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optimization, for generating the whole integer efficient solutions of the MOILFP problem. The
basic idea of the computation phase of the algorithm is to optimize one of the fractional objective
functions, then generate an integer feasible solution. Using the reduced gradients of the objective
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is truncated by adding this cut. A sample problem is solved using this algorithm, and the main
practical advantages of the algorithm are indicated.
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1. Introduction

Fractional programming has been widely reviewed by many authors (Schaible [1], Nagih,

and Plateau [2]) and there are entire books and chapters devoted to this subject (Craven [3],

Stancu-Minasian [4], Horst et al. [5], and Frenk and Schaible [6]). A bibliography, with 491

entries presented by Stancu-Minasian [7], attracts our attention to the amount of work that

has been done in the field in recent years. This bibliography of fractional programming is a

continuation of five previous bibliographies by the author [8]. Schaible [1] has published a

comprehensive review of the work in fractional programming, outlining some of its major

developments. Stancu-Minasian’s textbook [4] contains the state-of-the-art theory and practice

of fractional programming, allowing the reader to quickly become acquainted with what has

been done in the field.

The mathematical optimization problems with a goal function that is a ratio of two

linear functions have many applications: in finance (corporate planning, bank balance sheet
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management), marine transportation, water resources, health care, and so forth. Indeed, in

such situations, it is often a question of optimizing a ratio debt/equity, output/employee,

actual cost/standard cost, profit/cost, inventory/sales, risk-assets/capital, student/cost,

doctor/patient, and so on subject to some constraints [9]. In addition, if the constraints are

linear, we obtain the linear fractional programming (LFP) problem.

Different approaches have been proposed in the literature to solve both continuous LFP

and integer linear fractional programming (ILFP) problems. These can be divided in studies

that have developed solution methods (e.g., [4, 10–14]) and those which concentrated on

applications (e.g., [4, 6]).

The multiple objective linear fractional programming (MOLFP) problem is one of the

most popular models used in multiple criteria decision making. Numerous studies and

applications have been reported in the literature in hundreds of books, monographs, articles,

and books’ chapters. For an overview of these studies and applications, see, for instance, [4, 7–

9, 15–22], and references therein.

Contrary to the multiple objective linear programming (MOLP) problem, Steuer [9]

shows that the efficient solutions set inMOLFP problem is not necessarily closed; some interior

points of the feasible solutions set may be efficient, while others are not, and efficient extreme

solutions need not all be connected by a path of efficient edges. It becomes difficult to generate

the whole efficient solutions. As the efficient set may be too difficult to determine, Kornbluth

and Steuer [20] propose an algorithm forMOLFP problem that generates the set of the so-called

weakly efficient solutions bymeans of a simplex-based algorithm. A new technique to optimize

a weighted sum of the linear fractional objective functions is proposed by Costa [19]. This

technique generates only one nondominated solution of the MOLFP problem associated with

a given weight vector. At each stage of the technique, the nondominated domain is divided in

two subdomains and each of them is analyzed in order to discard the one not containing the

nondominated solutions. The process ends when the remaining domains are so little that the

differences among their nondominated solutions are lower than a predefined error.

In this paper, we have proposed a technique for generating the efficient set of the

MOLFP problem with integer variables by using all the decision criteria in an active way.

This last problem, called MOILFP, is more difficult to solve than the MOLFP problem taking

into account the integrity of variables. Indeed, finding all efficient solutions of multiobjective

combinatorial optimization problems is, in general, NP-complete [23].

We should like to point out that theMOILFP problem has not received as much attention

as did the multiple objective integer linear programming (MOILP) problem, what justified our

interest to study this problem.

In [15], a considerable computation is necessary to obtain an optimal integer solution of

an ILFP problem in the first stage, since the authors used a branch and boundmethod (see, e.g.,

[24]). In our method, we use only the Cambini andMartein’s [10]method to obtain an optimal

solution for the relaxed ILFP problem and an integer solution is detected by the branching

process of the branch and boundmethod. In addition, a cutting plane is constructed taking into

account all the criteria. In this manner, we are able to eliminate not only noninteger solutions of

the feasible domain, but also integer solutions which are not efficient. Thus our method avoids

to scan all the integer feasible solutions of the problem.

