ut = (Yt−1, Yt−2)
τ , β = (β1, β2)

τ = (0.35,−0.15)τ , φ(Xt) = 0.5
Xt

1 +X2
t

.

Throughout Example 3.1, we consider using h ∈ HT =
[

0.3 · T− 7
30 , 2 · T− 1

6

]

and the

following weight function

w(u) =











1 if |u| ≤ 1

0 otherwise.

For the multivariate kernel function K(·) involved in W
(−t)
D (t, s) and WD(t, s), define

K(u1, u2) =
∏2

i=1 k(ui), where

k(u) =
1√
2π

exp

(

−u
2

2

)

.

It follows that Assumptions A.1–A.4 are all satisfied.

In this example, we consider the case where Xt and Xt−1 are selected as the can-

didates of nonparametric regressors and use the CV1 function of (2.8) to determine
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whether Xt is the optimum nonparametric regressor. We then further use the MCCV(Tv)

function of (2.18) to check if Yt−1 and Yt−2 are the true parametric regressors. Let

D = {{0, 1}, {0}, {1}}, XtD0 = Xt, XtD1 = Xt−1, and XtD2 = (Xt, Xt−1)
τ , A =

{{1, 2}, {1}, {2}}, UtA0 = (Yt−1, Yt−2)
τ , UtA1 = Yt−1 and UtA2 = Yt−2. Then |D2| =

|A0| = 2 and |D0| = |D1| = |A1| = |A2| = 1. In the detailed calculation of MCCV(Tv),

we choose b = T , Tv = T − Tc and Tc = [T 3/4], the largest integer part of T 3/4.

Now D0 in Assumption 2.1(ii) has the unique element D0 = {0}. Assumption A.5(ii)

follows immediately from the choice of b = T and Tv. Before justifying Assumption

A.5(i), we introduce the following notation.

ηt1 = Yt−1 − E[Yt−1|Xt], ηt2 = Yt−2 − E[Yt−2|Xt], ηt = (ηt1, ηt2)
τ , η = (η1, . . . , ηT )τ

ηtA0 = ηt, ηtA1 = ηt1, ηtA2 = ηt2, ηAi
= (η1Ai

, . . . , ηTAi
)τ , i = 1, 2.

A detailed calculation yields that for i = 1, 2

(ηβ)τ
(

IT − ηAi
(ητ

Ai
ηAi

)+ητ
Ai

)

(ηβ) =

∑T
t=3 η2

t1

∑T
t=3

(

∑2
j=1 βiηtj

)2
−
[

∑T
t=3 ηt1

(

∑2
j=1 βjηtj

)]2

∑T
t=3 η2

ti

> 0

with probability one, because P (ηt1 = ηt2) = 0. This shows that Assumption A.5(i)

holds. Therefore, Assumptions 2.1 and A.1–A.5 all hold.

In order to compare the semiparametric model selection function CV1 with its special

case, namely the nonparametric model selection function, we calculate the following

sample average squared error (ASE) over 150 replications,

ASE =
1

150

∑

150 replications

{

1

T − 2

T
∑

t=3

[m̂(Zt) −m(Zt)]
2

}

,

where m(Zt) = 0.35Yt−1 − 0.15Yt−2 + 0.5 Xt

1+X2
t
, m̂(Zt) is a semiparametric regression

estimator or a nonparametric regression estimator of m(Zt), and Zt = (Yt−1, Yt−2, Xt).

For the three sample sizes T = 22, T = 72 and T = 152, we calculated the prob-

abilities of the selected parametric and nonparametric regressors in 150 replications.

In addition, for each case we calculated the sample average square error (ASE). Table

3.1 below reports the results of the simulation for the semiparametric leave–one–out

cross-validation function CV1. Table 3.2 below reports the results of the simulation for

the parametric leave–Tv–out cross-validation function MCCV(Tv) and the corresponding

parametric leave–one–out cross-validation function CV1 for empirical comparison.
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Table 3.1. The semiparametric CV1 based probabilities and ASEs for Example 3.1

Parametric Nonparametric Probability ASE value

subset subset T = 22 T = 72 T = 152 T = 22 T = 72 T = 152

{Yt−1, Yt−2} {Xt, Xt−1} 0.162 0.114 0.003 0.0164 0.0162 0.0163

{Xt−1} 0.306 0.238 0.052 0.0157 0.0154 0.0153

{Xt} 0.532 0.648 0.945 0.0051 0.0017 0.0010

{Yt−1} {Xt, Xt−1} 0.177 0.158 0.012 0.0171 0.0167 0.0168

{Xt−1} 0.324 0.215 0.104 0.0165 0.0159 0.0157

{Xt} 0.499 0.627 0.884 0.0054 0.0024 0.0018

{Yt−2} {Xt, Xt−1} 0.214 0.131 0.076 0.0248 0.0251 0.0254

{Xt−1} 0.376 0.287 0.219 0.0197 0.0188 0.0183

{Xt} 0.410 0.582 0.705 0.0095 0.0061 0.0054

Table 3.2. The parametric MCCV(Tv) and CV1 based probabilities for Example 3.1

Parametric and nonparametric MCCV(Tv) CV1

subset T = 22 T = 72 T = 152 T = 22 T = 72 T = 152

{Yt−1, Yt−2, Xt} 0.617 0.681 0.938 0.531 0.611 0.769

{Yt−1, Xt} 0.242 0.212 0.053 0.312 0.274 0.187

{Yt−2, Xt} 0.141 0.107 0.009 0.157 0.115 0.044

Remark 3.1. (i) First, Tables 3.1 and 3.2 show that both the CV1 function and

the MCCV(Tv) function can be implemented in practice. Second, Table 3.1 supports the

validity of our definition of optimum subset (see Assumption 2.1). Third, the detailed

simulation results show that D̂0 is a reasonably good estimator of D0 even when the

sample size T is as small as 22 as shown in Table 3.1. Fourth, Table 3.2 shows that both

the MCCV(Tv) function and the CV1 function can identify the optimum parametric

regressor {Yt−1, Yt−2}. Finally, the performance of the MCCV(Tv) is better than the

CV1: this is a reflection of the fact that MCCV(Tv) leads to a consistent subset selection

while CV1 does not.

