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Abstract. The aim of the paper is to develop a technique for rebal-
ancing pension fund portfolios in function of their pointwise level of risk.
The performance of pension funds is often measured by their global asset
returns because of the latter’s influence on periodic contributions and/or
future benefits. However, in periods of market crisis attention is focused
on the risk level given their social security (and not speculative) function.
We describe the process of the global asset return by a multifractional
Brownian motion using the function H(t) to detect high or low volatil-
ity phases. A procedure is carried out to balance the asset composition
when the established local degree of risk is exceeded. The application is
carried out on portfolios obtained in accordance with Italian regulations
regarding investment limits.
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1 Introduction

Pension funds mainly have a social security function of reimbursing workers’
savings in the form of a life annuity. This involves an accurate and prudent asset
allocation scheme administration.

It has been debated that post retirement benefit plans should have limita-
tions on their asset allocation, based on the risk profile of the different financial
instruments available on the financial market.

The performance of pension funds is usually measured in terms of returns
rather than risk. Risks are taken into account especially during market crises,
when losses in the portfolio of financial instruments of the fund could lead to
depreciations in the accrued contributions.



2 Sergio Bianchi, Alessandro Trudda

Some studies (e.g. Ryan and Fabozzi 2003) show that post 2001 bankrupt-
cies of US pension funds had their roots in the actuarial evaluation techniques
rather than in asset losses, if long-term stock return is considered. According to
Bader (2003) and McClurken (2006), post retirement benefit plans, pertaining
to the ‘first pillar’ of a pension system, should not invest in high-risk financial
instruments because this would lead to problems related to moral hazard and to
the evaluation of ‘superfluous risk’.

Trudda (2005) proposes an application to the pension funds of Italian pro-
fessional Orders, in which marginal increments in global asset return appear to
strongly reduce the default probability. He also shows that there is an incentive
to take superfluous risks in the case of a slackening of regulations.

More recently, Otranto and Trudda (2007) have supported the idea that
there is a need for a classification of the various degrees of risk for pension
funds. They propose a cluster analysis based on the GARCH volatility of the
rates of return. In Otranto and Trudda (2008) another methodology is carried
out distinguishing between two kinds of risk for pensions funds: constant risk
and time-varying risk. Although the method provides a satisfactory ex post risk
analysis, the large lag necessary to get reliable estimates weakens its employment
in practical applications when a timely response is required.

Bikker, Broaders and Dreaw (2007) study the impact of stock market per-
formance on the investment policy of Dutch pension funds and show that their
investment policies are partially driven by the cyclical performance of the stock
market. In addition they point out that pension funds respond asymmetrically to
stock market shocks: rebalancing is much stronger after negative equity returns.

Stewart (2007) analyzes the increasing tendency of pension funds to invest
in hedge funds. He observes that in many cases the real risk is not correctly
perceived. This is due to an inefficient regulating system and, in several countries,
the absence of risk monitoring instrument.

In many cases the rules on pension funds investments are derived from the
same laws that regulate investment companies, considering their speculative
function. These regulations often indicate a qualitative restriction without lim-
iting the quantitative measurement of the risk.

In Italy the regulating system for pension funds establishes non restrictive
rules in the investment portfolio composition. Pension funds can invest in liquid
assets, stocks, share of common investment funds. There are some restrictions
about investments in equity and bonds traded in the over the counter markets
and/or in non OECD countries.

In this paper we concentrate on the investment risk: a dynamical analysis of
pension fund’s portfolios is performed by estimating the pointwise regularity of
the return series, assuming that these can be modeled by a multifractional Gaus-
sian process. In this framework, the estimator we use quantifies the pointwise
degree of the observations’ departure from independence. In a more general way
we estimate the local smoothness of a signal representing the portfolio quote.
The intuition is that this can well synthesize the local degree of risk of a given
asset or portfolio. Provided that the window of estimation is sufficiently small, it
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should be possible to build a warning system for monitoring the risk in pension
funds. In this way, we can monitor the risk evolution after a short time using
few daily data, thanks to the good rate of convergence of the estimator. In the
paper we develop the system and describe the appropriate techniques for the au-
tomatic composition of the fund’s portfolio in case of infringement of the given
risk thresholds.

In the application three investment portfolios are simulated respecting Italian
financial laws to show how the levels of risk obtained can be very different.