The notations and definitions used throughout this work are presented in Section 2. In

Section 3, the algorithm generating all efficient solutions for theMOILFP problem is developed

and the main theoretical results are proposed. An illustrative example is given in Section 4
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and a computational experience is reported in Section 5. Section 6 provides some concluding

remarks.

2. Problem formulation

The purpose of this paper is to develop an exact method for solving themultiple objective integer

linear fractional program (MOILFP):

(p)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxZ1(x) =
c1x + α1

d1x + β1

maxZ2(x) =
c2x + α2

d2x + β2
...

maxZk(x) =
ckx + αk

dkx + βk

x ∈ S, x integer

(2.1)

where k ≥ 2; ci, di are 1 × n vectors; αi, βi are scalars for each i ∈ {1, 2, . . . , k}; S = {x ∈ R
n |

Ax ≤ b, x ≥ 0}; A is an m × n real matrix; and b ∈ R
m. Throughout this article, we assume that

S is a nonempty, compact polyhedron set in R
n and dix + βi > 0 over S for all i ∈ {1, 2, . . . , k}.

Many approaches for analyzing and solving the MOLFP problem use the concept of

efficiency. A point x ∈ R
n is called an efficient solution, or Pareto-optimal solution, for MOLFP

problem when x ∈ S, and there exists no point y ∈ S such that Zi(y) ≥ Zi(x), for all i ∈

{1, . . . , k} and Zi(y) > Zi(x) for at least one i ∈ {1, . . . , k}. Otherwise, x is not efficient and the

vector Z(y) dominates the vector Z(x), where Z(x) = (Zi(x))i=1,...,k.

The approach adopted in this work for detecting all integer efficient solutions of problem

(P) is based on solving a linear fractional programming problem, at each stage l:

(p1)

{
maxZ1(x) =

c1x + α1

d1x + β1
, x ∈ Sl, (2.2)

with S0 = S and without the integrity constraint of variables. Note that in place of Z1, one can

similarly consider the problem (Pl) with another objective Zi for any i ∈ {2, . . . , r}.

If the optimal solution of (Pl) is integer, it is compared to all of the potentially efficient

solutions already found and the set of efficient solutions is actualized. The growth direction of

each criterion is determined by using its gradient. The method uses this information to deduce

a cut able to delete integer solutions which are not efficient for the problem (P) and determines

a new integer solution. In the case where this optimal solution is not integer, two new linear

fractional programs are created by using the branching process well known in branch and

bound method. Each of them will be solved like the problem (Pl).

To this aim—let x∗
l
be the first integer solution obtained after solving problem (Pl) by

using, eventually, the branching process—one defines Bl as the set of indices of basic variables

and Nl as the set of indices of nonbasic variables of x∗
l
. Let γ ij be the jth component of the

reduced gradient vector γ i defined by (2.3) for each fixed i ∈ {1, 2, . . . k};

γ i = βi ci − αi di, (2.3)
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where ci, di, αi, and βi are updated values. Let us note that the gradient vector of Zi and the

corresponding reduced gradient vector γ i for each fixed index i, i ∈ {1, 2, . . . , k}, have the same

sign. Thus calculating γ i is enough to determine the growth direction for each criterion.

In order to give themathematical expression of the cut, we define the following sets at x∗
l
:

Hl =
{
j ∈ Nl | ∃i ∈ {1, 2, . . . , k}; γ ij > 0

}
∪
{
j ∈ Nl | γ

i
j = 0, ∀i ∈ {1, 2, . . . , k}

}
, (2.4)

Sl+1 =

{
x ∈ Sl |

∑

j∈Hl

xj ≥ 1

}
. (2.5)

An efficient cut is a cut which removes only nonefficient integer solutions.

In Section 3, the approach to solve program (P) is presented.

3. Methodology for solving MOILFP

In this section, an exact method based on the branching process and using an efficient cut for

generating all integer efficient solutions for problem (P) is presented. First of all, the proposed

method is presented in detail, the algorithm for solving the multiple objective integer linear

fractional programming problems is then described. We finish the section with the theoretical

results which prove the convergence of the algorithm.