(ii) In addition, the ASE values in Table 3.1 also highlight the small sample perform-

ance of the the semiparametric CV1 function. For example, for the case where T = 22,
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the ASE value for the true model (see the fifth row and sixth column) is 0.0051 and

smaller than 0.0054, the ASE for the second best model (see the eighth row and sixth

column). For the same model, the ASE decreses when T increases. For example, when

T = 152, the ASE for the true model (see the fifth row and eighth column) is already as

small as 0.0010.

(iii) Before using the standard normal kernel function k(·), we also calculated the

corresponding probabilities and ASEs for a uniform kernel function. Our computation

shows that the small sample results for the standard normal kernel function are much

better and more stable than those for the uniform kernel. In the meantime, besides the

bandwidth interval HT , we also calculated the CV1 function over all possible intervals.

Our computation indicates that HT is the smallest possible interval, on which the CV1

function for each possible model can attain the smallest value.

(iv) Throughout Example 3.1, we point out that Assumptions 2.1 and A.1–A.5 are

satisfied. In theory, Assumption A.5(i) is a very minimal model identifiability condition.

In practice, it is not easy to justify the model identifiability condition. For Example 3.1,

however, we have been able to calculate the quadratic form explicitly and to show that

the quadratic form is positive with probability one.

We now compare our semiparametric model selection function CV1 with the fully

nonparametric model selection function. For the same Example 3.1, consider the case

where Yt−1, Yt−2, Xt and Xt−1 are selected as the candidates of nonparametric regressors.

For an application of the CV1 function, we choose the same w, k and h defined as above,

and define for j = 2, 3, 4

Kj(u1, u2, . . . , uj) =
j
∏

i=1

k(uj)

for the multivariate kernel function involved in W
(−t)
D (t, s) and WD(t, s).

LetXtD1 = (Yt−1, Yt−2, Xt, Xt−1)
τ ,XtD2 = (Yt−1, Yt−2, Xt)

τ ,XtD3 = (Yt−1, Yt−2, Xt−1)
τ ,

XtD4 = (Yt−1, Xt, Xt−1)
τ ,XtD5 = (Yt−2, Xt, Xt−1)

τ ,XtD6 = (Yt−1, Yt−2)
τ ,XtD7 = (Yt−1, Xt)

τ ,

XtD8 = (Yt−1, Xt−1)
τ , XtD9 = (Yt−2, Xt)

τ , XtD10 = (Yt−2, Xt−1)
τ , XtD11 = (Xt, Xt−1)

τ ,

XtD12 = Yt−1, XtD13 = Yt−2, XtD14 = Xt−1, and XtD15 = Xt. Then |D1| = 4, |D2| =

|D3| = |D4| = |D5| = 3, |D6| = |D7| = |D8| = |D9| = |D10| = |D11| = 2, and

|D12| = |D13| = |D14| = |D15| = 1. For all the subsets, we calculated all the correspond-
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ing CV1 values. For each of the three sample sizes T = 22, 72 and 152, we calculated

CV1 value and the sample average squared error (ASE). Table 3.3 below provides the

CV1 values and the corresponding ASE values for the nonparametric model selection.

Table 3.3. The nonparametric CV1 based minimum CV values and ASEs for Example

3.1

Nonparametric CV value ASE value

subset T = 22 T = 72 T = 152 T = 22 T = 72 T = 152

{Yt−1, Yt−2, Xt, Xt−1} 0.04702 0.04608 0.04535 0.02576 0.02471 0.02315

{Yt−1, Yt−2, Xt} 0.02445 0.02365 0.02219 0.00846 0.00578 0.00509

{Yt−1, Yt−2, Xt−1} 0.03641 0.03406 0.03321 0.01908 0.01823 0.01793

{Yt−1, Xt, Xt−1} 0.02648 0.02569 0.02423 0.01051 0.00984 0.00715

{Yt−2, Xt, Xt−1} 0.03644 0.03506 0.03377 0.01921 0.01839 0.01794

{Yt−1, Yt−2} 0.04605 0.04511 0.04435 0.02626 0.02571 0.02485

{Yt−1, Xt} 0.04603 0.04505 0.04434 0.02624 0.02570 0.02486

{Yt−1, Xt−1} 0.04606 0.04507 0.04436 0.02626 0.02572 0.02487

{Yt−2, Xt} 0.04604 0.04506 0.04435 0.02624 0.02571 0.02484

{Yt−2, Xt−1} 0.04605 0.04508 0.04437 0.02629 0.02573 0.02488

{Xt, Xt−1} 0.04606 0.04509 0.04439 0.02628 0.02575 0.02489

{Yt−1} 0.04884 0.04664 0.04571 0.02552 0.02468 0.02343

{Yt−2} 0.04414 0.03971 0.03874 0.01830 0.01719 0.01637

{Xt−1} 0.04454 0.04094 0.03967 0.01963 0.01874 0.01721

{Xt} 0.03128 0.02912 0.02716 0.01191 0.01011 0.00737

Remark 3.2. First, Table 3.3 shows that the true subset {Yt−1, Yt−2, Xt} is readily

selected using our method. Second, for each case the ASE of the true nonparametric

model is always larger than that of the corresponding semiparametric model (see the

sixth–eighth columns of Table 3.1 and the fifth–seventh columns of Table 3.3). For ex-

ample, for the case of T = 22, the ASE of the true nonparametric model in the fifth

column of Table 3.3 is 0.00846, which is larger than 0.0051 in the sixth columin of Table

3.1, the ASE of the true semiparametric model. Moreover, by comparing the CPU hours

22



for Tables 3.1 and 3.3, we know that the computation of the semiparametric model selec-

tion function CV1 is much less expensive than that of the nonparametric model selection

function. Therefore we conclude that when selecting an optimum subset of nonparamet-

ric regressors for a partially linear model, the semiparametric model selection function

CV1 is much more efficient than the usual nonparametric model selection function.

