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Abstract

The Shapley value assigns, to each game that is adequately represented by its characteristic

function, an outcome for each player. An elaboration on the Shapley value that assigns, to char-

acteristic function games, a �partition function� outcome is broadly established and accepted,

but elaborations to encompass games with externalities (represented by partition functions) are

not. Here, I show that simultaneous consideration of the two elaborations (�generalization� and

�extension�) obtains a unique Shapley-type value for games in partition function form. The key

requirement is that the �Extended, Generalized Shapley Value� (EGSV) should be �recursive�:

the EGSV of any game should be the EGSV of itself. This requirement forces us to ignore all

but the payo¤s to bilateral partitions. The EGSV can be conceptualized as the ex ante value of a

process of successive bilateral amalgamations. Previous Shapley value extensions, if generalized,

are not recursive; indeed, they iterate to the EGSV.

JEL classi�cation: C71; D62

Keywords: Coalition structure; Externalities; Partition function games; Recursion; Shapley

value



3

1. Introduction

Though the potential usefulness of an extension of the Shapley value - to encompass games

in partition function form - has often been noted, of various extensions that have been proposed

none has yet become widely accepted. On the other hand, a generalization of the Shapley value

- that encompasses the possibility of a prior �coalition structure� - is widely accepted. In this

paper I argue that if we consider the two problems of extension and generalization at the same

time, then the widely accepted solution to the problem of generalization forces a unique solution

to the problem of extension. Indeed, it forces us to omit from consideration the additional

information about the underlying event that the partition function provides. This �nding could

be read as an impossibility result: in a certain sense we cannot have an extended and generalized

value that makes use of all the information in the partition function. An alternative reading

might be that certain information should (where the Shapley value is seen as a normative, or

rightful, outcome) or would (where the Shapley value is seen as a positive, or expected, outcome)

be extraneous to the determination of a rightful or expected division of a cooperative surplus.

In cooperative game theory the conventional game primitive is a characteristic function which,

subject to the �transferable utility� assumption, assigns real numbers -�payo¤s� - to coalitions.

But a drawback of the characteristic function form is that it cannot di¤erentiate between various

situations in which the payo¤s that a coalition can obtain depend on the external coalitional

arrangement of players. Externalities to coalescence are an important feature of many situations

that are of present interest to economists, including many situations to which the cooperative

game theory approach otherwise appears to recommend itself: for example, an important feature

of environmental treaties is their consequence to non-signatories, and an important feature of

mergers in oligopolistic markets is their e¤ect on other remaining �rms. The partition function

form is one way of preserving information about these externalities. A partition function (subject
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to the �transferable utility� assumption) assigns real numbers - payo¤s - to embedded coalitions:

pairs, comprising a coalition and a partition to which the coalition belongs.

Since the present paper focusses on games in partition function form, these shall generally be

referred to as �games�. Games in which the payo¤s assigned to an embedded coalition depend

only on its �rst element (the coalition) shall be regarded as special cases: games that can be

adequately represented by a characteristic function.

An important solution concept in the study of cooperative games is that of a value: a func-

tion that associates utility outcomes with games belonging to some class, where these utility

outcomes can be interpreted as the ex ante expected (positive), or alternatively as the right-

ful (normative), utilities associated with playing a game. The best-known and most widely

used value - the Shapley value - assigns, to each game that can be adequately represented by

a characteristic function, a utility outcome for each player. The Shapley value was originally

axiomatically grounded, and has since proven to be usefully tractable and robust; the original

axioms are in a sense corroborated by the fact that the same value re-emerges from a number of

apparently unrelated approaches. The present paper is a contribution to a recently active liter-

ature that has been concerned with identifying, by the axiomatic method, an extended Shapley

value that accommodates the wider class of games in partition function form while preserving

the properties of tractability and robustness associated with the Shapley value itself and of

course reducing to the Shapley value for those partition function games that are adequately rep-

resented by a characteristic function. Other contributions to this literature include Myerson [8],

Bolger [1], Potter [12], Pham Do and Norde [11], Maskin [7], Macho-Stadler, Pérez-Castrillo and

Wettstein [6] and de Clippel and Serrano [3]. It should be noted that other solution concepts in

cooperative game theory identify outcomes that are reasonable in a di¤erent sense, that might

be roughly described as ex post plausibility: i.e. outcomes that are not �blocked� or that con-
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stitute equilibria of speci�c bargaining processes. This approach has also been applied to games

in partition function form: important contributions include Ray and Vohra [13] and Bloch [2].

Extension to the wider class of games in partition function form is just one kind of elabora-

tion on the Shapley value; a novelty in the approach taken by this paper lies in simultaneous

consideration of a second kind of elaboration. The well-established Owen value, or coalition

structure value [5, 10] assigns, to each game that is adequately represented by a characteristic

function, a utility outcome for each pair comprising a player and a partition of all the players,

and these utility outcomes are interpreted as the expected or rightful utilities associated with

playing a game where some prior coalition structure exists. A less re�ned version of the Owen

value that assigns, to each game that is adequately represented by its characteristic function, a

utility outcome for each embedded coalition (by summing over the Owen values of the players

belonging to the embedded coalition) has sometimes been referred to (see for example [4]) as

the generalized Shapley value. Extending the generalized Shapley value to games in partition

function form gives us an elegant function that transforms one partition function (that which

associates payo¤s with embedded coalitions: the game) into another (which associates outcomes

with embedded coalitions: the �extended, generalized value� of the game). We suppose, in

e¤ect, that the underlying event is to be preceded by �play� : an unspeci�ed process (which

we can view as an expected, or alternatively as a rightful process) of bargaining, arbitration, or

allocation. The game itself describes the underlying event, and its extended, generalized value

describes (in toto) the combination of the underlying event and the precedent process; both

descriptions take the same, partition function, form.

Though there is a reasonable consensus in recent literature that an extended Shapley value

should satisfy the original Shapley axioms and also that it should be weakly monotonic (players�

outcomes should be non-decreasing in payo¤s to embedded coalitions to which they belong), even



6

once these requirements are met the class of candidate values remains quite large. Extending the

generalized value gives us a way of narrowing the class to one. It turns out that the axioms that

generate the Owen value already also characterize a generalization of any prospective extended

value. Furthermore, since the generalized value itself comprises a partition function, there is a

very natural requirement - which I shall call recursion - that we would want to impose on it: if

one partition function is the extended, generalized value of some other, then it should also be

the extended, generalized value of itself. An �extended, generalized value� that is not recursive

cannot be regarded as a �solution.� The main theorem in this paper isolates a single candidate

for the extended Shapley value by requiring that its generalization has the recursion property.

By way of an example consider Game 1 in Figure 1: it is a unanimity game involving three

players (a, b and c), which has been perturbed by reducing b�s payo¤ to minus one in the

eventuality that no coalitions form. A prospective extension of the Shapley value to games in

partition function form must assign, to this game, outcomes for a, b and c subject to the proviso

that there are no �prior� coalitions; in essence, it must determine how b�s outcome should be

a¤ected by the perturbation of the symmetric game. The shaded cells in the �outcome� column of

Game 1 are the outcomes that are assigned by the extended value originally proposed by Myerson

[8], which is one out of many candidate values that satisfy the original Shapley axioms. If the

prospective value is also generalized, then it also assigns outcomes for the remaining embedded

coalitions, where these outcomes are interpreted to be the (expected or rightful) utilities assigned

to members of an a priori coalition structure. In Figure 1, I follow the well established approach

of Owen [10] and Hart and Kurz [5] that treats embedded coalitions approximately as if they

were individual, indivisible players: this means that any a priori structure of two coalitions splits

the remaining surplus in half. But there are two problems with the resulting outcomes. The �rst

problem is that b�s outcome - where there are no prior coalitions - is higher than that of a or c.
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Game 1 Game 2
Coalition Partition

Payoff Outcome* Payoff Outcome*

{{a},{b},{c}} 0
1

6

1

6

5

12
{a}

{{a},{b,c}} 0
1

2

1

2

1

2

{{a},{b},{c}} -1
2

3

2

3

1

6
{b}

{{a,c},{b}} 0
1

2

1

2

1

2

{{a},{b},{c}} 0
1

6

1

6

5

12
{c}

{{a,b},{c}} 0
1

2

1

2

1

2

{a,b} {{a,b},{c}} 0
1

2

1

2

1

2

{a,c} {{a,c},{b}} 0
1

2

1

2

1

2

{b,c} {{a},{b,c}} 0
1

2

1

2

1

2

{a,b,c} {{a,b,c}} 1 1 1 1

(*generalization of Myerson [8])

Figure 1. Two example games in partition function form, with outcomes generated by the

generalization of a prospective extension of the Shapley value.

It is very di¢cult to see why b should do better in this game than in the symmetric, unanimity

game: my contention here (in common with authors of other recent papers listed above) is that,

if anything, it should do worse. The second problem emerges when we look at Game 2, the

payo¤s of which are the outcomes from Game 1. The outcomes that are assigned to the Game

2 (by again using Myerson values) deviate from those assigned to Game 1. My contention in

this paper is that a property of any solution concept should be that - once a solution is found -

solving the solution should not change it.