The paper is organized as follows: in section 2 we recall the main properties
of the model we assume to generate the price dynamics. In section 3 the esti-
mator of the pointwise regularity of the process is discussed. Section 4 concerns
the analytical relationship between the portfolio’s H(t) and the H(t)’s of its
individual assets. In section 5 we develop an analytical approach through the
analysis of the variable H(t). The purpose is the control of risk by a continuous
monitoring and rebalancing policy using optimal portfolio definition. An appli-
cation of three simulated portfolios with different risk degrees is carried out in
section 6; we use the introduced approach to evaluate the the levels of risk over
the time and to develop a rebalancing technique, through the analysis of the
variable H(t). Finally some conclusion are discussed in section 7.

2 The model

In the following we will assume the log price dynamics to be described by a ver-
satile process: the multifractional Brownian motion (mBm). A convenient way
to introduce the mBm is recalling its very well-known special case: the fractional
Brownian motion (fBm). Defined in a celebrated paper by Mandelbrot and Van
Ness (1968), the fBm is characterized by a slowly decaying autocorrelation func-
tion depending on the parameter H ∈ (0, 1], named Hurst exponent. Following
the definition that can be found in Coeurjolly (2005), the process has moving
average representation

BH(t) = C{πK(2H)}1/2

∫

R

ft(s)dB(s) (1)

with

ft(s) =
1

Γ
(

H + 1
2

)

{

|t − s|H− 1
2 1]−∞,t](s) − |s|H− 1

2 1]−∞,0](s)
}

where B(·) stands for the ordinary Brownian motion, C is a positive constant

and K is the function defined on ]0, 2[ as K(α) = Γ (α + 1)
sin απ

2

π . The process
is self-similar3 of parameter H and has stationary increments. Its covariance

3 We recall that the process {X(t), t ∈ T} is said self-similar with parameter H if for

any α > 0 {X(αt)}
d
= {αHX(t)}, where the equality holds for the finite-dimensional

distributions of the process [see e.g. Samorodnitsky et al. (1994)].
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function reads as

E (BH(t)BH(s)) =
c2

2

(

|t|2H
+ |s|2H − |t − s|2H

)

(2)

The fBm can be generalized by allowing H to vary over time. This extension
− known as multifractional Brownian motion (mBm) (see Péltier and Lévy Véhel
(1995), Lévy Véhel (1995), Ayache and Lévy Véhel (2000)) − has the following
representation

MH(t)(t) = C{πK(2H(t))}1/2

∫

R

ft(s)dB(s) (3)

with

ft(s) =
1

Γ
(

H(t) + 1
2

)

{

|t − s|H(t)− 1
2 1]−∞,t](s) − |s|H(t)− 1

2 1]−∞,0](s)
}

where H : [0,∞) → (0, 1] is required to be a Hölder function of order 0 < η ≤ 1
to ensure the continuity of the motion.

Notice that since H(t) is the punctual Hölder exponent of the mBm at point
t, the process is locally asymptotically self-similar with index H(t) (see, e.g.,
Benassi et al. (1997)) in the sense that, denoted by Z(t, au) := MH(t+au)(t +
au)−MH(t)(t) the increment process of the mBm at time t and lag au, it holds

lim
a→0+

a−H(t)Z(t, au)
d
= BH(t)(u), u ∈ R. (4)

The above distributional equality indicates that at any point t there exists
an fBm with parameter H(t) tangent to the mBm. Moreover, since BH(t)(u) ∼
N (0, C2u2H(t)), the infinitesimal increment of the mBm at time t, normalized by
aH(t), normally distributes with mean 0 and variance C2u2H(t) (u ∈ R , a → 0+).

The increments of the mBm are no longer stationary nor self-similar; despite
this, the process is extremely versatile since the time dependency of H is useful
to model phenomena whose punctual regularity is time changing.

