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Abstract

The goal of this paper is to model an agent who dislikes large choice sets be-
cause of the “cost of thinking” involved in choosing from them. We take as a
primitive a preference relation over lotteries of menus and impose novel axioms
that allow us to separately identify the genuine preference over the content of
menus, and the cost of choosing from them. Using this, we formally define the
notion of thinking aversion, much in line with the definitions of risk or ambiguity
aversion. We represent such preference as the difference between a monotone and
affine evaluation of the content of the set and an anticipated thinking cost function
that assigns to each set a thinking cost. We further extend this characterization
to the case of monotonicity of the genuine rank and introduce a measure of com-
parative thinking aversion. Finally, we propose behavioral axioms that guarantee
that the cost of thinking can be represented as the sum of the cost to find the
optimal choice in a set and the cost to find out which is the optimal choice.
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Nothing is more difficult [. . . ] than to be able to decide.
Napoléon Bonaparte

1. Introduction

1.1 Basic Idea: Thinking Aversion

Consider an individual who wants to buy a cell phone and can choose between providers
A, B and C. The providers offer the same coverage, the same selection of phones, etc.,
but different calling plans. Provider A offers three plans, B offers these three plans and
three additional ones, and C offers not only these six but a total of 40 plans. Our agent
appreciates the flexibility to pick a plan that better suits her needs, and consequently
prefers provider B to A. However, she might also prefer B to C, despite C’s larger
selection. This might happen because C offers too many options: the agent is afraid
of the cost involved in choosing the best plan in such a large set. She might therefore
prefer to settle for B, which still offers a “good” selection without requiring her to exert
too much effort in choosing.

The behavior of this agent is clearly incompatible with the standard paradigm in
choice, the more options the better. In particular, our agent faces a tradeoff: on the one
hand, she wants more options so that she will more likely find what’s best for her; on
the other hand, she wants fewer options since big sets make the decision process more
costly. The first goal of this paper is to define rigorously the presence of such tradeoff:
we call it Thinking Aversion. Then, we characterize this behavior axiomatically.

This problem could be analyzed in two ways. First, in a standard choice theoretic
study, one could look at what an agent chooses when confronted with different sets,
and look for violations of standard rationality (the WARP) due to the presence of a
disutility from thinking.1 Alternatively, one could take “a step back,” and analyze the
preference of an agent over menus: the preferences over the sets she will choose from at
a later stage. This route has many advantages, and here in particular it allows us to
observe if an agent dislikes sets that require a lot of “thinking” - the behavior that we
are after. This is the route that we follow. (This could be seen as a first step to study
this problem in general, which hopefully will leave us better suited for a future analysis
of the choice behavior).

In particular, by looking at preferences over menus, we study the preferences of an
agent who acts in two stages: first, at stage zero, she ranks the menus (and this is the
ranking that we observe and analyze); then, at stage one, she chooses from a menu. In
both stages the agent has to perform some “thinking.” However, we are only interested

1See, for example, Cherepanov, Feddersen, and Sandroni (2008).
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in the one involved with the choice from menus - call it stage-1-thinking. In particular,
our analysis is meant to capture and analyze how the presence of a stage-1-thinking
affects the way the agent ranks menus at time 0.2

1.2 Empirical evidence and other explanations

Our model is essentially motivated by introspection. At the same time, a number of
studies in psychology and economics document how the presence of a large number of
options might induce a disutility to individuals and affect their behavior. For psychology
see, for example, Schwartz (2005). Within economics, the experiment in Salgado (2006)
directly tests the existence of preferences like the ones we are after: subjects are given
a large set (50) of lotteries to choose from, but before making a choice they can ask the
computer to randomly select a subset of 5 lotteries, which replaces the original one and
from which subjects will then make their choice. Notably, subjects are not shown the
smaller set: they are simply told that it will consist of 5 elements randomly selected by
the computer. (Accepting the subset is therefore risky.) In the experiment 48% of the
subjects opt for this option. This shows that there is a sizable proportion of agents who
are inclined to avoid complex choices and are willing to ask the computer to simplify
their decision task, even if this means facing a potentially much worse set of alternatives.
The experiment also tests the case in which the original set consists of only 25 lotteries:
the percentage goes down to 32%, in line with the interpretation that the complexity of
choice is lower when there are fewer alternatives and therefore fewer agents rely on the
computer to simplify their choices.

Moreover, a strong empirical evidence suggest that agents tend to avoid choosing,
or to choose the default option when confronted with larger or complicated sets - a
phenomenon dubbed choice overload. This is documented in a variety of settings in
papers like Tversky and Shafir (1992), Iyengar and Lepper (2000), Iyengar, Huberman,
and Jiang (2004), Iyengar and Kamenica (2007).3 For example, in Iyengar and Lepper
(2000) the authors present the results of a field experiment about the purchase of jams
in a gourmet grocery store in California. As customers would pass in front of a tasting

2Our analysis, however, is not able to capture the thinking that the agent had to sustain to choose
between menus. This happens because we observe the preferences over menus that are the outcome
of this thinking process, and therefore incorporate it. And since what we observe are well-behaved,
transitive preferences, there will be no way to disentangle it. To do so, we would have to take another
step back, and look at preferences over menus of menus, and so on. Instead, we focus on the point in
time in which our agent has her well-formed preferences over menus, and study these to learn about
the thinking at time 1 and our agent’s attitude towards it.

3Kamenica (2008) suggests one equilibrium-based explanation for this phenomenon in a product
differentiation model. He shows that if there are informational asymmetries, consumers can infer which
good is optimal for them from the product line that is offered, and that consumer surplus is greater
when there are fewer options. Consequently, fewer consumers will buy when the set of options is larger.
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booth set up by the experimenters, they encountered a selection of either 6 or 24 jams.
Their main finding is that only 3% of the customers who approached the booth did
actually purchase a jam in the large selection case, against 30% in the small selection
case. Other examples include the study of pattern of choice of the 401(k) plan, where
similar behaviors are shown.

These experiments seem to support the relevance of the “disutility of thinking” to
behavior. At the same time, however, we need to make sure that other, more standard,
approaches cannot explain it. In particular, two candidate alternative explanations come
to mind: the presence of some informational content in the set selection; or fear of regret
over having made a wrong choice. (Later, we will present an axiomatic structure that
will make this distinction more formal.)

First, one might argue that an agent prefers a smaller set because there is informa-
tional value in what is included in this smaller set. For example, she might prefer to go
to a restaurant with a shorter wine list since she believes - correctly or not - that it is
the outcome of a selection by an expert, conveying therefore some valuable information.
Let us make two remarks. First, in most of the cases we are interested in, there seem to
be no (relevant) informational value in the smaller sets - think about the mobile phones
example. The same seems to be true for the experiments in the choice overload litera-
ture, like the cited one about jams, and certainly for the behavior in the experiment in
Salgado (2006), where the subset is chosen randomly by a computer, and therefore has
no informational value. Second, notice that a standard agent would not have a strict
preference for a smaller set, even if it had informational value. This happens because
in our setup the agent sees the smaller set at the time of choice between menus, and
therefore she is exposed to the information and can incorporate it. A standard agent
would then be indifferent between the larger and the smaller set, since she can focus on
the elements of the smaller set inside the larger one.

The regret argument, suggested by Sarver (2007), assumes that a larger choice set
gives the agent more “opportunity to be sorry” about their selection later on. Anticipat-
ing this, she might want to avoid it by restricting her own choice. Introspection suggests
once again that, although possibly connected, our explanation is well distinguished from
this one. Moreover, in most of the choices that we are trying to explain agents would
never find out what the right choice was, making it harder to suggest that the main
motivation is anticipated regret, and the same seems to be the case for the cited cases of
choice overload. This is further confirmed with a direct test in the experiment in Salgado
(2006), where it is shown that the behavior is essentially the same when subjects are
given feedback about what was the best lottery (and are told beforehand), and when
they are not given such feedback (and know that they will not be).
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1.3 Related Theoretical Literature

In recent years a large number of papers have extended the realm of traditional decision
theory to the framework of preferences over menus, and have obtained rigorous models
of phenomena like preference for flexibility (Kreps (1979)), temptation and self control
(Gul and Pesendorfer (2001), Dekel et al. (2007a)), regret (Sarver (2007)), or a poten-
tial combination of these elements (Dekel, Lipman, and Rustichini (2001), henceforth
DLR01, Dekel et al. (2007b), henceforth DLRS). Some of these papers offer different
explanations as to why an agent might prefer a smaller set: she might want to avoid
the presence of a tempting item, or to feel regret had she made the “wrong” choice.
The present paper fits into this literature as we analyze a different reason why an agent
should prefer a smaller set: because she wishes to avoid the “cost of thinking” involved
in the choice from a large one.

The idea that agents might have a cost of thinking is not new to economics, and
neither to decision theory. A similar concept, dubbed “cost of contemplation,” has been
suggested in the framework of preferences over menus in two papers, Ergin (2003) and
Ergin and Sarver (2008). Both present and justify axiomatically a model in which the
agent chooses the optimal amount of contemplation to evaluate the sets she will have
to choose from, where each act of contemplation is associated with a cost of performing
it. Formally, their representation is of the form

W (A) = max
µ∈M

[

∫

S

max
p∈A

U(p, s)µ(ds) − c(µ)] (1)

where S is a set of states, U is an affine state dependent utility, and M is a set of signed
Borel measures, which are interpreted as possible contemplation strategies, with c as
their cost. These two models differ from ours in several aspects, which we will analyze
in detail in Section 3. Let us for now point out that neither of them aim to capture the
trade-off at the core of our analysis and, in particular, neither can model an agent who
prefers a smaller set to avoid the cost of thinking connected to the bigger one. In Ergin
(2003) the axioms simply impose that the agent always prefers larger sets - in fact, this
is the only requirement. In Ergin and Sarver (2008), the agent might actually prefer a
smaller set, but this can be due only to the role of other components like temptation.
In fact, they prove that if we were to rule out these other components, then the agent
always (weakly) prefers larger sets. By contrast, our work originates from the interest
in preferences for smaller sets.

More generally, the concept of “cost of thinking” is connected to the broad notion of
bounded rationality, understood as the presence of some form of constraints to the ability
of the agent to process information: the cost of thinking could be seen as a way to rep-
resent such computational constraints. In this broad area, starting from Simon (1955),
papers have focused on game theory (Abreu and Rubinstein (1988), Kalai and Stan-
ford (1988), Rosenthal (1989), Rubinstein and Piccione (1993), Rubinstein and Osborne
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(1998), Camerer et al. (2004)), individual decision making (Geanakoplos (1989), Dekel
et al. (1998), Wilson (2004), Diasakos (2007)), bargaining, contracting and competitive
equilbria (Sabourian (2004), Gale and Sabourian (2005),Tirole (2008)), macroeconomics
(Sargent (1993), Sims (2003), Moscarini (2004), Sims (2006), Reis (2006)). A not so
recent survey is offered in Rubinstein (1998). There are, however, two characteristics
of our approach that distinguish it from the majority of the works in this literature.
First, the agent we model is a standard agent who reacts to a non-standard cost, not a
boundedly-rational agent. This implies that our agent can potentially think very hard
if given the appropriate incentives, or very little otherwise; by contrast, a boundedly-
rational agent’s behavior is irresponsive to incentives. Second, most of the models in
the literature are not defined axiomatically, but rather behaviorally.4

1.4 Our approach and preview of the main results

We now turn to describe our approach to this problem. We divide our analysis into four
parts.

First, we introduce the central concept of the paper: “thinking aversion.” The
behavior that we are trying to characterize is that of an agent whose preferences over
menus � (may) incorporate some considerations about how hard it will be to make
a choice from each menu. This means that these preferences are a combination of
two components: a “genuine” preference, which is how the agent would actually rank
menus if there were no cost of thinking; and some measure about how hard it will be
to actually choose from this menu. For a moment suppose that we could observe this
genuine preferences over menus, and use �∗ to denote them. (This is clearly not the
case, but we will come to this later.) Then, we would like to say that an agent is
Thinking Averse if for any set A and singleton {x}, we have

{x} ≻∗ A ⇒ {x} ≻ A.

The basic idea is the following. A singleton is a special set that requires no thinking
- there is nothing to decide, while this might not be true for a generic set A. Then,
if a singleton is better than a set according to the genuine ranking and it requires no
thinking, then it should be preferred to this set by any agent who “dislikes thinking.”

The problem is, however, that we do not directly observe this genuine preference �∗,
but only the general preference �. We then have to develop an axiomatic framework

4Even more generally, a pattern in western philosophy has analyzed the preference for simplicity
also from a normative point of view: from divine simplicity in Saint Thomas, to Occam’s razor, to the
early works of Wittgenstein (Wittgenstein (2001)). They underline what should or could be general
aversion to complicated patterns and decisions - and complexity in general. A recent analysis of such
preference for simpler theories and their consequences on learning is in Gilboa and Samuelson (2008).
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that allows us to elicit this preference �∗ from �, and to do so uniquely, so that Thinking
Aversion could be imposed behaviorally. To this end, we take as a primitive a preference
relation � over lotteries of menus, and require that this lottery is performed after the
agent has chosen from the menus. This means that, given two menus A and B, and
α ∈ (0, 1), when the agent faces the lottery αA⊕ (1−α)B she has to form a contingent
plan, and make a choice from both A and B. Then, she will receive her choice from A
with probability α and her choice from B with probability (1−α). Using this structure,
we develop novel axioms that allow us to elicit the genuine preference �∗ from the
general preference �.

Our second goal is to characterize the behavior of an agent who exhibits thinking
aversion. Let X be a finite subset of alternatives. Define X to be the set of non-empty
subsets of X and ∆(X ) to be the set of lotteries over X . We obtain a representation of
the following form. There exists a finite set S of states of the world, a state-dependent
utility u : X × S → R, a signed measure µ over S, and a function C : ∆(X ) → R, such
that � is represented by

W (A) =
∑

s∈S

µ(s)[max
y∈A

u(y; s)] − C(A), (2)

where the first component represents �∗, while the second component, C, which we call
an Anticipated Thinking Cost function, is concave, equal to zero for singletons or lot-
teries of singletons, and is weakly positive everywhere else.5 We dub this representation
the Thinking-Averse representation. (We also discuss the uniqueness properties of this
representation, and introduce a notion of comparative thinking aversion.)

We interpret this representation as follows. The preferences of the agent consist
of two components: 1) her evaluation of the content of the set, captured by the first
part of the representation, which also represents her genuine preferences �∗; 2) her
evaluation of the cost of thinking about the set, captured by the anticipated thinking
cost function C. We represent the evaluation of the content of a set as follows. The
agent’s utility depends on the realization of the state of the world s ∈ S. She knows
that she will discover the state of the world before choosing, and therefore she expects
to pick the best option from the set given the realized state. At the time of ranking
of menus, however, she doesn’t know the state, and she forms an “expectation” of her
future utility using the signed measure µ over the states.6 This evaluation is reminiscent

5More precisely, equation 2 applies when A is a menu. If instead we have a lottery over menus
⊕

i αiAi, where Ai are menus, αi ∈ [0, 1] and
∑

i αi = 1, the representation is:

W (
⊕

i

αiAi) =
∑

i

αi[
∑

s∈S

µ(s)[max
y∈Ai

u(y; s)]] − C(
⊕

i

αiAi).