The Weak Monotonicity axiom (which is common to many recent papers) eliminates candidate

values that exhibit the ��rst problem� above, and the Recursion axiom (which is original to this

paper) eliminates those that exhibit the �second problem�.
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The �rst theorem in the paper derives the established approach to generalization - which will

be termed The Rule of Generalization - directly from two axioms (Cohesion and Generalized Null

Player) that recollect the axioms of Owen and Hart and Kurz. The second (and main) theorem

in the paper characterizes an extended and generalized Shapley value using the conventional

E¢ciency, Symmetry, Null-Player, and Linearity axioms together with Weak Monotonicity,

The Rule of Generalization and Recursion. This value assigns symmetrical outcomes to a, b,

and c in the game depicted in Figure 1, and more generally it omits from consideration all but

the payo¤s to the coarsest partition containing any coalition.

The paper also includes further results, which corroborate the Extended, Generalized Shapley

Value that has been singled out by the axioms. These results can be viewed as tentative

indications that the Extended, Generalized Shapley Value shares some of the properties of

tractability and robustness that make the Shapley value itself so useful.

The Shapley value of a game is often conceptualized as the expected outcome to each player

if the players were to arrive at a meeting point in a random order and to each receive the

marginal payo¤ that their addition brings to the coalition of those players who arrived ahead.

The Extended Shapley Value proposed here can be conceptualized in the same way, provided we

suppose that this marginal payo¤ is calculated by assuming there are only two coalitions: one

of the players who have arrived, and another of those who have not. Since this proviso seems

somewhat ad hoc, I propose an alternative conceptualization. Suppose the �underlying event�

is preceded by a number of time periods and that in each time period two existing coalitions

are chosen at random to coalesce, with the �gain from coalescence� (which in fact might be

negative) split equally between the two. The third theorem in this paper establishes that as

the number of time periods becomes large, the partition function that encompasses both the

underlying event and the precedent time periods tends to the Extended, Generalized Shapley
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Value that was singled out by the axioms.

Finally, it seems natural to consider, in the case of previously proposed extensions to the

Shapley Value, how the type of process introduced above in Figure 1 ends. If we again suppose

that the �underlying event� is preceded by a number of time periods, but this time that each

time period e¤ects a transformation on the partition function that corresponds with the value

proposed by Myerson [8] in conjunction with The Rule of Generalization then as the number of

time periods is increased, the outcome to b changes in accordance with a sequence that begins

�
2
3 ;
1
6 ;

5
12 ; :::

	
: If we use the value proposed by Pham Do and Norde [11] then we generate a

sequence beginning
�
0; 16 ;

1
4 ; :::

	
, and if we use the value proposed by Potter [12] or by Macho-

Stadler, Pérez-Castrillo and Wettstein [6] we generate then we generate a sequence beginning

�
1
6 ;

7
24 ;

31
96 ; :::

	
. All of these sequences converge, and they share a common limit: the outcome

of 13 that is assigned to b by the Extended, Generalized Shapley Value, that has been proposed

here. The fourth theorem in this paper generalizes this �nding to all games and all candidate

extended Shapley values that ful�l the four conventional Shapley axioms and a less intuitive but

no less compelling alternative to the Weak Monotonicity condition.

The organization of the paper is as follows. In the next section, I formalize the key concepts in

the paper. The �rst and second of the theorems described above are presented and interpreted in

section 3. In section 4, I establish the alternative conceptualization of the Extended, Generalized

Shapley Value (Theorem 3) described above. In section 5, I set out the extensions of the Shapley

value that have been proposed previously in the literature. I show (Theorem 4) that wherever

any one of the previously proposed extended values can be represented by a closed form equation

then, when generalized, besides not proving recursive, it iterates to the Extended, Generalized

Shapley Value. Proofs of the theorems, together with examples that establish independence of

the axioms, are provided in the appendix.
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2. Preliminaries

2.1. Games

Let N denote a �nite set of players and V the set of all mappings v : 2N ! R with v(;) = 0.

We refer to v 2 V as a transferable utility (TU) game in characteristic function form, on N . We

de�ne the set � to be the set of all partitions of N . It should be noted that fNg and ffigi2Ng

are both elements of � ; the �rst is the grand coalition, and the second is the �nest partition

and shall henceforth be written [N ]. We de�ne M , sometimes referred to as the set of embedded

coalitions, to be the set f(I; �) : � 2 � ; I 2 �g; and W to be the set of all mappings w : M ! R

with I = ; ! w(I; �) = 0. We refer to w 2 W as a transferable utility (TU) game in partition

function form, on N . In this paper the term �game,� unless otherwise quali�ed, shall mean a

TU game in partition function form.

2.2. Types of Game

It will be convenient to refer later to two subsets of W .

Shubik [17] coined the term �c-games� to describe games that are adequately represented

by their characteristic functions, and we shall use the term here in a closely-related way. Let

W c �W comprise all w 2W such that for some v 2 V , w is de�ned by w(I; �) = v(I). A c-game

on N is an element of W c. We refer to v 2 V such that w 2W c is de�ned by w(I; �) = v(I) as

the correspondent element in V to w.

All games on N can be constructed by a linear combination of games which shall be referred

to here as ��-games.� Let W � � W comprise all w 2 W such that for some (J; �0) 2 M , w is

de�ned by w(I; �) = 1 where (I; �) = (J; �0), 0 otherwise. A �-game on N is an element of W �.

We write w�(J;�0) to denote w 2W
� de�ned by w(I; �) = 1 where (I; �) = (J; �0), 0 otherwise.
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2.3. Value Concepts

We shall depart somewhat from convention in the way that we denote a �value�, though not in

the meaning that we ascribe to the term. � shall always denote a mapping from W to W that is

referred to as an extended, generalized value. If w is an element ofW then �(w) is also an element

of W , so (where (I; �) is an embedded coalition) w(I; �) and �(w)(I; �) are two real numbers

of which w(I; �) is interpreted as the utility payo¤ prescribed to coalition I given partition

� in the game w, and �(w)(I; �) is interpreted as the (expected or rightful) utility outcome

associated with coalition I whenever � is the coalition structure prior to playing the game w.

Formally, a mapping is a set of ordered pairs, so we can write � � f(w;�(w)) : w 2 Wg: This

notation enables us to think of generalized values (such as that of Gul [4] - which is a less re�ned

version of Owen [10] and Hart and Kurz [5]), extended values (such as those of Myerson [8],

Bolger [1], Potter [12], Pham Do and Norde [11], Maskin [7], Macho-Stadler, Pérez-Castrillo

and Wettstein [6] and de Clippel and Serrano [3]) and standard values (such as the original

Shapley value itself [15]) as more restricted sets of ordered pairs. A generalized value becomes

f(w;�(w)) : w 2 W cg, or �jW c . Given w 2 W , L � M , let �(w)jL denote the restriction of

�(w) to L �M : so �(w)jL is a mapping from L to R de�ned by 8� 2 L; �(w)jL (�) = �(w)(�).

Note that f(fig; [N ]) : i 2 Ng �M is the set of embedded coalitions comprising singletons and

the �nest partition. An extended value then becomes f(w; �(w)jf(fig;[N ]) : i2Ng) : w 2 Wg, and

a standard value becomes f(w; �(w)jf(fig;[N ]) : i2Ng) : w 2W
cg:

2.4. Carriers and Null-Players

The complementary notions of carrier sets and null-players are well established for games in

characteristic function form. Here, we extend these notions to games in partition function form.

We shall say that K � N is a carrier of w 2 W if and only if 8(I; �); (J; �0) 2 M; I \ K =

J \ K; f(L \ K)L2�g = f(L \ K)L2�0g ! w(I; �) = w(J; �0). We shall say that i 2 N is a
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null-player in w 2 W if and only if Nnfig is a carrier of w. These de�nitions are consistent

with the de�nitions used by Bolger [1] and Macho-Stadler, Pérez-Castrillo and Wettstein [6];

it should be noted that alternative de�nitions have been proposed by Myerson [8], Potter [12],

and Pham Do and Norde [11] and that these alternatives class additional sets as �carriers,� or

additional players as �null� and thereby strengthen axioms that a¤ect carriers or null-players -

I discuss this point further in section 5 below.

3. The Extended, Generalized Shapley Value

3.1. Axiomatic Derivation of an Extended, Generalized Shapley Value

Our �rst four axioms are familiar variants of the original Shapley [15] axioms, except that

Linearity will be used here instead of �additivity� (the conventional �additivity� axiom entails

4(i) alone); but they are extended to bear upon games in partition function form. All axioms in

the paper are assumed to prevail for all w;w0 2W , and all j 2 N .

Axiom 1 (E¢ciency)
P
i2N �(w) (fig ; [N ])

Let P denote the set of permutations of N , and given � 2 P , J � N , � 2 � , w 2 W ; we

de�ne �J to be the image under � of J ; we de�ne �� 2 � to be the set f(�I)I2�g; and we de�ne

�w 2W by �w(�J; ��) = w(J; �).