3.1. Description of the method

Starting with an optimal solution of an LFP problem, the domain of feasible integer solutions

is partitioned into subdomains using the principle of branching to the search for integer

solutions. As soon as an integer solution is found in a new domain, it is compared to solutions

already found and hence the set of all the potentially efficient solutions is updated. An efficient

cut is then added for deleting integer solutions that are not efficient. To construct this cut, the

growth directions of the criteria are used. The search for the efficient solutions is made in each

subdomain created. A given domain contains no efficient solutions when none criterion can

grow. This last is said an explored domain. The search for the efficient solutions is stopped

only if all created domains were explored domains.

First, Cambini andMartein’s [10] algorithm is used for solving the following continuous

linear fractional program:

(p)

{
maxZ1(x) =

c1x + α1

d1x + β1
, x ∈ S0. (3.1)

This is based on the concept of optimal level solution. A feasible point x is an optimal

level solution for the linear fractional program (P0), if x is optimal for the linear program:

(Px)

{
max

(
c1x + α1

)
, d1x = d1x, x ∈ S0. (3.2)

If, in addition, x is a vertex of the feasible solutions set S0, x is said to be a basic optimal

level solution. Obviously, an optimal solution for the linear fractional program (P0) is a basic
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optimal level solution. According to this, the algorithm generates a finite sequence of basic

optimal level solutions, the first one, say x0, is an optimal solution for the linear program:

min
(
d1x + β1

)
, x ∈ S0. (3.3)

If x0 is unique, then it is also a basic optimal level solution for program (P0), otherwise,

solve the linear program (Px0) to obtain a basic optimal level solution.

The solution of the program (P0) obtained in a finite sequence of optimal level solutions

is optimal if and only if γ1j ≤ 0 for all j ∈ J10 , where

J10 =
{
j ∈ N0 | d

1
j > 0

}
. (3.4)

Otherwise, there exists an index j ∈ J10 for which γ1j > 0. The nonbasic variable xr , r ∈ J10 ,which

must enters the basis is indicated by the index r such that

c1r

d1
r

= max

⎧
⎨
⎩

c1j

d1
j

, j ∈ J10

⎫
⎬
⎭ . (3.5)

The original format of the objectives fractional functions and original structure of the

constraints is maintained and the iterations are carried out in an augmented simplex table

which includes m + 3k rows. The first m rows correspond to the original constraints, the m +

3(i − 1) + 1 and m + 3(i − 1) + 2 rows correspond to the numerator and denominator of the

objective fractional function Zi, i ∈ {1, 2, . . . , k}, of program (P), respectively, and the m + 3i

row corresponds to the γ i
l
vector at step l.

At each stage of the algorithm, all the rows are modified as usual through the pivot

operation when the nonbasic variable xr , r ∈ J10 , enters the basis, except the m + 3i rows, for

i ∈ {1, 2, . . . , k}, which are modified using the γ i
l
formula (2.3).

Each program (Pl) corresponds to node l in a structured tree. A node l of the tree is

fathomed if the corresponding program (Pl) is not feasible or Hl = ∅ (explored domain).

If the optimal solution x̃l of program (Pl) is not integer, let xj be one component of x̃l

such that xj = αj, where αj is a fractional number. The node l of the tree is then separated

in two nodes which are imposed by the additional constraints xj ≤ ⌊αj⌋ and xj ≥ ⌊αj⌋ + 1,

where ⌊αj⌋ indicates the greatest integer less than αj . In each node, the linear fractional program

obtained must be solved, until an integer feasible solution is found. In presence of an integer

feasible solution, the efficient cut
∑

j∈Hl
xj ≥ 1 is added to the program and the new program is

solved using the dual simplex method. The method terminates when all the created nodes are

fathomed.

3.2. Algorithm

The algorithm generating the set of all integer efficient solutions of program (P) is presented

in the following steps. The nodes in the tree structure are treated according to the backtracking

principle.

Step 1. Initialization: l = 0, create the first node with the program (P0). Eff = ∅; (integer-

efficient set of program (P)
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Step 2. General step: as long as a nonfathomed node exists in the tree, do: choose the node not yet

fathomed, having the greatest number l, solve the corresponding linear fractional program (Pl)

using the dual simplex method and the Cambini and Martein’s method. (Initially, for solving

program (P0), only the Cambini and Martein’s method is used).

If program (Pl) has no feasible solutions, then the corresponding node is fathomed.