From a financial viewpoint one can think of H(t) in a suggestive way as
a ”memory” function, i.e. as the degree of confidence the investors nourish in
the past. High values of H(t) correspond to trends (or low volatility phases),
i.e. to periods in which the past information weighs in the investors’ trading
decisions; low values of H(t) are associated to high volatility periods, in which
prices display an antipersistent or mean reverting behaviour because of the quick
buy-and-sell activity that is typically induced by uncertainty. Standard financial
theory is recovered when H = 1

2 , case in which the mBm reduces to the Brownian
motion. The level of risk coupled with a financial time series is therefore framed
into a dynamical perspective in which it can change from point to point, even
in a strong way. What makes the difference here is not much and not only the
type of investment (bond, stock, derivatives) but the time.
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3 Pointwise estimation of the Hölderian regularity of the
mBm

Given a sample path of the mBm, one of the main problems is estimating the
function H(t) from actual data. To deal with this problem one could think at
adapting the traditional estimators of H available in literature in order to shadow
the dynamics of H(t). The weakness of this approach resides in the fact that very
large samples are needed to get reliable estimates and in over a long time-span
H is likely to change even widely. So, more efficient estimators are needed in
the case of the mBm. An answer to this problem is provided by Bianchi (2005),
who develops the work of Péltier ad Lévy Véhel (1994) and defines a family of
”moving-window” estimators of H(t) based on the k-th absolute moment of a
Gaussian random variable of mean zero and given variance VH (the variance of
the unit lag increment of a mBm). Given a series of length N and a window of
length δ, the estimator has the form

Hk
δ,N (t) =

log
(

2k/2Γ
(

k+1
2

)

V
k/2
H

)

− log
(√

π
δ

∑t−1
j=t−δ |Xj+1,N − Xj,N |k

)

k log (N − 1)
(5)

for j = t − δ, ..., t − 1; t = δ + 1, ..., N ; k ≥ 1.

Thanks to its good rate of convergence O
(

δ−
1
2 (log N)

−1
), (5) allows reliable

estimates even for very short δ′s. The family of estimators (5) was proved to be
correct and normally distributed as

Hk
δ,N (t) ∼ N

(

H(t),
π

δk2 ln2 (N − 1) 2k
(

Γ
(

k+1
2

))2 σ2

)

(6)

σ2 being the variance of a Gaussian random variable defined as a proper rescaled
sum. Toilsome computations show that when H = 1

2 the variance of the estimator
reduces to

V ar(Hk
δ,N (t)) =

√
π

δk2 ln2 (N − 1)
[

Γ
(

k+1
2

)]2 ·
(

Γ

(

2k + 1

2

)

− 1√
π

[

Γ

(

k + 1

2

)]2
)

(7)

and the optimal value of k is deduced by minimizing the last relation. So one
finds that the minimum of (7) takes place when k = 2, value which will be used
in the empirical application discussed below. An idea of the way the estimator
(5) work is provided by Figure 1. Panel (a) shows a sample path generated by a
mBm with sinusoidal functional parameter (four periods were considered, with
H(t) ranging in the interval [0.2, 0.8]); panel (b) shows the variations of the signal
(notice the bursts of variance corresponding to low values of H(t)); finally, in
panel (c) the continuous line is the functional parameter and the zigzagged line
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(c) Estimated pointwise Holder exponent

Fig. 1. Estimation of the Holderian function of a simulated mBm

is the functional parameter estimated by filtering the original signal through (5),
setting δ = 30.

4 The portfolio’s H(t)

In this section we derive the portfolio’s H(t) and write it as a function of the
H(t)’s of individual assets.
As usual, let

Πj =
N
∑

s=1

αsXs,j (8)

denote a portfolio of N assets, each characterized by its own functional parameter

sH
k
δ,q,n(t) (s = 1, ..., n) and with unit variance at time n.
We set k = 2 because it is easy to show that this value minimizes the estima-

tor’s variance when H = 1/2. In this way the estimator of the portfolio’s H(t)
can be written as a function of sH

k
δ,q,n(t) and it reads as:
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ΠH2
δ,q,n(t) = −

ln

(

N
∑

s=1
α2

s

(

n−1
q

)−2sH2
δ,q,n(t)

+

2 ln
(

n−1
q

)

+2
N−1
∑

p=1

N
∑

r=p+1
αpαr

(

n−1
q

)−(pH2
δ,q,n(t)+rH2

δ,q,n(t))

ρp,r,δ

)

2 ln
(

n−1
q

)

(9)

with ρp,r,δ :=

t−1
∑

j=t−δ

|dXp,j,q||dXr,j,q|
√

t−1
∑

j=t−δ

|dXp,j,q|2
t−1
∑

j=t−δ

|dXr,j,q|2

In fact, let dΠj,q = Πj+q − Πj =
N
∑

s=1
αsdXs,j,q denote the portfolio’s incre-

ments, where dXs,j,q := Xs,j+q − Xs,j . One has

ΠH2
δ,q,n(t) = −

ln

t−1
∑

j=t−δ

∣

∣

∣

∣

N
∑

s=1

αsdXs,j,q

∣

∣

∣

∣

2

K2(δ−q+1)