Axiom 2 (Symmetry) 8� 2 P , �(�w) (f�(j)g ; [N ]) = �(w)(fjg; [N ])

Axiom 3 (Null-Player) If j is a null-player in w, then �(w)(fjg; [N ]) = 0

Axiom 4 (Linearity) (i) �(w + w0)(fjg; [N ]) = (�(w) + �(w0))(fjg; [N ])

(ii) 8 2 R, �(w)(fjg; [N ]) = �(w)(fjg; [N ])

Similar extensions of the original Shapley axioms are common to all previous �extensions� of

the Shapley value, except that of Maskin [7] who argues that E¢ciency, for example, should not
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be assumed when games have externalities. I retain the conventional approach, on the grounds

that the Shapley Value is used primarily as a normative solution concept and that there seems

no reason to suppose that the normative arguments for Axioms 1-4(i) hold only for c-games.

The implicit supposition in the E¢ciency axiom that w(N; fNg) = max�2�
P
I2��(w)(I; �) is

often posited as arising from a superadditivity assumption that was present in von Neumann

and Morgenstern [9] and that has commonly been retained since. Though superadditivity seems

reasonable for c-games, it is less so for games in which coalescence can generate positive exter-

nalities: for example, it is well known (see [14]) that where three or more �rms are engaged

in Cournot competition then coalescence (or merger) between any two �rms can be to their

disadvantage in so far as the increased total producer surplus is less than the positive exter-

nality that is enjoyed by �rms that are not parties to the merger. But the assumption that

w(N; fNg) = max�2�
P
I2��(w)(I; �) is in itself much weaker than superadditivity, and is no

less reasonable with regard to games with externalities - such as the Cournot game - than with

regard to c-games, since where the grand coalition arises from any prior partition of the players

there are no remaining parties to whom externalities can be spilled. At the point where the grand

coalition is formed, externalities to coalescence are necessarily internalized. It should therefore

be emphasized that where Maskin [7] drops the E¢ciency axiom it is not because he believes

the grand coalition is less likely to be e¢cient in the presence of externalities to coalescence, but

it is because he believes the grand coalition is less likely to form. Elsewhere (for example, [6]),

E¢ciency is sometimes imposed as part of the de�nition of a �solution� or of a �value�.

While the second part of Axiom 4 is redundant in the characterization of the (standard)

Shapley value, Macho-Stadler, Pérez-Castrillo and Wettstein [6] show that it is not redundant in

the characterization of an extended value. However, it is hard to imagine - bearing in mind that

Axiom 4(i) alone implies 8 2 Q, �(w)(fjg; [N ]) = �(w)(fjg; [N ]) - any intuitive justi�cation
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for Axiom 4(i) (�additivity�) that does not also encompass Linearity and therefore also Axiom

4(ii).

We now de�ne the Shapley Value.

De�nition 1 (Shapley Value) f(w; �(w)jf(fig;[N ]) : i2Ng) : w 2 W cg is the Shapley Value if

and only if 8i 2 N;8w 2W c;

�(w)(fig; [N ]) =
X

S�N

(jSj � 1)!(jN j � jSj)!

jN j!
(v(S)� v(Snfig))

where v is the correspondent element in V to w.

We know (see [15]) that if � satis�es E¢ciency, Symmetry, Null-Player, and Linearity, then

f(w; �(w)jf(fig;[N ]) : i2Ng) : w 2W
cg is the Shapley Value. We also know (see [6]) that the same

four axioms do not su¢ce to uniquely determine f(w; �(w)jf(fig;[N ]) : i2Ng) : w 2Wg:

The next axiom entails that if some game would be a �null-game� except that there is one

coalition which in the context of one particular partition obtains a positive payo¤ (= 1), then

the outcome to members of that coalition should not be less than zero. If Linearity holds then

Axiom 5 is equivalent to the �coalitional monotonicity� axiom described by Young [19] whereby

�an increase in the value of a particular coalition implies, ceteris paribus, no decrease in the

allocation to any member of that coalition.� (p. 68). This, as Young (citing [16]) observes, is

a necessary property for any value that is to be used in problems such as cost assignment in a

�rm without creating perverse incentives.

Axiom 5 (Weak Monotonicity) 8(I; �) 2M; i 2 I ! �(w�(I;�))(fig; [N ]) > 0

Several of the more recently proposed extensions of the Shapley value cite Myerson�s [8] con-

travention of Weak Monotonicity as a motivation for readdressing the extension of the Shapley

value to games in partition function form.
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It should be emphasized that Axioms 1-5 bear only on the outcomes assigned to individuals

in the �nest partition (i.e. f(w; �(w)jf(fig;[N ]) : i2Ng) : w 2 Wg). The remaining axioms bear

more generally on �.

The following axiom prescribes a generalized value from any standard value. The Rule of

Generalization entails, for any partition that is coarser than [N ], treating one member of each

coalition as its �representative,� treating all other players as null, and assigning to each coali-

tion the outcome that is assigned to its representative in the game that is thereby created on

representatives and Null-Players.

Given � 2 � , let �� denote the set of injective mappings from � to N such that 8S 2 �,

� 2 �� ! �(S) 2 S. Given � 2 ��, we de�ne �� to be the image under � of �, and we de�ne

�w 2W by �w(J; �0) � w(
S
i2(J\��)�

�1(i); f(
S
i2(S\��)�

�1(i))S2�0g).

Axiom 6 (The Rule of Generalization) 8(I; �) 2M;8� 2 ��; �(w)(I; �) = �(�w)(�(I); [N ])

Owen�s �value of a game with a priori unions� [10] - also known as the Coalition Structure

Value [5] - entails The Rule of Generalization and goes further, in that it apportions the outcome

assigned to an embedded coalition between the members of that coalition. Owen�s value has

been so widely accepted that a �Generalized Shapley Value� formula (consistent with De�nition

2 below) is sometimes adopted without further justi�cation (see especially [4]). Our �rst theorem

(below) establishes that The Rule of Generalization is on its own weaker than the conjunction

of two axioms (closely related to the axioms used by Owen [10] and by Hart and Kurz [5]) that

have their own intuitive appeal.

The �rst of these axioms is Cohesion; it entails that, once some partition of players has formed,

dissolute partitions - coalition structures that entail one or more existing coalition breaking up

- become irrelevant. Put more precisely: in the following axiom we suppose that the outcome

to an embedded coalition depends only on the payo¤s to embedded coalitions that do not entail
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dissolute partitions. Given � 2 � , we de�ne the set of embedded coalitions entailing non-

dissolute partitions from �, M� = f(J; �0) 2M : 8I 2 �;8I0 2 �0; I0 \ I 6= ; ! I � I0g.

Axiom 7 (Cohesion) 8(I; �) 2M; (8� 2M�; w(�) = w0(�))! �(w)(I; �) = �(w0)(I; �)

If we are to ascribe any meaning to a priori coalitions at all, then we must assume that they

cohere to some extent: in other words, we cannot suppose that coalitions dissolve at the out-

set of bargaining, allocation, or arbitration and simply set 8w 2 W;8(I; �) 2 M;�(w)(I; �) =

P
i2I �(w)(fig; [N ]). Given this constraint, then the Cohesion axiom represents the natural (op-

posite) position to take: we suppose that coalitions will stay together and therefore in assigning

outcomes between coalitions that are presently formed we do not consider payo¤s to embedded

coalitions that entail such coalitions breaking up. The Cohesion axiom is used by Owen [10] (it is

his Axiom A3) and reappears as the slightly weaker �Inessential Game� axiom in Hart and Kurz

[5]; the Inessential Game axiom imposes 8(I; �) 2 M; (8� 2 M�; w(�) = 0) ! �(w)(I; �) = 0:

In the context of other axioms the Inessential Game axiom quickly entails the present Cohesion

axiom, the transparency of which is preferred here.

The next axiom entails the Null-Player axiom, plus a requirement that null-players are strate-

gically irrelevant: an a priori coalition neither gains nor loses nor a¤ects other coalitions by

merging with a null-player.

Axiom 8 (Generalized Null-Player) If j is a null-player in w, then j is a null-player in

�(w)

The original Null-Player axiom has an important function: it enables us to concentrate our

analysis on any carrier set instead of having to worry about which players matter, or having to

worry about a whole universe of players. If this advantage is to be carried over to generalized

values, then we require the Generalized Null-Player axiom to hold. The Generalized Null-Player
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axiom is also incorporated into the axiom systems of Owen [10] and Hart and Kurz [5] - where

it is incorporated, with E¢ciency, into the �Carrier� axiom.

We can now state our �rst theorem and its corollary.

Theorem 1 � satis�es both Cohesion and Generalized Null-Player if and only if � satis�es both

Null-Player and The Rule of Generalization.

Theorem 1 is proved in the appendix.

De�nition 2 (Generalized Shapley Value) �jW c is the Generalized Shapley Value if and

only if 8(I; �) 2M;8w 2W c;

�(w)(I; �) =
X

T��

(jT j � 1)!(j�j � jT j)!

j�j!

 

v

�
S

A2T

A

�
� v

 
S

A2(TnfIg)

A

!!

where v is the correspondent element in V to w.

Corollary 1 If � satis�es E¢ciency, Symmetry, Linearity, Cohesion, and Generalized Null-

Player, then �jW cis the Generalized Shapley Value.

The �nal axiom in our system entails that � does indeed �solve� (we could say �resolve�) the

underlying game. If one game is the �solution� of another, then �solving� the solution does not

change it. We call this property Recursion.