Example 3.2. Fisheries Western Australia (WA) manages commercial fishing in

Western Australia. Simple Catch and Effort statistics are often used in regulating the

amount of fish that can be caught and the number of boats that are licensed to catch

them. The establishment of the relationship between the Catch (in kilograms) and Effort

(the number of days the fishing vessels spent at sea) is very important both commerically

and ecologically. This example considers using the proposed model selection procedure

to find a best possible model for the relationship between catch and effort.

The historical monthly fishing data from January 1976 through to December 1999

available to us comes from the Fisheries WA Catch and Effort Statistics (CAES) data-

base. Existing studies from the Fisheries suggest that the relationship between the catch

and the effort does not look like linear while the dependence of the current catch on the

past catch appears to be linear. This suggests using a partially linear model of the form

Ct = β1Ct−1 + . . .+ βpCt−p + φ(Et, Et−1, . . . , Et−q+1) + ǫt,

where ǫt is a random error, Ct and Et represent the catch and the effort at time t,

respectively. In the detailed computation, we use the transformed data Yt = log10(Ct)

and Xt = log10(Et) satisfying the following model

Yt+r = β1Yt+r−1 + . . .+ βpYt+r−p + φ(Xt+r, . . . , Xt+r−q+1) + et, (3.1)

where r = max(p, q) and et is a random error with zero mean and finite variance.

Before using model (3.1), we need to choose an optimum and compact form of model

(3.1). We consider the case of p = 4 and q = 5 and then find an optimum model. For

this case, there are 24 − 1 = 15 different parametric regressors and 25 − 1 = 31 different

nonparametric regressors for model (3.1).

Similar to Example 3.1, we define the parametric candidates UtAi
for 1 ≤ i ≤ 15 and

the nonparametric candidates XtDj
for 1 ≤ j ≤ 31. It follows that

Yt+5 = U τ
tAi
βAi

+ φDj
(XtDj

) + etij, (3.2)
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where βAi
and φDj

are similar to those of βA and φD, and each etij is assumed to be an

i.i.d. random error with zero mean and finite variance.

For this case, we consider using K4(u1, . . . , uj) =
∏j

i=1 k(ui) for j = 1, 2, · · · , 5 for the

multivariate kernel function involved in W
(−t)
D (t, s) and WD(t, s). We use the same w(·),

k(·) and HT as in Example 3.1.

First, we use the first 144 observations of the data from January 1976 to December

1987 for the selection of a best possible partially linear model. In the detailed calculation

of the MCCV(Tv) function, we choose b = T = 144, Tc = [T 3/4] = 41 and Tv = T − Tc =

103. The semiparametric CV1 and parametric MCCV(Tv) values for model (3.2) are

calculated. The combined semiparametric CV1 and parametric MCCV(Tv) selection

procedure then suggests using the following partially linear prediction model

Yt+5 = β̂Yt+4 + φ̂(Xt+5, Xt+3), 1 ≤ t ≤ 144, (3.3)

where β̂ = 0.2098 and φ̂(·, ·) is as defined before. The optimum value for the bandwidth

involved in (3.3) is ĥ1 = 0.080088.

We also consider using the nonparametric CV selection function for the same part of

the data for the case where Yt+i for 1 ≤ i ≤ 4 and Xt+j for 1 ≤ j ≤ 5 are candidates

of nonparametric regressors. The nonparametric CV selection function suggests the

following nonparametric prediction model

Yt+5 = m̂(Yt+4, Xt+5, Xt+3), 1 ≤ t ≤ 144, (3.4)

where m̂(·, ·, ·) is the usual nonparametric regression estimator as defined before. The

optimum value for the bandwidth involved in (3.4) is ĥ2 = 0.08011.

When we assume that the dependence of Yt+5 on Yt+i for 1 ≤ i ≤ 4 and Xt+j for

1 ≤ j ≤ 5 is linear, the conventional AIC criterion suggests the following linear prediction

model for the first part of the data

Yt+5 = β̂1Yt+4 + β̂2Xt+5 + β̂3Xt+3, 1 ≤ t ≤ 144, (3.5)

where β̂1 = 0.4944, β̂2 = 0.8740 and β̂3 = −0.1923.

We then use the second part of the data from January 1988 to December 1999 for

the validation of the selected models (3.3)–(3.5). The validation supports the use of the
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selected models. For the whole data set, the estimated error variances for the partially

linear model (3.3), the fully nonparametric model (3.4) and the completely linear model

(3.5) were 0.00935, 0.01508 and 0.02661, respectively.

Remark 3.4. Example 3.2 shows that if a partially linear model among the possible

partially linear models is an appropriate model for the data, then the combined semipara-

metric CV1 and MCCV(Tv) selection procedure is capable of finding it. Furthermore,

when using both the nonparametric CV1 selection criterion and a parametric AIC se-

lection criterion to check whether the partially linear model (3.3) is the best possible

model, both the nonparametric and parametric selection criteria support the selection

of the regressors. In addition, the estimated error variance for the partially linear model

is the smallest one among the partially linear model (3.3), the nonparametric regression

model (3.4) and the parametric linear model (3.5). Our findings in Example 3.2 are

consistent with existing studies from the Fisheries in that the relationship between the

catch and the effort appears to be nonlinear while the current catch depends linearly on

the past catch.

