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Abstract

This brief paper derives the value of headway, i.e. the time interval
between departures, for a scheduled service. It presents a consistent
framework in which users have scheduling costs, time costs and plan-
ning costs. The model represents both users who arrive at the station
to choose just the next departure and users who plan for a specific de-
parture. Planning for a specific departure is costly but becomes more
attractive at longer headways. Simple expressions for the user cost
result. In particular, the marginal cost of headway is large at short
headways and smaller at long headways. The difference in marginal
costs is the value of time multiplied by half the headway.

1 Introduction

This paper presents an economic analysis of the value of headway for a
scheduled service such as a bus route, a train or an air connection. Such an
analysis seems to be lacking in the literature. The problem derives from the
(rather obvious) observation that users of scheduled services cannot choose
their departure time freely, they are constrained to the departure times of
the service, where the headway is the time between departures. It then
becomes important to know how the size of the headway affects user costs.
Insights into this may inform analyses of demand as well as welfare economic
analyses of changes in the supply of scheduled services. There seems to be
no analysis in the literature of this issue.

For a frequent service we may imagine users do not plan to use a specific
departure, they just arrive in order to catch the next departure. From their
perspective, the time to the next departure is random. This observation has
led many to include just the average waiting time, half the headway, into the
user cost. In the present case that accounts for scheduling considerations,
they are seen to incur costs of waiting as well as costs due to the uncertainty
about the time at which they will arrive at their destination.
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For a less frequent service we may imagine that users plan which de-
parture they want to use. In this case, the choice of service is based on
scheduling considerations. The choice between planning and not planning
we can imagine is governed by a cost of planning, which may include the
effort involved in consulting the time table, the timing of the trip to the
station as well as a planned wait at the station.

We consider a scheduled service that runs with a time interval between
departures of h minutes. In other words, h is the headway. We are not
concerned with the travel time on the service and take this to be simply
zero in order to simplify the analysis. Hence a user who boards the service
at time t also arrives at time t. If the travel time is known and not random,
the cost of travel time may just be added to the cost expression obtained in
this papers.

The present analysis is based on scheduling preferences (Vickrey, 1969;
Small, 1982; Arnott et al., 1993), where the user cost is described in terms
of travel time and a scheduling cost given as a function of the time of ar-
rival at the destination relative to a preferred arrival time. We consider
a continuum of users, each of whom has a preferred arrival time (PAT),
such that the PATs are uniformly distributed over time. Consider a user
who has scheduling cost given by the function D and a preferred arrival
time (PAT) t∗, such that the scheduling cost of actually arriving at time
t is D (t − t∗) . The simplest case of D arises when D (s) = γs+ + βs−. In
general we assume that D is convex with a minimum at D (0) = 0 and that
−D ′ (0−) < D ′ (0+) . It is customary also to allow for a convex or linear
time cost A (·) with A (0) = 0 and A ′ > 0 that is a function of travel time
such that the total time cost becomes A + D. In the linear case we define
A (t) = αt and get the (α, β, γ)−framework that has been used in many
papers. A user who arrives at the station at time t1 and catches a service
at time t2 then incurs a total cost of A (t2 − t1) + D (t2) .

The layout of the paper is the following. Section 2 treats the case of long
headways where the users plan which departure to use. Section 3 treats the
case of a frequent service where users do not bother to consult the time
table but merely appear at the station to catch the next departure. Section
4 integrates these two cases through the concept of a planning cost, such
that users will plan for a specific departure if the benefit of planning exceeds
the cost. Section 5 discusses how the model may be applied in practice.

2 A service with long headway

We first consider the case of a service with long headways, where a user
plans which departure he wants to use. He does not wait and so his cost is
given only in terms of the scheduling cost function D. The time cost A is
not relevant. Instead of thinking of users being uniformly distributed over
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time, we may take the perspective of a single user and consider arrivals to
be uniformly distributed over time. We may take a user with PAT=0 as
representative of all users.

Consider the time t defined by

D (t − h) = D (t) . (1)

This equation defines a unique t with t > 0 since D is convex and has
minimum at 0. In the case of a linear D, we have t = hβ/ (γ + β). This is
illustrated in figure 2

h

tt-h

D

PAT

time

Figure 1: Optimal interval around the PAT

The equation (1) states that the user is indifferent between arriving t

minutes late and −(t − h) minutes early. Anything in between is preferred.
Since the travel time on the service is normalised to zero, he will choose a
departure in the interval [t − h, t] defined by (1) and be at most t minutes
late. With departures considered to be uniformly distributed over time, the
expected scheduling cost is then

Cp(h) =
1

h

∫t

t−h

D (s)ds,

where we use the subscript p to denote that this cost applies to a planning
user. In the case of a linear scheduling cost D, we find that Cp (h) = h γβ

2(γ+β)
.
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Since the user with PAT=0 is representative, we have that Cp(h) is the
average scheduling cost for all users.