Axiom 9 (Recursion) �(�(w)) = �(w)

The Recursion axiom is the only axiom being proposed here that is not widely used else-

where, but it is perhaps the easiest of all to justify. The generalized value of a game is, itself,

a game in partition function form. It is, as was noted in the introduction, a transformation of

the original game that encompasses both the underlying event that the original game describes

and the process of (expected or rightful) bargaining, arbitration, or allocation that precedes it.
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Our axioms are supposed to describe characteristics of a (positively or normatively) reasonable

process, and the transformed game is supposed to represent a �solution� (we could say a �reso-

lution�) of the underlying game. If a generalized value is not recursive then we are making the

very di¢cult claim that one �round,� or �iteration,� of a bargaining, arbitration, or allocation

process is reasonable (either positively or normatively), while two rounds of the same process

are not. A process does not �solve� (or �resolve�) the underlying event unless reapplications of

the same process are nugatory; so an �extended, generalized value� is not really a �solution�

concept at all unless it satis�es Recursion.

We can now state our second (and main) theorem and its corollary.

De�nition 3 (Extended, Generalized Shapley Value) � is the Extended, Generalized Shap-

ley Value if and only if 8(I; �) 2M;8w 2W;

�(w)(I; �) =
X

T��

(jT j � 1)!(j�j � jT j)!

j�j!

 

v

�
S

A2T

A

�
� v

 
S

A2(TnfIg)

A

!!

where v 2 V is de�ned by v(S) = w(S; f(NnS); Sg).

Theorem 2 � satis�es E¢ciency, Symmetry, Linearity, Weak Monotonicity, Cohesion, Gen-

eralized Null-Player, and Recursion (or, equivalently, E¢ciency, Symmetry, Null-Player, Lin-

earity, Weak Monotonicity, The Rule of Generalization, and Recursion) if and only if � is the

Extended, Generalized Shapley Value.

Theorem 2 is proved in the appendix.

De�nition 4 (Extended Shapley Value) f(w; �(w)jf(fig;[N ]) : i2Ng) : w 2 Wg is the Ex-

tended Shapley Value if and only if 8i 2 N;8w 2W;

�(w)(fig; [N ]) =
X

S�N

(jSj � 1)!(jN j � jSj)!

jN j!
(v(S)� v(Snfig))

where v 2 V is de�ned by v(S) = w(S; f(NnS); Sg).
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Corollary 2 If � satis�es E¢ciency, Symmetry, Null-Player, Linearity, Weak Monotonicity,

The Rule of Generalization, and Recursion, then f(w; �(w)jf(fig;[N ]) : i2Ng) : w 2 Wg is the

Extended Shapley Value.

3.2. Interpretation of Theorem 2

The Extended, Generalized Shapley Value of any w 2W equates to the Generalized Shapley

Value of a c-game, w� 2 W c where w� is obtained by assigning, for all (I; �) 2 M , w�(I; �) =

w(I; f(NnI); Ig). It therefore excludes from consideration the payo¤s to embedded coalitions

that entail partitions of more than two coalitions. This exclusion is forced on us by axioms that

do not seem, in any obvious way, to pre�gure it.

It should be emphasized that it is not my intention in this paper to suggest that the detail

that is excluded from consideration is in any general sense redundant: this detail is very likely

to be relevant to more descriptive solution concepts, or to solution concepts that encompass

di¤erent sets of normative principles. Instead, I am making the milder claim that the payo¤s to

embedded coalitions that entail partitions of more than two coalitions should or would be ignored

in a process of bargaining, allocation, or arbitration that encompasses the sort of normative

principles re�ected speci�cally in the Shapley value solution.

4. A Procedural Account of the Extended, Generalized Shapley Value

Shapley [15] provided the following procedural account of his value: it is the expected value

outcome to each player, if the players are to arrive at a meeting point in a random order and

to each receive the marginal payo¤ that their addition brings to the coalition of those players

who arrived ahead. Though the procedure is purely mechanistic (in contrast to modern non-

cooperative bargaining models such as that of Gul [4]) it nevertheless provides a useful way of

conceptualizing the value. It is helpful to be able to consider the reasonableness of axioms as
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properties of (expected or rightful) bargaining, arbitration or allocation alongside at least one

procedure that we know ful�ls the axioms.

It is straightforward to generalize Shapley�s procedure to situations with a priori coalitions

- the generalization just entails constraining the order of arrival so that members of any pre-

existing coalition arrive consecutively (see [5]) - but a di¢culty arises in extending the procedure

to the wider class of games in partition function form. In order to calculate the �marginal payo¤�

that a player brings to some coalition, some assumption has to be made about the coalitional

con�guration of players outside. We obtain the Extended Shapley Value (above) by assuming

that the outside players are all coalesced together, so the �marginal payo¤ that the addition of

i brings to C� is v(C [ fig) � v(C) where v 2 V is de�ned by v(S) = w(S; f(NnS); Sg). Since

this assumption is ad hoc, and also since it directly pre�gures the distinctive property of the

Extended Shapley Value, it is somewhat unsatisfactory.

An alternative procedure - a simpli�ed, mechanistic version of the bargaining procedure pro-

posed by Gul - avoids the need for any ad hoc assumption: we can view the Shapley value, its

generalization and its extension, as the expected value outcome to each player (or coalition)

if the players (or coalitions) are to engage in a su¢ciently long process of successive bilateral

amalgamations. Suppose that w0 2 W describes an �underlying event,� and then suppose that

this event will be preceded by a time period (�one round of bargaining�) in which two existing

coalitions will be chosen at random to coalesce with the �gain from coalescence� (which in fact

might be negative) split equally between the two. We use w1 2 W to describe (in toto) the

combination of w0 and the round of bargaining: i.e. each w1(I; �) is an expected value outcome

to coalition I, given an existing coalition structure �, if there is going to be one round of bar-

gaining followed by a payo¤ according to the �nal coalition structure and w0. More generally we

use wt 2W to describe the combination of wt�1 and one round of bargaining, so, 8(I; �) 2M;
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wt(I; �) �
1

j�j (j�j � 1)

0

@
X

J;K2�nfIg

wt�1 (I; (�nfJ;Kg) [ fJ [Kg)

+ 2
X

J2�nfIg

�
wt�1(I; �) +

(wt�1(I[J;(�nfI;Jg)[fI[Jg)�wt�1(J;�)�wt�1(I;�))
2

�
1

A :

wt then describes (in toto) the combination of w0 and t rounds of bargaining. It transpires

that as t becomes large, wt tends to the Extended, Generalized Shapley Value.

Theorem 3 8w0 2W; limt�!1 wt is the Extended, Generalized Shapley Value of w0:

Theorem 3 is proved in the appendix.

The alternative procedure (Theorem 3) demonstrates that the elimination from consideration

of payo¤s to embedded coalitions entailing partitions that contain more than two elements,

besides arising from axioms that in no way seem to pre�gure it, arises also from reasonable

procedures that do not seem to pre�gure it either. It can be tentatively viewed as evidence that

the Extended, Generalized Shapley Value shares some of the robustness of the original Shapley

Value. Another corroboration of the Extended, Generalized Shapley Value emerges at the end

of the next section.

5. Alternative Extensions of the Shapley Value

5.1. Previous extensions of the Shapley value

Thrall and Lucas [18] originally proposed the partition function representation; [13] and [6,7]

are important recent papers that make a case for its usefulness. In addition to the last two of

these, [1,3,8,11,12] propose extensions of the Shapley Value to games in partition function form.

In this section I consider the previously proposed extensions.

Maskin�s [7] approach to �solving� a game in partition function form stands somewhat apart

from both this and other previous papers. Maskin argues that it is inappropriate to impose
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E¢ciency on the solution of games in which coalescence has positive externalities - so he departs

even from Axioms 1-4(i) above. His solution is in e¤ect obtained as an expected value outcome of

a procedure that adds an extra dose of reality to the original procedural conceptualization of the

Shapley Value described in the �rst paragraph of section 4 above. On arriving at a meeting point

a player can choose either to accept the highest bid from coalitions already formed at the point, or

to remain independent and to bid against the existing coalitions in order to attract supervenient

players as they arrive. Because existing coalitions bid strategically and simultaneously, there

are some underlying games with non-unique outcomes. In this sense, and also since it is neither

e¢cient nor additive, Maskin�s solution - while it coincides with the Shapley Value for c-games

- cannot be accorded the normative interpretation that is more usually accorded to the Shapley

Value itself.

Bolger [1] and Macho-Stadler, Pérez-Castrillo and Wettstein [6] take more conventional ap-

proaches: they each add, to the standard Shapley axioms, axioms that impose equivalent out-

comes in situations that look (from particular standpoints) as if they present individuals with

equivalent bargaining power.

Given � 2 � , let �(j) denote the coalition in � to which j 2 N belongs and let �Ij 2 �

denote the partition formed from � by moving j from �(j) to I. Bolger demonstrates that if, in

addition to requiring that � satis�es Axioms 1-4, we also require, given w;w0 2 W and j 2 N

that �(w)(fjg; [N ]) = �(w0)(fjg; [N ]) whenever 8� 2 � ;

P
I2(�nf�(j)g)(w(�(j); �)�w(�(j)nfjg; �

I
j )) =

P
I2(�nf�(j)g)(w0(�(j); �)�w0(�(j)nfjg; �

I
j )) (which

is to say that for every partition, the sum of the consequences for the coalition to which i be-

longs of i leaving to join another coalition is the same in w and w0), then we obtain an extended

value. Bolger does not make the case for his additional requirement for circumstances other than

�monotonic, simple� games, though his result only arises once the requirement prevails upon a
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broader class of games. His additional requirement entails, for example, (where N = fa; b; cg)

�(w�(fa;bg;ffa;bg;fcgg))(fag; [N ]) = �(�2w�(fbg;ffa;cg;fbgg))(fag; [N ]), which - though it would be a

plausible property to uncover - is a signi�cant imposition. Bolger�s value then has the inconve-

nient property that when a null-player is added to the set of players, the outcomes to existing

players change: so in any given situation the outcomes depend on which null-players are players,

and which are not.