6Just as in DLR01, this need not be a probability measure: rather, it could assume negative values,
which are usually referred to as negative states. The interpretation is that these negative states capture
the role of potentially negative components in a set, like tempting elements.
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of what DLR01 call an Additive EU Representation, albeit translated into our setup.
In fact, one could think of this representation as composed of standard preferences less
the expected cost of thinking.

Our third goal is to show that, since we elicit the genuine preference �∗, we can
(almost) directly apply well known results in the literature to characterize it. In partic-
ular, we show how we can impose the axioms in Kreps (1979) only to �∗, and obtain a
characterization like the one in (2), but where µ is a probability measure.7

As a fourth and last goal, we further characterize the anticipated thinking cost
function C. Focusing on the case in which the genuine preference is monotone, we suggest
that there could be two interpretations for this cost. First, it could be understood as the
cost to search for the best option within a menu for an agent who knows her preferences.
We call this the search-cost interpretation. Second, it could be the cost to figure out
what her preferences actually are, i.e. the cost to determine which is the best choice
in the set. In this latter case, we can understand the multiplicity of states in S as the
multiplicity of preferences, and interpret the cost of thinking as the cost to find out the
state of the world. We refer to this as the introspection-cost interpretation.

We offer behavioral axioms that guarantee that the cost of thinking is, in fact, well
behaved under these two interpretations, and prove that these axioms are equivalent to
a representation of the Anticipated Thinking Cost function as the sum of two functions:
1) an increasing function of the cardinality of the set - the search cost; 2) a function
of the coarsest partition of the state space S necessary to select the optimal element
from the set - the introspection cost. (The first function is monotone and the second
is partition-monotone, i.e. assigns higher cost to finer partitions.) Finally, we offer
behavioral axioms that separately identify when only one of the two interpretations
apply, and characterize the cost of thinking in these two separate cases.

The rest of the paper is organized as follows. In Section 2 we present and char-
acterize an axiomatic model that captures Thinking Aversion. Section 3 characterizes
a more restrictive model in which the genuine preference �∗ is monotone. Section 4
analyzes the two possible interpretations of the cost of thinking and provide stronger
characterizations for it. Section 5 concludes. The proofs appear in the appendix, where
we also have the extension of the model to the case of lotteries of menus of lotteries,
with a characterization that guarantees the uniqueness of the state space.

7By extending the framework to the appropriate one, we also show that the same can be done with
the results in Dekel, Lipman, and Rustichini (2001). In particular, we find a representation that inherits
all the properties of theirs (including uniqueness, monotonicity, linearity, etc.). This part of the analysis
appears in Appendix C.
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2. A model for Thinking Aversion

2.1 Formal Setup

Consider a finite set X. Define by X its power set, that is, X := 2X\{∅}. By ∆(X ) we
understand the set of lotteries over X , where αA ⊕ (1 − α)B denotes the lottery that
assigns probability α ∈ (0, 1) to A and (1 − α) to B for some A, B ∈ X , and

⊕

i αiAi

denotes the lottery that assigns weights αi ∈ [0, 1] to Ai ∈ X , where
∑

i αi = 1. We use
A, B, C to denote generic elements of ∆(X ). We metrize ∆(X ) in the standard way,
with the corresponding Euclidean distance between the probability vectors understood
as elements of R

N , where N = |X |. With a slight abuse of notation, we refer to ∆S(X )
as the set of elements of ∆(X ) which contain only singletons in their support. We use
p, q, r to indicate generic elements of ∆S(X ). Again abusing notation, denote by X the
set of degenerate lotteries in ∆(X ). Finally, for any function F : ∆(X ) → R, we say
that F is concave if, for any A, B ∈ ∆(X ), α ∈ (0, 1), we have F (αA ⊕ (1 − α)B) ≥
αF (A) + (1 − α)F (B). Convexity is defined analogously.

The primitive of our analysis is a complete preference relation � over ∆(X ).

As described in the introduction, we assume that a lottery over menus is performed
after the agent chooses from each menu in the support. That is, given two menus
A, B ∈ X , the lottery 1

2
A⊕ 1

2
B is the lottery that returns with probability 1

2
the agent’s

choice from A and with probability 1
2

her choice from B. When facing a lottery over
menus, therefore, the agent needs to form a contingent plan, i.e. decide what to choose
from each of menus in the support of the lottery. Figure 1 depicts the timing. To our
knowledge, the idea to use contingent plans in this framework was introduced by Ergin
and Sarver (2008).

Primitive �:
ranking of Menus

❄

Choice from Menu

Thinking (Costly)

Realization of the
lottery of Menus

0 1 2
◆✴ ❄

Figure 1 : Timing of the Setup

This setup is similar to the one used in Nehring (1996) and Epstein and Seo (2007),
albeit with a different timing of the resolution of uncertainty. At the same time, it
differs from the one used in most of the literature, where we usually find a finite set
X, the set of lotteries on X, ∆(X), and a preference relation defined on the compact
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subsets of ∆(X).8 That is, most papers in the literature look at menus of lotteries, while
we look at lotteries over menus. We do so because we want agents to form contingent
plans when they face lotteries over menus. But in the standard approach there is no
“language” for lotteries of menus: instead, the standard set mixture operation in the
sense of Minkowski is used to define postulates like independence. And since it wouldn’t
make sense for the agent to form a contingent plan when facing such menu of lotteries,
we depart from the standard approach. (In Appendix C we extend our analysis to the
case of lotteries of menus of lotteries in order to obtain stronger uniqueness results.)

2.2 Axioms and Definitions

We now introduce the axiomatic structure of our model.

A.1 (Singleton Independence). For any γ ∈ (0, 1) and any p, q, r ∈ ∆S(X ),

p � q ⇒ γp ⊕ (1 − γ)r � γq ⊕ (1 − γ)r.

This a standard postulate, imposed on a restricted set, lotteries of singletons. (It is
standard practice to show that the other direction, ⇐, is guaranteed by the continuity
postulates that we will impose). As we argued, lotteries of singletons require no thinking,
and we should therefore expect a standard behavior to take place when ranking them. At
the same time, we do not want to impose linearity of � on the whole ∆(X ). Remember
that when an agent faces a lottery over menus she needs to form a contingent plan, and
make a selection from all sets in the support. Then, she might be indifferent between two
menus A and B, but at the same time strictly prefer A to 1

2
A ⊕ 1

2
B, since in the latter

case she needs to think about both. This is a clear violation of independence, due to the
presence of the disutility of thinking. Accordingly, we do not impose independence on
the whole ∆(X ).

As we argued in the introduction, we want to be able to separate the genuine ranking
of menus, that we would observe if there were no cost of thinking, from the general
ranking of menus, which might also contain considerations of the costs of thinking. We
now turn to this analysis. Consider an agent who is facing the lottery 1

2
A⊕ 1

2
B for some

A, B ∈ X . In this case, the agent needs to form a contingent plan: she needs to make
a choice from both A and B. Then, she needs to “think” about both sets. Suppose
now that we increase by a tiny bit the probability that the agent receives her choice
from A, and that we end up with the lottery (1

2
+ ǫ)A ⊕ (1

2
− ǫ)B (where ǫ is small).

8For further reference, define as X̂ the set of closed and convex subsets of ∆(X). The two spaces
∆(X ) and X̂ are in fact connected with each other. In Appendix A we show that there exists a con-
tinuous and linear bijection between our “world”, ∆(X ), and a compact, convex and finite-dimensional
subset of X̂ .
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In this case the agent also has to think about both sets, which means that we have two
problems that require basically the same amount of thinking. Assume now that this new
mixture is preferred to the original one, which means that the agent liked this change
in probabilities. That is, we have

(1
2

+ ǫ)A ⊕ (1
2
− ǫ)B ≻ 1

2
A ⊕ 1

2
B.

What does this mean? For both sets, the “amount of thinking” is approximately the
same, and yet the agent prefers to receive her choice from A with a higher probability.
This means that the agent likes her choice from A better than she likes her choice from
B. In other words, a “genuine” evaluation, that looks only at the content of sets and
disregards the cost of thinking, would say that the content of A is better than the content
of B.

To simplify the notation in what follows, let us denote this “genuine” evaluation as
the binary relation �∗ on X ∪ ∆S(X ) defined as

A ≻∗ B ⇔ (1
2

+ ǫ)A ⊕ (1
2
− ǫ)B ≻ 1

2
A ⊕ 1

2
B ≻ (1

2
− ǫ)A ⊕ (1

2
+ ǫ)B

for all ǫ ∈ (0, ǭ], for some ǭ > 0. Correspondingly, define A ∼∗ B if neither A ≻∗ B nor
B ≻∗ A.9 As argued, we interpret this relation �∗ as the “genuine” preferences of the
agent over menus. In accordance with this interpretation, we impose, as a postulate,
that it must be transitive.

A.2 (Coherence). �∗ is transitive.

Before we proceed, let us point out two features of the elicitation of �∗. First, we
have defined �∗ only on X ∪ ∆S(X ), i.e. on degenerate lotteries and on lotteries of
singletons, and not on the entire ∆(X ), i.e. not on all lotteries of menus. This follows
a precise rationale. We argued that the agent will actually think about both A and
B when facing 1

2
A ⊕ 1

2
B, but only as long as A and B are actually menus. If they

were lotteries of menus, maybe with some common component, we do not know what
“thinking about both” means. Therefore, we simply do not impose anything on those
lotteries, making the axioms weaker, and define the relation �∗ only on X , degenerate
lotteries, and on ∆S(X ), lotteries of singletons (which require no thinking).

Moreover, we have constructed and motivated this preference �∗ arguing that our
agent will in fact think about both A and B when she faces the lotteries 1

2
A ⊕ 1

2
B or

9In what follows we use this derived relation �∗ in the statement of axioms and definitions, because
we believe that it simplifies the notation and makes the statements easier to understand. Notably,
however, this is done just for convenience of exposition: the same axioms can of course be stated using
only the primitive � simply by replacing any statement involving �∗ with its definition in terms of �.
They would simply be a bit longer to read.
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(1
2

+ ǫ)A ⊕ (1
2
− ǫ)B. However, one might argue that she might not fully think about

the sets, but rather only perform “some” of the thinking and make a suboptimal choice.
In this latter case, one could still understand �∗ as the preference over the content of
menus fixing the cost of thinking, under the assumption that the thinking strategy does
not “change abruptly” as we move from 1

2
A ⊕ 1

2
B to (1

2
+ ǫ)A ⊕ (1

2
− ǫ)B. Invoking

an Envelope Theorem argument, we suggest that, as long as the change in the cost of
thinking is a “second order effect” with respect to the change in utility as we vary the
mixture around 1

2
, our interpretation follows through.

We are now ready to define the notion at the core of our analysis: Thinking Aversion.

Definition 1. Consider a preference � on ∆(X ) that satisfies Coherence. Then, �
satisfies Thinking Aversion if and only if for any A ∈ X ∪ ∆S(X ), p ∈ ∆S(X ), we
have

p ≻∗ A ⇒ p ≻ A.

Suppose that we have a singleton p whose content is genuinely better than the content
of a set A, or simply p ≻∗ A. Then Thinking Aversion says that this singleton must
be preferred in general to A: we must have p ≻ A. This happens because p requires
no thinking - it is a singleton, and there is nothing to decide.10 Then any agent who
dislikes thinking must prefer it to any set A that has a worse content and, moreover,
might require some thinking.

Arguably, this notion parallels equivalent ways to define risk aversion by comparison
with a risk-free option. (Or, ambiguity aversion by comparison with constant acts.) For
example, one could define risk aversion for a monotone preference D on lotteries on R as
follows (E[·] is the expected value): D is risk averse if for any lottery p and a degenerate
lottery x, if E[x] > E[p], then x⊲p. In fact, our definition parallels this one, but instead
of the expected value we compare our genuine preference �∗, and instead of a risk-free
alternative we use a “thinking-free” one, a singleton.

Since our focus is on preference relations that have this property, we impose it as a
postulate.

A.3 (Thinking Aversion). � satisfies Thinking-Aversion.

The next axiom posits that agents dislike forming contingent plans, which in our
setup turns out to be a form of concavity of the preferences. We call this axiom “Mixture
Aversion.”

10More precisely, our definition applies not only to the case of singletons, but also to the case of
lotteries over singletons, since they require no thinking either, and the same argument applies.
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A.4 (Mixture Aversion). Take any A, B ∈ ∆(X ), p, q ∈ ∆S(X ) such that p ∼ A and
q ∼ B, α ∈ (0, 1). Then, the following must hold:

αp ⊕ (1 − α)q � αA ⊕ (1 − α)B.

We interpret the axiom as follows. Take two menus A and B and two lotteries of
singletons p and q, and say that p ∼ A and q ∼ B. Consider now a mixture of A and
B and the same mixture of p and q. In the case of the mixture between A and B the
agent must end up thinking (somehow) about both sets A and B. On the other hand,
in the mixture of the two singletons, p and q, there is still no thinking involved. An
agent who dislikes thinking, therefore, must weakly prefer this mixture of singletons to
the mixture of the two sets, because in the first case the cost of thinking may increase,
while in the second it is still zero.

Since we are after a representation theorem, we need to impose a continuity-type
axiom. We can do this either by imposing full continuity of �, or by restricting our at-
tention to singletons and to their relations to sets. We consider the two cases separately.

A.5 (Weak Continuity). 1. For any A ∈ ∆(X ), the sets {p ∈ ∆S(X ) : p � A}
and {p ∈ ∆S(X ) : A � p} are closed.

2. For any A ∈ X , the sets {p ∈ ∆S(X ) : p �∗ A} and {p ∈ ∆S(X ) : A �∗ p} are
closed.

A. 5* (Full Continuity). For any A ∈ ∆(X ), the sets {B ∈ ∆(X ) : B � A} and
{B ∈ ∆(X ) : A � B} are closed.

As the names suggest, in our framework Weak Continuity is a weaker requirement
than Full Continuity. (See Claim 5 in Appendix B.1 for a formal proof).

Finally, we impose two technical axioms. The first posits that there exist two ele-
ments x∗, x∗ in X that are the best and worst elements in ∆(X ) according to �. The
second, which we impose only to guarantee uniqueness of the representation, posits that
there exists an element x∗ ∈ X that is the best element in X according to �∗. Both
of these postulates are technical and are not derived from any real world consideration,
but it is quite easy to depict a situation in which they would exist.11

A.6 (Best/Worst). There exist p∗, p∗ ∈ ∆S(X ) such that p∗ � A � p∗ for all A ∈
∆(X ).

11For example, consider a set X composed of compact cars that the agent could receive for free. Add
now to this set two options: a Ferrari and an old bike. Indeed, the first will be preferred to anything
else in the set, while the second will be certainly the worst option.
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A.7 (Best/Worst*). For any A ∈ X , there exists p∗ ∈ ∆S(X ) such that p∗ �∗ A.