Remark 3.5. As expected, there is no evidence of conditional heteroscedasticity in

the catch–effort data. In both theory and practice, however, we need to consider the

heteroscedastic case. As the homoskedasticity assumption given in Assumption A.1 is

a convenient but not vital condition, we can relax it and obtain similar model selection

functions and the corresponding consistency results of Theorems 2.1–2.2, but the proofs

of Theorems 2.1–2.2 would be extremely technical.

Remark 3.6. This paper only considers using the Nadaraya-Watson (NW) kernel

based weight function, as the corresponding weight function based on the local poly-

nomial kernel proposed by Fan (1992) involves multivariate polynomials, and therefore

the computation of the corresponding CV functions is much more complicated than that

of those based on the NW kernel in general. For Example 3.1, however, we have been

able to make some comparisons among the NW, the Gasser–Müller (GM) and the local

polynomial kernel (LPK) based criteria. Our empirical studies show that both the GM

and the LPK based criteria support the true model selected by using the NW based cri-

terion. Moreover, for each case the estimator of the error variance of the LPK estimator

is smaller than that of the GM estimator. This is one of the properties which suggest
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that the LPK estimation method is superior to the GM estimation method.

4. Discussion

In recent years, there have been growing interests in applying iterative algorithms in

nonparametric and semiparametric smoothing. However, such techniques cannot provide

a ’model’ whose value can be calculated at a new design point with the same convenience

as in linear models. Before selecting a fully nonparametric time series model for a given

set of data, our research suggests using the computer-intensive semiparametric time

series model selection to determine whether a partially linear time series model is more

appropriate than the fully nonparametric time series model for the given set of data,

as semiparametric methods can provide a ’model’ with better predictive power than is

available from nonparametric methods (see Example 3.2).

We acknowledge the computing expenses of the CV based selection procedure. In our

detailed simulation and computing for Examples 3.1 and 3.2, we have used some optimal

algorithms, such as some vectorised algorithms in the calculation of the CV1 function

and the MCCV function of many possible candidates. The final computing time for each

example is reasonable. We have not tried the backward or forward selection suggested

by Shao (1993), although we think it might be less expensive in terms of computing

time. We think that further discussion of computing algorithms is beyond the scope of

this paper.

APPENDIX A

Throughout Appendices A–C, let C (C < ∞) denote a positive constant which may have

different values at each appearance.

Assumption A.1. Assume that the stochastic process (Yt, Ut, Xt) is strictly stationary

and α–mixing with the mixing coefficient α(T ) = CηT , where 0 < C < ∞ and 0 < η < 1

are constants. In addition, et = Yt − E[Yt|Ut, Xt] is a stationary martingale difference with

respect to Ωt = σ{(Ys, Us+1, Xs+1) : 1 ≤ s ≤ t − 1}, which is a sequence of σ-fields generated

by {(Ys, Us+1, Xs+1) : 1 ≤ s ≤ t − 1}. Suppose that P
(

E[e2
t |Ωt] = σ2

0

)

= 1, where 0 < σ2
0 =

E[e2
t ] < ∞.
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Assumption A.2. For every D ∈ D, KD is a |D|–dimensional symmetric, Lipschitz con-

tinuous probability kernel function with
∫

||u||2KD(u)du < ∞, and KD has an absolutely

integrable Fourier transform, where || · || denotes the Euclidean norm.

Assumption A.3. Let Sw be a compact subset of Rq and w be a weight function supported

on Sw and w ≤ C for some constant C. For every D ∈ D, let RX,D ⊆ R|D| = (−∞,∞)|D| be the

subset such that XtD ∈ RX,D and SD be the projection of Sω in RX,D (that is, SD = RX,D∩Sω).

Assume that the marginal density function, fD(·), of XtD, and all the first two derivatives of

fD(·), φ1(·) and φA,D(·), are continuous on RX,D, and on SD the density function fD(·) is

bounded below by CD and above by C−1
D for some CD > 0, where φ1(x) = E[Yt|XtD = x] and

φA,D(x) = E[UtA|XtD = x] for every A ∈ A and D ∈ D.

Assumption A.4. There exist absolute constants 0 < C1 < ∞ and 0 < C2 < ∞ such that

for any integer l ≥ 1

sup
x

sup
A∈A,D∈D

E
{

|Yt − E[Yt|(UtA, XtD)]|l |XtD = x
}

≤ C1 and sup
x

sup
A∈A,D∈D

E
{

||UtA||l|XtD = x
}

≤ C2.

Assumption A.5. (i) For ηtA and ηt defined in (2.11), let ηA = (η1A, . . . , ηTA)τ and

η = (η1, . . . , ηT )τ . Assume that when MA is in Category I,

lim inf
T→∞

1

T
(ηβ)τ (IT − ηA(ητ

AηA)+ητ
A

)

ηβ > 0 in probability.

(ii) As T → ∞,
Tv

T
→ 1, Tc = T − Tv → ∞ and

T 2

T 2
c b

→ 0.

Remark A.1. Assumptions A.1–A.4 are standard in this kind of problem. See (A.1)

of Cheng and Tong (1993). Due to Assumption A.3, we do not need to assume that the

marginal density of Xt has a compact support. Assumptions A.2–A.4 are a set of extensions

of some existing conditions to the α–mixing time series case. See for example, (A)–(E) of

Zhang (1991), (A2)–(A5) of Cheng and Tong (1993), and (C.2)–(C.5) of Vieu (1994). As

pointed out in Remark 2.4(ii), when Xt and Ut are independent, Assumption A.5(i) imposes

only an asymptotic and minimal model identifiability condition on the linear component. This

means that Assumption A.5(i) is a natural extension of condition (2.5) of Shao (1993) to the

semiparametric time series setting. Assumption A.5(ii) corresponds to conditions (3.12) and

(3.22) of Shao (1993) for the linear model case. In addition, Assumption A.5(i) is also equivalent

to Assumption C of Zhang (1993) for the linear model case.
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APPENDIX B

In this appendix, we provide a detailed proof for Theorem 2.1.The following lemmas are

required to prove Theorem 2.1.

