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Abstract: In this paper, we apply the idea of k-local contraction of Rincón-Zapatero and
Rodrigues-Palmero (2003, 2007) to study discounted stochastic dynamic programming models
with unbounded returns. Our main results concern the existence of a unique solution to the
Bellman equation and are applied to the theory of stochastic optimal growth. Also a discussion
of some subtle issues concerning k-local and global contractions is included.
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1. Introduction

The theory of stochastic dynamic programming (or Markov decision processes) with un-
countable state space started with the fundamental work of Blackwell (1965). His ideas were
extended in many directions, with a number of applications to economics, engineering, and
operations research were presented. For a good survey the reader is referred to Bertsekas and
Shreve (1978); Hernández-Lerma and Lasserre (1999); Puterman (2005) and other books and
articles. A large part of the theory of stochastic optimal growth lies in the framework of dy-
namic programming. The classical paper of Brock and Mirman (1972) as well as the book by
Stokey et al. (1989) are very much related to Blackwell’s work and deal with an infinite state
space models. However, many issues considered by economists (like properties of trajectories,
steady states for specific models, etc.) are not covered in the aforementioned books on stochas-
tic dynamic programming (control processes). In many applications of decision processes to
operations research or economics it is natural to use unbounded return functions. The bounded
case with discounted evaluation directly leads to the Banach contraction mapping theorem,
see, e.g., Bertsekas and Shreve (1978) or Stokey et al. (1989). The unbounded case, however,
requires different methods (techniques): “weighted norms” in the underlying function spaces, or
limits of solutions for “truncated models”, see Hernández-Lerma and Lasserre (1999); Stokey
et al. (1989) and others. A large survey of the existing literature on various economic models
with unbounded returns can be found in a recent volume edited by Dana et al. (2006). Here,
we mention important works by Boyd III (1990); Boyd III and Becker (1997); Le Van and
Morhaim (2002); Le Van and Vailakis (2005) representing different methods and levels of gen-
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erality. Moreover, the papers by Rincón-Zapatero and Rodrigues-Palmero (2003, 2007), which
are point of our departure, contain a great deal of information on this topic, including models
with recursive utility.

The aim of this paper is to apply the valuable idea of Rincón-Zapatero and Rodrigues-
Palmero (2003) to k-local contraction to study stochastic dynamic programming models with
unbounded return functions. Our main results concern the existence of a unique solution to
the Bellman equation and are applied to the theory of stochastic optimal growth. We give two
applications motivated by the work of Stokey et al. (1989). Before describing our model and
stating the results, we discuss the basic idea of Rincón-Zapatero and Rodrigues-Palmero (2003)
in detail. It turns out that Proposition 1(b) stated in Rincón-Zapatero and Rodrigues-Palmero
(2003) is false. In Section 2 we give a counterexample to support our claim. Proposition 1(b) is
fundamental for the further research demonstrated by Rincón-Zapatero and Rodrigues-Palmero
(2003, 2007). For our purpose, we present in Section 3 a modification of their approach and
state some fixed point results related to their Proposition 2 3

Sections 4-6 contain applications to dynamic programming with stochastic transition func-
tions and economic growth, respectively. Our results on stochastic optimal growth theory are
new and can be applied to multi-sector models. The weighted norm approaches of Boyd III
(1990); Boyd III and Becker (1997) in economic theory or Hernández-Lerma and Lasserre
(1999) in the theory of Markov decision processes are of different nature.

2. Local contractions: a counterexample

In an interesting paper by Rincón-Zapatero and Rodrigues-Palmero (2003) the existence
and uniqueness of solutions of the Bellman equation in the unbounded case is a starting point
of the considerations. The proposed method is based on the Banach Fixed Point Principle
and on an ingenious idea of construction of a special metric space. Unfortunately, part (b) of
Proposition 1 in Rincón-Zapatero and Rodrigues-Palmero (2003), the basis for this paper, is
false. Below we give a counterexample. In Section 3, we present some modifications of the results
in Rincón-Zapatero and Rodrigues-Palmero (2003) which are very useful to study Markov
decision processes, in particular stochastic optimal growth models with unbounded returns.

Throughout this paper N and R denote, respectively, the set of positive integers and the
set of real numbers. As in in Rincón-Zapatero and Rodrigues-Palmero (2003) assume that X

is a topological space such that X =
∞
⋃

j=1
Kj where {Kj} is an increasing sequence of compact

subsets of X. We assume that

X =
∞
⋃

j=1

Int(Kj).