Macho-Stadler, Pérez-Castrillo andWettstein demonstrate that if, in addition to requiring that

� satis�es Axioms 1-4, we require for all (I; �) 2M and for all i; j 2 NnI, �(w�(I;�))(fig; [N ]) =

�(w�(I;�))(fjg; [N ]), and if we also require for all (I; �); (I; �0) 2M that fi; jg 2 �; ffig; fjgg 2 �0;

and (�nffig; fjgg) = (�0nffi; jgg) imply �(w�(I;�))(fig; [N ]) = �(w�(I;�0))(fig; [N ]) and

�(w�(I;�))(fjg; [N ]) = �(w
�
(I;�0))(fjg; [N ]), we then obtain an extended value. The �rst require-

ment turns Symmetry into �Strong Symmetry� and narrows the class of prospective values to

those - such as the Extended Shapley Value proposed here - that equate the value of any w 2W

to the Shapley value of a c-game, w� 2 W c, obtained by assigning each coalition a weighted

average (with the weights themselves constrained by Symmetry and Null-Player) of its payo¤s

in w across partitions of the other players. The second requirement - �Similar In�uence� - is

not ful�lled by the Extended Shapley Value proposed here.

In the presence of the E¢ciency axiom, the Null-Player axiom is a necessary (though, as

Bolger demonstrates, not su¢cient) criterion to absolve the game theorist of the problem of

deciding who counts as a �player.� Furthermore, it seems intuitively defensible that a player

whose position in the coalition structure is irrelevant to payo¤s in the underlying event should

be assigned a value of zero. But several extensions of the Shapley Value are obtained by classing

more sets as �carriers,� or more players as �null,� than either necessity or intuition warrant.

Myerson [8] demonstrated that if we treat S � N as a carrier of w 2 W whenever 8(J; �) 2
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M;w(J; �) = w(J \S; f(L\S)L2�g[f(L\(NnS))L2�g), and then if we impose Axioms 2 and 4,

and use (as Shapley did) a �carrier e¢ciency� axiom in place of Axioms 1 and 3, we then obtain

an extended value. Consider a pure externality game, w�, on N = fa; b; cg where in which a

payo¤ of 1 accrues to a if b and c coalesce: i.e. w� = w�(fag;ffag;fb;cgg) + w
�
(fa;b;cg;ffa;b;cgg). By

the de�nition given in section 2 above, the only carrier of w� is fa; b; cg, but Myerson requires

us to treat fag (though, it might be noted, not fa; bg) as a carrier of w�and therefore to assign

�(w�)(fag; ffag; fbg; fcgg) = 1. This is a strong imposition as it is not obvious that a is in as

strong a position in w�as in, for example, a �unanimity game� whereby a payo¤ of 1 accrues to

those embedded coalitions that contain a, and of 0 to those that do not. Myerson�s extended

value has some counter-intuitive properties: for example, it is not weakly monotonic.

In a similar vein, Potter [12] and Pham Do and Norde [11] obtain extended values by classing

additional players as �null.� If N = fa; b; cg then for Pham Do and Norde all three players

are null in w�(fag;ffag;fb;cgg), while for Potter all three players are null in (w
�
(fag;ffag;fbg;fcgg) �

w�(fag;ffag;fb;cgg)). These impositions strongly pre�gure the extended values that Potter and Pham

Do and Norde respectively obtain.

Pham Do and Norde�s value counterpoints the Extended Shapley Value by equating (for any

w 2W ) to the Shapley value of a c-game (w� 2W c) that is obtained by assigning each coalition

its payo¤ in w where the external players are arranged as singletons. The same value emerges

in de Clippel and Serrano [3]. De Clippel and Serrano develop Young�s ( [19]) marginality

axiomatization of the Shapley value so that it can be applied to games in partition function

form: the Linearity and Null-Player axioms are dropped and replaced by progressively stronger

versions of �Marginality�.
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5.2. Convergence to the Extended, Generalized Shapley Value

It is easy to check that if we derive � by using any of the extended values in section 5.1

in conjunction with The Rule of Generalization then we contravene Recursion: i.e. for some

w 2 W; �(w) 6= �(�(w)). It is therefore natural to ask the following: if � ful�lls the original

Shapley axioms and the Rule of Generalization, but if � does not necessarily ful�ll either Weak

Monotonicity or Recursion, then, de�ning �t by �1 = �; and �t(w) = �(�t�1(w)), what happens

to the sequence f�tg
1
t=0? It turns out that, subject to a magnitude constraint on �(w

�
(I;�))(I; �),

the sequence converges, and moreover, in its limit is Weakly Monotonic with respect to the un-

derlying game; it also preserves the original axioms, so limt�!1 �t is the Extended, Generalized

Shapley Value. The following theorem formalizes this.

Theorem 4 De�ne �t by �1 = �; and �t(w) = �(�t�1(w)) for any positive integer t. If �

satis�es E¢ciency, Symmetry, Linearity, Cohesion, and Generalized Null-Player (or, equiva-

lently, E¢ciency, Symmetry, Null-Player, Linearity, and The Rule of Generalization) and if for

all (I; �) 2 M , j�j > 2 implies � j�j�1
j�j < �(w�(I;�))(I; �) <

j�j�1
j�j then f�tg

1
t=0 converges and

limt�!1 �t is the Extended, Generalized Shapley Value.

Theorem 4 is proved in the appendix.

Theorem 4 provides an additional corroboration of the Extended, Generalized Shapley Value.

Candidate extensions of the Shapley Value have tended to ful�ll the magnitude constraint, in

Theorem 4, on �(w�(I;�))(I; �). For example, the extended values proposed by [3,6,8,11,12] can

all be represented by straightforward formulae, and it is easy to check that if we derive � by using

any of these extended values in conjunction with The Rule of Generalization, then the constraint

holds. So, by Theorem 4, if one round or iteration of a bargaining, arbitration or allocation

process implements � de�ned by the generalization of any of these candidate extensions of the

Shapley Value then further iterations of the same process implement an extended, generalized
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value that converges eventually to the Extended, Generalized Shapley Value.

A. Appendix

A.1. Proof of Theorem 1

It is obvious that Generalized Null-Player implies Null-Player, and that The Rule of Gen-

eralization implies Cohesion. I show �rst that Cohesion and Generalized Null-Player together

imply The Rule of Generalization. Consider any (I; �) 2 M , w 2 W , and � 2 ��. Note that,

8� 2 M�, w(�) = �w(�); so by Cohesion, �(w)(I; �) = �(�w)(I; �). Also note that �� is a

carrier in �w; and that by Generalized Null-Player any carrier in �w must also be a carrier in

�(�w). I\�� = �(I), and f(L\��)L2�g = f(L\��)L2[N ]g, so �(�w)(I; �) = �(�w)(�(I); [N ]).

I show second that Null-Player and The Rule of Generalization together imply Generalized

Null-Player. Consider any w 2 W , such that i 2 N is a null-player in w 2 W or, equivalently,

Nnfig is a carrier of w. Consider any two embedded coalitions, (I; �); (J; �0) 2 M , such that

I \ (Nnfig) = J \ (Nnfig) and f(L \ (Nnfig))L2�g = f(L \ (Nnfig))L2�0g. Note that if I 6= ;

and J 6= ;, then there exists � 2 ��; �0 2 ��0 such that �I = �0J and �w = �0w. In this case, by

The Rule of Generalization, �(w)(I; �) = �(�w)(�(I); [N ]) = �(�0w)(�0(J); [N ]) = �(w)(J; �0).

If, on the other hand, either I = ; or J = ;, then for any � 2 ��; �0 2 ��0 by The Rule

of Generalization, and Null-Player �(w)(I; �) = �(�w)(�(I); [N ]) = 0 = �(�0w)(�0(J); [N ]) =

�(w)(J; �0). So Nnfig is a carrier of �(w), or, equivalently, i is a null-player in �(w). �

Throughout the remainder of this appendix, EGSV shall denote the Extended, Generalized

Shapley Value.

A.2. Proof of Theorem 2

It is easy to see that the EGSV satis�es E¢ciency, Symmetry, Null-Player, Linearity, The

Rule of Generalization, and Weak Monotonicity (or equivalently, by Theorem 1, E¢ciency,
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Symmetry, Linearity, Cohesion, Generalized Null-Player, and Weak Monotonicity). We prove

here that it also satis�es Recursion.

Let w (A; ��) denote w(A; fA;NnAg). For any w 2W , and for any (I; �) 2M ,

EGSV (w)(I; �) =
P

T��
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j�j!

h
w
�S

A2T A; ��
�
� w

�S
A2TnfIgA; ��

�i

=
P

T��

(jT j�1)!(j�j�jT j)!
j�j!