Lemma B.1. Under the conditions of Theorem 2.1, we have for every D ∈ D

CV1(D,h) =
1

T

T
∑

t=1

e2
tD0

w(Xt) + V (D,h) + op(V (D,h)),

where for every D ∈ D1 and h ∈ HTD

V (D,h) = a1(D,h)
1

Th|D|
+ a2(D,h)h4 + op(V (D,h)),

in which a1(D,h) and a2(D,h) are positive constants depending only on (D,h), and for every

D ∈ D, D 6∈ D1, and h ∈ HTD

V (D,h) = E
{

[U τ
t (β(D) − β(D0)) + φD(XtD) − φD0(XtD0)]

2 w(Xt)
}

+ op(1).

Then, we have

CV1(D) = inf
h∈HTD

CV1(D,h) =
1

T

T
∑

t=1

e2
tD0

w(Xt) + R(D) + op(1),

where etD0 is as defined in (2.4), for D ∈ D1

R(D) = CDT
− 4

4+|D| + op(T
− 4

4+|D| ),

where CD is a positive constant depending only on D, and for D ∈ D but D 6∈ D1,

R(D) = E
{

[U τ
t (β(D) − β(D0)) + φD(XtD) − φD0(XtD0)]

2 w(Xt)
}

+ op(1).

The following lemmas are needed to complete the proof of Lemma B.1.

Lemma B.2. Under the conditions of Theorem 2.1, we have

δ(D,h)(β̂(D,h) − β(D)) = op(1) (B.1)

uniformly over D ∈ D and h ∈ HTD, where δ(D,h) = max{(Th|D|)1/2, h−2}.
Proof. It follows from (2.7) that

β̂(D,h) − β(D) = (Σ̃(D,h))+
T
∑

t=1

Ũt(D,h)etD
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+(Σ̃(D,h))+
T
∑

t=1

Ũt(D,h)(φ̂2t(XtD, h)−φ2(XtD))τβ(D)+(Σ̃(D,h))+
T
∑

t=1

Ũt(D,h)(φ1(XtD)−φ̂1t(XtD, h)).

In order to prove (B.1), it suffices to show that as T → ∞
√

T∆D

(

β̂(D,h) − E[β̂(D,h)]
)

→ N(0, E[e2
tDξtDξτ

tD])

and

E[β̂(D,h)] − β(D) = O(h4) + O(h2(Th|D|)−1/2) = o(δ(D,h)−1), (B.2)

where ξtD = Ut − E[Ut|XtD] and ∆D = E[ξtDξτ
tD] is as defined in Assumption 2.1(i).

In order to prove (B.2), it suffices to show that

1

T
Σ̃(D,h) =

1

T

T
∑

t=1

Ũt(D,h)Ũt(D,h)τ →p ∆D, (B.3)

1√
T

T
∑

t=1

ξtDetD → N(0, E[e2
tDξtDξτ

tD]), (B.4)

1

T

T
∑

t=1

(φ1(XtD) − φ̂1t(XtD, h))2 = op(δ(D,h)−1), (B.5)

1

T

T
∑

t=1

(φ2(XtD) − φ̂2t(XtD, h))(φ2(XtD) − φ̂2t(XtD, h))τ = op(δ(D,h)−1), (B.6)

1

T

T
∑

t=1

(φ2(XtD) − φ̂2t(XtD, h))rtD = op(δ(D,h)−1), (B.7)

1

T

T
∑

t=1

(φ1(XtD) − φ̂1t(XtD, h))ξtD = op(δ(D,h)−1), (B.8)

where rtD = etD or ξτ
tD and ∆D are as defined above.

The proofs of (B.5)–(B.8) are standard. The details are similar to Lemma A.2(ii) of Gao

and Yee (2000). In the proof of (B.5)–(B.8), Proposition 14.1 of Cheng and Tong (1993) is

used repeatedly. Using Assumptions A.1 and A.4 and applying the fact that E[ξtDetD] =

E{ξtDE[etD|(Ut, XtD)]} = 0, we can prove (B.4) by applying the classical martingale limit

theorem (see Lemma 3.3 of Gao and Liang 1995 for example). The proof of (B.3) follows from

Assumption A.4, (B.6), (B.7), the Cauchy-Schwarz inequality and

1

T

T
∑

t=1

Ũt(D,h)Ũt(D,h)τ =
1

T

T
∑

t=1

ξtDξτ
tD+

1

T

T
∑

t=1

(φ2(XtD)−φ̂2t(XtD, h))(φ2(XtD)−φ̂2t(XtD, h))τ
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+
1

T

T
∑

t=1

(φ2(XtD) − φ̂2t(XtD, h))ξτ
tD +

1

T

T
∑

t=1

ξtD(φ2(XtD) − φ̂2t(XtD, h))τ .

The first term then converges to ∆D in probability and the other terms converge to zero in

probability due to the use of some convergence results of nonparametric estimates (see Robinson

1983 for example).

Lemma B.3. (i) Under the conditions of Theorem 2.1, we have for every given D ∈ D1

and h ∈ HTD

V1(D,h) =
1

T

T
∑

t=1

{

φ1(XtD) − φ̂1t(XtD, h)
}2

w(Xt) = d1(D,h)
1

Th|D|
+d2(D,h)h4+op{V1(D,h)},

(B.9)

V2(D,h) =
1

T

T
∑

t=1

(

φ2(XtD) − φ̂2t(XtD, h)
) (

φ2(XtD) − φ̂2t(XtD, h)
)τ

w(Xt)

= d3(D,h)
1

Th|D|
+ d4(D,h)h4 + op{V2(D,h)}, (B.10)

where {di(D,h) : 1 ≤ i ≤ 2} are positive constants and {dj(D,h) : 3 ≤ j ≤ 4} are positive

definite matrices.