3 After finishing the first draft of this paper, we obtained a communication from Filipe Martins-da-
Rocha and Vailakis (2008) where a different counterexample is shown and different corrections to
Rincón-Zapatero and Rodrigues-Palmero (2003) are given. We would like to thank Filipe Martins-da-
Rocha and Yiannis Vailakis for some useful comments on our work.

2



Let C(X) denote the set of all continuous real-valued functions on X. Define

dj(φ, ψ) := max
x∈Kj

|φ(x) − ψ(x)|, j ∈ N.

Clearly, {dj} is a countable family of semimetrics and d defined by

d(φ, ψ) :=
∞
∑

j=1

2−j dj(φ, ψ)

1 + dj(φ, ψ)
for all φ, ψ ∈ C(X) (1)

is a complete metric on C(X).

Following Rincón-Zapatero and Rodrigues-Palmero (2003, 2007), we say that an operator
T : C(X) 7→ C(X) is a 0-local contraction relative to a set G ⊂ C(X) if

dj(Tφ, Tψ) ≤ βjdj(φ, ψ) for each j ∈ N and for all φ, ψ ∈ G, (2)

where 0 ≤ βj < 1 for every j ∈ N .

Here and in the sequel 0 denotes the function ψ such that ψ(x) = 0 for all x ∈ X.

In Rincón-Zapatero and Rodrigues-Palmero (2003, 2007), a set G ⊂ C(X) is called
“bounded”, if there is a sequence of positive real numbers {mj} such that dj(φ,0) ≤ mj

for each φ ∈ G and j ∈ N. Thus, if the set G contains an unbounded function φ, then the
sequence {mj} must be unbounded as well.

A key role in Rincón-Zapatero and Rodrigues-Palmero (2003) is plays the following state-
ment (Proposition 1): If an operator T : C(X) 7→ C(X) is a 0-local contraction relative to a
bounded set G ⊂ C(X), then there exists a constant α ∈ [0, 1) such that

d(Tφ, Tψ) ≤ αd(φ, ψ) for all φ, ψ ∈ G. (3)

It turns out that this proposition is false. An “a contrario” argument used in the proof is
erroneous just before the Lebesgue dominated convergence theorem is applied.

Example 1: Assume that X = (0, 1] and Kj = [1
j
, 1] for each j ∈ N. Let {mj} be an

increasing sequence of positive numbers. Consider the “bounded set” G ⊂ C(X) (in the sense
of Rincón-Zapatero and Rodrigues-Palmero (2003, 2007)) containing functions fi (i ∈ N) such
that dj(fi,0) = mi for all j ≥ i, and dj(fi,0) = 0 for all 1 < j < i. For instance take

fi(x) =



























mi if 0 < x ≤ 1
i

i(i − 1)mi

(

1
i−1

− x
)

if 1
i

< x ≤ 1
i−1

0 if 1
i−1

< x ≤ 1

for i ∈ N , i > 1, and f1 = m1. Assume that φ ∈ G if and only if there is some i such that
0 ≤ φ(x) ≤ fi(x) for all x ∈ X. Let Tψ(x) := βψ(x) for some β ∈ (0, 1). Then T : G 7→ G.
Clearly, T is a 0-local contraction relative to the set G with βj = β for all j ∈ N . Take i > 1.
Since T0 = 0 and dj(Tfi,0) = βmi for all j ≥ i, and dj(Tfi,0) = 0 for all j ∈ N , j < i, we
have
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d(Tfi, T0) =
∞
∑

j=1

2−j dj(Tfi,0)

1 + dj(Tfi,0)
=

∞
∑

j=i

2−j di(Tfi,0)

1 + di(Tfi,0)

=
di(Tfi,0)

1 + di(Tfi,0)

∞
∑

j=i

2−j = 2−i+1 βmi

1 + βmi

.

Suppose that there exists an α ∈ [0, 1) such that (3) holds. Taking φ = fi and ψ = 0 in (3) we
get

d(Tfi, T0) ≤ αd(fi,0) = α
∞
∑

j=1

2−j dj(fi,0)

1 + dj(fi,0)
=

∞
∑

j=i

2−j di(fi,0)

1 + di(fi,0)
= 2−i+1 αmi

1 + mi

.

It follows that
βmi

1 + βmi

≤
αmi

1 + mi

whence

mi ≤
α − β

β(1 − α)
.