"
w
�S

A2T
A;��

�
�w

�S
A2TnfIg

A;��
�

2

+
w
�
Nn
S

A2TnfIg
A;��

�
�w

�
Nn
S

A2T
A;��

�

2

#

EGSV (EGSV (w))(I; �) =
P

T��

(jT j�1)!(j�j�jT j)!
j�j!

�
EGSV (w)

�S
A2T A; ��

�

� EGSV (w)
�S

A2TnfIgA; ��
�i

Also, 8T � �;

EGSV (w)
�S

A2T A; f:; :g
�
� EGSV (w)

�S
A2TnfIgA; ��

�

=

 

w
�S

A2T A; ��
�
+

w(N;fNg)�w
�S

A2T
A;��

�
�w

�
Nn
S

A2T
A;��

�

2

!

�

 

w(
S
A2TnfIgA; ��) +

w(N;fNg)�w
�S

A2TnfIg
A;��

�
�w

�
Nn
S

A2TnfIg
A;��

�

2

!

=
w
�S

A2T
A;��

�
�w

�S
A2TnfIg

A;��
�

2 +
w
�
Nn
S

A2TnfIg
A;��

�
�w

�
Nn
S

A2T
A;��

�

2

So,

EGSV (EGSV (w))(I; �) =
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T��
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We next prove that only one function satis�es E¢ciency, Symmetry, Null-Player, Linearity,

The Rule of Generalization, Weak Monotonicity, and Recursion (or equivalently, by Theorem 1,

E¢ciency, Symmetry, Linearity, Cohesion, Generalized Null-Player, Weak Monotonicity, and

Recursion).

Proposition 1 If � satis�es E¢ciency and The Rule of Generalization, then 8w 2 W;8� 2

� ;
P
J2� �(w)(J; �) = w(N; fNg).
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Proof. By The Rule of Generalization, 8w 2 W;8� 2 � ;8� 2 ��;
P
J2� �(w)(J; �) =

P
J2� �(�w)(�(J); [N ]). By E¢ciency, 8w 2 W;8� 2 � ;8� 2 ��;

P
J2� �(�w)(�(J); [N ]) =

w(N; fNg).

Proposition 2 If � satis�es Linearity and The Rule of Generalization, then 8w 2W;8(I; �) 2

M;�(w)(I; �) =
P
�2M w(�)�(w

�
�)(I; �):

Proof. From Linearity and The Rule of Generalization we obtain 8w;w0 2W;8� 2M , 8 2 R,

�(w + w0)(�) = (�(w) + �(w0))(�) and �(w)(�) = �(w)(�). This proposition is then trivial.

Proposition 3 If � satis�es Cohesion and Generalized Null-Player, then 8(I; �) 2M;8(J; �0) 2

MnM�; �(w
�
(J;�0))(I; �) = 0.

Proof. Note that by Cohesion (J; �0) =2 M� ! �(w�(J;�0))(I; �) = �(w
0)(I; �), where w0 2 W

is a game in which all players are null; and Generalized Null-Player requires �(w0)(I; �) = 0:

Proposition 4 If � satis�es E¢ciency, Symmetry, Null-Player, Linearity, The Rule of Gener-

alization, Weak Monotonicity, and Recursion, then 8� 2 � ;8I; J 2 �; j�j > 2! �(w�(I;�))(I; �) =

�(w�(I;�))(J; �) = 0.

Proof. Suppose that � satis�es E¢ciency, Symmetry, Null-Player, Linearity, The Rule of

Generalization, Weak Monotonicity, and Recursion. By Proposition 2 and Recursion:

8(�); (�0) 2M;�(w��0)(�) =
X

�002M

�(w��0)(�00)�(w
�
�00)(�): (1)

Consider any � 2 � such that j�j > 2, and any I 2 �: Using Proposition 3 and equation (1):

�(w�(I;�))(I; �) =
X

J2�

�(w�(I;�))(J; �)�(w
�
(J;�))(I; �)

=
�
�(w�(I;�))(I; �)

�2
+

X

J2�nfIg

�(w�(I;�))(J; �)�(w
�
(J;�))(I; �): (2)
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By Proposition 1, Symmetry and The Rule of Generalization,

8J 2 �nfIg; �(w�(I;�))(J; �) = �(w
�
(J;�))(I; �) = �

�(w�(I;�))(I; �)

(j�j � 1)
: (3)

Using (3), we can rewrite the right hand side of (2) to give

�(w�(I;�))(I; �) =
�
�(w�(I;�))(I; �)

�2
+ (j�j � 1)

0

@�
�(w�(I;�))(I; �)

(j�j � 1)

1

A
2

: (4)

Solving (4) gives

�(w�(I;�))(I; �) = either 0 or
(j�j � 1)

j�j
: (5)

We can proceed to rule out �(w�(I;�))(I; �) =
(j�j�1)
j�j : Recall (from section 3.1) the previous

de�nitions of �� and (for � 2 ��) of �� and �w. Now consider any � 2 ��, i = �(I),

j 2 (��nfig). By The Rule of Generalization,

�(w�(I;�))(I; �) = �(�(w
�
(I;�)))(fig; [N ]):

Also, where
�
(J; �0) 2M : i 2 J;

�
(L \ ��)L2�0

	
= ffkgk2��g

	
is the set of embedded coalitions

containing i and such that no players in �� are coalesced together,

�(w�(I;�)) =
X

(J;�0)2M :i2J;f(L\��)L2�0g=ffkgk2��g

w�(J;�0):

By Linearity, then

�(w�(I;�))(I; �) =
X

(J;�0)2M :i2J;f(L\��)L2�0g=ffkgk2��g

�(w�(J;�0))(fig; [N ]): (6)

Note that
�P

(J;�0)2M :i2J w
�
(J;�0)

�
denotes an inessential game, in which coalitions containing i

receive a payo¤ of 1 and other coalitions receive zero. All players except i are null in this game so,

by the Null-Player and E¢ciency axioms �
�P

(J;�0)2M :i2J w
�
(J;�0)

�
(fig; [N ]) = 1: By Linearity,

then

X

(J;�0)2M :i2J

�(w�(J;�0))(fig; [N ]) = 1: (7)
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�P
(J;�0)2M :fi;jg�J w

�
(J;�0)

�
denotes a game in which coalitions containing players i and j re-

ceive 1 and in which coalitions missing i or j receive zero. This game is symmetric with re-

spect to i and j, and all other players are null. So by Null-Player, Symmetry and E¢ciency,

�
�P

(J;�0)2M :fi;jg�J w
�
(J;�0)

�
(fig; [N ]) = 1

2 : By Linearity, then

X

(J;�0)2M :fi;jg�J

�(w�(J;�0))(fig; [N ]) =
1

2
: (8)

�
(J; �0) 2M : i 2 J;

�
(L \ ��)L2�0

	
= ffkgk2��g

	
and f(J; �0) 2M : fi; jg � Jg are disjoint sub-

sets of f(J; �0) 2M : i 2 Jg so, using (6), (7), (8), and Weak Monotonicity

�(w�(I;�))(I; �) 6 1�
1

2

<
(j�j � 1)

j�j
:

So, by (5) and (3), 8J 2 �; �(w�(I;�))(I; �) = �(w
�
(I;�))(J; �) = 0:

Proposition 5 If � satis�es E¢ciency, Symmetry, Null-Player, Linearity, The Rule of Gener-

alization, Weak Monotonicity, and Recursion, then 8(I; �); (J; �0) 2M; j�j > 2! �(w�(I;�))(J; �0) =

0.

Proof. Consider any (I; �) 2M such that j�j > 2. Suppose the following:

(i) 8(J; �0) 2M; j�0j < n! �(w�(I;�))(J; �0) = 0

(ii) 8(J; �0); (K;�00) 2M; (�00 = �0; j�0j > n� 1)! �(w�(J;�0))(K;�00) = 0:

Now consider any (K;�00) 2M such that j�00j = n. Recalling (1),

�(w�(I;�))(K;�00) =
X

(J;�0)2M

�(w�(I;�))(J; �0)�(w
�
(J;�0))(K;�00)

=
X

(J;�0)2M :(�0<n)
(J;�0)2M :(�00=�0;j�0j>n�1)

(J;�0)2M :(�0=2M�00)

�(w�(I;�))(J; �0)�(w
�
(J;�0))(K;�00)

= 0:
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So (i) and (ii) together imply 8(J; �0) 2 M; j�0j < n+ 1! �(w�(I;�))(J; �0) = 0. By Proposition

3, (i) holds for n = 3, and, by Proposition 4, (ii) holds for n > 2, so (i) holds where n is any

positive integer.

By Proposition 5, if �(w) satis�es E¢ciency, Symmetry, Null-Player, Linearity, The Rule of

Generalization, Weak Monotonicity, and Recursion, then for any w 2 W , �(w) = �(w0) where

w0 2 W c is de�ned by w0(I; �) = w(I; fI;NnIg)). Corollary 1 established that E¢ciency,

Symmetry, Linearity, Cohesion, and Generalized Null-Player obtain �jW c , so by Proposition 5,

E¢ciency, Symmetry, Linearity, Cohesion, Generalized Null-Player, Weak Monotonicity, and

Recursion obtain �. �

A.3. Independence of axioms in Theorem 2

Theorem 2 entails seven axioms: E¢ciency, Symmetry, Linearity, Cohesion, Generalized Null-

Player,Weak Monotonicity, and Recursion. Here, I establish that these axioms are independent

by providing examples of extended generalized values that satisfy each combination of six from

the seven axioms while contravening the seventh.