(ii) Under the conditions of Theorem 2.1, we have for every given D ∈ D, D 6∈ D1 and

h ∈ HTD

V1(D,h) = E
{

[φ1(XtD) − φ1(XtD0)]
2 w(Xt)

}

+ op(1), (B.11)

V2(D,h) = E {(φ2(XtD) − φ2(XtD0)) (φ2(XtD) − φ2(XtD0))
τ w(Xt)} + op(1). (B.12)

Proof. We prove only (B.9) and (B.11) and the others follow similarly. In order to prove

(B.9) and (B.11), it suffices to show that for D ∈ D1 and h ∈ HTD

V̄1(D,h) =
1

T

T
∑

t=1

{

φ̂1(XtD, h) − φ1(XtD)
}2

w(Xt) = d1(D,h)
1

Th|D|
+d2(D,h)h4+op(V̄1(D,h)),

(B.13)

and for D 6∈ D1 and h ∈ HTD

V̄1(D,h) = E
{

[φ1(XtD) − φ1(XtD0)]
2 w(Xt)

}

+ op(1) (B.14)

and

sup
D∈D

sup
h∈HTD

|V̄1(D,h) − V1(D,h)|
V̄1(D,h)

= op(1), (B.15)

where φ̂1(XtD, h) =
∑T

s=1 WsD(XtD, h)Ys.
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Similar to the proofs of Lemmas 14.7 and 14.4 of Cheng and Tong (1993), equations (B.13)–

(B.15) can be proved. Similar lemmas for the i.i.d. case and the time series case can be found

in equations (5.3) and (5.4) of Vieu (1994), and Lemmas 2 and 8 of Härdle and Vieu (1992),

respectively.

Lemma B.4. Under the conditions of Theorem 2.1, we have

V (D,h) =
1

T

T
∑

t=1

{[

U τ
t β̂(D,h) + φ̂t(XtD, β̂(D,h))

]

− [U τ
t β(D0) + φD0(XtD0)]

}2
w(Xt)

= d5(D,h)
1

Th|D|
+ d6(D,h)h4 + op(V (D,h)) (B.16)

for every D ∈ D1 and h ∈ HTD, and

V (D,h) = E
{

[U τ
t (β(D) − β(D0)) + φD(XtD) − φD0(XtD0)]

2 w(Xt)
}

+ op(1) (B.17)

for every D ∈ D, D 6∈ D1 and h ∈ HTD, where d5(D,h) and d6(D,h) are positive constants

only depending on (D,h).

Proof. Obviously,

V (D,h) =
1

T

T
∑

t=1

{

U τ
t

(

β̂(D,h) − β(D0)
)}2

w(Xt)+
1

T

T
∑

t=1

{

φ̂t(XtD, β̂(D,h)) − φD0(XtD0)
}2

w(Xt)

+
2

T

T
∑

t=1

{

U τ
t

(

β̂(D,h) − β(D0)
)}{

φ̂t(XtD, β̂(D,h)) − φD0(XtD0)
}

w(Xt)

≡ V (D,h)1 + V (D,h)2 + V (D,h)3, (B.18)

where the symbol ” ≡ ” indicates that the terms of the left-hand side are represented by those

of the right-hand side correspondingly.

Similar to the proof of Lemmas B.2 and B.3, we have for every D ∈ D1 and h ∈ HTD

V (D,h)2 = V1(D,h) + β(D)τV2(D,h)β(D) + op(V (D,h)2), (B.19)

and

sup
D∈D

sup
h∈HTD

V (D,h)1
V (D,h)2

= op(1), sup
D∈D

sup
h∈HTD

V (D,h)3
V (D,h)2

= op(1). (B.20)

On the other hand, using Lemmas B.2 and B.3 again, we have for every D ∈ D, D 6∈ D1

and h ∈ HTD

V (D,h) = E
{

[U τ
t (β(D) − β(D0)) + φD(XtD) − φD0(XtD0)]

2 w(Xt)
}

+ op(1). (B.21)
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Therefore, equations (B.18)–(B.21) complete the proof of (B.16) and (B.17).

Proof of Lemma B.1. It follows from the definition of CV1(D,h) that

CV1(D,h) =
1

T

T
∑

t=1

{

Yt − U τ
t β̂(D,h) − φ̂t(XtD, β̂(D,h))

}2
w(Xt)

≡ 1

T

T
∑

t=1

e2
tD0

w(Xt) + V (D,h) + R(D,h), (B.22)

where R(D,h) = 2
T

∑T
t=1

{

U τ
t

(

β(D0) − β̂(D,h)
)

+ φD0(XtD0) − φ̂t(XtD, α̂(D,h))
}

etD0w(Xt).

Analogous to the proof of (14.25) of Cheng and Tong (1993) (see also (A.25) of Gao and

Yee 2000), we have

sup
D∈D

sup
h∈HTD

|R(D,h)|
V (D,h)

= op(1). (B.23)

Thus, equations (B.22) and (B.23) imply for every D ∈ D and h ∈ HTD

CV1(D,h) =
1

T

T
∑

t=1

e2
tD0

w(Xt) + V (D,h) + op(V (D,h)). (B.24)

Therefore, Lemma B.4 and equation (B.24) imply Lemma B.1.

Proof of Theorem 2.1. Since equation (B.24) holds for every D ∈ D, we have that there

exists h̄D ∈ HTD such that

CV1(D, h̄D) = inf
h∈HTD

CV1(D,h)

and

CV1(D) = CV1(D, h̄D) = inf
h∈HTD

CV1(D,h) =
1

T

T
∑

t=1

e2
tD0

w(Xt) + CDT
− 4

4+|D| + op

(

T
− 4

4+|D|

)

(B.25)

for every D ∈ D1, where CD is a positive constant possibly depending on D.