2 ln
(

n−1
q

) =

= −
ln

N
∑

s=1

α2
s

t−1
∑

j=t−δ

dX2
s,j,q+2

t−1
∑

j=t−δ

N−1
∑

p=1

N
∑

r=p+1

αpαr|dXp,j,q||dXr,j,q|

K2(δ−q+1)

2 ln
(

n−1
q

)

From (5) it readily follows that

t−1
∑

j=t−δ

dX2
j

K2(δ − q + 1)
=

(

n − 1

q

)−2H2
δ,q,n(t)

and therefore

ΠH2
δ,q,n(t) = −

ln







N
∑

s=1
α2

s

(

n−1
q

)−2sH2
δ,q,n(t)

+
2

t−1
∑

j=t−δ

N−1
∑

p=1

N
∑

r=p+1

αpαr|dXp,j,q||dXr,j,q|

K2(δ−q+1)







2 ln
(

n−1
q

)
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ΠH2
δ,q,n(t) = −

ln

(

N
∑

s=1
α2

s

(

n−1
q

)−2sH2
δ,q,n(t)

+

2 ln
(

n−1
q

)

+
2

(

t−1
∑

j=t−δ

α1α2|dX1,j,q||dX2,j,q|+...+
t−1
∑

j=t−δ

αN−1αN |dXN−1,j,q||dXN,j,q|
)

K2(δ−q+1)







2 ln
(

n−1
q

)

(10)

A more insightful way of writing relation (10) again exploits (5), from which
it is easy

−pH
2
δ,q,n(t) =

ln

t−1
∑

j=t−δ

|dXp,j,q|2

K2(δ−q+1)

2 ln
(

n−1
q

) and −r H2
δ,q,n(t) =

ln

t−1
∑

j=t−δ

|dXr,j,q|2

K2(δ−q+1)

2 ln
(

n−1
q

)

Summing up side by side we get

−pH
2
δ,q,n(t) −r H2

δ,q,n(t) =
ln

t−1
∑

j=t−δ

|dXp,j,q|2
t−1
∑

j=t−δ

|dXr,j,q|2

K4(δ−q+1)2

2 ln
(

n−1
q

)

and therefore

(

n − 1

q

)−(pH2
δ,q,n(t)+rH2

δ,q,n(t))

=

√

∑t−1
j=t−δ |dXp,j,q|2

∑t−1
j=t−δ |dXr,j,q|2

K2(δ − q + 1)
.

from which it’s follows:

(

n − 1

q

)−(pH2
δ,q,n(t)+rH2

δ,q,n(t))

ρp,r,δ =

t−1
∑

j=t−δ

|dXp,j,q| |dXr,j,q|

K2(δ − q + 1)

and by substituting in (10) one gets (9), where the factor ρ clearly represents
the correlation of the absolute increments of the process.

5 The dynamic optimization problem

In order to cope with the optimization problem we use the relationship between
the portfolio’s H(t) and the functions H(t) of each asset included in the portfolio
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itself as developed in the previous Section. The procedure intervenes when the
H(t) value decreases under a fixed threshold. This dynamic approach, combined
with a control on the level of return, is based on the assumption that it exists
an inverse relation between the value of the portfolio’s H(t) and its exposure to
risk. In other words, since high values of H(t) are indicative of trends, once the
procedure excluded that the trend is negative, one can use this information to
rebalance the portfolio in order to control its level of risk. Let us denote by L,
B and S the liquidity, the bond and the stock components of the portfolio, by
ΠX the set of indexes pertaining to the investment of type X (X = L, B or
S), by N the number of assets in the portfolio, by αX the (fixed) ratio of assets
of type X, by rΠ(t) the log price of asset k at time t and ∆ the length of the
window. Equipped with this notation, the risk-minimizer portfolio manager has
to solve the following constrained problem

max
αk

ΠHk
1,q,n(t)

s.t.
∑

k∈ΠL
αk = αL

∑

k∈ΠS
αk = αS

∑

k∈ΠB
αk = αB

αk ≥ 0

αL + αS + αB = 1

∑t
h=t−∆

rΠ(h)
∆+1 ≥ φ; φ ≥ 0

(11)

which means to determine the vector (α1, ..., αN ) defining the H-optimal port-
folio.