Let N = f1; 2; 3g :

Omitting commas - i.e. so that �(f12gff12gf3gg)� denotes (f1; 2g; ff1g; f2g; f3gg) - we can
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write:

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
@

�(w)(f123gff123gg)

�(w)(f12gff12gf3gg)

�(w)(f3gff12gf3gg)

�(w)(f13gff13gf2gg)

�(w)(f2gff13gf2gg)

�(w)(f23gff1gf23gg)

�(w)(f1gff1gf23gg)

�(w)(f1gff1gf2gf3gg)

�(w)(f2gff1gf2gf3gg)

�(w)(f3gff1gf2gf3gg)

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
A

= A

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
@

w(f123gff123gg)

w(f12gff12gf3gg)

w(f3gff12gf3gg)

w(f13gff13gf2gg)

w(f2gff13gf2gg)

w(f23gff1gf23gg)

w(f1gff1gf23gg)

w(f1gff1gf2gf3gg)

w(f2gff1gf2gf3gg)

w(f3gff1gf2gf3gg)

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
A

where

A =

0

BBBBBBBBBBBBBB
@

�
�
w�(f123gff123gg)

�
(f123gff123gg) � � � �

�
w�(f123gff123gg)

�
(f3gff1gf2gf3gg)

�
�
w�(f12gff12gf3gg)

�
(f123gff123gg) � � � �

�
w�(f12gff12gf3gg)

�
(f3gff1gf2gf3gg)

�
�
w�(f3gff12gf3gg)

�
(f123gff123gg) � � � �

�
w�(f3gff12gf3gg)

�
(f3gff1gf2gf3gg)

...
. . .

...

�
�
w�(f3gff1gf2gf3gg)

�
(f123gff123gg) � � � �

�
w�(f3gff1gf2gf3gg)

�
(f3gff1gf2gf3gg)

1

CCCCCCCCCCCCCC
A

:

By Theorem 2 � satis�es E¢ciency, Symmetry, Linearity, Weak Monotonicity, Cohesion,

Generalized Null-Player, and Recursion if and only if A = A1 where



33

A1 =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB
@

1 1
2

1
2 � � � 1

3

0 1
2 �1

2 � � � �1
3

0 �1
2

1
2 � � � 1

3

0 0 0 � � � 1
6

0 0 0 � � � �1
6

...
...

...
. . .

...

0 0 0 � � � 0

0 0 0 � � � 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCC
A

;

A1 being given by the Extended, Generalized Shapley Value.

However, � satis�es the same seven axioms except Recursion if, for example, A = A2 where

A2 =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB
@

1 1
2

1
2 � � � 1

3

0 1
2 �1

2 � � � �1
3

0 �1
2

1
2 � � � 1

6

0 0 0 � � � 1
6

0 0 0 � � � � 1
12

...
...

...
. . .

...

0 0 0 � � � � 1
12

0 0 0 � � � 1
6

1

CCCCCCCCCCCCCCCCCCCCCCCCCCC
A

;

A2 being given by any of the extensions of the Shapley value proposed by [1, 6, 12] (these

extensions coincide for 3-player games) - I might alternatively have used the extension proposed

by [3, 11] - in conjunction with the Rule of Generalization.
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� satis�es the original seven axioms except Generalized Null-Player (while still satisfying

Null-Player) if, for example, A = A3 where

A3 =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB
@

1 0 0 � � � 1
3

0 1 0 � � � �1
3

0 0 1 � � � 1
3

0 0 0 � � � 1
6

0 0 0 � � � �1
6

...
...

...
. . .

...

0 0 0 � � � 0

0 0 0 � � � 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCC
A

;

A3 entailing that f(w; �(w)jf(fig;[N ]) : i2Ng) : w 2 Wg is the Extended Shapley Value, but that

� 6= [N ]! �(w)(I; �) = w(I; �).

It is worth noting that with 4 or more players f(w; �(w)jf(fig;[N ]) : i2Ng) : w 2 Wg needn�t

be the Extended Shapley Value: by setting � 6= [N ] ! �(w)(I; �) = w(I; �), and � = [N ] !

�(w�(i;�))(I; �0) = 0 it is relatively easy to construct extended, generalized values that satisfy Ef-

�ciency, Linearity, Symmetry, Null-Player, Weak Monotonicity, Cohesion and Recursion without

f(w; �(w)jf(fig;[N ]) : i2Ng) : w 2Wg being the Extended Shapley Value.
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� satis�es the original seven axioms except Cohesion if, for example, A = A4 where

A4 =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB
@

1 2
3

1
3 � � � 1

3

0 1
3 �1

3 � � � �1
3

0 0 0 � � � 0

0 �1
6

1
6 � � � 1

6

0 0 0 � � � 0

...
...

...
. . .

...

0 1
6 �1

6 � � � �1
6

0 �1
3

1
3 � � � 1

3

1

CCCCCCCCCCCCCCCCCCCCCCCCCCC
A

;

A4 entailing that f(w; �(w)jf(fig;[N ]) : i2Ng) : w 2 Wg is the extension of the Shapley value

proposed by [3,11] - I might alternatively have used any of the extensions proposed by [1,6,12]

- and that �(w) is inessential.

� satis�es the original seven axioms except Weak Monotonicity if A = A5 where

A5 =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB
@

1 1
2

1
2 � � � 1

3

0 1
2 �1

2 � � � �1
3

0 �1
2

1
2 � � � �1

3

0 0 0 � � � 1
6

0 0 0 � � � 1
6

...
...

...
. . .

...

0 0 0 � � � �1
3

0 0 0 � � � 2
3

1

CCCCCCCCCCCCCCCCCCCCCCCCCCC
A

:

� satis�es the original seven axioms except Linearity if it is obtained using the Rule of Gener-

alization in conjunction with the following extended value: f(w; �(w)jf(fig;[N ]) : i2Ng) : w 2 Wg

is obtained by assigning, for each w 2 W , an outcome of zero to any null-players, and dividing
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the the payo¤ to the grand coalition equally between the remaining players. To see this, note

that if � is obtained in this way then it will self-evidently satisfy Null-Player and the Rule

of Generalization, and that by Theorem 1 it will therefore satisfy Generalized Null-Player and

Cohesion; it is easy to see that it will also satisfy E¢ciency and Symmetry. To see that � will

satisfy Weak Monotonicity note that Weak Monotonicity only entails non-negative outcomes to

certain singleton players in a limited class of games, and that if � is obtained as speci�ed here

then it will entail non-negative outcomes to all singleton players in the games belonging to this

class. To see that � will satisfy Recursion, note that 8� 2 �;8� 2 ��; in �w and in ��(w) the

set of null-players, and the payo¤ to the grand coalition, remains the same.

Now let N = f1; 2g. � satis�es the original seven axioms except Symmetry if

0

BBBBBB
@

�(w)(f12gff12gg)

�(w)(f1gff1gf2gf3gg)

�(w)(f2gff1gf2gf3gg)

1

CCCCCC
A

=

0

BBBBBB
@

1 2
3

1
3

0 1
3 �1

3

0 �2
3

2
3

1

CCCCCC
A

0

BBBBBB
@

w(f12gff12gg)

w(f1gff1gf2gg)

w(f2gff1gf2gg)

1

CCCCCC
A

and, �nally, � satis�es the original seven axioms except E¢ciency if 8w 2W , �(w) = w:

A.4. Proof of Theorem 3

To economize on space, I shall write �AB� instead of �A [ B,� �� � AB� instead of

�(�nfA;Bg) [ fA [Bg,� and w0 (A; ��) instead of w0(A; fA;NnAg). Note the following:

8(I; �) 2M;8w0 2W;

(i) EGSV (w0)(I; �) �
X

T��nfIg

jT j!(j�j � jT j � 1)!

j�j!
[w0(

S
A2(T[fIg)A; ��)� w0(

S
A2T A; ��)]

(ii) 8t > 1; j�j � 2! wt(I; �) = w1(I; �) = EGSV (w0)(I; �):

Given any w0 2 W , and supposing 8(I; �) 2 M; j�j � n � 1 ! fwt (I; �)g
1
t=0 converges to

EGSV (w0)(I; �), we seek to prove that 8(I; �) 2 M; j�j � n ! fwt (I; �)g
1
t=0 converges to

EGSV (w0)(I; �).

Given any (I; �) 2M , such that j�j � n, rearranging the de�nition of wt (see section 4) gives,
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8(I; �) 2M;

wt(I; �) �
1

j�j (j�j � 1)

0

@
X

J;K2�nfIg

wt�1(I; � � JK)

+
X

J2�nfIg

(wt�1(IJ; � � IJ)� wt�1(J; �) + wt�1(I; �))

1

A

=
1

j�j (j�j � 1)

0

@
X

J;K2�nfIg

wt�1(I; � � JK) +
X

J2�nfIg

wt�1(IJ; � � IJ)

�

 
X

J2�

wt�1(J; �)

!

+ j�j :wt�1(I; �)

!