Since i ∈ N is arbitrary fixed, we have shown that the sequence {mj} is bounded and, conse-
quently, the set G must be bounded in the usual sense. Note that, by the last inequality, the
sequence {mj} can be unbounded only if α ≥ 1. Thus the unboudedness of the sequence {mj}
excludes the contractivity of T .

The above example shows that the metric d given by (1) does not have the properties
expected by Rincón-Zapatero and Rodrigues-Palmero (2003, 2007). This metric “kills” the
contractivity of mappings on “bounded sets”!

3. Fixed points of local contractions

In this section, we apply the basic idea of Proposition 2 in Rincón-Zapatero and Rodrigues-
Palmero (2003). Let X is be a nonempty set. By {Kj} we shall denote a strictly increasing (in
the sense of inclusion) sequence of subsets of X and assume that

X =
∞
⋃

j=1

Kj. (4)

Let F (X) be a vector space of functions φ : X 7→ R. For any j ∈ N , define the seminorm on
F (X) by

‖φ‖j := sup
x∈Kj

|φ(x)|, φ ∈ F (X).

We assume that the set off all functions φ ∈ F (X) with domain restricted to any Kj endowed
with the norm ‖ · ‖j is a Banach space. Let c > 1 and m = {mj} be an increasing unbounded
sequence of positive real numbers. Denote by Fm(X) the set of all φ ∈ F (X) such that

∞
∑

j=1

‖φ‖j

mjcj
< ∞.
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The function ‖·‖ : Fm(X) 7→ R defined by

‖φ‖ :=
∞
∑

j=1

‖φ‖j

mjcj
(5)

is a complete norm on Fm(X), so (Fm(X), ‖·‖) is a Banach space. Define

Fmb(X) := {φ ∈ F (X) : ‖φ‖j ≤ mj for all j ∈ N}.

Clearly, Fmb(X) is a closed subset of Fm(X).

Let G ⊂ Fm(X) and k ∈ {0, 1}. Inspired by Rincón-Zapatero and Rodrigues-Palmero
(2003), we say that a mapping T : Fm(X) 7→ F (X) is a k-local contraction (relative to the set
G) if there is a β ∈ [0, 1) such that

‖Tφ − Tψ‖j ≤ β ‖φ − ψ‖j+k for all φ, ψ ∈ G and j ∈ N.

Note that this definition is in some sense stronger than that of Rincón-Zapatero and Rodrigues-
Palmero (2003).

Proposition 1: Let T : Fm(X) 7→ F (X) be a 0-local contraction relative to G = Fm(X). Then

‖Tφ − Tψ‖ ≤ β‖φ − ψ‖, (6)

for any φ, ψ ∈ Fm(X). If T0 ∈ Fm(X), then T maps Fm(X) into itself and has a unique fixed
point φ∗ ∈ Fm(X). If, in addition,

‖T0‖j ≤ (1 − β)mj for all j ∈ N ,

then T : Fmb(X) 7→ Fmb(X) and has a unique fixed point φ∗ ∈ Fmb(X).

Proof: It is easy to see that (6) holds. Assume that T0 ∈ Fm(X). Note that, for all φ ∈ Fm(X),

‖Tφ‖ = ‖Tφ − T0 + T0‖ ≤ ‖Tφ − T0‖ + ‖T0‖ ≤ β ‖φ‖ + ‖T0‖ < ∞.

Then T maps Fm(X) into itself and is a contraction. Suppose now that for each φ ∈ Fmb(X)
and j ∈ N, we have ‖Tφ‖j ≤ (1 − β)mj. Then

‖Tφ‖j ≤ ‖Tφ − T0‖j + ‖T0‖j ≤ β‖φ‖ + (1 − β)mj ≤ βmj + (1 − β)mj = mj.

The existence of a unique fixed point for T in Fm(X) or Fmb(X) follows from the Banach
contraction principle. ¤

Proposition 2: Let T : Fm(X) 7→ Fm(X) be a 1-contraction relative to G = Fm(X). If

γ := βc sup

{

mj+1

mj

: j ∈ N

}

< 1,

then T is a contraction mapping from Fm(X) into itself with the contractivity coefficient γ and
has a unique fixed point φ∗ ∈ Fm(X).
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Proof: For φ, ψ ∈ Fm(X) we have

‖Tf − Tg‖=
∞
∑

j=1

c−j
‖Tf − Tg‖j

mj

≤
∞
∑

j=1

βc−j
‖f − g‖j+1

mj

=
∞
∑

j=1

(

βc
mj+1

mj

)

c−j−1
‖f − g‖j+1

mj+1

≤ γ
∞
∑

j=1

‖f − g‖j+1

mj+1

≤ γ
∞
∑

j=1

‖f − g‖j

mj

= γ ‖f − g‖ .