Using the fact that Assumption 2.1 implies |D| > |D0| for every D ∈ D1, by (B.25) we have

as T → ∞

P (CV1(D) > CV1(D0)) = P

(

T
4

4+|D0| (CV1(D) − CV1(D0)) > 0

)

= P

(

CDT
4(|D|−|D0|)

(4+|D|)(4+|D0|) − CD0 + op

(

T
4(|D|−|D0|)

(4+|D|)(4+|D0|)

)

> 0

)

→ 1. (B.26)

On the other hand, for every D ∈ D but D 6∈ D1, we obtain by (B.24) and (B.17) that

there exists a positive constant π(D,D0) depending only on (D,D0) such that

CV1(D) − CV1(D0) → π(D,D0) > 0 (B.27)
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in probability as T → ∞.

Each of (B.26) and (B.27) implies

lim
T→∞

P (D̂0 = D0) = 1. (B.28)

Furthermore, similar to the proof of (2.3) of Härdle, Hall and Marron (1988), using equa-

tions (B.25) and (B.28) we can show that as T → ∞

ĥ

h0
→p 1,

where ĥ = h̄D̂0
and h0 = CD0T

− 1
4+|D0| .

The proof of Theorem 2.1 is finally completed.

Proof of Corollary 2.1. It is a special case of Theorem 2.1.

Proof of Corollary 2.2. The proof is similar to the proofs of Lemmas B.1 and B.4.

Proof of Theorem 2.2. In view of the proofs of Theorems 1 and 2 of Shao (1993), in order

to prove Theorem 2.2, it suffices to show that conditions (3.3) and (3.4) of Shao (1993) hold

in probability with respect to the probability measure of (Yt, Ut, Xt) and that condition (3.21)

of Shao (1993) holds in probability with respect to both the probability measure of (Yt, Ut, Xt)

and the random selection of R. Condition (2.5) of Shao (1993) now corresponds to condition

(2.16) for our case. In other words, we need to prove (2.16) and the following conditions:

max
S∈R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

Tv

∑

t∈S

VtV
τ
t − 1

Tc

∑

t∈Sc

VtV
τ
t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= op(1), (B.29)

V τV = Op(T ) and (V τV )−1 = Op(T
−1), (B.30)

lim
T→∞

max
t≤T

ptA = 0 for any A ∈ A, (B.31)

where ptA is the tth diagonal element of the projection matrix PA defined in (2.14).

The proofs of (2.16) and (B.29)–(B.31) are relegated to Appendix C below. In view of the

conditions of Theorem 2.2, we modify some parts of the proofs of Theorems 1 and 2 of Shao

(1993). For example, nc, nv, n and the term o
(

nc

n

)

involved in the proofs of Theorems 1 and 2 of

Shao (1993) need to be replaced by Tc, Tv, T and op

(

Tc

T

)

respectively. Some notational changes

are incurred. Note also that under Assumption A.1, E [ǫτPAǫ] = E {E [ǫτPAǫ|V ]} = dAσ2
ǫ is

used in the proof of Theorem 2.2.
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In view of (A.13)–(A.15) of Shao (1993), we need to show that as T → ∞
T
∑

t=1

ptAǫ2t = Op(1) and
∑

s,t∈S,s 6=t

pstAǫsǫt = Op(1), (B.32)

where pstA is the (s, t)th element of PA of (2.14). The proof of (B.32) is relegated to Appendix

C. The outline of the proof is now completed.

Proof of Theorem 2.3. For the detailed proof, one needs to modify the proof of Theorems

2.1 and then can show that for each A ∈ A

lim
T→∞

P
(

D̂0(A) = D0(A)
)

= 1 and
ĥ(A)

h0(A)
→p 1 (B.33)

as T → ∞, where h0(A) = CD0(A)T
− 1

4+|D0(A)| . The proof of Theorem 2.3 then follows from

Theorem 2.2(iii) and (B.33).

APPENDIX C

This appendix supplements the proofs of (2.16) and (B.29)–(B.32).

Proof of (2.16). It follows from (2.11) that

VA = ηA + δA and V = η + δ,

where δA = (δ1A, . . . , δTA)τ and δ = (δ1, . . . , δT )τ .

To prove (2.16), it now suffices to show that as T → ∞

1

T
ητ

AηA →p E [ητ
AηA] ,

1

T
ητη →p E [ητη] , (C.1)

T (ητ
AηA)+ →p (E [ητ

AηA])+ , T (ητη)+ →p (E [ητη])+ , (C.2)

1

T
V τ

AVA →p E [ητ
AηA] ,

1

T
V τV →p E [ητη] , (C.3)

T (V τ
AVA)+ →p (E [ητ

AηA])+ , T (V τV )+ →p (E [ητη])+ , (C.4)

1

T
(δβ)τ (δβ) →p 0. (C.5)

The detailed proofs of (C.1)–(C.5) are similar to that of Lemma B.2.

Proof of (B.29). Observe that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

Tv

∑

t∈S

VtV
τ
t − 1

Tc

∑

t∈Sc

VtV
τ
t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

Tv

∑

t∈S

(VtV
τ
t − E[V1V

τ
1 ])

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

Tc

∑

t∈Sc

(VtV
τ
t − E[V1V

τ
1 ])

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Let ζt = VtV
τ
t − E[V1V

τ
1 ]. To prove (B.29), it suffices to show that as T → ∞

max
S∈R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

t∈S

ζt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= op(Tv) and max
S∈R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

t∈Sc

ζt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= op(Tc).

We prove only the first one, as the proof of the other follows similarly.

Let ζ ′t = ζtI[||ζt|| ≤ T
1/2
v ] and ζ ′′t = ζtI[||ζt|| > T

1/2
v ]. For any given constant ξ > 0,

applying Lemma 3.1 of Boente and Fraiman (1988) one can have

P

(∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

max
S∈R

∑

t∈S

(

ζ ′t − E[ζ ′t]
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> ξTv

)

≤ max
S∈R

P

(∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

t∈S

(

ζ ′t − E[ζ ′t]
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> ξTv

)

≤ C1b exp
(

−C2ξ
1/2T 1/4

v

)

.