At each time t the algorithm checks whether the portfolio’s H(t) is lower than
the fixed threshold. If not the portfolio is mantained, otherwise it is rebalanced
using the new weights determined by solving the optimization problem. For the
constrained optimization we used an extension of primal interior point methods,
which applies sequential quadratic programming techniques to a sequence of
barrier problems. Trust regions are used to ensure the robustness of the iteration
and to allow using the second order derivatives. The software was developed in
MatLab environment at the L.I.S.A. 4, using the function fmincon (see Richard
H. B. et al.) already implemented in the optimization toolbox.

4 the computer lab for advanced scientific computing operating within D.I.Me.T. The
authors aim a special thank to dr. Augusto Pianese and to dr. Alexandre Pantanella
for the algorithm implementation
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6 Application

In order to estimate the risk dynamic, we started using three portfolios complying
with the Italian laws on pension funds investments. The analyzed portfolios were
characterized by strong differences in terms of returns variability and therefore
in the risk profile. In the maximum and medium risk portfolios were included
investments in stock components traded in over the counter markets and in non
OECD countries. We used daily data from 30/09/2003 to 19/04/2007.

Table 1 shows the fixed ratios of the portfolios’ components (αL, αB and
αS).

Table 1
Composition of the three portfolios

Portfolio Liquidity Bonds Stocks
Minimum risk 10% 90% 0%
Medium risk 10% 70% 20%
Maximum risk 10% 40% 50%

The portfolio composition respected the investment limits imposed by Italian
regulation (over the counter and non OECD assets). The minimum risk portfolio
was characterized by a larger investment of 90% in bonds (Bond PE 22.5%, Arca
MM 22.5%, Arca RR 22.5%, Arca TE 22.5%), 10% liquidity (Libor 5%, Arca
BT 5% ), with a very low standard deviation value showing the low risk profile
offered.
The medium risk portfolio was composed of 70% bonds (Bond PE 17.5%, Arca
MM 17.5%, Arca RR 17.5%, Arca TE 17.5%), 10% liquid assets (Libor 5%,
Arca BT 5%) and 20% stocks (Mibtel 2.8%, Ibm 2.8%, Nasdaq 2.8%, DowChem
2.8%, Ibovespa 2%, Shangai 2%, Google 2.8%, Kospi 2%. It included stocks
component traded in OECD unregulated markets (2% Kospi) and in non OECD
regulated markets (2% Ibovespa, 2% Shangai) This portfolio was characterized
by an intermediate risk.
The third portfolio (maximum risk) was composed of 10% liquid assets (Libor
5%, Arca BT 5%), 40% bonds (Bond BDPE 10%, Arca MM 10%, Arca RR
10%, Arca TE 10% ), 50% stocks (Mibtel 8.8%, IBM 8.8 %, Nasdaq 8.8%, Down
Chem 8.8%, Ibovespa 2%, Shangai 2%, Google 8.8%, Kospi 2%). It included
stocks component traded in OECD unregulated markets (2% Kospi) and in non
OECD regulated markets (2% Ibovespa) In spite of its strong bonds component,
this portfolio presents high returns variability expressed by an high standard
deviation value.

Figure 2 displays the global asset return and the estimated H(t) values of
the three initial portfolios. As expected, the return increases with the risk of the
portfolios (panel (a)) whereas high values of H(t) are associated with a low a
priori risk (panel (b)).

In order to define a rebalancing strategy, we developed a procedure work-
ing as follows: given a threshold H∗, at each time we test whether the current
estimation of H(t) is below the fixed threshold, which means that - under the
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assumptions of our model - the portfolio is going subject to an excess risk. In this
case, we rebalance the portfolio solving the optimization problem (11). Other-
wise we maintain the current portfolio. Notice that the last constraint of problem
(11) is meant to guarantee a minimum positive return φ for the portfolio; the
condition is necessary because the sole H(t) does not give information about the
direction of the local trend, which can be negative as well as positive. The strat-