Thus T is contractive and by Banach’s theorem has a unique fixed point φ∗ ∈ Fm(X). ¤

Remark 1: We have shown that having a k-local contraction mapping T on a space of functions
F (X), one can construct a Banach space using some subset, say S, of F (X) on which T is
contractive. Then the unique fixed point of T in S can be obtained by taking the limit (in the
norm on S) of the iterations T nφ0 with an arbitrary fixed function φ0 ∈ S.

Remark 2: In this paper, we are mainly interested in two special cases:
(a) X is a metric space, the sets Kj are compact and

X =
∞
⋃

j=1

Int(Kj),

F (X) is the space C(X) of all continuous functions on X. Then Fm(X) and Fmb(X) will be
denoted by Cm(X) and Cmb(X), respectively.
(b) (X, Σ) is a measurable space, {Kj} is an increasing sequence of measurable sets satisfying
(4), F (X) is the space M(X) of all measurable functions on X, bounded on every set Kj. Then
Fm(X) and Fmb(X) will be denoted by Mm(X) and Mmb(X), respectively.

4. The model and main results

We start with some preliminaries. Let (X, Σ) be a measurable space, Y a separable metric
space. A set-valued mapping A from X into the family of nonempty subsets of Y is called
(weakly) measurable if A−1(D) := {x ∈ X : A(x) ∩ D 6= ∅} ∈ Σ for every open set D ⊂ Y.
Assume now that X is a metric space. Then a set-valued mapping A is called continuous if
A−1(D) is closed for each closed set D ⊂ Y and open for every open set D ⊂ Y. Clearly, a
continuous set-valued mapping A is measurable if Σ is the Borel σ-algebra on X. It is well-
known that any measurable mapping A having nonempty compact values A(x) for all x ∈ X
admits a measurable selector, see Kuratowski and Ryll-Nardzewski (1965).

Fix a measurable compact set-valued mapping A and define

C := {(x, a) : x ∈ X, a ∈ A(x)}. (7)

Then C is a measurable subset of X ×Y endowed with the product σ-algebra, see Himmelberg
(1975).

Lemma 1: Let g : C 7→ R be a measurable function such that a 7→ g(x, a) is continuous on
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A(x) for each x ∈ X. Then
g∗(x) := max

a∈A(x)
g(x, a)

is measurable and there exists a measurable mapping f ∗ : X 7→ Y such that

f∗(x) ∈ arg max
a∈A(x)

g(x, a)

for all x ∈ X.

This fact follows from the measurable selection theorem of Kuratowski and Ryll-Nardzewski
(1965) and Lemma 1.10 in Nowak (1984).

If in addition we assume that X is a metric space and A is continuous, then g∗ is a continuous
function by Berge’s maximum theorem, see pages 115-116 in Berge (1963).

A discrete-time Markov decision process considered in this paper is defined by the objects:
X, Y , {A(x)}x∈X , u, q, and β satisfying the following assumptions:

A1: X is the state space endowed with a σ-algebra Σ.

A2: Y is a separable metric space of actions of the decision maker. For any x ∈ X, A(x) is a
compact subset of Y representing the set of all actions available in state x ∈ X. It is assumed
that the set-valued mapping x 7→ A(x) is measurable. Define C as in (7).

A3: u : C → R is a (product) measurable instantaneous return function.

A4: q is a transition probability from C to X, called the law of motion among states. If xt is
a state at the beginning of period t of the process and an action at ∈ A(xt) is selected, then
q(·|xt, at) is the probability distribution of the next state xt+1.

A5: β ∈ (0, 1) and is called the discount factor.

A policy is a sequence π = {πt} where πt is a measurable mapping which associates an
action at ∈ A(st) for any admissible history of the process up to state st. Let Π denote the
set of all policies. Note that we restrict our attention to non-randomized policies which are
enough to study the discounted models. For a more formal definition of a general policy the
reader is referred to Bertsekas and Shreve (1978) or Hernández-Lerma and Lasserre (1999).
As usual, a stationary policy can be identified with a measurable mapping ϕ : X 7→ Y such that
ϕ(x) ∈ A(x) for each x ∈ X. More formally, a stationary policy is a constant sequence π with
πt = ϕ. We denote by Φ the set of all stationary policies and identify Φ with the nonempty set
of measurable selectors of the mapping x 7→ A(x). Clearly, if a policy φ ∈ Φ is used, then the
action selected at state xt of the process is at = ϕ(xt).