2.3 Representation

2.3.1 Anticipated Thinking Cost To express the notion of “thinking cost” we need a
function that associates with every set a measure of the disutility caused by having to
choose from it. This function should have some minimal properties that render it a real
thinking cost: it should be null on singletons, or lotteries of singletons - since the choice
is trivial; and weakly positive everywhere else. (Notice that this is not simply a matter
of normalization: the main point is that the cost of thinking about any set cannot be
below that of singletons.) In addition, it should be concave, to capture the fact that
making a contingent plan is costly. This leads us to the following definition.12

Definition 2. A function C : ∆(X ) → R is an Anticipated Thinking Cost function
if the following conditions hold:

1. C({p}) = 0 for all p ∈ ∆S(X ).

2. C(A) ≥ 0 for all A ∈ ∆(X ).

3. C is concave.

One might also expect an Anticipated Thinking Cost function to be monotone, that
is, to assign a higher cost of thinking to larger sets. This, however, might be too
restrictive. For example, consider an agent who needs to choose from a menu of wines.
Adding other wines to the list might make the problem harder. However, if we add the
option “get ten million dollars,” it would be so clearly dominant that this larger set
becomes actually easier to think about, and not harder. (In Section 4.3.2 we provide
behavioral axioms to guarantee that the cost is in fact an increasing function of the
cardinality of the set.)

Finally, let us emphasize that this is an anticipated thinking cost function. That is,
it represents the cost that the agent expects to endure when she will be choosing from a
set (or when forming a contingent plan). In fact, the thinking effort is exerted not when
the menu is chosen, but later, when the agent is choosing from the menu, or some time
before that. (Refer to Figure 2 for the timing.)

2.3.2 Thinking-Averse representation We are now ready to introduce our first repre-
sentation.

12Admittedly, to keep the analysis general, we have imposed only the minimal requirements on such
a function. In Section 4 we suggest two possible interpretations of this cost, and provide behavioral
axioms that allow us to find much stronger representations.
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Definition 3. A preference relation � on ∆(X ) has a Thinking-Averse represen-
tation if there exists a non-empty, finite set S of states of the world, a state-dependent
utility u : X × S → R, a signed measure µ over S and a function C : ∆(X ) → R such
that � is represented by

W (
⊕

i

αiAi) =
∑

i

αi[
∑

s∈S

µ(s)[max
y∈Ai

u(y; s)]] − C(
⊕

i

αiAi) (3)

where:

1. C is an Anticipated Thinking Cost function;

2. W + C represents �∗.

We interpret this representation as follows. The preferences of an agent are the
difference of two components. First, her genuine evaluation of the content of the set.
Second, her evaluation of the cost of thinking of the set. These two components are
potentially pushing in different directions, in which case the agent faces a trade off
between having a better content and facing a harder choice - which is the phenomenon
we are after. In our cell-phone example, she weights the benefits of a large number of
options with the (expected) cost of having to decide which one is the best.

The genuine evaluation of the content is modeled with a (finite) set of states of
the world, a state-dependent utility function u and a signed measure µ over S. We
interpret it as if our agent does not yet know what her preference will be at the time of
choice - for each possible preference we have a state of the world s and a utility function
u(·, s). However, she knows that she will discover the state of the world before making
a decision: consequently, she expects to choose the best option and obtain a utility
of maxy∈Ai

u(y; s) for each state s ∈ S. Now, however, she does not know the state,
and forms an “expectation” using the signed measure µ.13 In addition, if the agent is
evaluating a lottery of menus, she also doesn’t know which part of the contingent plan
will be put in place and consequently needs to further condition on the probabilities
αi of each realization of the lottery. Notice two more features of this first part of
the representation. First, it represents the genuine preference �∗, which is in fact the
genuine evaluation that the agent would give to the a set if there were no cost of thinking.
Second, it has the same intuition of what DLR01 call an Additive EU representation,
although defined in a setup of menus of lotteries and not lotteries of menus. In a fact, a
Thinking-Averse representation can be seen as the difference between a standard affine
preference over menus from which a cost of thinking is subtracted.

The second component, the cost of thinking, is represented using what we defined
as an Anticipated Thinking Cost function, with the properties that we have discussed.

13As standard in the literature µ need not be a probability measure, but rather contain negative
components, usually referred to as negative states. We refer to DLR01, DLRS and Dekel, Lipman, and
Rustichini (2007a) for further discussion on negative states.
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Let us review the timing of this representation. First, at time zero, the agent chooses
a menu. Then, before choosing from this menu, she discovers the state and thinks about
what to choose. (Later we will discuss whether we should understand the revelation of
the state as the outcome of the thinking process, or whether the thinking takes place
after the revelation of the state). Then, at time 1, the agent chooses from the menu,
or forms a contingent plan. In an additional later stage, the lottery is realized and the
agent is given her choice as specified by the contingent plan. (We refer to Figure 2 for
the timing).

Primitive �:
ranking of Menus

❄

Revelation of the state Choice from Menu

Thinking (Costly)
Realization of the
lottery of Menus

0 0.5 1 2
❄◆✴ ❄

Figure 2 : Timing of the Representation

2.4 Representation Theorem

We are now ready to state the main representation theorem.

Theorem 1. Let � be a complete preference relation on ∆(X ) that satisfies Best/Worst.
Then, the following two conditions are equivalent:

( i) � has a Thinking-Averse representation < S, µ, u, C >;

( ii) � satisfies Thinking Aversion, Mixture Aversion, Singleton Independence, Weak
Continuity and Coherence.

Moreover, � has a Thinking-Averse representation < S, µ, u, C > such that C is continu-
ous if and only if � has a Thinking-Averse representation and satisfies Full Continuity.

The meaning of this representation and of the axioms has been discussed in the
previous sections. (We postpone the comparison with other papers in the literature to
Section 3, after we have discussed additional results.)
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2.5 Uniqueness

First of all, we wish to establish the uniqueness properties of two components of the
representation, the genuine evaluation of the content and the anticipated thinking cost
function C. In fact, such uniqueness is essential for this separation to be meaningful. The
following Theorem shows that it is a feature of our model, provided that an additional
technical axiom, Best/Worst∗, is satisfied.

Theorem 2. Let � be a complete preference relation on ∆(X ) that satisfies Best/Worst
and Best/Worst∗. Then, if < S, µ, u, C > and < S ′, µ′, u′, C ′ > are both Thinking-Averse
representations for �, then there exists γ ∈ R++, β ∈ R such that

∑

s∈S′

µ′(s)[max
y∈Ai

u′(y; s)] = γ
[

∑

s∈S

µ(s)[max
y∈Ai

u(y; s)]
]

+ β

and
C ′ = γC.

Theorem 2 shows that the evaluation of the content is unique up to a positive affine
transformation, that the evaluation of the cost is unique up to a positive scalar multipli-
cation, and that these two transformations must be the same (γ is the same for both).
This implies that, if we fix the evaluation of the content, the representation of the cost
is unique.

Moreover, we would also like the way we represent �∗ to be unique: uniqueness of
the endogenous state space S much in line with the analysis in DLR01. Unfortunately,
however, this is not a feature of the model we have discussed here. This happens because
in a sense our space is not “rich” enough: recall that, as opposed to DLR01, we do not
work on the space of menus of lotteries, but rather on that of lotteries over menus,
which is substantially smaller.14 As a result, we do not have enough observations to
identify the state space S uniquely. At the same time, if we extend our analysis to the
case of lotteries of menus of lotteries (instead of lotteries of menus) we gain the full
uniqueness of the state space and all the properties of the DLR01 representations for
the characterization of �∗. Such a framework would not be new to decision theory: it
is used, for example, in Epstein, Marinacci, and Seo (2007). This part of the analysis
appears in Appendix C.15

14By smaller we mean the following. In Appendix A we show that we are able to construct a bijection
between our space and a subset of the space of menus of lotteries. This will be a strict, finite-dimensional
subset of an infinite-dimensional space: in this sense we mean smaller.

15Alternatively, one might seek uniqueness of the representation in the sense of Epstein and Seo
(2007): that is, require that any two representations generate an identical measure over the upper
contour sets. As they argue, this could be seen as a more robust form of uniqueness than the one in
DLR01. We refer to Epstein and Seo (2007) for a detailed discussion. It is easy to show that their
uniqueness result (Theorem 3.1) applies here if the conditions of Theorem 2 hold and if µ is a probability
measure (the conditions for which will be discussed in the next section).
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2.6 Being more Thinking-Averse: a comparability result

We now introduce a comparability notion for thinking aversion, to be able to say when
one agent is more “thinking averse” than another in a similar spirit to how we compare
risk aversion or ambiguity aversion. In particular, we want to make such a comparison
for agents that differ only in terms of Thinking Aversion, i.e. for two agents that have
the same genuine preference over the content of a set, so that we can ascribe all the
differences in their behavior to a different approach to thinking. Therefore, in what
follows we consider two preference relations �1 and �2 such that �∗

1=�∗
2.

Definition 4. Consider two preference relations �1 and �2 on ∆(X ) that satisfy
Best/Worst, have a Thinking-Averse representation, and such that �∗

1=�∗
2. We say

that �1 is more Thinking Averse than �2 if, for any A ∈ ∆(X ) and p ∈ ∆S(X ), we
have

A �1 p ⇒ A �2 p.

We have two agents with the same genuine evaluation of the content of sets. The
two agents, however, might differ in the way they dislike “thinking.” and we wish to
say that the first dislikes thinking more than the second. Suppose that A �1 p for
some A ∈ ∆(X ) and p ∈ ∆S(X ). This means that the first agent would rather think
about A than take p, albeit the latter requires no thinking. Then, if the second agent
has the same genuine evaluation of the content and an even lower dislike of thinking,
she should do the same, and we should have A �2 p as well. Notice that this definition
parallels the one of comparative risk aversion and similar ones of comparative ambiguity
aversion.16 (Just like in the definition of Thinking Aversion, here we have a singleton as
a thinking-free element, instead of a risk-free alternative (for risk aversion) or a constant
act (for ambiguity aversion).)

Proposition 1. Consider two preference relations �1 and �2 on ∆(X ) that satisfy
Best/Worst, have a Thinking-Averse representation, and such that �∗

1=�∗
2. Then, the

following two statements are equivalent:

( i) �1 is more Thinking Averse than �2;

( ii) For any two Thinking-Averse representations (S1, µ1, u1, C1) and (S2, µ2, u2, C2)
such that S1 = S2, µ1 = µ2 and u1 = u2, we have C1 ≥ C2.

3. Monotonicity in the content

The model we have discussed thus far allows the agent to prefer a smaller set indepen-
dently of the cost of thinking. For example, she might have no cost of thinking at all

16For the latter, see in particular Ghirardato and Marinacci (2002).
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(C(A) = 0 for all A ∈ ∆(X )) and still prefer a smaller set to avoid temptation. Formally,
this could be the case if µ(s) < 0 for some s ∈ S: much in line with DLR01, our model
allows for the presence of these negative states, which, together with the thinking cost,
might induce the agent to prefer smaller sets. We now rule out this possibility and focus
on the case of monotonicity of the genuine evaluation of the content: the case in which
the cost of thinking is the only feature that might induce the agent to prefer a smaller
set.

To do so, we make use of the fact that we elicit the preference �∗, and that can
therefore impose the required axioms only on this preference relation - one of the advan-
tages of this approach. It turns out that we only need to impose the axioms in Kreps
(1979) on �∗. First, we want our agent to genuinely prefer the content of a larger set
to that of a smaller one. We call this axiom “Content Monotonicity.”

A.8 (Content Monotonicity). For any A, B ∈ X , B ⊆ A ⇒ A �∗ B.

This axiom posits that, were it not for the cost of thinking, the agent would always
prefer bigger sets. This corresponds to the case of the mobile phone plan example in
the introduction. Genuinely she prefers more options, but more options imply a higher
cost of thinking, and so she might not choose a larger set after all.

Following Kreps (1979), we add a property that guarantees that there is some con-
sistency in the way the preference behaves for larger set.

A.9 (Content Submodularity). For any A, B, C ∈ X , A ∼∗ A ∪ B ⇒ A ∪ C ∼∗

A ∪ B ∪ C.

The rationale of this axiom is the following. If adding B to A does not give any
benefit, it must be the case that for any element in B there is an element in A that is
at least as good. But then, adding B to A ∪ C should not give any benefit either. (We
refer to Kreps (1979), where this axiom was introduced, for further discussion.)

Definition 5. A preference relation � on ∆(X ) has a Content-Monotone Thinking-
Averse representation if it has a Thinking-Averse representation < S, µ, u, C > where
µ is a probability distribution over S.

This representation differs from a generic Thinking-Averse representation exactly as
we discussed: we are ruling out negative states, and have a monotone evaluation of the
content.17

17The proof of Theorem 3 requires us to extend the results in Kreps (1979) to the case of lotteries
over menus in a vNM sense. We refer to Appendix A.3 for a detailed discussion.
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Theorem 3. Let � be a complete preference relation on ∆(X ) that satisfies Best/Worst.
Then, the following two conditions are equivalent:

( i) � has a Content-Monotone Thinking-Averse representation;

( ii) � has a Thinking-Averse representation and satisfies Content Monotonicity and
Content Submodularity.

As we have mentioned in the introduction, the results in Theorem 1 and 3 are
reminiscent of the ones in Ergin (2003) and Ergin and Sarver (2008).18 There are,
however, some important differences on the axioms, on the representations and on the
goals. The differences between the Axioms are self evident: although both structures
rely on the presence of contingent plans, we use them to separate the two components
of the preference - the genuine evaluation of the content of the set and the anticipated
thinking cost - which is the core of our structure. By contrast, Ergin and Sarver (2008)
do not distinguish between the two components at all.19 Moreover, at a formal level,
our result is based on different primitives: while Ergin and Sarver (2008) use menus of
lotteries, as we have discussed we use lotteries of menus.20

This difference in the axiomatic structure leads to representations that, although
look similar, are in fact conceptually very different. What Ergin (2003) and Ergin and
Sarver (2008) obtain is an agent that expects herself to choose the optimal thinking
strategy from a pool of available ones: better strategies allow her to find better options
in a menu, but at the same time have a higher cost. (See Equation 1 in Section 1.)
This leads to a representation such that, if the agent has a monotone evaluation of the
content of sets, then the whole preference must be monotone: in fact, by facing a bigger
set the agent gets more content utility, and since she can at least use the same strategy
she used for the smaller set, then she cannot be worse off. (This obvious in the case of
Ergin (2003), since monotonicity is the only postulate, while in Ergin and Sarver (2008)
it is proven in Theorem 1.B.) By contrast, in our representation this need not be true, as
shown by Theorem 3. In particular, in our case the agent could dislike a bigger set since

18These two papers are deeply connected with each other: the latter is an extension of the former
to the space of menus of lotteries. For simplicity we compare our result to this extended one, which is
more similar to ours.

19A common feature is the presence of some form of concavity of the preferences: we impose A.4,
Mixture Aversion, while they impose it in an axiom called Aversion to Contingent Planning. Nev-
ertheless, it is easy to see that the two axiomatic structure are not nested in non degenerate cases.
(However, as we will see, a direct comparison is not possible since the two papers are based on different
primitives.)