Else, let x̃l be an optimal solution. If x̃l is not integer, go to Step 3, else go to Step 4.

Step 3. Branching process (partition of the problem into mutually disjoint and jointly exhaustive

sub-problems): choose one coordinate xj of x̃l such that xj := αj , with αj fractional number,

and separate the actual node l of the tree in two nodes k, k ≥ l + 1, and h, h ≥ l + 1, h /= k.

In the current simplex table, the constraint xj ≥ ⌊αj⌋ is added and a new domain is

considered in node k and similarly, the constraint xj ≥ ⌊αj⌋ + 1 is added to obtain another

domain in node h. (Each created program must be solved using the same process until an

integer feasible solution is found), go to Step 2.

Step 4. Update the set Eff: if Z(x̃l) is not dominated by Z(x) for all x ∈ Eff, then Eff := Eff ∪ {x̃l}.

If there exists x ∈ Eff such that Z(x̃l) dominates Z(x), then Eff := Eff \ {x} ∪ {x̃l}.

Construct the efficient cut: determine the setsNl andHl.

If Hl = ∅, then the corresponding node is fathomed. Go to Step 2.

Else, add the efficient cut
∑

j∈Hl
xj ≥ 1 to the program (Pl). Go to Step 2.

The following theorems show that the algorithm generates all integer efficient solutions

of program (P) in a finite number of stages.

Theorem 3.1. Suppose thatHl /=∅ at the current integer solution x∗
l
. If x is an integer efficient solution

in domain Sl \ {x
∗
l
}, then x ∈ Sl+1.

Proof. Let x be an integer solution in domain Sl \ {x
∗
l
} such that x /∈ Sl+1, then

∑
j∈Hl

xj = 0, that

implies xj = 0 for all index j ∈ Hl.

From the simplex table corresponding to the optimal solution x∗
l
, the criteria are eval-

uated by

Zi(x) =

∑
j∈Nl

cijxj + αi

∑
j∈Nl

di
jxj + βi

for i ∈ {1, . . . , k}, (3.6)

where

αi

βi
= Zi

(
x∗
l

)
. (3.7)

Then we can write

Zi(x) =

∑
j∈Nl\Hl

cijxj + αi

∑
j∈Nl\Hl

di
jxj + βi

, ∀i ∈ {1, . . . , k}. (3.8)
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In the other hand, γ ij = βi cij −α
i di

j ≤ 0, for all index j ∈ Nl \Hl and γ ij = βi cij −α
i di

j < 0 for

at least one criterion, implies that cij ≤ αi di
j/β

i for all j ∈ Nl \Hl because βi = dix∗
l
+βi > 0 for all

criterion i ∈ {1, . . . , k}. The decision variables being nonnegative, we obtain cijxj ≤ (αi di
j/β

i)xj

for all j ∈ Nl \Hl and hence

∑

j∈Nl\Hl

cijxj ≤
∑

j∈Nl\Hl

αi di
j

βi
xj =⇒

∑

j∈Nl\Hl

cijxj + αi ≤
∑

j∈Nl\Hl

αi di
j

βi
xj + αi. (3.9)

For any criterion Zi, i ∈ {1, . . . , k}, the following inequality is obtained

Zi(x) =

∑
j∈Nl\Hl

cijxj + αi

∑
j∈Nl\Hl

di
jxj + βi

=⇒ Zi(x) ≤

∑
j∈Nl\Hl

(
αi di

j/β
i
)
xj + αi

∑
j∈Nl\Hl

di
jxj + βi

=⇒ Zi(x) ≤
(αi/βi)

(∑
j∈Nl\Hl

di
jxj + βi

)

∑
j∈Nl\Hl

di
jxj + βi

=⇒ Zi(x) ≤
αi

βi
=⇒ Zi(x) ≤ Zi(x

∗
l ).

(3.10)

Consequently, Zi(x) ≤ Zi(x
∗
l
) for all i ∈ {1, . . . , k} and Zi(x) < Zi(x

∗
l
) for at least one

index. Hence Z(x∗
l
) dominates Z(x) and the solution x is not efficient.

Corollary 3.2. Suppose thatHl /=∅ at the current integer solution x∗
l
. Then the constraint

∑
j∈Hl

xj ≥ 1

is an efficient cut.