For each initial state x1 = x and any policy π ∈ Π, the expected discounted return over an
infinite future is defined as:

J(x, π) := Eπ
x

(

∞
∑

t=1

βt−1u(xt, at)

)

, (8)

where Eπ
x denotes the expectation operator with respect to the unique conditional probability
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measure P π
x defined (on the space of histories, endowed with the product σ-algebra, starting

at the state x) by π and the transition probability q according to the Ionescu Tulcea Theorem,
see Proposition V.1.1 in Neveu (1965). We shall accept conditions under which the expected
returns (8) are well-defined.

We now describe some regularity assumptions on the return and transition probability
functions.

C1: Let X be a metric space and {Kj} a strictly increasing family of compact sets such that

X =
∞
⋃

j=1

Int(Kj). (9)

Let Cc(X) be the space of all continuous functions on X with compact supports. Suppose that
the set-valued mapping x 7→ A(x) is continuous. In addition, assume that the return function
u is continuous and, for any v ∈ Cc(X),

(x, a) 7→
∫

X
v(y)q(dy|x, a)

is also continuous on the set C.

If X is not necessarily a topological space, we accept the following regularity condition.

C2: For every x ∈ X, any measurable set D ⊂ X, the functions a 7→ u(x, a) and a 7→ q(D|x, a)
are continuous on A(x).

Remark 3: The continuity assumptions of the above type are typical in the theory of Markov
decision processes, see Schäl (1975) and Hernández-Lerma and Lasserre (1999). From C1,
it follows that q is continuous on C if the space of probability measures on the σ-compact
state space X is endowed with the vague topology. From C2 we can conclude easily that
a 7→

∫

X v(y)q(dy|x, a) is continuous on A(x) for any x ∈ X and every bounded measurable
function v on X.

Under C1 or C2 we can define

uj(x) := max
a∈A(x)

|u(x, a)|, x ∈ Kj and rj := sup
x∈Kj

uj(x). (10)

Consider the sequences {mj} and {Kj} as in Section 2. Assume that (4) holds. We can now
describe our basic assumptions.

D1: For every j ∈ N and x ∈ Kj, a ∈ A(x), we have q(Kj|x, a) = 1.

D2: Assume that there exists c > 1 such that

γ := cβ sup
j∈N

mj+1

mj

< 1. (11)

Moreover, there exists a function h ∈ Mm(X) (h ∈ Cm(X) when X is a metric space) such that
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for every j ∈ N and x ∈ Kj, |uj(x)| ≤ h(x). In addition, for x ∈ Kj, a ∈ A(x), j ∈ N, we have
q(Kj+1|x, a) = 1.

Note that (11) implies that
∑

∞

t=1(cβ)tmt < ∞.

Lemma 2: Assume (4) and either D1 or D2. Then the expected returns (8) are finite.

Proof: Suppose that D1 holds. Choose any j ∈ N and x ∈ Kj. For any t ≥ 2, we have
Eπ

x (|u(xt, at)|) ≤ mj. Hence |J(x, π)| ≤ mj

1−β
. Let D2 be satisfied. Using the norm (5), define

r := ‖h‖. Observe that ‖h‖i ≤ rmic
i for all i ∈ N. Let x ∈ Kj. Then for any t ≥ 2 we have

|Eπ
x (u(xt, at)) | ≤ Eπ

x (h(xt)) ≤ rmj+t−1c
j+t−1.

Consequently,

|J(x, π)| ≤
∞
∑

t=1

βt−1Eπ
x (|u(xt, at)|) ≤

∞
∑

t=1

rβt−1cj+t−1mj+t−1 =
r

βj

∞
∑

t=1

(cβ)j+t−1mj+t−1 < ∞,

because cβ < 1. ¤

The Bellman functional equation (BE) plays a crucial role in the theory of discounted
Markov decision processes. We now describe its form. For any integrable function v : X 7→ R,
put

Lv(x, a) := u(x, a) + β
∫

X
v(y)q(dy|x, a), (x, a) ∈ C.