20As argued, we believe the latter to be more appropriate to use with contingent plans, but as we
have seen in this different setting we lose the uniqueness of the state space, one of the features of Ergin
and Sarver (2008). At the same time, Ergin and Sarver (2008) make some very compelling arguments
as to why one of the axioms that they use has a reasonable interpretation even with contingent plans
in a standard setting of menus of lotteries.
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she knows that she will have to think harder to choose from it. This is the core difference
between the two representations. In a way, the two models stand at the opposite sides
of an interpretation pole. On the one side, with Ergin and Sarver (2008), we have an
agent who expect herself to rationally react to a computation limitation: she knows she
will think just as much as optimal. This, as we have discussed, leads to monotonicity
in the rank of sets if the evaluation of the content is monotone. On the other side of
the interpretation pole, in our paper agents can expect themselves to think too much,
possibly more than what they would consider optimal now. In this sense, we can view
our agents as being “tempted” into excessive thinking. Anticipating that they will think
so hard, our agents might then choose to have a smaller set to avoid this effort - which
is the behavior that motivated our analysis.21

4. Characterizing cost

Our analysis so far has been almost silent on the form of the anticipated thinking cost
function. We only required that it is zero for lotteries of singletons and that it is concave.
The purpose of this section is to strengthen this characterization.

We suggest that there are two ways of interpreting this cost of thinking. First of
all, an agent might incur in a cost in “reading” the menu. The idea is that the agent
already knows what is best for her, but she needs to find the optimal option within a set,
and this creates a cost of thinking. We refer to this interpretation as the “search-cost
interpretation.” This is the most standard interpretation of the cost of thinking.

Alternatively, we can interpret the cost of thinking as the cost that the agent has
to incur to discover what she wants. That is, not the cost to locate the best option
within a set, but the cost to understand what is the best option in a set. For example,
an agent could have a high cost of thinking even when she faces only two alternatives,
since it might be very hard for her to figure out which of the two is the best choice.
In this sense, it is the cost the agent incurs to discover her own preferences. We refer
to this interpretation as the “introspection-cost interpretation.” This captures what we
consider the most compelling view of the cost of thinking. In fact, one might consider
the existence of such a cost as an (indirect) evidence of the fact that the agent has
incomplete preferences, which she can “complete” by paying this cost.

21Let us emphasize that both Theorem 1 and the results in Ergin (2003) and Ergin and Sarver (2008)
relate to how the agent expects to act in the future, when asked to make a choice from the set. That
is, it would not be correct to say that in our representation agents think too much: rather, they expect
themselves to possibly think too much when asked to choose from a set, and for this reason they prefer
a smaller set now. (What they will do at the time of choice, we cannot say.) Moreover, notice that
the axioms do not impose that the agent expects herself to think more than optimal. Rather, we have
shown that we can represent her behavior as if she were tempted into excessive thinking.
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It is easy to see that these two interpretations are conceptually well distinguished:
in the first case the agent already knows what she wants, but she has to bear a cost to
locate it; in the second case the agent has a cost to decide what she wants, but then has
no difficulty locating it. At the same time, they are are not incompatible: one could
easily depict a situation in which both emerge. The content of this section is to further
characterize the anticipated thinking cost function in light of these two interpretations.
In particular, first we offer a behavioral axiom that guarantees that the cost of thinking
is, in fact, the sum of these two costs. Then, we strengthen this characterization to the
case in which the search-cost is a function only of the cardinality of the set. Finally, we
offer behavioral axioms that allow us to separately identify when the cost of thinking is
only a search-cost or only an introspection-cost, and characterize each of the two cases.
For simplicity, we carry out this analysis in the case of monotonicity of �∗, that is,
under the axiomatic structure of Theorem 3.

4.1 A general model of cost

To further strengthen our representation we need to guarantee that the cost of thinking
is “well-behaved.” To express these conditions, however, we want a way to express
behaviorally that a set has a higher cost of thinking than another. To this end, let us
introduce the notion of “thinking-free equivalent:” for any A ∈ X , define pA and p∗A as
the elements of ∆S(X ) s.t. pA ∼ A and p∗A ∼∗ A. (Thinking-free equivalents serve in our
setup the same purpose that certainty equivalents serve in a setup with risk.) Consider
two sets A, B ∈ X and suppose that we want to express that the cost of thinking of A is
higher than that of B. We know that the cost of thinking is the difference between the
evaluation of A using �∗ and using �. Then, if W represents �, the cost of thinking
of A being higher than that of B implies W (p∗A) − W (pA) ≥ W (p∗B) − W (pB), which
means 1

2
W (p∗A) + 1

2
W (pB) ≥ 1

2
W (p∗B) + 1

2
W (pA) and hence 1

2
p∗A ⊕ 1

2
pB � 1

2
p∗B ⊕ 1

2
pA (by

A.1). We will therefore use 1
2
p∗A ⊕ 1

2
pB � 1

2
p∗B ⊕ 1

2
pA to express that the cost of thinking

of A is higher than the cost of thinking of B.

Consider a menu A and x ∈ A such that A ∼∗ {x}: this means that the option x
contains all the content-utility in A. From such a set our agent has no problem deciding
what to choose: the choice of x is a no brainer.22 Let us combine A with another set
C ∈ X , and look at the set A ∪ C. Since in A we already had a no-brainer choice, the
choice from A ∪ C cannot be simpler from this point of view. At the same time, A ∪ C
is a strictly larger set and therefore finding the optimal choice is bound to be harder.
We would then like to say that the cost of thinking about A ∪ C is higher then the
cost of thinking about A. This leads us to the following axiom, which is stated using
thinking-free equivalents.

22“If a thing can be done adequately by means of one, it is superfluous to do it by means of several,”
Saint Thomas Aquinas, Aquinas (1997, pg. 129).
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A.10 (Cost Coherence). Consider A, C ∈ X such that {x} ∼∗ A for some x ∈ A and
suppose that pA, p∗A, pA∪C , p∗A∪C exist. Then,

1
2
pA ⊕ 1

2
p∗A∪C � 1

2
p∗A ⊕ 1

2
pA∪C .

To state the new representation we need a few additional definitions. First, if S is a
finite non-empty set (state space), denote by Π(S) the set of partitions of S. Moreover,
for any finite set S, state-dependent utility function u : X × S → R and any A ∈ X ,
define IS,u(A) as

IS,u(A) := {π ∈ Π(S) : for all πi ∈ π ∃xi ∈ A s.t. max
y∈A

u(y, s) = u(xi, s) for all s ∈ πi}.

We understand IS,u(A) as the set of partitions that allow the agent to attain the full
utility of a set A by choosing the same alternative in every state grouped by the partition.
We now define a function that assigns to each set A ∈ X one partition in IS,u(A) such
that no coarser one is available.

Definition 6. For any non-empty set S and function u : X × S → R, a function
P : X → Π(S) is a partition function if for all A ∈ X , P(A) ∈ IS,u(A) and there is
no π ∈ IS,u(A) s.t. π 6= P(A) and π is coarser than P(A).

Finally, for any finite set S, we need to define a function that indicates the cost of
each partition. We focus on a specific class of these functions, that we call partition-
monotone: cost functions that assign a (weakly) higher cost to finer partitions.

Definition 7. For any non-empty set S and function f : Π(S) → R, we say that f is
partition-monotone if f(π) ≥ f(π′) for any π, π′ ∈ Π(S) such that π is finer than π′.

We are now ready to state our representation theorem.

Theorem 4. Let � be a complete preference relation on ∆(X ) that has a Content-
Monotone Thinking-Averse representation and satisfies Best/Worst and Best/Worst∗.
Then, the following two conditions are equivalent:

( i) � satisfies Cost Coherence;

( ii) there exist a Monotone Thinking Aversion Representation < S, µ, u, C > of �, a
partition function P : X → Π(S), a partition-monotone function cI : Π(S) → R

and a function cs : X → R such that for all A ∈ X ,

C(A) = cI(P(A)) + cs(A)

and:

23



1. cI({S, ∅}) = 0;
2. cs({x}) = 0 for all x ∈ X;
3. cs(A) ≥ cs(B) for all A, B ∈ X s.t. A ⊇ B.

Theorem 4 shows that, if Cost Coherence is satisfied, then the cost of thinking about
a menu can be represented as the sum of two costs: a search cost cs, and an introspection-
cost cI . These are the two forms of cost of thinking that we discussed above. The search
cost cs is the cost of searching for the best choice in a set: as such, it increases as the set
gets larger, and it is zero when the set is a singleton. The introspection cost cI is the cost
to ascertain what is the best choice: we represent it as the cost incurred to discover the
state of the world, but only insofar as required to make an optimal choice. In fact, our
agent might not need to figure out the exact state of the world. For example, if all the
alternatives in a set A that are optimal in state s1 are also optimal in state s2, then the
agent has no need to distinguish between s1 and s2, and she can settle with a partition of
the state space in which s1 and s2 are not distinguished. Theorem 4 shows that we can
represent the introspection-cost as the cost of the coarsest partition necessary to make a
choice. Moreover, this cost is partition-monotone (finer partitions require more thinking
and are therefore more costly) and it is zero for the empty partition (cI({S, ∅}) = 0).

4.2 A general model of cost with cardinality

We now turn to strengthen the representation in Theorem 4 in order to obtain a stronger
structure for the search-cost. Consider a menu A that contains a no-brainer choice, i.e.
we have x ∈ A s.t. A ∼∗ {x}. Again, here our agent has no problem deciding what to
choose. Let us now add to this set an element y ∈ X such that this addition doesn’t
make the set genuinely better in content: we have A ∪ {y} ∼∗ A ∼∗ x. That is, adding
y to A doesn’t add any utility: we refer to y as an irrelevant alternative in A. In a
setup with a cost of thinking, we would then like to say that adding y to A cannot be
beneficial for the agent: it does not add any utility, and it cannot simplify the choice
(since there is already a no-brainer choice). Instead, it only adds “noise” to the set, and
our agent should not like it. This is the content of the following axiom.

A.11 (Harm of Irrelevant Alternatives - HIA). Consider A ∈ X , x ∈ A, y ∈ X\A
s.t. A ∼∗ x and A ∪ {y} ∼∗ A. Then,

A � A ∪ {y}.

Consider now a set A ∈ X and replace one element x of A with some element y
which was not in A. Call this new set B. Assume now that in this new set we have a
no-brainer choice: there exists z ∈ B s.t. {z} ∼∗ B. This no-brainer choice could either
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be y, the option that we have added, or another option that was already in the set.23

Then, we would like to conclude that the cost of thinking about B is (weakly) lower
than the cost of thinking about A, because B has this one attractive option. This leads
us to the following axiom (again expressed using thinking-free equivalents).

A.12 (Cost Reduction). Consider A ∈ X , and B = (A\{x}) ∪ {y} for some x ∈ A,
y ∈ X\A s.t. B ∼∗ {z} for some z ∈ B. Then, if pA, pB, p∗A, p∗B exist, we have

1
2
p∗A ⊕ 1

2
pB � 1

2
p∗B ⊕ 1

2
pA.

It turns out that these two axioms are enough to guarantee a stronger characteriza-
tion.

Theorem 5. Let � be a complete preference relation on ∆(X ) that has a Content-
Monotone Thinking-Averse representation and satisfies Best/Worst and Best/Worst∗.
Then, the following two conditions are equivalent:

( i) � satisfies Cost Reduction and HIA;

( ii) there exist a Monotone Thinking Aversion Representation < S, µ, u, C > of �, a
partition function P : X → Π(S), a partition-monotone function cI : Π(S) → R

and an increasing function cs : N → R such that for all A ∈ X

C(A) = cI(P(A)) + cs(|A|)

and:

1. cI({S, ∅}) = 0;
2. cs(1) = 0.

Moreover, for any C, cs and cI ◦ P are unique.

4.3 Focusing on specific interpretations

Finally, we offer behavioral conditions that allow us to separately identify the cases in
which the cost of thinking is only an introspection-cost from the case in which it is only
a search-cost.

23For example, consider a menu A that contains possible meals, and an agent who likes lobster better
than anything else. Let us assume that x and z ∈ A are both lobster (prepared in different ways),
while y /∈ A is some other entrée. When evaluating A the agent needs to choose between x and z, both
lobster meals. However, if we construct a set B by replacing x with y, then in B the agent will have a
no-brainer choice, since there is only one lobster dish to choose from.
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4.3.1 Introspection-cost only As we argued earlier, if there is an option x in a set A
that is better in all states, {x} ∼∗ A, then the agent should have no cost in deciding
what to choose, since she can simply pick x. In other words, the introspection-cost of
this set A must be zero. And, if the only cost at play is the introspection cost, then the
cost of thinking about A must be zero. But if A has the same genuine ranking of x,
A ∼∗ x, and has the same cost of thinking (zero), we must have A ∼ {x}. This leads us
to the following Axiom.

A.13 (Costly Flexibility). For any A ∈ X , x ∈ A, if A ∼∗ {x}, then A ∼ {x}.

Notice that this postulate has some of the flavor of the standard Independence of
Irrelevant Alternatives axiom, exactly in opposition to HIA: if irrelevant alternatives
are added to a set which contain a no-brainer choice, the evaluation of the set remains
untouched.

Theorem 6. Let � be a complete preference relation on ∆(X ) that has a Content-
Monotone Thinking-Averse representation. Then, � satisfies Costly Flexibility if and
only if there exist a Content-Monotone Thinking-Averse representation < S, µ, u, C > of
�, a partition function P : X → Π(S) and a partition-monotone function c : Π(S) → R

such that for all A ∈ X
C(A) = c(P(A))

and c({S, ∅}) = 0.

4.3.2 Search-cost only In this case, the addition of an irrelevant alternative to a set
is always harmful for the agent. In particular, such an addition will always (weakly)
increase the cost of thinking, because if the agent needs to find her best option within
a set, it will be harder for her to do so if the set is larger. And in the absence of an
introspection cost the agent does not care if this addition simplifies the choice. Following
this rationale, we have the following postulate.

A.14 (Strong Harm of Irrelevant Alternatives - SHIA). For any A ∈ X , x ∈ X
such that A ∼∗ A ∪ {x} we have

A � A ∪ {x}.

Next, we want to postulate that the cost of thinking is anonymous: if the cost of
thinking is due to the difficulty of finding objects within a set, it should change in the
same way when any element is added.

A.15 (Anonymity). For any A ∈ X , x, y ∈ X, x, y /∈ A, if pA∪{x}, p
∗
A∪{x}, pA∪{y}, p

∗
A∪{y}
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exist, then
1
2
p∗A∪{x} ⊕

1
2
pA∪{y} ∼

1
2
p∗A∪{y} ⊕

1
2
pA∪{x}.

Finally, one might want a testable postulate that guarantees that the agent’s cost of
thinking increases more then proportionally as the size of the set increases. This means
that, if we add two “irrelevant” alternatives x, y to a set A - i.e. we have A ∼∗ A∪{x, y}
- then the difference between the evaluation of A∪ {x, y} and A∪ {x} should be higher
than that between A ∪ {x} and A. This is precisely what we impose in the following
axiom, again using think-free equivalents.

A.16 (Increasing Search Cost - ISC). For any A ∈ X , x, y ∈ X such that A ∼∗

A ∪ {x, y}, if pA∪{x,y}, pA, pA∪{x} exist, then

1
2
pA∪{x,y} ⊕

1
2
pA � pA∪{x}.

Theorem 7. Let � be a complete preference relation on ∆(X ) that satisfies Best/Worst
and Best/Worst*, and let < S, µ, u, C > be a Content-Monotone Thinking-Averse rep-
resentation of �. Then, � satisfies Anonymity if and only if there exist a function
c : N → R s.t. for all A ∈ X

C(A) = c(|A|).