We may use the convexity of D to find a bound for Cp (h), namely

Cp (h) ≤
1

h

(

D (t) t

2
−

D (t − h) (t − h)

2

)

=
D (t)

2
, (2)

with equality when D is linear. This bound will be useful below.
The marginal cost of headway can be found by differentiating the cost

with respect to h. Note first that the maximal time a planning user will be
late, t, is a function of h. We may then find how t changes by differentiating
(2) with respect to h.

D ′ (t) t ′ = D ′ (t − h)
(

t ′ − 1
)

such that

t ′ =
−D ′ (t − h)

D ′ (t) − D ′ (t − h)
.

This positive by the assumptions on D, such that increasing the headway
will increase the maximal lateness of a planning user. In the case of a linear
D this becomes t ′ = β/ (γ + β).

Differentiating Cp(h) we find that1

C ′

p(h) =
D(h)

h
t ′ −

D(t − h)

h

(

t ′ − 1
)

−
Cp (h)

h

=
D (t) − Cp (h)

h
.

In the case of a linear D we have C ′

p (h) = γβ
2(γ+β)

, which is constant as a
function of h.

Use the bound on Cp(h) in (2) to find that

C ′

p(h) ≥
D (t)

2h
> 0,

such that the marginal cost of headway is strictly positive for general convex
D.

It may be of interest how the marginal cost of headway depends on h.

Differentiate again to find that

C
′′

p(h) =
D ′(t)t ′ − C ′

p(h)

h
−

C ′

p(h)

h

= −
1

h

D ′(t)D ′(t − h)

D ′(t) − D ′(t − h)
−

2C ′

p(h)

h
.

1Use the rule that

d

dx

∫ f(x)

g(x)

h(x, y)dy = h(x, f(x))f
′

(x) − h(x, g(x)g
′

(x) +

∫ f(x)

g(x)

d

dx
h(x, y)dy.
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The first term here is positive since D ′(t − h) < 0 while the second term
is negative. I have not been able to be more definite about the sign of C ′′

p,

so it seems that the marginal cost of headway may decrease or increase as
headway increases. If the marginal cost of headway is low, then it must
increase, but it can possibly decrease when the marginal cost of headway is
high.

3 A service with short headway

We now suppose that service is so frequent that a user will not consult the
time table but appear at the station in order to catch the next departure, not
knowing exactly when that will be. We may again take a user with PAT=0
as representative. If he arrives at the station at, say, time t − h, where t

will be found below, then the next departure time is uniformly distributed
over the interval [t − h, t]. His cost if the next departure occurs at time s is

A (s − t + h) + D (s)

and the expected cost is

Cu (t) =
1

h

∫t

t−h

A (s − t + h) + D (s)ds,

where the subscript u denotes that the cost applies to an unplanning user.
The optimal arrival time t is found by setting the marginal expected cost
equal to zero.2

∂Cu (t)

∂t
=

1

h
(A (h) + D (t))−

1

h
(A (0) + D (t − h))−

1

h

∫t

t−h

A ′ (s − t + h)ds = 0.

Assume that A is linear, A(s) = αs. Then the equation reduces to

1

h
(αh + D(t)) −

1

h
(D(t − h)) − α

1

h

∫t

t−h

ds = 0,

such that the first order condition becomes

D (t − h) = D (t) ,

which is exactly the same as in the planned arrival case. Taking t to be
optimally chosen, we may derive the expected cost for an unplanning user
Cu using the expression for the average cost Cp for a planning user in (2).
The expected cost then becomes

Cu (h) =
α

h

[

s2/2 − (t − h) s
]t

t−h
+ Cp (h)

=
αh

2
+ Cp (h) .

2Using the same rule of differentiation as above.

5



We may differentiate this expression with respect to h to find the marginal
cost of headway for an unplanning user as

C ′

u (h) =
α

2
+ C ′

p (h) .

This is exactly α/2 larger in the unplanned case than in the planned case.
The term α/2 corresponds to the average waiting time of an unplanning
user. We see that the marginal cost comprises an additional term, namely
the marginal average scheduling cost of a planning user.

4 To plan or not to plan

We have established the scheduling cost as a function of the headway for two
situations. In one the users are assumed to plan for a specific departure while
they are not planning in the other. Otherwise the situations are completely
identical. To complete the story, we therefore need to explain why some
users plan and other do not. At the same time we want the model to have
the property that planning is more worthwhile at longer headways.