Using this notation we can write BE in the form

v∗(x) = max
a∈A(x)

Lv∗(x, a), x ∈ X. (12)

In this paper we are interested in the existence of a unique solution to (12) in the space
Cm(X) (when X is a metric space) or in Mm(X) in the more general state space case.

Proposition 3: Assume D1. If C1 (C2 and rj < ∞ for each j ∈ N) is satisfied, then
there exist an increasing unbounded sequence m = {mj} and a unique function v∗ ∈ Cm(X)
(v∗ ∈ Mm(X)) which satisfies the Bellman equation.

Proof: First assume C1. By the maximum theorem of Berge (1963), every function ui is
continuous on the compact set Kj. Therefore rj < ∞ for each j. We can choose any increasing
unbounded sequence m = {mj} such that mj ≥ rj. Consider the closed subset Cmb(X) of the
Banach space Cm(X). Define an operator T on Cmb(X) by

Tv(x) := max
a∈A(x)

(

(1 − β)u(x, a) + β
∫

X
v(y)q(dy|x, a)

)

(13)

where v ∈ Cmb(X), x ∈ X. By the maximum theorem of Berge (1963), Tv is continuous on
every set Kj. From (9), it follows that Tv is continuous on X. Under our assumption on q it is
now easy to see that T maps Cmb(X) into itself. Moreover, for any v, w ∈ Cmb(X), we have

‖Tv − Tw‖j ≤ β‖v − w‖j

9



for every j ∈ N. Thus, T is a 0-local contraction. By Proposition 1 and Remark 2(a), there
exists a unique w∗ ∈ Cmb(X) such that Tw∗ = w∗. Put v∗ = w∗

1−β
. Clearly, v∗ ∈ Cm(X) and is

a solution to the Bellman equation. The proof under condition C2 proceeds along similar lines
if we apply Lemma 1, Proposition 1 and Remark 2(b). Clearly, in that case v∗ ∈ Mm(X). ¤

Remark 4: The operator (13) can be considered for v ∈ Mm(X). Such situations we shall meet
in the sequel.

Proposition 4: Assume D2. If C1 (C2) is satisfied, then there exists a unique function v∗ ∈
Cm(X) (v∗ ∈ Mm(X)) which satisfies the Bellman equation.

Proof: We first assume D2 and C1. The operator given by (13) can be defined for any v ∈
Cm(X). Let r := ‖h‖ and u∗(x) := maxa∈A(x) |u(x, a)|. Consider the closed ball Br := {v ∈
Cm(X) : ‖v‖ ≤ r} in Cm(X). Then u∗ ∈ Br. Choose any v ∈ Br. By the maximum theorem of
Berge (1963), Tv is continuous. We shall show that Tv ∈ Br. Define

η(x) = max
a∈A(x)

∣

∣

∣

∣

∫

X
v(y)q(dy|x, a)

∣

∣

∣

∣

, x ∈ X.

Clearly, η is continuous. If x ∈ Kj, then under D2, we have ‖η‖j ≤ ‖v‖j+1 for all j ∈ N.
Consequently,

‖η‖ ≤
1

β

∞
∑

j=1

‖v‖j+1

mj+1cj+1
(
cβmj+1

mj

) ≤
γ‖v‖c

β
≤

r

β
.

Thus, ‖Tv‖ ≤ r. We have shown that T maps Br into itself. If v, w ∈ Cm(X), then for any j,
we have

‖Tv − Tw‖j ≤ β‖v − w‖j+1,

so T is a 1-contraction. By Proposition 2 and Remark 2(a), there exists a unique w∗ ∈ Cm(X)
(actually, w∗ ∈ Br) such that Tw∗ = w∗. Clearly, v∗ = w∗

1−β
is a solution to the Bellman

equation. The proof under condition C2 makes use of Lemma 1, Proposition 2, Remark 2(b)
and proceeds along similar lines. ¤

Remark 5: If v∗ is a solution to the Bellman equation, then by Lemma 1 one can find a
measurable mapping ϕ∗ ∈ Φ such that ϕ∗(x) ∈ arg maxa∈A(x) Lv∗(x, a) for each x ∈ X. Using
standard iteration arguments and Lemma 2, one can prove that

v∗(x) = J(x, ϕ∗) = sup
π∈Φ

J(x, π), x ∈ X,

i.e., ϕ∗ is a stationary optimal policy. For more details about this iteration method the reader is
referred to Schäl (1975); Bertsekas and Shreve (1978) or Puterman (2005). Also one can show
that (1 − β)v∗ is the limit (in the norm ‖ · ‖) of the sequence T n0, i.e., value iteration holds.
T n0 is the optimal expected return in the n-period model with return function (1 − β)u, see
Bertsekas and Shreve (1978).