Moreover, � satisfies Anonymity and SHIA if and only if such a c is increasing. Finally,
� satisfies Anonymity and ISC if and only if such a c is increasing and convex.

5. Conclusion

In this paper we analyze a preference relation on lotteries over menus characterized by
the presence of a tradeoff. On the one hand, the agent prefers a larger set since it
gives her more options to choose from. On the other hand, she prefers a smaller set
since she wishes to avoid the disutility associated with having to think about what to
choose from a larger set. We impose novel axioms that allow us to separate two distinct
components of these preferences. The first component represents the agent’s ranking of
menus if she had no cost of thinking - which we called the genuine preference over the
content of menus. The second component is the disutility of making a choice from that
menu. We then formally define the notion of thinking aversion in a manner similar to
the definitions of risk or ambiguity aversion.

We then turn to characterize a Thinking-Averse preference relation. We present an
axiomatic structure built around Thinking Aversion, and show that it is equivalent to the
existence of a representation characterized by the difference between a genuine evaluation
of the content of the set, modeled in a way similar to DLR01, and an evaluation of the
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cost of thinking about the set, which is zero for singletons, positive everywhere else and
concave.

We further strengthen this characterization in two ways. First, we show that simply
adapting the axioms in Kreps (1979) to the genuine evaluation of the content of a menu
allows us to obtain a characterization in which the content is evaluated monotonically.
Then, we strengthen the characterization of the function that represents the cost of
thinking about a set, focusing on two possible interpretations. First, the cost could
be understood as the cost to search for the best option within a menu for an agent
who knows her preferences. Second, it could be the cost of understanding what her
preferences actually are. We offer behavioral axioms that allow us to characterize the
cost as the sum of two components: 1) an increasing function of the cardinality of the
set; 2) the cost to obtain the right partition of an endogenous state space necessary to
make a choice.

Future research could analyze the possible implications of these preferences in a
standard economic environment. One such analysis is presented in Ortoleva (2008),
which shows that an adapted version of this model applied to portfolio choice could
allow us to explain some behavioral anomalies observed in the financial market. In
particular, it could explain the tendency of agents to avoid the stock market when they
are facing too many options, or to choose näıve diversification strategies.

Appendix A: Preliminaries

A.1. A mapping result: connecting the two spaces

The content of this section is to build a connection between the space that we use in this
paper, lotteries over menus, and the space used in most of the literature, menus of lotteries.
(Recall that we denote by X̂ is the set of compact subsets of the simplex ∆(X), metrized with
the Hausdorff metric.)

Lemma 1. Let X be a finite set. Then, there exist an affine and continuous bijection between
∆(X ) and a compact and convex subset of X̂ .

The proof goes as follows. Notice that any element of ∆(X ) can be written as
⊕N

i=0 αCi
Ci

where C1, . . . , CN ∈ X , αCi
∈ [0, 1] for all i, and

∑N
i=1 αi = 1. Define g : ∆(X ) → X̂ as

g(

N
⊕

i=0

αCi
Ci) :=

∑

αCi
conv(Ci).

(Where
∑

in X̂ is understood in the standard sense of set mixing.) Define now H as the range
of g, that is, H := {Â ∈ X̂ : Â = g(A) for some A ∈ ∆(X )}.

Claim 1. g is a bijection between ∆(X ) and H.
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Proof. We only need to prove that for any A, B ∈ ∆(X ), we have g(A) 6= g(B). To prove it we
shall proceed by induction on the cardinality n of X. First notice that when n = 1 the result is
trivially true. Then, take X of cardinality n, take any A, B ∈ ∆(X ), A 6= B and say, by means
of contradiction, that g(A) = g(B). Further, as we argued before write A =

⊕N
i=0 αCi

Ci and

B =
⊕N

i=0 βCi
Ci. First, notice that for all x ∈ X, we must have α{x} = β{x}. To see why, say

that, instead, we had α{x} < β{x}. But then, it means that any lottery in g(B) must give a
minimum weight of β{x} to x, while there are lotteries in g(A) which could give a lower weight,
hence we would not have g(A) = g(B). So, we have shown that we must have α{x} = β{x} for
all x ∈ X.

Now, for any x ∈ X, define C(x) := {C ∈ X : x ∈ C}. This is the class of subsets of X that
contain x. Now, define Âx ∈ ∆(X ) as follows. (Again, we are defining only the corresponding
weights, α̂x.)

α̂x
C =

{

0, if x ∈ C
αC+αC∪{x}

1−α{x}
, otherwise

It is easy to see that we have
∑N

i=1 α̂x
Ci

= 1. Define B̂x analogously. There are now two

possible scenarios. Either there exists x ∈ X such that Âx 6= B̂x, or Âx = B̂x for all x ∈ X.
Say first that there exists x ∈ X such that Âx 6= B̂x. Notice that we find two sets in

∆(2X\{x}\{∅}), call them Āx and B̄x, that assign the same distribution as Âx and B̂x. (The
reason is that both Âx and B̂x have in the support only sets that do not contain x). We
can further define the function ḡ analogous to g but defined on ∆(2X\{x}\{∅}). Now, notice
that the set X\{x} has cardinality n − 1, and hence the assumption of induction implies
that we have ḡ(Āx) 6= ḡ(B̄x). This implies that we can say (without loss of generality),
that there exists p ∈ ḡ(Āx)\ḡ(B̄x). But then, notice that this immediately implies that
α{x}{x} + (1 − α{x})p ∈ g(A), since I can always replicate the lottery p in g(A) provided
that I assign enough weight to the singleton {x}.24 But, notice that we cannot have that
α{x}{x} + (1− α{x})p ∈ g(B), since it would imply that p ∈ ḡ(B̄x) (since α{x} = β{x}), which

we know is not true. We have shown that there cannot exist x ∈ X such that Âx 6= B̂x.
We then must have Âx = B̂x for all x ∈ X. Notice that, since α{x} = β{x} for all x ∈ X,

this implies that αD +αD∪{x} = βD +βD∪{x} for all x ∈ X, D ∈ X . Now, consider any y ∈ X,
and notice that this implies that we have α{y} + α{y}∪{x} = β{y} + β{y}∪{x}, which in turns
implies, since again α{x} = β{x} for all x ∈ X, that we have α{x,y} = β{x,y} for all x, y ∈ X.
Then do the same for the set of three elements, and so on. This implies that αD = βD for all
D ∈ X , which means A = B, a contradiction.

Claim 2. g is linear and continuous.

Proof. To prove continuity we need to prove that, for any (An) ∈ ∆(X )∞, A ∈ ∆(X ) with
An → A, we have g(An) → g(A). Denote An =

⊕

αn
i Ci and A =

⊕

αiCi and notice that
An → A implies αn

i → αi for all i.25 But it is immediate to see that,in the Hausdorff topology
of X̂ , αn

i → αi for all i implies that
∑

αn
i conv(Ci) →

∑

αiconv(Ci).
To prove linearity, take any A, B ∈ ∆(X), γ ∈ (0, 1). Write A :=

⊕

αiCi and B :=
⊕

βiCi,
and notice that we must have γA ⊕ (1 − γ)B =

⊕

[γαi + (1 − γ)βi]Ci. But notice that we

24To do so, simply consider, in the mixture, the same sets and elements we considered to create p.
25This comes from the way we metrize ∆(X).
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must then have that g(γA + (1 − γ)B) =
∑

[γαi + (1 − γ)βi]conv(Ci) = γ[
∑

αiconv(Ci)] +
(1 − γ)[

∑

βiconv(Ci)] = γg(A) + (1 − γ)g(B), which in turns proves linearity.

Finally, notice that linearity and continuity of g guarantee the convexity and compactness
of H. This concludes the proof of Lemma 1. Q.E.D.

A.2 Mapping of the representations

We now show that we can obtain a representation of �, defined on ∆(X ), that is reminiscent of
what DLR01 call an Additive EU representation.(We lose, however, the main goal of DLR01:
we no longer have uniqueness of the state space S.)

Definition 8. A preference relation � on ∆(X ) satisfies independence if, for all A, B,C ∈
∆(X ), α ∈ [0, 1]

A � B ⇔ γA ⊕ (1 − γ)C � γB ⊕ (1 − γ)C.

Lemma 2. Let � be a complete preference relation on ∆(X ). Then, the following two condi-
tions are equivalent:

( i) � on ∆(X ) satisfies Full Continuity (A.5∗) and independence;

( ii) there exists a non-empty, finite set S of state of the world, a state-dependent utility
u : X × S → R and a signed measure µ over S such that it is represented by

U(
⊕

αiAi) =
∑

αi[
∑

s∈S

µ(s)[max
y∈Ai

u(y; s)]]

To prove this result we first “translate” our preference relation to the space used in DLR01,
X̂ . By Lemma 1, we know that we have a continuous bijection g between ∆(X ) and a compact
and convex subset H of X̂ . Recall that we have N = |X|. Consider now the following set of
utilities: Ū := {u ∈ R

∆(X) : u is continuous, affine, maxy∈∆(X) u(y) = 1, miny∈∆(X) u(y) = 0,
∃x1, x2, . . . , xN−1 ∈ X such that u(x1) = u(x2) = . . . = u(xN−1) }. (Geometrically they
are the utilities that generate indifference curves that are parallel to each of the faces of the
simplex.) Notice that |Ū | < ∞. We will now show that these utilities are, in fact, enough to
characterize our preference relation. Geometrically, we are simply going to show that we can
separate every set A ∈ H from every point outside of it (but still in the simplex) by means of
one of those utilities. (Recall that we understand every A ∈ H as A ⊆ R

N−1.)

Claim 3. For any A ∈ H, y ∈ R
N−1 with y /∈ A, there exists u ∈ Ū such that max

x∈A
u(x) < u(y).

Proof. To prove the claim, notice that, by construction of H, the set of extreme points of H,
denoted by ext(H), is the g-image of X . Recall the geometrical intuition of the elements of
Ū : they are the utilities whose indifferent curves are parallel to the face of the simplex. Given
this intuition, it is trivial to show that the claim holds for ∆(X): simply, a point outside of it
can be separated from ∆(X) by means of an hyperplane parallel to the appropriate face; but
then, if this hyperplane is the indifference curve of a utility function u which increases in the
direction of y, we must have max

x∈∆(X)
u(x) < u(y). If A ∈ ext(H) and A is a face of the simplex
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(i.e., |A| = N − 1), then the same reasoning applies. If A ∈ ext(H) but A is not a face of the
simplex, we still know that A must be the g − image of some element of X , hence A must be
the intersection of two or more faces of the simplex. But then again, one of the hyperplanes
parallel to those faces must do. This proves that the claim is true for all A ∈ ext(H).

Notice that any A ∈ ext(H) is a polyhedron in R
N−1. Moreover, notice that what we

have just proven is equivalent to saying that, for any face F of A, there exist u ∈ Ū such that
u(x) = u(y) for all x, y ∈ F . We now turn to prove that this is true for all A ∈ H. To do so,
consider first two sets B, C ∈ ext(H) and λ ∈ (0, 1), and define D := λB +(1−λ)C. Consider
any face F of D, and notice that it must be either a subset of the mixture of a face F ′ of B
and x′ ∈ C, or of a face F ′′ of C and x′′ ∈ B. Say that it is the first case (the second case is
analogous). Then, we know that there exist u ∈ Ū such that u(y) = u(z) for all y, z ∈ F ′. By
linearity of u, it must be the case that the same is true if the elements are mixed with a fixed
element x′ ∈ C, which means that u(r) = u(s) for all r, s ∈ F . This proves that the claim is
true for A ∈ H such that it is the convex combination of two elements in ext(H). Repeat this
argument to show that this is true for any A ∈ H such that it is the convex combination of
finitely many elements in ext(H). But this is the entire H, and this concludes the proof. �

(Geometrically, what we have just proved is that we can separate all the sets in H by
means of hyperplanes parallel to the face of the simplex.) By standard arguments, it is now
trivial to show that we can therefore map any A ∈ H onto a subset C of R

|Ū | (recall that
|Ū | < ∞ by finiteness of X): simply associate every set to the vector that has the utility given
by the set in every u ∈ Ū . Call this map h. Again, standard arguments show that h is a
linear, continuous bijection. We have therefore a linear and continuous bijection γ := g ◦ h
from ∆(X) to C. Now, define the preference relation �̂ on C by

γ(A) �̂ γ(B) ⇔ A � B.

Since γ is a linear and continuous bijection, �̂ preserves the affinity and continuity of �. We
have therefore a linear and continuous preference relation on a subset of R

|Ū |. It is standard
practice to show that there exist a set U ⊆ Ū (finite) and a signed measure µ on U such that,
for any x, y ∈ C

x �̂ y ⇔
∑

ui∈U

µ(ui)xi ≥
∑

ui∈U

µ(ui)yi.

But then, by definition of �̂ and since γ is a bijection, we have

∑

j

αjAj �
∑

j

βjBj ⇔
∑

j

αj [
∑

ui∈U

µ(ui) max
x∈conv(Aj)

ui(x)] ≥
∑

j

βj [
∑

ui∈U

µ(ui) max
x∈conv(Bj)

ui(x)].

Since, by affinity of u, we have max
x∈conv(Aj)

ui(x) = max
x∈Aj

ui(x), this concludes the proof of Lemma

2. Q.E.D.

A.3 Extending Kreps (1979) to lotteries of menus

In order to prove Theorem 3 we need to extend the representation of Kreps (1979) to the case
of lotteries over menus. In particular, we obtain a representation that is the extension of the
representation in Kreps (1979) in a vNM sense. Of note, this very representation has been
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characterized in Nehring (1996) by means of one novel axiom (indirect stochastic dominance).
By contrast, we prove here that the same representation can be derived imposing that the
axioms of Kreps (1979) on the degenerate lotteries.

To prove this result, we use the following Lemma, which is an extension of Lemma 3 in
Kreps (1979): for completeness we include the full proof. (The core idea is to show that the
representation in Kreps (1979) is “so” not-unique that we can assign any utility value needed.)

Lemma 3. Let Y be an arbitrary finite set endowed with two binary relation � and D such
that:

1. � is complete and transitive;

2. D is reflexive;

3. y D y′ and y 6= y′ imply not y′ � y.

Then, for any utility representation U of � such that U(y) < 0 for any y ∈ Y , there exist
negative numbers a(y) such that U(y′) =

∑

{y:yDy′} a(y).

Proof. To prove it, let ∼ and ≻ denote the symmetric and asymmetric parts of � and ⊲ the
asymmetric part of D. Notice that � is a weak preference relation, and that (by (3)) we have
y ⊲ y′ ⇒ y ≻ y′. Define w and w∗ as w(y′) :=

∑

{y:yDy′} a(y) and w∗(y′) :=
∑

{y:y⊲y′} a(y).