Proof. By the above theorem, no efficient solution is deleted when the constraint
∑

j∈Hl
xj ≥ 1 is

added. We can say that this is an efficient valid constraint. In the other hand, x∗
l
does not satisfy

this constraint since xj = 0, for all j ∈ Nl. We conclude that the constraint is an efficient cut.

Proposition 3.3. If Hl = ∅ at the current integer solution x∗
l
, then Sl \ {x

∗
l
} is an explored domain.

Proof. Hl = ∅ means that x∗
l
is an optimal integer solution for all criterion, hence x∗

l
is an ideal

point in the domain Sl and Sl \ {x
∗
l
} does not contain efficient solutions.

Theorem 3.4. The described algorithm terminates in a finite number of iterations and generates all the

efficient solutions of program (P).

Proof. The set S of feasible solutions of problem (P), being compact, contains a finite number

of integer solutions. Each time an optimal integer solution x∗
l
is calculated, the efficient cut is

added. Thus according to the above theorem and corollary, at least the solution x∗
l
is eliminated

when one studies any subproblem (Pk), k > l, but no efficient solution is deleted.
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Table 1

B Rhs x3 x4

x2 8/7 2/7 1/7

x1 32/7 1/7 4/7

c1 −4/7 −1/7 −4/7

d1 −13/7 2/7 1/7

γ1 −3/7 −8/7

c2 4/7 1/7 4/7

d2 −15/7 −2/7 −1/7

γ2 1/7 8/7

c3 24/7 −1/7 3/7

4. An illustrative example

The following program (P) is given as an example of multiple objective linear fractional

programming (MOLFP) in Kornbluth and Steuer [20]:

maxZ1(x) =
x1 − 4

−x2 + 3
,

maxZ2(x) =
−x1 + 4

x2 + 1
,

maxZ3(x) = −x1 + x2, subject to − x1 + 4x2 ≤ 0, 2x1 − x2 ≤ 8, x1 ≥ 0, x2 ≥ 0, and integers.

(4.1)

Using the described algorithm, program (P0) is first resolved and the optimal solution is

given in the simplex Table 1:

Since γ1j ≤ 0 for all j ∈ J10 , J
1
0 = N0 = {3, 4}, then the obtained solution (32/7, 8/7) is

optimal for program (P0), but not integer. Therefore, two branches are possible.

(1) x1 ≥ 5 ⇔ −1/7x3 − 4/7x4 ≥ 3/7. This is not possible and (1) is fathomed.

(2) x1 ≤ 4 ⇔ −1/7x3 − 4/7x4 ≤ −4/7.

This constraint is added and the dual simplex method is applied. The integer optimal

solution of program (P2) is obtained in Table 2.

γ1j ≤ 0 for all j ∈ J12 , J
1
2 = N2 = {3, 5}, then the current solution (4, 1) is optimal. Eff :=

{(4, 1)}, H2 = {5}, and S3 = {x ∈ S2|x5 ≥ 1}.

The constraint x5 ≥ 1 is added to the current simplex table and after pivoting, we obtain

Table 3.

J13 = ∅ then, (3, 0) is an optimal integer solution and Eff := {(4, 1), (3, 0)}.

Proceeding in this manner, we obtain Table 4.

J14 = ∅ then, (0, 0) is an optimal integer solution, Eff := {(4, 1), (3, 0), (0, 0)},N4 = {1, 10},

H4 = {10}, and S5 = {x ∈ S4|x10 ≥ 1}.

The constraint x10 ≥ 1 is added and we obtain Table 5.

The dual is not feasible, then the corresponding node is fathomed.

The algorithm terminates since all nodes are fathomed and the integer efficient solutions

set of program (P) is Eff = {(4, 1), (3, 0), (2, 0), (1, 0), (0, 0)}.
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Table 2