:

By the induction hypothesis,

8J;K 2 �nfIg; fwt�1(I; � � JK)g
1
t=0 converges to EGSV (w0)(I; � � JK)

and

8J 2 �nfIg; fwt�1(IJ; � � IJ)g
1
t=0 converges to EGSV (w0)(IJ; � � IJ)):

So

8
<

:

X

J;K2�nfIg

wt�1(I; � � JK) +
X

J2�nfIg

wt�1(IJ; � � IJ)

9
=

;

1

t=0

converges to

0

@
X

J;K2�nfIg

EGSV (w0)(I; � � JK) +
X

J2�nfIg

EGSV (w0)(IJ; � � IJ)

1

A :

Using

EGSV (w0)(I; � � JK)

=
X

T��nfI;J;Kg

jT j!(j�j � jT j � 3)!

(j�j � 1)!

"

(j�j � jT j � 2)

 

w0

 
S

A2(T[fIg)

A; ��

!

� w0

�
S

A2T

A; ��

�!

+ (jT j+ 1)

 

w0

 
S

A2(T[fI;J;Kg)

A; ��

!

� w0

 
S

A2(T[fJ;Kg)

A; ��

!!#
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and

EGSV (w0)(IJ; � � IJ)

=
X

T��nfI;Jg

jT j!(j�j � jT j � 2)!

(j�j � 1)!

 

w0

 
S

A2(T[fI;Jg)

A; ��

!

� w0

�
S

A2T

A; ��

�!

a little work gives

X

J;K2�nfIg

EGSV (w0)(I; � � JK) =

jT j!(j�j � jT j � 1)!

(j�j � 1)!

2

66
4

X

T��nfIg
:jT j6j�j�3

(j�j � jT j � 2)

 

w0

 
S

A2(T[fIg)

A; ��

!

� w0

�
S

A2T

A; ��

�!

+
X

T��nfIg
:jT j>2

(jT j � 1)

 

w0

 
S

A2(T[fIg)

A; ��

!

� w0

�
S

A2T

A; ��

�!
3

77
5

and

X

J2�nfIg

EGSV (w0)(IJ; � � IJ) =

jT j!(j�j � jT j � 1)!

(j�j � 1)!

2

66
4
X

T��nfIg
:jT j>1

w0

 
S

A2(T[fIg)

A; ��

!

�
X

T��nfIg
:jT j6j�j�2

w0

�
S

A2T

A; ��

�
3

77
5 :

Further work gives

X

J;K2�nfIg

EGSV (w0)(I; � � JK) +
X

J2�nfIg

EGSV (w0)(IJ; � � IJ) =

j�j (j�j � 2)EGSV (w0)(I; �) + w0(N; ��):

It is easy to see that

t > j�j ! w0(N; ��)�
X

J2�

wt�1(J; �) = 0

and that

�
(j�j � 2)

(j�j � 1)
EGSV (w0)(I; �) +

1

(j�j � 1)
wt�1(I; �)

�1

t=0

converges to EGSV (w0)(I; �):

So fwt(I; �)g
1
t=0 converges to EGSV (w0)(I; �). �
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A.5. Proof of Theorem 4

Proposition 6 If � satis�es E¢ciency, Symmetry, Linearity, Cohesion, and Generalized Null-

Player, then 8(I; �) 2M; j�j 6 2! 8w 2W; f�t(w)(I; �)g
1
t=0 converges.

Proof. Note that, in fact, given any (I; �) 2 M such that j�j 6 2, if � satis�es E¢ciency,

Symmetry, Linearity, Cohesion, and Generalized Null-Player, then t > 1 ! �t(w)(I; �) =

EGSV (w)(I; �):

Proposition 7 If � satis�es E¢ciency, Symmetry, Linearity, Cohesion, and Generalized Null-

Player, and 8(I; �) 2 M; j�j > 2 ! � j�j�1
j�j < �(w�(I;�))(I; �) <

j�j�1
j�j , then 8w 2 W; f�t(w)g

1
t=0

converges pointwise.

Proof. If � satis�es Linearity, Cohesion, and Generalized Null-Player, then, using Proposition

2 from the proof of Theorem 2,

8w 2W;8(I; �) 2M;8t > 1;

�t(w)(I; �) =
X

�2M

�t�1(w)(�)�(w
�
�)(I; �)

=
X

(J;�0)2M�

:�06=�

�t�1(w)(J; �0)�(w
�
(J;�0))(I; �)

+
X

J2�

�t�1(w)(J; �)�(w
�
(J;�))(I; �): (9)

If � satis�es Cohesion and Generalized Null-Player then � satis�es The Rule of Generalization.

By this, E¢ciency, and Symmetry,

8w 2W;8(I; �) 2M;8J 2 �nfIg;

�(w�(J;�))(I; �) = �(w
�
(I;�))(J; �)

=
��(w�(I;�))(I; �)

j�j � 1
: (10)



40

Also, if � satis�es The Rule of Generalization and E¢ciency, then

8w 2W;8(I; �) 2M;8t > 1;

X

J2�

�t(w)(J; �) = w(N; fNg): (11)

Substituting (11) and (10) in (9) gives

8w 2W;8(I; �) 2M;8t > 1;

�t(w)(I; �) =
X

(J;�0)2M�

:�06=�

�t�1(w)(J; �0)�(w
�
(J;�0))(I; �)

�
�(w�(I;�))(I; �)

j�j � 1
w(N; fNg) (12)

+

0

@�(w�(I;�))(I; �) +
�(w�(I;�))(I; �)

j�j � 1

1

A�t�1(w)(I; �):

By Proposition 6, j�j 6 2 ! f�t(w)(I; �g
1
t=0converges. It is clear from (12) that, provided

�1 <

�
�(w�(I;�))(I; �) +

�(w�
(I;�)

)(I;�)

j�j�1

�
< 1;

(8(I; �) 2M; j�j < n! f�t(w)(I; �)g
1
t=0 converges)

! (8(I; �) 2M; j�j < n+ 1! f�t(w)(I; �)g
1
t=0 converges):

Note that

�
j�j � 1

j�j
< �(w�(I;�))(I; �) <

j�j � 1

j�j
$ �1 <

0

@�(w�(I;�))(I; �) +
�(w�(I;�))(I; �)

j�j � 1

1

A < 1:

Proposition 8 If � satis�es E¢ciency, Symmetry, Linearity, Cohesion, and Generalized Null-

Player, then 8(I; �) 2 M; j�j > 2;� j�j�1
j�j < �(w�(I;�))(I; �) <

j�j�1
j�j !

n
�t(w

�
(I;�))(I; �)

o1
t=0

converges to zero.
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Proof.

8(I; �) 2M;

�t(w
�
(I;�))(I; �) = �1(w

�
(I;�))(I; �)�t�1(w

�
(I;�))(I; �)

+ (j�j � 1)
��1(w

�
(I;�))(I; �)

j�j � 1

��t�1(w
�
(I;�))(I; �)

j�j � 1

=

0

@�1(w
�
(I;�))(I; �) +

�1(w
�
(I;�))(I; �)

j�j � 1

1

A�t�1(w
�
(I;�))(I; �)

So it is easy to see that

�1 <

0

@�1(w
�
(I;�))(I; �) +

�1(w
�
(I;�))(I; �)

j�j � 1

1

A < 1

!
n
�t(w

�
(I;�))(I; �)

o1
t=0

converges to zero.

Finally,

�1 <

0

@�1(w
�
(I;�))(I; �) +

�1(w
�
(I;�))(I; �)

j�j � 1

1

A < 1

$ �
j�j � 1

j�j
< �(w�(I;�))(I; �) <

j�j � 1

j�j
:

If � satis�es E¢ciency, Symmetry, Linearity, Cohesion, and Generalized Null-Player, and

for all (I; �) 2 M;� > 2 implies � j�j�1
j�j < �(w�(I;�))(I; �) <

j�j�1
j�j , then by Proposition 7,

limt�!1 �t exists, and by construction limt�!1 �t satis�es Recursion. Notice that in the proof

of Theorem 2, Weak Monotonicity was only required in order to impose (by Proposition 4) the

condition 8� 2 � ;8I; J 2 �; j�j > 2 ! �(w�(I;�))(I; �) = �(w
�
(I;�))(J; �) = 0. We know that,

by E¢ciency, Symmetry, Linearity, Cohesion, and Generalized Null-Player � 2 � ; I 2 �; J 2

�; I 6= J ! �(w�(I;�))(J; �) =
��(w�

(I;�)
)(I;�)

j�j�1 , and therefore that, by Proposition 8, if � satis�es
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E¢ciency, Symmetry, Linearity, Cohesion, and Generalized Null-Player, then

8� 2 � ;8I; J 2 �; j�j > 2;�
j�j � 1

j�j
< �(w�(I;�))(I; �) <

j�j � 1

j�j

! lim
t�!1

�t(w
�
(I;�))(I; �) = lim

t�!1
�t(w

�
(I;�))(J; �) = 0

So if � satis�es E¢ciency, Symmetry, Linearity, Cohesion, and Generalized Null-Player, and

for all (I; �) 2 M; j�j > 2 implies � j�j�1
j�j < �(w�(I;�))(I; �) <

j�j�1
j�j , then limt�!1 �t is the

Extended, Generalized Shapley Value. �
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