Clearly we have w(y′) = a(y′) + w∗(y′). We now find the constants a(y) inductively. First
look at the ∼-equivalence class of the �-preferred elements in Y . Define a(y) = U(y) for any
y in this equivalence class. (Since U represents �, the value is always the same.) Now proceed
downward in the ∼-equivalence classes. Note that once a(y) are defined for all y ≻ y′, w ∗ (y′)
is fixed. (This happens because y D y′ ⇒ y ≻ y′. But we have already defined a(y) for all for
all y ≻ y′.) Now assign a(y′) = U(y′)−w∗(y′). Notice that we must have that a(y′)+w∗(y′) is
the same for all y′ in the same equivalence class, since a(y′)+w∗(y′) = U(y′) and U represents
�. For the same reason we have a(y′) + w∗(y′) ≤ a(y) + w∗(y) for any y � y′. Since Y is
finite, there are finitely many ∼-equivalence classes, and the induction procedure gives the
representation. �

We now need two additional definitions. Consider a preference relation � on ∆(X ). (For
any A ∈ X , by δA we understand the dirac measure on A.)

Definition 9. A preference relation � on ∆(X ) is degenerate-monotone if and only if for
any A, B ∈ X , B ⊆ A, we have δA � δB.

Definition 10. A preference relation � on ∆(X ) is degenerate-submodular if and only if
for any A, B,C ∈ X , δA ∼ δA∪B implies δA∪B∪C � δB∪C .

We are now ready to state the main Lemma of the section.

Lemma 4. Let � be a complete preference relation on ∆(X ). Then, the following two condi-
tions are equivalent:

( i) � satisfies continuity, independence, degenerate-monotonicity and degenerate-submodularity;
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( ii) there exist a finite set S of state of the world, a state-dependent utility u : X × S → R

and a probability measure µ over S such that it is represented by

U(
⊕

αiAi) =
∑

αi[
∑

s∈S

µ(s)[max
y∈Ai

u(y; s)]]

The if part is either standard or trivial. To prove the only if part, notice that by affinity
and independence there exist V : X → R such that for any

⊕

αiAi,
⊕

βiBi ∈ ∆(X ), we have

⊕

αiAi �
⊕

βiBi ⇔
∑

αiV (Ai) ≥
∑

βiV (Bi).

Now define by �̄ the restriction of � on X . We now wish to show that there exist a finite
non-empty set S an affine state-dependent utility u : X × S → R and a probability measure µ
over S such that

Ū(A) =
∑

s∈S

µ(s)[max
y∈A

u(y; s)]

represents �̄ and such that there exists β ∈ R such that Ū(A) = V (δA)+β for all A ∈ X . But
notice that this claim is almost identical to Theorem 1 in Kreps (1979), with the exception
of the last requirement. In fact, to prove it one could follow almost identical passages, but
using Lemma 3 in this paper instead of Lemma 3 in Kreps (1979). This guarantee the fact
that Ū(A) = V (A) + β for all A ∈ X for some β ∈ R. The representation then follows
immediately. Q.E.D.

Appendix B: Proofs of the results in the text

B.1. Proof of Theorem 1 and 3

Only if direction The proof of both theorems proceeds as follows: 1) we extend �∗ to ∆(X )
by linearity, and characterize such extension using Lemma 2 (for Theorem 1) or Lemma 4 (for
Theorem 3); 2) we turn to characterize �: first we characterize it with a function linear on
the singletons, then we normalize this with the representation of �∗ so that they coincide on
singletons; 3) we show that emerging characterization must have the desired properties. For
simplicity, we analyze the consequences of both continuity postulates (A. 5 and A. 5*) at the
same time, emphasizing the differences whenever there is any.

We start from the characterization of �∗. Notice that �∗ is complete by construction, and
that it is transitive by A. 2.

Claim 4. �∗ agrees with � on ∆S(X ). That is, for any p, q ∈ ∆S(X ), {p} �∗ {q} ⇔ {p} �
{q}.

Proof. Take p, q ∈ ∆S(X ). Say that we have (1
2 + ǫ)p+(1

2 − ǫ)q ≻ 1
2p+ 1

2q ≻ (1
2 − ǫ)p+(1

2 + ǫ)q
for some ǫ > 0. By linearity of � on ∆S(X ) (A. 1), this is true if and only if p � q, proving
the claim. �

Claim 5. If � satisfies A. 5*. then it satisfies A. 5.
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Proof. Assume that � satisfies A.5*. It is trivial to show that we must then have that for any
A ∈ ∆(X ), the sets {p ∈ ∆S(X ) : p � A} and {p ∈ ∆S(X ) : A � p} are closed. Now consider
A ∈ X and pn ∈ (∆S(X))∞, p ∈ ∆S(X) s.t. pn → p and pn �∗ A. We need to show that
p �∗ A. (The proof that pn → p and pn �∗ A imply p �∗ A is analogous.) Say, by means of
contradiction, that we have A ≻∗ p. This means that there exist ǭ > 0 s.t. for all ǫ < ǭ we have
(1
2 + ǫ)p⊕ (1

2 − ǫ)A ≺ 1
2p⊕ 1

2A ≺ (1
2 − ǫ)p⊕ (1

2 + ǫ)A. Notice also that we have pn �∗ A for all
n, which implies that, for each each n, either we have that for each ǫ̂ > 0 there exist ǫn ∈ (0, ǫ̂)
s.t. (1

2 + ǫn)pn ⊕ (1
2 − ǫn)A � 1

2pn ⊕ 1
2A, or that, for each ǫ̂′ > 0, there exist ǫ′n ∈ (0, ǫ̂′) s.t.

1
2pn ⊕ 1

2A � (1
2 − ǫ′n)pn ⊕ (1

2 + ǫ′n)A (or both). Notice that it is always possible to build a
subsequence (pm) in which one of the two conditions is true for all m, and say that it is possible
to construct a subsequence that satisfies the first one (the proof in case it is the second one is
analogous and is therefore omitted for brevity). That is, construct a subsequence (pm) s.t., for
all m, and for each ǫ̂ > 0 there exist ǫm ∈ (0, ǫ̂) s.t. (1

2 + ǫm)pm ⊕ (1
2 − ǫm)A � 1

2pm ⊕ 1
2A. We

now claim that, for every m, we have that for every ǫ ∈ (0, 1
2), (1

2 +ǫ)pm⊕(1
2−ǫ)A � 1

2pm⊕ 1
2A.

To see why, notice that, since � is linear on ∆S(X ) by A. 1, then by A. 4, � is concave, i.e.
for every A, B ∈ ∆(X ), α ∈ (0, 1) and every continuous utility representation v of �, we must
have v(αA⊕(1−α)B) ≤ αv(A)+(1−α)v(B) (that is, v is convex). But then, since there exist
ǫm > 0 s.t. (1

2 +ǫm)pm⊕ (1
2 −ǫm)A � 1

2pm⊕ 1
2A, then we must have pm � 1

2pm⊕ 1
2A. In turns,

again by A. 4, this implies that if ǫ̇m ∈ (0, 1
2) and (1

2 + ǫ̇m)pm⊕(1
2 − ǫ̇m)A � 1

2pm⊕ 1
2A, then we

have (1
2 + ǫ)pm⊕ (1

2 − ǫ)A � 1
2pm⊕ 1

2A for all ǫ ∈ (ǫ̇m, 1
2). But since, ǫ̇m can be arbitrarily close

to 0, then we have (1
2 + ǫ)pm ⊕ (1

2 − ǫ)A � 1
2pm ⊕ 1

2A for all ǫ ∈ (0, 1
2). Notice that this is true

for all m. Consider now any ǫ ∈ (0, ǭ). Notice that we have (1
2 + ǫ)pm ⊕ (1

2 − ǫ)A � 1
2pm ⊕ 1

2A
for all m, and (1

2 + ǫ)p⊕ (1
2 − ǫ)A ≺ 1

2p⊕ 1
2A. But since � is complete and pm → p and hence,

in our topology, 1
2pm ⊕ 1

2A → 1
2p ⊕ 1

2A and (1
2 + ǫ)pm ⊕ (1

2 − ǫ)A → (1
2 + ǫ)p ⊕ (1

2 − ǫ)A, then
this contradicts continuity of �. �

Claim 6. �∗ is continuous.

Proof. Notice that within X ∪ ∆S(X ), in the topology we are using the only possible conver-
gence is for elements of ∆S(X ). Therefore, we only need to show that for any A ∈ X the sets
{p ∈ ∆S(X ) : p �∗ A} and {p ∈ ∆S(X ) : A �∗ p} are closed. Now, if � satisfies A. 5, then
this is trivially true. (By Claim 5 this is true even if � satisfies A. 5*). �

Claim 7. For any A ∈ ∆(X ), there exist pA ∈ ∆S(X ) s.t. pA ∼ A. Moreover, for any B ∈ X
s.t. x∗ �∗ B �∗ x∗, there exist p ∈ ∆S(X) s.t. p ∼∗ B.

Proof. Consider any A ∈ ∆(X ) and any x∗, x∗ ∈ ∆S(X ) s.t. x∗ � A � x∗. (Their existence is
guaranteed by A. 6). It suffices to show that there exist λ ∈ [0, 1] s.t. λx∗ ⊕ (1 − λ)x∗ ∼ A.
Say, by means of contradiction, that this is not the case. Then, define λ∗, λ∗ ∈ [0, 1] as
λ∗ := min{λ ∈ [0, 1] : λx∗ ⊕ (1 − λ)x∗ � A} and λ∗ := max{λ ∈ [0, 1] : A � λx∗ ⊕ (1 − λ)x∗},
and notice that both are well-defined by A. 5. Notice that we cannot have λ∗ = λ∗, since it
would imply λ∗x∗ ⊕ (1 − λ∗)x∗ ∼ A, which we know is not true. Notice also that we cannot
have λ∗ > λ∗. If this were the case, consider any λ′ ∈ (λ∗, λ

∗), and notice that we could
not have λ′x∗ ⊕ (1 − λ′)x∗ � A since this violates the definition of λ∗ (it is the minimum λ
s.t. this is true), nor A � λ′x∗ ⊕ (1 − λ′)x∗ since this violates the definition of λ∗ (it is the
maximum λ s.t. this is true). Therefore, we must have λ∗ > λ∗. Notice that therefore we have
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λ∗x∗ ⊕ (1 − λ∗)x∗ ≻ A ≻ λ∗x
∗ ⊕ (1 − λ∗)x∗, λ∗ > λ∗, and x∗ � x∗. But this is a violation

of independence of � on ∆S(X ), A. 1, since it implies that if λ∗ > λ∗ and x∗ � x∗, then
λ∗x

∗ ⊕ (1 − λ∗)x∗ ≻ A � λ∗x∗ ⊕ (1 − λ∗)x∗. The proof of the second part of the claim is
analogous given the continuity of �∗. �

Claim 8. There exist Ū : X ∪ ∆S(X ) → R that represents �∗ and that is continuous and
affine on ∆S(X ).

Proof. We will construct Ū as follows. Consider any continuous and affine representation v
of �∗ restricted to ∆S(X ). Notice that we have x∗ �∗ p �∗ x∗. By Claim 7, for any A ∈ X
s.t. x∗ �∗ A �∗ x∗ there exist some p∗A ∈ ∆S(X) s.t. p∗A ∼∗ A. Now, for any p ∈ ∆S(X),
set Ū(p) = v(p), and for any A ∈ X s.t. that there exist p∗A ∈ ∆S(X) s.t. p∗A ∼∗ A, set
Ū(p) = v(p∗A). Finally, consider any A ∈ X s.t. A ≻∗ x∗ for x∗ ≻∗ A. By finiteness of X,
there are only finitely many of these sets: construct therefore any utility representation h for
them normalized s.t. h(A) > v(x∗) for any A ∈ X such that A ≻∗ x∗, and s.t. h(A) < v(x∗)
for any A ∈ X such that x∗ ≻

∗ A. Now set Ū(A) = h(A) for these elements. �

We now extend Ū to ∆(X ) in an affine and continuous way. Define U : ∆(X ) → R as

U(
⊕

i

αiAi) :=
∑

αiŪ(Ai).

It is easy to show, by means of standard arguments, that it will also be continuous and, by
construction, affine. We only need to make sure that, for any p ∈ ∆S(X ) we have Ū(p) = U(p).
But this is a trivial consequence of the affinity of U on ∆S(X ). This means that we have U
defined on the whole ∆(X ) such that U(A) = Ū(A) for any A ∈ X ∪ ∆S(X ).

Now, define �̂∗ as the preference relation induced on ∆(X ) by U , that is

A �̂∗ B ⇔ U(A) ≥ U(B).

Notice that �̂∗ is a continuous and linear extension of �∗ to ∆(X ) (by construction of U).
We now turn to characterize �̂∗. For Theorem 1 we use Lemma 2, while for Theorem 3

we use Lemma 4. In both cases, there exist a nonempty, finite set S, a state-dependent utility
function u : X × S → R and a signed measure µ over S such that

U(
⊕

i

αiAi) =
∑

i

αi[
∑

s∈S

µ(s)[max
y∈Ai

u(y; s)]].

In the case of Theorem 3, µ is a probability measure.
We now turn to characterize the general preference relation �.

Claim 9. There exists W : ∆(X ) → R such that:

1. W represents �;

2. W is affine and continuous when restricted to ∆S(X );

3. W is convex;

4. W (A) ≤ U(A) for all A ∈ ∆(X );

5. W (p) = U(p) for all p ∈ ∆S(X );
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6. W is continuous if � satisfies Axiom 5*.

Proof. Consider first the restriction of � on ∆S(X ), and represent it with an affine and contin-
uous Ŵ : ∆S(X ) → R (the existence of such Ŵ is guaranteed by Axioms 5 and 1). By Claim
7, for any A ∈ ∆(X ) there exists pA ∈ ∆S(X ) such that A ∼ pA. Now, define W : ∆(X ) → R

as
W (A) := Ŵ (pA).

Notice that W is affine and continuous on ∆S(X ) and represent �. Now, normalize W such
that W (p) = U(p) for all p ∈ ∆. Notice that, since by Claim 4 � and �∗ agree on ∆S(X ),
such normalization exists.

We now turn to prove that W is convex. We need to show that, for any A, B ∈ ∆(X ) and
α ∈ (0, 1) we have W (αA ⊕ (1 − α)B) ≤ αW (A) + (1 − α)W (B). Define pA and pB as above
and notice that αW (A) + (1 − α)W (B) = αW (pA) + (1 − α)W (pB) = W (pA ⊕ (1 − α)pB) ≥
W (αA ⊕ (1 − α)B), where the last inequality comes directly from A. 4.

We now prove that we have W (A) ≤ U(A) for all A ∈ ∆(X ). To see this, notice that for any
A ∈ X∪∆S(X ), we have A ∼ pA (where pA has been defined above). Now, say that there exists
A ∈ X ∪ ∆S(X ) such that W (A) > U(A). Then, we have W (A) = W (pA) = U(pA) > U(A).
Hence, we have pA ≻∗ A but pA ∼ A. But this clearly violates A. 3.

This implies that, for any A ∈ X ∪ ∆S(X ), we have W (A) ≤ U(A). But clearly convexity
of W guarantees that the same is true for any A ∈ ∆(X ). To see this, take A, B ∈ X ∪∆S(X ),
α ∈ (0, 1). Notice that we have U(αA ⊕ (1 − α)B) = αU(A) + (1 − α)U(B) ≥ αW (A) + (1 −
α)W (B) ≥ W (αA⊕ (1−α)B), where the first equality comes from linearity of U , the last one
from convexity of W . Since this clearly extends to larger mixtures, we have W (A) ≤ U(A) for
all A ∈ ∆(X ) as sought.