Fig. 2. Global asset return and the estimated H(t) values of the three initial
portfolios

egy described above was applied to the three portfolios with different thresholds
0.75 ≤ H∗ ≤ 0.90 and φ given by the daily rate of return equal to the five-years
average Gross Domestic Product (GDP), using ∆ = 0. Obviously, the number of
rebalancings strongly depends on the thresholds H∗ and φ (they increase with
the former and decrease with the latter). An example of the results produced
by the strategy is shown in Figures 3-6, obtained setting H∗ = 0.85. Figure 3
displays the values of H(t) for the rebalanced portfolio (continuous line) and
for the initial portfolio (dotted line). The vertical bars below indicate the times
in which the rebalancing has occurred. Observe that a convenient choice of the
assets heavily modifies the risk profile, even of .2817 (at day 279). It is obvious
that the reduction of risk reflects in a lower return, as shown in Figure 4 which
displays the global asset return of the initial and the rebalanced portfolios (the
maximum difference is under 0.1 on a time horizon of three years). Figure 5
displays the risk-return profile of the portfolios; since differently from the tra-
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ditional Markowitz’s model here we use H(t) as a proxy of the risk level, the
risk-dominant rebalanced portfolios are located in the upper right area of the
graph. It is apparent the effect of the rebalancing strategy, which forces upward
H(t) (solid squares) with respect to the values of the initial portfolio (empty cir-
cles). Finally, Figure 6 shows the ’s of the rebalanced portfolios. In this regard,
observe that the optimization problem (11) does not contain constraints about
over the counter and non OECD assets. This means that the new portfolios gen-
erally do not comply the limits imposed by Italian regulation concerning the a
priori risky markets; nonetheless, they are less risky than the initial portfolio’.

Fig. 3. H(t) dynamics of the maximum risk portfolio with threshold H = 0.85

The analyzed portfolios deserve a couple of further comments. First, in all
cases the values of H(t) are significantly far from the central value assumed by
standard financial theory. This is consistent with a number of works, but here -
differently from what occurs in the case of single stocks or indexes - the values
are also significantly above . Second, large variations characterize the estimates;
for the minimum, the medium and the maximum risk portfolios the ranges are
respectively 0.162, 0.164, 0.136. Again, this is inconsistent with the models as-
suming a constant value of H and strongly suggests a dynamical approach to
portfolio management. Looking at things with more detail one realizes that the
estimates of H(t) seem to cluster towards low values. This is reflected by the
negative skewness of the distributions: -0.61, -0.68 and -0.59 respectively for the
minimum, the medium and the maximum risk portfolios.
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Fig. 4. Global Return of the initial and rebalanced portfolios Maximum risk
portfolio with threshold H = 0.85

Fig. 5. Return-risk profile. Maximum risk portfolio threshold H = 0.85
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Fig. 6. Weights of the portfolio. The assets are the following: 1−Libor; 2−Arca
BT; 3−Bond PE; 4−Arca MM; 5−Arca RR; 6−Arca TE; 7−MibTel; 8−IBM;
9−Nasdaq 10−DowChem; 11−Ibovespa; 12−Shangai; 13−Google; 14−Kospi.

7 Concluding remarks and further developments

The September 2001 market crisis caused the failure of some pension funds in
the USA and Europe. A debate about the financial investment limits and the risk
structure of pension funds was opened. Several analysis highlights the tendency
of the Funds to increase the portfolios risk in order to obtain higher values of the
expected global asset return. Some economic theories study phenomena like as a
moral hazard problem because of accounting rules which encourage Pension Cor-
poration to assume excessive risk. Many authors emphasize that pension funds
have to maintain a prudent profile because the social function (in particular for
the first pillar) prevails over the speculative function. In general, financial laws
use mutual fund regulations to determine the limits of investments in risky fi-
nancial instruments. Moreover, regulations are often qualitative and do not use
quantitative methods.
In order to investigate the regulation potency, in our applications we use invest-
ment portfolios compliant with the Italian laws on pension funds. The results
highlights how Italian pension fund regulation permits investments whit very
different risk degrees.
A dynamic approach is introduced in order to constantly balance the invest-
ment portfolio to control the risk evolution. The risk dynamic is analyzed using
a multifractional Brownian motion to describe the log price of the global asset
portfolios. We use the function H(t) to evaluate the volatility level in the instant
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t: when the estimation of H(t) is below the fixed threshold H∗, an optimization
problem is applied to rebalance the portfolio over the time in order to control
the volatility of global asset return. It’s important to note that the procedure
respond a volatility changes in a quick time using only the lag data because of
the convergence proprieties of H(t). The applications show that using this pro-
cedure to control the excess of risk, a cost in term of lower global asset return is
payed. An interesting development of this work will be to investigate the rela-
tionship between the level of maximum volatility required H∗ and the reduction
of returns using our strategy.

References
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