5. Extensions to the models with discontinuous return functions or
non-compact action spaces

In some applications of Markov decision processes in operations research or economics it
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is desirable to allow for non-compact action spaces and discontinuous return functions. We
describe two possibilities for extending the results of last section.

C3: Assume in C1 that u is upper semicontinuous.

Proposition 5: Let us replace assumption C1 by C3 in Propositions 3 or 4. Then the Bellman
equation has a unique upper semicontinuous solution.

Proof: Denote by S(X) the set of all upper semicontinuous functions in M(X). Put Sm(X) :=
S(X) ∩ Mm(X) and Smb(X) := S(X) ∩ Mmb(X). Propositions 1 and 2 can be formulated for
operators T : Smb(X) 7→ Smb(X) or T : Sm(X) 7→ Sm(X), because the indicated subsets are
closed in the Banach space Fm(X). By Proposition 7.31 in Bertsekas and Shreve (1978), for
any v ∈ Sm(X), the function ν(x, a) :=

∫

X v(y)q(dy|x, a) is upper semicontinuous on every set
{(x, a) : x ∈ Kj, a ∈ A(x)}, j ∈ N. From the maximum theorem of Berge (1963), it follows that
Tv is upper semicontinuous on Kj. Using our assumption (9), we infer that Tv ∈ S(X). The
remaining part of the proof is an adaptation of the arguments used in proving Propositions 3
and 4. ¤

C4: Let X, Y be Borel (subsets of complete separable metric) spaces. Assume that C ⊂ X ×Y
is a Borel set and A(x) is σ-compact for each x ∈ X. Suppose that the sets Kj satisfying (4)
are Borel and the assumption on q in C2 holds, u : C 7→ R is Borel measurable, and for each
x ∈ X, a 7→ u(x, a) is upper semicontinuous.

In this context, M(X) and Mm(X) consist of Borel measurable functions.

Proposition 6: Assume C4. If D1 and supx∈Kj
supa∈A(x) |u(x, a)| < ∞ for all j ∈ N or D2

with h ∈ Mm(X) is satisfied, then the Bellman equation

v(x) = sup
a∈A(x)

Lv(x, a), x ∈ X,

has a unique solution v∗ ∈ Mm(X).

Proof: It is sufficient to show that T defined by (13) maps Mm(X) into M(X). Then the
assertion follows by simple adaptations of the proofs of Propositions 3 and 4. Let v ∈ Mm(X).
Then the function ν(x, a) :=

∫

X v(y)q(dy|x, a) is Borel measurable on C and a 7→ ν(x, a) is
continuous on A(x) for each x ∈ X. Therefore Lv is Borel on C and a 7→ Lv(x, a) is upper
semicontinuous on A(x) for each x ∈ X. The fact that Tv ∈ M(X) now follows from Corollary
1 in Brown and Purves (1973). ¤

This result, Corollary 1 in Brown and Purves (1973), and standard iteration arguments in
dynamic programming, see Blackwell (1965), lead to the following conclusion.

Corollary 1: Under assumptions of Proposition 5, for any ǫ > 0 there exists some ϕ∗ ∈ Φ such
that

Lv∗(x, ϕ∗(x)) + ǫ(1 − β) ≥ sup
a∈A(x)

Lv∗(x, a), x ∈ X,

which implies that

ǫ + J(x, ϕ∗) ≥ sup
π∈Π

J(x, π), x ∈ X.
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Remark 6: The regularity assumptions C1, C2 or C3 can be considerably weakened if the
state and action spaces are Borel. One can assume that u is a Borel measurable function. Using
universally measurable policies, it is possible to obtain (under similar assumptions to D1 or
D2) that there is an upper semi-analytic solution to the Bellman equation and (for any ǫ > 0)
there exists an ǫ-optimal universally measurable policy. For a background material for this
modification consult Bertsekas and Shreve (1978). Finally, we would like to point out that our
results can also be applied to zero-sum discounted stochastic games with unbounded payoffs
studied in Nowak (1984, 1985) and related articles under a boundedness assumption.