Finally, notice that if � is continuous (satisfies Axiom 5*), then the function W thus
constructed must be continuous. To see this, notice that continuity of � implies that for any
An ∈ (∆(X ))∞, A ∈ ∆(X ), An → A, and pAn → pA for some (pAn) ∈ (∆S(X ))∞ and pA ∈
∆S(X ), if pAn ∼ An for all n, then pA ∼ A. But then W (An) = W (pAn) → W (pA) = W (A)
as sought. �

Define now the function C : X → R as

C(A) := W (A) − U(A).

By construction we have C({p}) = 0 for all p ∈ ∆(X), and C(A) ≥ 0 for all A ∈ X .
Also, it is clearly concave (since W is convex and U is linear). And, in the case in which � is
continuous (Axiom 5*), then C must be continuous, since W in this case is continuous.

If direction Take the representation as given. For simplicity, define U : ∆(X ) → R as

U(A) :=
∑

i

αi[
∑

s∈S

µ(s)[max
y∈Ai

u(y; s)]].

It is trivial to see that U is continuous and affine. A. 5 (Continuity) is immediate from the
continuity of U and the existence of a utility representation W of �. A. 1 (Independence over
Singletons) is trivial since C({p}) = 0 for all p ∈ ∆S(X ) and since U is affine. A. 2 (Coherence),
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derives from the fact that U represents �∗ (it implies that �∗ is complete, transitive). To show
A. 3 (Thinking Aversion), simply notice that, if U(p) > U(A), since C(p) = 0 and C(A) ≥ 0,
we have U(p) − C(p) > U(A) − C(A) as sought. A. 4 (Mixture Aversion) is an immediate
consequence of the linearity of U and concavity of C. Finally, if C is continuous, then W is
continuous as well, which means that Axiom 5* is satisfied. The additional axioms for Theorem
3 are also trivially satisfied.

This concludes the proof of Theorem 1 and 3. Q.E.D.

B.2. Proof of Theorem 2

Let us consider the first part. First we need to show that there is a unique linear extension
of �∗ (defined on X ∪ ∆S(X )) to �̂∗ defined on ∆(X ). To see the uniqueness, notice that, as
proven in Claim 4, �∗ will be affine on ∆S(X ). Furthermore, notice the following.

Claim 10. There exist x∗, x∗ ∈ ∆(X) such that x∗ �∗ A �∗ x∗ for all A ∈ X ∪ ∆S(X ).

Proof. The existence of x∗ is directly assumed in A. 7. To show the existence of x∗, say, by
means of contradiction, that there exist A ∈ X such that y ≻∗ A for all y ∈ ∆S(X ). (If such
A belonged to ∆S(X ) it would prove the claim.) Then, by A. 3, we must also have y ≻ A for
all y ∈ ∆S(X ). But this contradicts A. 6. �

Now notice that, since �∗ is affine on ∆S(X ) and continuous (as proven in Claim 6), and
given the existence of x∗ and x∗ proven in Claim 10, then it is standard to prove that for any
A ∈ X ∪ ∆S(X ), there exist λ ∈ [0, 1] such that

A ∼∗ λx∗ ⊕ (1 − λ)x∗.

Define this λA. But then, it is again standard practice to show that, for any linear extension
�̂∗ of �∗, we must be such that, for any A, B ∈ X , α ∈ (0, 1),

αA ⊕ (1 − α)B∼̂∗(αλA + (1 − α)λB)x∗ ⊕ (α(1 − λA) + (1 − α)(1 − λB))x∗.

But this immediately implies that this linear extension is bound to be unique. We have
therefore a unique affine preference relation: standard results guarantee that it is unique up
to a positive affine transformation. This proves the first part.

We now turn to prove the uniqueness of C. Define U : ∆(X ) → R

U(A) :=
∑

i

αi[
∑

s∈S

µ(s)[max
y∈Ai

u(y; s)]]

and U ′(A) =
∑

i αi[
∑

s∈S′ µ′(s)[max
y∈Ai

u′(y; s)]]. Notice that we have just shown that we have

U ′ = γU + β. Now, consider A ∈ X such that A ∼ {p} for some p ∈ ∆(X). Clearly, we must
have U({p}) = U(A) − C(A) and U ′({p}) = U ′(A) − C′(A). But given that U ′ = γU + β, we
have γU({p}) + β = γU(A) + β − C′(A), which yields C′(A) = C(A). Clearly, if A. 6 holds,
then this is true for all A ∈ X . This concludes the proof of Theorem 2. Q.E.D.
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B.3. Proof of Proposition 1

First of all, consider two Thinking-Averse representations of �1 and �2, (U1, µ1, C1) and
(U2, µ2, C2) such that U1 = U2 and µ1 = µ2. (Their existence is guaranteed by �∗

1=�∗
2.)

For simplicity, define

U1(A) :=
∑

i

αi[
∑

s∈S1

µ1(s)[max
y∈Ai

u1(y; s)]]

and U2 analogously. It is immediate to see that we must have U1 = U2. Now define W1 =
U1 − C1 and W2 = U2 − C2. Notice that (2) is equivalent to saying that W1 ≤ W2. Moreover,
it is immediate to see that we must have W1(p) = W2(p) for any p ∈ ∆S(X )

To prove (1) ⇒ (2), consider A ∈ ∆(X ). As shown in the proof of Claim 9, there must
exist pA ∈ ∆S(X ) such that pA ∼1 A. Hence, we have W1(pA) = W1(A). Furthermore, since
U1 = U2 and C1(pA) = 0 = C2(pA), we have W2(pA) = W1(pA) = W1(A). Now, condition
(1) and pA ∼1 A imply that we have A �2 pA, hence W2(A) ≥ W2(pA), which gives us
W2(A) ≥ W1(A) as sought.

To prove (2) ⇒ (1), take any A ∈ ∆(X ) and p ∈ ∆S(X ) such that A �1 p. But then, this
together with (2), implies W2(A) ≥ W1(A) ≥ W1(p) = W2(p), hence A �2 p as sought. This
concludes the proof of Proposition 1. Q.E.D.

B.4. Proof of Theorem 4

Notice that for any Content-Monotone Thinking-Averse representation < S, µ, u, C > and any
A, B ∈ X we have 1

2pA ⊕ 1
2p∗B � 1

2p∗A ⊕ 1
2pB if and only if C(A) ≤ C(B). This remark makes

the if direction trivial. To prove the only if direction, let us define the set NT as

NT := {A ∈ X : A ∼∗ {x} for some x ∈ A}.

Define ĉs : NT → R as ĉs(A) := C(A). Now construct cs : X → R as cs(A) := max{cs(B) : B ∈
NT, B ⊆ A}. (This is well defined since X is a finite set and every singleton belongs to NT .)
Notice that for every A, B ∈ NT s.t. A ⊆ B we have C(A) ≤ C(B) by A.10, and therefore
cs(A) ≤ cs(B). In turns, this implies that for any A, B ∈ X s.t. A ⊆ B we have cs(A) ≤ cs(B).
Notice also that, for every x ∈ X, {x} ∈ NT , and therefore cs({x}) = C({x}) = 0.

We now turn to construct cI : Π(S) → R. To do so, we make use of the following claim. In
what follows, for brevity, we present a proof that is built upon the non-uniqueness of the state
space. (Alternative, more instructive proofs are possible but, to our knowledge, they would
not bring stronger results.) For any finite set S and partitions π, π′ ∈ Π(S), we say that π and
π′ are not comparable if we have that π is neither finer then coarser then π′.

Claim 11. There exist a Content-Monotone Thinking-Averse representation < S, µ, u, C >
and partitioning function P s.t. for any A, B ∈ X\NT , P(A) and P(B) are not comparable.

Proof. If |S| = 1, then X = NT and the claim is trivially true. Consider now the case in which
|S| > 1. Notice that, for any A ∈ X , IS,u(A) is non-empty. Notice also that we can add to
our state space a dummy state s̄ in which all elements are indifferent. That is, if there exist a
Content-Monotone Thinking-Averse representation < S, µ, u, C >, then there exist a monotone

38



thinking averse representation < S ∪{s̄}, µ′, u′, C >, where µ′(s̄) > 0 and u′(x, s̄) = u′(y, s̄) for
all x, y ∈ S.26

Consider now any Content-Monotone Thinking-Averse representation < S, µ, u, C > and
any partition function P0 for this representation. If for any A, B ∈ X\NT we have that
P0(A) and P0(B) are not comparable, we are done. Say that this is not the case for some
A, B ∈ X\NT . Since A, B /∈ NT , we must have P0(A) 6= {S, ∅} 6= P0(B). Take s1, s2 /∈ S
and consider a Content-Monotone Thinking-Averse representation < S ∪ {s1, s2}, µ

′, u′, C >
s.t. µ′(s1) > 0, µ′(s2) > 0, u′(x, s1) = u′(y, s1) and u′(x, s2) = u′(y, s2) for all x, y ∈ X.
Call S′ = S ∪ {s1, s2}. Fix any s̄ ∈ S and construct a partition function P1 as any partition
function for this representation such that: 1) for all C ∈ X , C 6= A, B, P1(C) is identical to
P0(C) with the only difference that s1, s2 are grouped together with s̄; 2) P1(A) is identical
to P0(A) but assigns s1 to the same group of s̄ and s2 to any other group (we now that two
groups exist since P0(A) 6= {S, ∅}); 3) P1(B) is identical to P0(B) with the only difference
that assigns s2 to the same group of s̄ and s1 to any other group (we now that two groups
exist since P0(B) 6= {S, ∅}) That is, define P1 as any partition function s.t.

P1(C) := {β ⊆ S′ : β\{s1, s2} ∈ P0(C) and s̄ ∈ β} ∪ {β ⊆ S′ : β ∈ P0(C) and s̄ /∈ β}.

for all C ∈ X , C 6= A, B and

P1(A) := {β ⊆ S′ : β\{s1} ∈ P0(A) and s̄ ∈ β} ∪ {β ⊆ S′ : β\{s2} ∈ P0(A) and s̄ /∈ β},

P1(B) := {β ⊆ S′ : β\{s2} ∈ P0(B) and s̄ ∈ β} ∪ {β ⊆ S′ : β\{s1} ∈ P0(B) and s̄ /∈ β}.

Notice that P1(A) and P1(B) are not comparable.
Repeat this procedure, defining P2,P3, until we obtain Pk such that Pk(A) and Pk(B)

are not comparable for all A, B ∈ X . (Define the state spaces S1, S2, . . . , the utility functions
u1, u2, . . . , and the signed measures µ1, µ2, . . . . ). Since X is finite, this is achievable in a
finite number of steps k. Clearly < Sk, µk, uk, C > is a Content-Monotone Thinking-Averse
representation, and Pk is a partition function with the desired properties. �

Now construct a Content-Monotone Thinking-Averse representation < S, µ, u, C > and
partitioning function P as of Claim 11 and notice that we have that for any A, B ∈ X\NT ,
P(A) 6= P(B). Call J := {π ∈ Π(S) : π = P(A) for some A ∈ X\NT}, and P(C) = {S, ∅} for
all C ∈ NT . Define ĉI : J ∪ {S, ∅} → R as ĉI(P(A)) = C(A) − cs(A) for all A ∈ X\NT and
ĉI({S, ∅}) = 0 (Our previous discussion guarantees that it well defined.). We only need to show
that ĉI is partition-monotone, which in this case means ĉI(P(A)) = C(A) − cs(A)) ≥ 0 for all
A ∈ X . If A ∈ NT , this is trivially true. If A /∈ NT , notice that we have cs(A) = cs(B) = C(B)
for some B ∈ NT , B ⊆ A. By A.10, we have C(A) ≥ C(B), hence C(A) ≥ cs(A) as sought.
Therefore, ĉ is partition-monotone. Define now cI : Π(S) → R by extending ĉI to Π(S)
preserving partition monotonicity. We only need to make sure that we have C(A) = cs(|A|) +
cI(P(A)). But this is trivial from the definition of ĉI and cI . Finally, the uniqueness result is
trivial if we notice that any partitioning function P must assign P(A) = {S, ∅} to any A ∈ NT .
This concludes the proof of Theorem 4. Q.E.D.

26The addition of this state does not modify the representation. It is simply a scaling up of W in the
same amount for all sets.
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B.5. Proof of Theorem 5

The if direction is trivial. To prove the only if direction, define NT as in the proof of Theorem 4.
For any A, B ∈ NT , we say that (A, B) ∈ CO if |A| = |B| and A and B have all but one element
in common (i.e. A\{x} = B\{y} for some x ∈ A, y ∈ B). Notice that, for any A, B ∈ NT s.t.
(A, B) ∈ CO, we must have C(A) = C(B) by A.12. (Apply it once and obtain C(A) ≥ C(B),
and once again and obtain C(A) ≤ C(B).) Notice that, for any A, B ∈ NT , |A| = |B|, there
exist C1, . . . , Ck ∈ NT s.t. |A| = Ci, i = 1, . . . , k and (A, C1), (B, Ck), (Ci, Ci+1) ∈ CO for
i = 1, . . . (k − 1). To construct it, if x∗ ∈ A, then simply keep replacing all elements in A with
elements in B one by one, leaving x∗. Since we have x∗ ∼∗ X by A.7 and A. 8, then Ci ∈ NT .
If x∗ /∈ A, construct C1 replacing any element in A with x∗, and proceed as before until Ck.
By our previous observation, this implies that for any A, B ∈ NT , |A| = |B|, C(A) = C(B).
Now, define n̄ = |X|, and notice that, since x∗ ∼∗ X, for any n ≤ n̄, there exist A ∈ NT
s.t.|A| = n. Construct cs : {1, . . . , n̄} → R as cs(n) := C(A) for some A ∈ NT s.t. |A| = n.
Our discussion so far shows that it is well-defined. Moreover, A.11 immediately implies that
it is increasing.

Now construct a Content-Monotone Thinking-Averse representation < S, µ, u, C > and
partitioning function P as of Claim 11 and notice that we have that for any A, B ∈ X\NT ,
P(A) 6= P(B). Call J := {π ∈ Π(S) : π = P(A) for some A ∈ X\NT}, and notice that, for all
C ∈ NT we have P(C) = {S, ∅}. Define ĉI : J ∪ {S, ∅} → R as ĉI(P(A)) = C(A) − cs(|A|) for
all A ∈ X\NT and ĉI({S, ∅}) = 0 (Our previous discussion guarantees that it well defined.).
We only need to show that ĉI is partition-monotone, which in this case means ĉI(P(A)) =
C(A) − cs(|A|) ≥ 0 for all A ∈ X . If A ∈ NT , this is trivially true. If A /∈ NT , consider
A′ = (A\{y}) ∪ {x∗} for some y ∈ A. Since x∗ ∈ A′, then A′ ∈ NT , which, by A.12, implies
that C(A) ≥ C(A′) = cs(|A

′|) = cs(|A|) as sought (the last two equalities derive from the fact
that A′ ∈ NT and |A′| = |A|.) Therefore, ĉ is partition-monotone. Define now cI : Π(S) → R

by extending ĉI to Π(S) preserving partition monotonicity. We only need to make sure that
we have C(A) = cs(|A|) + cI(P(A)). But this is trivial from the definition of ĉI and cI .