Assume that a user has a planning cost of ζ > 0. If he plans for a
specific departure, he will incur a total cost of Cp (h) + ζ. If he does not
plan, then his cost is αh/2+Cp (h). Choosing the minimum cost option, he
will then plan if ζ < αh/2. Assume that planning costs are distributed in
the population with some cumulative distribution function Φ with bounded
support. This will result in an interval of headways such that more and
more users will decide to plan as the headway increases. The average user
cost at headway h is

C (h) = Cp (h) +

(

1 − Φ

(

αh

2

))

αh

2
+

∫ αh
2

0

ζφ (ζ)dζ. (3)

The average marginal cost of headway then becomes

C ′ (h) = C ′

p (h) +

(

1 − Φ

(

αh

2

))

α

2
− φ

(

αh

2

)

α2h

4
+

α2h

4
φ

(

αh

2

)

= C ′

p (h) +

(

1 − Φ

(

αh

2

))

α

2
,

which is always positive. Differentiate again to find that

C ′′(h) = C ′′

p(h) − φ

(

αh

2

)

α2

4

such that the cost is concave in headway when scheduling costs are linear.
We may suppose that φ has support on some finite interval I with 0 < min I,

such that nobody will plan for short headways while everybody will plan for
long headways. Then for short headways we have C ′ (h) = C ′

p (h) + α/2

while for long headways we have a lower marginal cost of C ′ (h) = C ′

p (h).
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5 Application

For the application of the model we need to know first the scheduling pref-
erences. We assume linear scheduling costs expressed by (α, β, γ) and that
these have been estimated. A number of studies have estimated these param-
eters, e.g. Bates et al. (2001) and Small (1982), see the review in Fosgerau
et al. (2008). The parameter α may be thought to equal the value of travel
time. If the marginal cost of waiting time is thought to be higher, the value
of α may be increased correspondingly, while keeping the values of β and γ

fixed.
It is harder to presume that we know the distribution of planning costs

in the population. The planning cost makes no difference if we desire to
compare two services where either all users plan or all users do not plan.
It is however necessary to know the cost distribution in order to account
for the planning cost in the case when two service schedules are compared
where at least one of them involve both planning and unplanning users.

Fortunately, it is possible to form an opinion about the share of users
who will choose a specific departure at different headways. For example, one
may observe when passengers arrive at train platforms and which departure
they get on. If users arrive at a constant rate then we may think they are not
planning. If on the other hand they all arrive close to the next departure,
then we may think they are all planning. In between we will have some users
arriving at random and some users arriving close to the next departure. If
we can estimate the share of users who plan as a function of headway, and
if we know α, then we can identify Φ

(

αh
2

)

.
We hence assume that Φ is known. In particular we know the support

of Φ, that is, we know the maximum headway at which no users plan hmin

and also the minimum headway at which all users plan hmax. This defines
the interval over which the planning costs are distributed. Introduce for
brevity of notation a function to truncate the headway at hmin and hmax by
Λ (h) = (x ∨ hmin) ∧ hmax (where ∨ is the maximum operator and ∧ is the
minimum operator) and let also ∆ = hmax − hmin.

We could assume for simplicity that the distribution of planning costs in
(3) is uniform, such that

Φ

(

αh

2

)

=
Λ (h) − hmin

∆

or

Φ (ζ) =
2ζ/α − hmin

∆
,φ (ζ) =

2

α∆

for values of ζ in the appropriate interval. Recall that with linear scheduling
cost we have Cp(h) = C ′

ph and C ′

p = γβ
γ+β

. We can then write the user cost
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function as

C(h) = Cp(h) +

(

1 − Φ

(

αh

2

))

αh

2
+

∫ αΛ(h)

2

αhmin

2

ζφ (ζ)dζ

= C ′

ph +

(

hmax − Λ (h)

∆

)

αh

2
+

1

α∆

(

α2Λ2 (h)

4
−

α2h2
min

4

)

= C ′

ph +
hα

2

hmax − Λ (h)

∆
+

α

4

Λ2 (h) − h2
min

∆
.

This expression simplifies when h is outside the interval where users change
from not planning to planning.

h < hmin : C (h) = C ′

ph +
αh

2
,C ′(h) = C ′

p +
α

2

h > hmax : C (h) = C ′

ph + α
hmax + hmin

2
, C ′(h) = C ′

p

Note here that that the last term in C(h) when h > hmax is E (ζ) =

α (hmax + hmin) /4.

Substituting numerical values for the scheduling parameters yields an
expression for the cost associated with headway. Figure 2 uses (α, β, γ) =

(1, 0.5, 2), hmin = 5 and hmax = 15. We see that the cost curve is steep
with slope C ′(p)+α/2 up to the point hmin where some users begin to plan.
The curve is dashed in the interval [hmin, hmax] where more and more users
switch to planning. It is drawn here as a straight line but the shape depends
on the distribution of planning costs in the population. Thereafter the curve
becomes again linear with the smaller slope of C ′(p). The first and last line
segments have been extended with light dashed segments to indicate that
the cost curve is bounded above by these lines. The intersection of the
extension of the last line segment with the y-axis corresponds to the average
planning cost when all users plan.
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Figure 2: Illustration of the cost function as a function of headway
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