(C.6)

For any given constant ξ > 0, we have

P

(∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

max
S∈R

∑

t∈S

(

ζ ′′t − E[ζ ′′t ]
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> ξTv

)

≤ max
S∈R

P

(∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

t∈S

(

ζ ′′t − E[ζ ′′t ]
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> ξTv

)

≤ CT−1
v max

S∈R

∑

t∈S

E
∣

∣

∣

∣ζ ′′t
∣

∣

∣

∣ ≤ CT−1
v max

S∈R

∑

t∈S

E

(

||ζt||6
||ζt||5

I[||ζt|| > T 1/2
v ]

)

≤ CT−1
v max

S∈R

∑

t∈S

E[||ζt||6]T−5/2
v ≤ CbT−5/2

v , (C.7)

using Assumption A.4.

Equations (C.6) and (C.7) imply

∞
∑

Tv=1

P

(
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

max
S∈R

∑

t∈S

ζt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> ξTv

)

< ∞. (C.8)

Equation (C.8) implies that limTv→∞
1
Tv

maxS∈R ||∑t∈S ζt|| = 0 holds with probability one.

Thus, equation (B.29) holds in probability.

Remark B.1. Note that we have actually shown that (B.29) holds with probability one. As a

result, we may conclude that if x1, . . . , xn are either independent random variables or stationary

time series, equation (3.11) of Shao (1993) holds with probability one.

Proof of (B.30) and (B.31). The proof follows from (C.1)–(C.4) above.

Proof of (B.32). Note that

E

[

∑

t∈S

ptAǫ2t

]2

=
∑

t∈S

E
[

p2
tAǫ4t

]

+
∑

s 6=t∈S

E
[

psAptAǫ2sǫ
2
t

]
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=
∑

t∈S

E
{

E
[

p2
tAǫ4t |V

]}

+
∑

s 6=t∈S

E
{

E
[

psAptAǫ2sǫ
2
t |V

]}

≤ C1(ǫ)E

[

∑

t∈S

p2
tA

]

+ C2E





∑

s 6=t∈S

psAptA



 ≤ C, (C.9)

using Assumptions A.1 and A.4, and
∑T

t=1 ptA = dA.

Equation (C.9) and the following central limit theorem

∑

t∈S ptAǫ2t − E
[

ptAǫ2t
]

√

Var
(
∑

t∈S ptAǫ2t
)

→ N(0, 1) as T → ∞

imply the first part of (B.32).

Similar to the proof of Theorem 2.1 of Gao and Anh (2000), we have that as T → ∞
∑

s 6=t∈S psAptAǫsǫt
√

Var
(

∑

s 6=t∈S psAptAǫsǫt

)

→ N(0, 1). (C.10)

In the detailed proof of (C.10), the mixing condition assumed in Assumption A.1 is used.

Details are similar to (A.17) and (A.18) of Gao and Anh (2000). Thus the second part of

(B.32) is proved.

Acknowledgements. The first author would like to thank the Australian Research

Council for its financial support. The second author acknowledges financial support from

the BBSRC/EPSRC of UK and the Hong Kong Research Grants Council.

REFERENCES

Bickel, P. and Zhang, P. (1992) Variable selection in nonparametric regression with categorical

covariates. J. Amer. Statist. Assoc., 87, 90–97.

Boente, G. and Fraiman, R. (1988). Consistency of a nonparametric estimate of a density function

for dependent variables. J. Multi. Anal., 25, 90–99.

Chen, R., Liu, J. and Tsay, R. (1995) Additivity tests for nonlinear autoregression. Biometrika, 82,

369–383.

Chen, R. and Tsay, R. (1993) Nonlinear additive ARX models. J. Amer. Statist. Assoc., 88, 955–

967.

Cheng, B. and Tong, H. (1992) On consistent nonparametric order determination and chaos. J.

36



Roy. Statist. Soc. Ser. B 54 427–449.

Cheng, B. and Tong, H. (1993) Nonparametric function estimation in noisy chaos. Developments in

Time Series Analysis (ed. T. Subba Rao), 183–206. Chapman and Hall, London.

Fan, J. (1992) Design-adaptive nonparametric regression. J. Amer. Statist. Assoc., 87, 998–1004.

Fan, J. and Gijbels, I. (1996) Local Polynomial Modelling and Its Applications. Chapman and Hall,

London.

Gao, J. (1998) Semiparametric regression modelling of nonlinear time series. Scand. J. Statist., 25,

521–539.

Gao, J. and Anh, V. (2000) A central limit theorem for a random quadratic form of strictly stationary

processes. Statist. & Probab. Lett., 49, 69–79.

Gao, J. and Liang, H. (1995) Asymptotic normality of pseudo-LS estimator for partially linear autore-

gressive models. Statist. Probab. Lett., 23, 27–34.

Gao, J. and Tong, H. (2004) Semiparametric nonlinear time series model selection. J. Roy. Statist.

Soc. Ser. B, 66, 321–336.

Gao, J., Tong, H. and Wolff, R. (2002a) Adaptive series estimation in additive stochastic regres-

sion models. Statistica Sinica, 12, 409–428.

Gao, J., Tong, H. and Wolff, R. (2002b) Model specification tests in nonparametric stochastic

regression models. J. Multivariate. Anal. 83, 324–359.

Gao, J., Wolff, R., Anh, V. (2001) Semiparametric methods in multivariate approximation prob-

lems. J. Complexity, 17, 754–772.

Gao, J. and Yee, T. (2000) Adaptive estimation in partially linear (semiparametric) autoregressive

models. Canad. J. Statist., 28, 571–586.
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