6. Applications to one-sector models of stochastic optimal growth

The results of Section 3 may have many applications to various models in operations research
as studied in Hernández-Lerma and Lasserre (1999) or Puterman (2005) and in economics.
. We now show two applications of Propositions 3 and 4 to the theory of stochastic optimal
growth. We have in mind classical models studied in Brock and Mirman (1972) and Stokey et
al. (1989). However, within our framework we allow for unbounded utility (return) functions.
Let X = [0,∞) be the set of all capital stocks. If xt is a capital stock at the beginning of period
t, then consumption at in this period belongs to A(xt) := [0, xt]. The utility of consumption at

is U(at) where U : X 7→ R is a fixed function. The evolution of the state process is described by
some function f of the investment for the next period yt := xt − at and some random variable
ξt. In the literature, f is called production technology, see Stokey et al. (1989). We shall view
this model as a Markov decision process with X = [0,∞), A(x) = [0, x], and u(x, a) = U(a),
x ∈ X, a ∈ A(x). The transition probability will be specified in two different cases.

Assume that {ξt} are independent and have a common probability distribution µ with
support included in [0, z] for some z > 1.

Example 2: (A model with multiplicative shocks) Assume that

xt+1 = f(xt − at)ξt, t ∈ N. (14)

As in Stokey et al. (1989) (see pages 104 and 288), we assume that f : X 7→ R is a strictly
concave continuously differentiable function such that f(0) = 0 and there exists some y0 > 0
such that

f(y) > y for all y ∈ (0, y0) and f(y) < y for all y > y0. (15)

Moreover, we assume that f ′(y) → 0 as y → ∞. We consider the more interesting case when f
is unbounded. Observe that the transition probability q is of the form: for any Borel set B ⊂ X,
x ∈ X, a ∈ A(x), we have

q(B|x, a) =
∫ z

0
1B(f(x − a)ξ)µ(dξ),

where 1B is the indicator function of the set B. If v ∈ Cc(X), then the integral

∫

X
v(y)q(dy|x, a) =

∫ z

0
v(f(x − a)ξ)µ(dξ)
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depends continuously on (x, a). From (15) and our additional assumptions on f , it follows that
for any j ∈ N, there exists yj > y0 such that f(yj)z

j = yj. The sequence {yj} is increasing.
Define Kj := [0, yj] for each j ∈ N. Note that if y = x − a ∈ Kj, then for any ξ ∈ [0, z],
we have ξf(y) ≤ zf(yj) < f(yj)z

j = yj. From (14) we conclude that q(Kj|x, a) = 1 for every
x ∈ Kj, a ∈ A(x). We have shown that assumptions of Proposition 3 are satisfied. Therefore, for
arbitrary unbounded continuous utility function U the Bellman equation has a unique continuous
solution.

Example 3: (A model with additive shocks) Assume that

xt+1 = (1 + ρ)(xt − at) + ξt, t ∈ N. (16)

Here ρ > 0 is a constant rate of growth and ξt an additional random income received in period
t. The transition probability q is of the form

q(B|x, a) =
∫ z

0
1B((1 + ρ)(x − a) + ξ)µ(dξ),

where B ⊂ X is a Borel set. If v ∈ Cc(X), then the integral

∫

X
v(y)q(dy|x, a) =

∫ z

0
v((1 + ρ)(x − a) + ξ)µ(dξ)

is continuous in (x, a). Fix a number d > 0. Define K1 := [0, d] and then recursively Kj+1 :=
[0, kj+1] with kj+1 := (1 + ρ)kj + z, k1 := d. Assume that U(a) := aσ, σ ∈ (0, 1) is fixed. Define
mj := maxa∈Kj

U(a). The sequence {mj} is increasing and unbounded and it is easy to prove
that

sup
j∈N

mj+1

mj

=
(

1 + ρ +
z

d

)σ

.

Therefore γ defined in (11) satisfies

γ < cβ
(

1 + ρ +
z

d

)σ

< 1

only for some c > 1 and β < 1. Note that d can be arbitrarily large. For example, we can
take d such that z/d < ρ. Then γ < 1 if cβ(1 + 2ρ)σ < 1. If ρ is small, then we can consider
discount factors very close to one. From (16), it is easy to see that q(Kj+1|x, a) = 1 for each
x ∈ Kj, a ∈ A(x). Assumptions of Proposition 4 are thus satisfied. Therefore for this model
the Bellman equation has a unique continuous solution.

We believe that our results can also be applied to multi-sector models of stochastic optimal
growth.
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