B Rhs x3 x5

x2 1 1/4 1/4

x1 4 0 1

x4 1 1/4 −7/4

c1 0 0 −1

d1 −2 1/4 1/4

γ1 0 −2

c2 0 0 1

d2 −2 −1/4 −1/4

γ2 0 2

c3 3 −1/4 3/4

Table 3

B Rhs x2 x6

x3 3 4 1

x1 3 0 1

x4 2 −1 −2

x5 1 0 −1

c1 1 0 −1

d1 −3 −1 0

γ1 −1 −3

c2 −1 0 1

d2 −1 1 0

γ2 −1 1

c3 3 1 1

Table 4

B Rhs x1 x10

x6 3 1 0

x3 0 1 4/3

x4 8 1 −1

x5 4 1 0

x7 2 0 −1

x9 1 3 8

x8 0 1 1

x2 0 −1 −1

c1 4 1 0

d1 −3 −1 −1

γ1 −1 −4

c2 −4 −1 0

d2 −1 1 1

γ2 −5 −4

c3 0 0 1
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Table 5

Rhs x11 x10

x6 2 1 −1

x3 −1 1 1/3

x4 7 1 −2

x5 3 1 −1

x7 2 0 −1

x9 −2 3 5

x8 −1 1 0

x2 1 −1 0

x1 1 −1 1

c1 3 1 −1

d1 −2 −1 0

γ1 −1 −4

c2 −3 −1 1

d2 −2 1 0

γ2 −5 −4

c3 0 0 1

Table 6

(n,m, α), (15,10,33) (20,10,25) (25,5,17) (25,10,17)

Efficient Mean 99,50 204,50 200,45 98,00

Solutions Max 215 324 397 228

Min 4 23 67 17

CPU Mean 38,52 185,96 400,48 306,74

(second) Max 54,39 337,08 673,17 367,11

Min 23,094 143,56 193,87 177,09

Simplex Mean 75837,7 126488,50 521763,45 255726,55

Iterations Max 101207 365750 719105 306665

Min 55851 2717 369414 145324

Efficient Mean 885,3 2341,50 2607,15 979,00

Cuts (EC) Max 1152 2593 3909 1268

Min 451 679 839 440

(EC)/(Cuts) Mean 0,91 0,97 0,84 0,81

5. Computational results

The computer program was coded in MATLAB 7.0 and run on a 3.40GHz DELL pentium 4,

1.00GB RAM. The used software was developed by the authors and was tested on randomly

generated problems. We show the results of the computational experiment in Table 6.

The method was tested with m = 5 and 10 constraints with r = 4 objectives functions

and n variables, n ∈ {15, 20, 25} randomly generated. The coefficients are uncorrelated integers

uniformly distributed in the interval [1, 100] for constraints and [1, 80] for objective functions

about the first two types of treated problems. For the latter two types of problems tested, the



M. E.-A. Chergui and M. Moulaı̈ 11

integer values of the matrix constraints vary in the interval [1, 50] and for those of criteria in

[1, 30]. The right-hand side value is set to α% of the sum of the coefficients (integer part) of

each constraint, where α ∈ {17, 25, 33}. With each instance (n,m, α), a series of 20 problems is

solved and the whole efficient solution set was generated for all these problems.

Themethod being exact, it was expected that the iteration number of the simplexmethod

is very large taking into account the fact that, for this type of problems, the number of efficient

solutions increases quickly with the data size. In addition, we should like to point out that the

ratio EC/cuts tends toward the value one, showing that the number of efficient cuts introduced

into the method is very large compared to the full number of cuts and indicating that this type

of cuts has a positive impact on the research of the whole of efficient solutions.

6. Conclusion

In this paper, an exact method for generating all efficient solutions for multiple objective

integer linear fractional programming problems is presented Themethod does not require any

nonlinear optimization. A linear fractional program is solved using the Cambini andMartein’s

algorithm in the original format and then by using the well-known concept of branching

in integer linear programming, integer solutions are generated. The proposed efficient cut

exploits all the criteria in the simplex table, and only the parts of the feasible solutions domain

containing efficient solutions are explored. Also it is easy to implement the proposed cut

since to obtain integer solution xk+1 from xk, one has just to append the cut in the simplex

table corresponding to xk and carry out pivoting iterations as in an ordinary linear fractional

programming problem. The described method solves MOILFP problems in the general case.

However, in order to make the algorithm more powerful, the tree structure of the algorithm

can be exploited for construction of a parallel algorithm. For large scale problems, the number

of efficient solutions can be very high so that it becomes unrealistic to generate them all. In

this case, one can choose only the increasing directions of criteria which satisfy a desirable

augmentation. This can be made by building the sets Hl in an interactive way at each step of

the algorithm.
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