To prove uniqueness, fix C and notice that every partitioning function P must assign
P(A) = {S, ∅} if A ∈ NT , and therefore cI(P(A)) = 0 and so C(A) = cs(A). Now remember
that for every n ≤ n̄ we have A ∈ NT s.t. |A| = n, which immediately implies that cI is unique
fixing C, and in turns this implies that cC(P(A)) = c′c(P

′(A)). This concludes the proof of
Theorem 5. Q.E.D.

B.6. Proof of Theorem 6

The if direction is trivial. To prove the only if part, define NT as in the proof of Theorem
5 and notice that Claim 11 implies that there exist a Content-Monotone Thinking-Averse
representation < S, µ, u, C > and partitioning function P s.t. for any A, B ∈ X\NT we
have that P(A) and P(B) are not comparable. Call J := {π ∈ Π(S) : π = P(A) for some
A ∈ X\NT}, and notice that, for all C ∈ NT we must have P(C) = {S, ∅} since P is a
partition function. Define ĉ : J ∪ {S, ∅} → R as ĉ(P(A)) = C(A) for all A ∈ X\NT and
ĉ({S, ∅}) = 0. It is well defined and partition-monotone since for all A, B ∈ X\NT , P(A) and
P(B) are not comparable, and since C(A) ≥ 0. Define now cI : Π(S) → R by extending ĉI

to the whole Π(S) preserving partition monotonicity. This concludes the proof of Theorem
6. Q.E.D.
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B.7. Proof of Theorem 7

First notice that, as long as A. 6 and A. 7 are satisfied and there is a Content-Monotone
Thinking-Averse representation, then it is trivial to show that for any A ∈ ∆(X ), pA and
p∗A exist. Moreover, by A.7, we have {x∗} ∼∗ X, which implies that, if |X| ≥ 2, there exist
x, y ∈ X s.t. {x} ∼∗ {x, y}, and if |X| ≥ 3, there exist x, y, z ∈ X s.t. {x} ∼∗ {x, y, z}. Now
assume A. 15 and notice that to prove (1) we only need to show that for any A, B ∈ X , |A| =
|B| ⇒ C(A) = C(B). If A, B are the same except for one element, then A. 15 implies 1

2p∗A⊕ 1
2pB

∼ 1
2p∗B ⊕ 1

2pA. Noticing that C is nothing but the difference between the representation of �
and �∗ proves C(A) = C(B). If A and B are the same except for two elements, then there
exists a set D of the same cardinality such that both A and D, and B and D differ of only
one element (D is the set constructed replacing one of the non-common element in A with the
corresponding one in B). But then, C(A) = C(D) = C(B). Clearly the same could be done
however large the number of elements in which A and B differ: if this number is n, construct
n−1 sets to form a chain that begins with A and ends with B, such that each set in this chain
differ from the one before and the one after of only one element. This proves that there exist
a function c : N → R such that C(A) = c(|A|) for all A ∈ X .

To prove (2), we need to prove that c is increasing. Consider any n ∈ 1, . . . , (|X| − 1).
If |X| = 1 this is trivially true, and otherwise we have argued that there exist x, y ∈ X s.t.
x ∼ {x, y}, so we can always find A ∈ X and z ∈ X s.t. A ∼∗ A ∪ {z} and |A| = n: simply
consider any A ∈ X s.t. x ∈ A and |A| = n, and pick z = y. It is immediate to see from the
representation that we must have A ∼∗ A ∪ {z}. (In fact, this is a direct consequence of A. 9,
which implies submodularity of �∗.). Now notice that A. 14 implies that C(A ∪ {x}) ≥ C(A),
and hence c(|A ∪ {x}|) ≥ c(|A|). But since this is true for all n = 1, . . . , (|X| − 1), c must be
increasing as sought.

To prove (3), we need to prove that c is increasing and convex. Consider any n ∈
1, . . . , (|X| − 2). If |X| = 1, 2 this is trivially true, and otherwise we have argued that there
exist x, y, z ∈ X s.t. x ∼ {x, y, z}, so we can always find A ∈ X and z ∈ X s.t. A ∼∗ A ∪ {z}
and |A| = n - just like before. Now notice that, by A. 16, we have 1

2pA∪{x,y} ⊕ 1
2pA �

pA∪{x}. But since A ∼∗ A ∪ {x, y} (which implies A ∼∗ A ∪ {x}), then this means that
1
2C(A∪ {x, y}) + 1

2C(A) ≤ C(A∪ {x}), which in turn means 1
2c(|A|+ 2) + 1

2c(|A|) ≤ c(|A|+ 1).
Since this is true for all n ∈ 1, . . . , (|X| − 2), c is convex. To show that c is monotone, notice
that if we consider A ∈ X , x, y ∈ X such that A∪ {x, y} ∼∗ A with x ∈ A, then A. 16 implies
C(A ∪ {y}) ≥ C(A): following the same steps above implies that c must be monotone.

This concludes the proof of Theorem 7. Q.E.D.

Appendix C: Extension to menus of lotteries and the uniqueness of the state space

The analysis thus far has studied a preference relation over lotteries of menus. We have
characterized what we defined a Thinking-Averse representation, and shown some uniqueness
properties. However, we have not been able to show that the state space S in this representation
is unique, because, as we have argued, our space was not rich enough. The content of this
section is to extend the analysis to the case in which the menus themselves are menus of
lotteries. A similar framework is used in Epstein, Marinacci, and Seo (2007). We show that
this allows us to characterize the state space uniquely.
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C.1. Formal Setup

Consider a finite set X. By ∆(X) we understand the set of probability distribution on X. By
X̂ we understand the set of convex and compact subsets of ∆(X). We endow this collection
by the Hausdorff topology, dh. Further, we define the convex combinations of two sets to be
the point-wise convex combination. That is, for any λ ∈ (0, 1) and A, B ∈ X̂ , λA + (1 − λ)B
should be understood in the sense of Minkowski, that is, it is equal to the set {λg +(1−λ)h :
g ∈ A, h ∈ B} (where λg + (1 − λ)h is the probability distribution over X giving x with
probability λg(x) + (1 − λ)h(x)). For any A, B ∈ X̂ , we denote by αA ⊕ (1 − α)B the lottery
that assigns probability α to A and (1− α) to B. By ∆(X̂ ) we understand the set of lotteries
over X̂ . We metrize ∆(X̂ ) with the topology of weak convergence. By X̂S we understand the
set of singletons in X̂ . To keep the notation constant with the previous analysis, by ∆S(X̂ )
we understand the set of singletons or lotteries over singletons, ∆(X̂S).

The primitive of our analysis is a complete preference relation �′ defined over ∆(X̂ ).

C.2. Axioms

We now introduce the axiomatic structure on the preference � on ∆(X̂ ).

A.1’ (Independence over singletons). For any γ ∈ (0, 1) and any p, q, r ∈ ∆S(X̂ ),

p � q ⇔ γp ⊕ (1 − γ)r �′ γq ⊕ (1 − γ)r.

A.2’ (Indifference between randomization for singletons). For any α ∈ (0, 1) and any
x, y ∈ ∆(X),

αx + (1 − α)y ∼ αx ⊕ (1 − α)y.

Define the binary relation �∗ on X̂ as:

A ≻′∗ B ⇔ (1
2 + ǫ)A ⊕ (1

2 − ǫ)B ≻ 1
2A ⊕ 1

2B ≻ (1
2 − ǫ)A ⊕ (1

2 + ǫ)B.

for all ǫ < ǭ, for some ǭ > 0. Define A ∼′∗ B when we have neither A ≻′∗ B nor B ≻′∗ A.

A.3’ (Coherence’). �′∗ is transitive.

A.4’ (Weak Continuity’). For any A ∈ ∆(X̂ ), the sets {p ∈ ∆S(X ) : p �′ A} and {p ∈
∆S(X ) : A �′ p} are closed.

A.4’* (Full Continuity’*). For any A ∈ ∆(X̂ ), the sets {B ∈ ∆(X̂ ) : B �′ A} and {B ∈
∆(X̂ ) : A �′ B} are closed.

A.5’ (Content Continuity’). For any A ∈ X̂ , the sets {B ∈ X̂ : B �′∗ A} and {B ∈ X̂ :
A �′∗ B} are closed.

A.6’ (Thinking Aversion’). For any A ∈ X̂ , p ∈ ∆S(X̂ ), we have

p ≻′∗ A ⇒ p ≻′ A.
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A.7’ (Mixture Aversion’). Take any A, B ∈ ∆(X̂ ), p, q ∈ ∆S(X̂ ) such that p ∼′ A and
q ∼′ B, α ∈ (0, 1). Then, the following must hold:

αp ⊕ (1 − α)q �′ αA ⊕ (1 − α)B.

A.8’ (Content Independence’). �′∗ satisfies independence, that is, for every A, B,C ∈ X̂ ,
α ∈ (0, 1), we have

A �∗ B ⇔ αA + (1 − α)C �∗ αB + (1 − α)C.

A.9’ (Best/Worst’). There exist x∗, x∗ ∈ X such that {x∗} �′ A �′ {x∗} for all A ∈ ∆(X̂ ).

A.10’ (Content Monotonicity’). For any A, B ∈ X̂ , B ⊆ A ⇒ A �′∗ B.

A.11’ (Content L-continuity’). There exist non-empty sets A∗, A∗ ∈ X̂ and an N > 0 such
that for every ǫ ∈ (0, 1

N
), for every B and B with dh(B, C) ≤ ǫ,

(1 − Nǫ)B + NǫA∗ �′∗ (1 − Nǫ)C + NǫA∗

Most of these requirements are either standard or identical to those in the previous analysis.
The only differences are: A.2’, which imposes that, for singletons, the agent is indifferent
between the two randomizations; the continuity of �∗, which is no longer a consequence of
the continuity of �; and L-continuity, which, from the analysis in DLRS we know that it is
required to guarantee the existence of a representation when monotonicity is not satisfied. (We
refer to their work, where it was introduced, for further discussion.)

C.3. Representation Theorem

We can define the analogous version of our notions of cost in this framework.

Definition 11. A function C : ∆(X̂ ) → R is an Anticipated Thinking Cost∗ function if
the following conditions hold:

1. C({p}) = 0 for all p ∈ ∆S(X ).

2. C(A) ≥ 0 for all A ∈ ∆(X̂ ).

3. C is concave under ⊕, that is, for any A, B ∈ ∆(X̂ ) and α ∈ (0, 1), we have

C(αA ⊕ (1 − α)B) ≥ αC(A) + (1 − α)C(B).

We can now state the representation.

Definition 12. A preference relation �′ on ∆(X̂ ) has a Additive Thinking-Averse∗ Rep-
resentation if there exist a nonempty state space S, a continuous and affine state-dependent
utility function u : ∆(X) × S → R, a signed measure µ over S and a function C : ∆(X̂ ) → R

such that �′ is represented by

W (α) =

∫

X̂

∫

S

max
y∈Ai

u(y, s)µ(ds)α(di) − C(α)

and:
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1. each u(·, s) is an expected-utility function;

2. C is an Anticipated Thinking Cost∗ function;

3.
∫

S
max
y∈Ai

u(y, s)µ(ds) represents �∗.

Given S, u and s ∈ S, define the binary relation ≻s on X̂ as A ≻s B ⇔ u(A, s) > u(B, s),
and P (S, u) as P (S, u) := {≻s: s ∈ S}.

Definition 13. Given a Additive Thinking-Averse∗ Representation < S, µ, u, C > s.t. P (S, u)
is finite, we say that a state s ∈ S is relevant if there exist A, B ∈ X̂ such that A ≁

′∗ B and,
for any s′ ∈ S with ≻s 6=≻s′ , max

x∈A
u(x, s′) = max

x∈B
u(x, s′). If P (S, u) is infinite, we say that a

state s ∈ S is relevant if for any neighborhood N of s, there exist A, B ∈ X̂ such that A ≁
′∗ B and, for

any s′ ∈ S\N , max
x∈A

u(x, s′) = max
x∈B

u(x, s′).

Theorem 8. Consider a preference relation �′ on ∆(X̂ ) that satisfies A.9’. Then,

1. �′ satisfies A. 1’-8’ and 11’ if and only if it has a Additive Thinking-Averse∗ Represen-
tation where every state is relevant;

2. �′ satisfies A. 1’-8’ and 10’ if and only if it has a Additive Thinking-Averse∗ Represen-
tation < S, µ, u, C > where µ is a probability measure over S and every state is relevant;

3. �′ satisfies A. 1’-3’, 4’* and 5’-8’ and 11’ if and only if it has a Additive Thinking-
Averse∗ Representation where every state is relevant and C is continuous;

4. �′ satisfies A. 1’-3’, 4’* and 5’-8’ and 10’ if and only if it has a Additive Thinking-
Averse∗ Representation < S, µ, u, C > where µ is a probability measure over S, every
state is relevant and C is continuous.

Proof. The proof of this Theorem is the combination of the results in DLR01, DLRS and
the intuition behind Theorem 1. For this reason, we will here only provide a sketch of of
the proof. It is immediate to see that axioms A.5’, 8’, 10’ and 11’ guarantees that �∗ has
the properties desired to apply the results in either DLR01 or DLRS. This leads to different
characterizations of �∗ depending on the axioms we impose. Once we have a representation
for �∗, we can extend it to the whole ∆(X̂ ) in a linear way to obtain the first component
of the representation. Call this extension �̂∗. We need to show that such continuous and
linear extension is in fact possible. But this is obvious since we are simply extending it to a
mixture space which has as extreme points the elements of the original space X̂ : linearity is
trivial, and so is continuity given that we metrize this mixture space with the weak metric.
(We are not extending it to a full linear space, which would require some Lipschitz continuity.)
From the representation of �∗, we then get the representation of �̂∗ using linearity. Call U
the functional of this utility representation. Now, notice that we must have that �∗ and �̂∗

coincide on ∆S(X ) (for the same reason this was the case in Theorem 1). Notice also that,
because of A. 1’, A.2’ (and A.5’) then there exist a representation W of � such that it is affine
and continuous on ∆S(X ). Moreover, since �∗ and �̂∗ coincide on ∆S(X ), it is trivial to see
that W can be normalized so that W (p) = U(p) for all p ∈ ∆S(X ). Then, simply mimic the
remaining passages of the proof of Theorem 1 to conclude the proof: in particular, we can
mimic the proofs of both Claim 7 and Claim 9 with minor modifications to obtain the desired
representation. �
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C.4. Uniqueness

The main feature of this representation is the strong uniqueness that it entails. In fact, it
combines the uniqueness result in Dekel, Lipman, and Rustichini (2001) and those in our
Theorem 2.

Theorem 9. Consider a preference relation � on ∆(X̂ ) that satisfies A.9’. If < S, µ, u, C >
and < S′, µ′, u′, C′ > are two Additive Thinking-Averse∗ Representation of � in which every
state is relevant, then

1. If S is finite, then S = S′. If S is not finite, then P̄ (S, u) = P̄ (S′, u′).

2. there exists γ ∈ R++, β ∈ R such that

∫

[

∫

S′

max
y∈Ai

u′(y, s)µ′(ds)]α(di) = γ
[

∫

[

∫

S

max
y∈Ai

u(y, s)µ(ds)]α(di)
]

+ β

and
C′ = γC.

The proof is an immediate consequence of the uniqueness result in Dekel, Lipman, and
Rustichini (2001) and the intuition behind Theorem 2. It is therefore left to the reader.
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