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ÖZET 
 

Entropinin kökeni 19. yüzyıla kadar uzanır. Belirsizlik ölçütü olarak geliştirilmesi ise Shannon 

(1948) tarafından olmuştur. Yaklaşık 10 yıl sonra 1957’de Jaynes, Shannon’un entropisini 

özellikle kötü tanımlanmış problemler için bir tahmin ve çıkarım methodu olarak Maksimum 

Entropi (ME) ilkesi adıyla formüle etmiştir. Yakın tarihte, Golan et al. (1996) Genelleştirilmiş 
Maksimum Entropi (GME) tahmincisini geliştirerek yeni bir tartışmayı başlatmıştır. Bu yazı 

iki kısımdan oluşmaktadır. İlk kısım, bu yeni tekniğin (GME) formülasyonu üzerinedir. İkinci 

kısımda ise bir Monte Carlo çalışmasıyla normal dağılmayan hata terimleri durumunda 

GME’nin tahmin sonuçları tartışılacaktır. 

 

Anahtar Kelimeler: Entropi, Maksimum Entropi, ME, Genelleştirilmiş Maksimum Entropi, 

GME, Monte Carlo, Shannon Entropisi, Normal dağılmayan hata terimi. 

 

 

ABSTRACT 
 

The origin of entropy dates back to 19th century. In 1948, the entropy concept as a measure of 

uncertainty was developed by Shannon. A decade after in 1957, Jaynes formulated Shannon’s 

entropy as a method for estimation and inference particularly for ill-posed problems by 

proposing the so called Maximum Entropy (ME) principle. More recently, Golan et al. (1996) 

developed the Generalized Maximum Entropy (GME) estimator and started a new discussion 

in econometrics. This paper is divided into two parts. The first part considers the formulation 

of this new technique (GME). Second, by Monte Carlo simulations the estimation results of 

GME will be discussed in the context of non-normal disturbances. 

 

 

Keywords: Entropy, Maximum Entropy, ME, Generalized Maximum Entropy, GME, Monte 

Carlo Experiment, Shannon’s Entropy, Non-normal disturbances. 
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I.  INTRODUCTION 

 

 

The origin of entropy dates back to 19th century. In 1948, the entropy concept as a measure 

of uncertainty (state of knowledge) was developed by Shannon in the context of 

communication theory. A decade after in 1957, E. T. Jaynes formulated Shannon’s entropy as 

a method for estimation and inference particularly for ill-posed problems by proposing the so 

called Maximum Entropy (ME) principle. More recently, Golan et al. (1996) developed the 

Generalized Maximum Entropy (GME) estimator and started a new discussion in 

econometrics.  

 

Our paper is divided into two parts. The first part considers the formulation of this new 

technique of Generalized Maximum Entropy (GME). In the second part, by performing 

Monte Carlo simulations, we will discuss the estimation results of GME in the case of non-

normal distributed disturbances. 

  

II. THE GENERALIZED MAXIMUM ENTROPY APPROACH 

 

Suppose that we observe a T-dimensional vector y of noisy indirect observations on an 

unknown and unobservable K-dimensional parameter vector β, where y and β are related 

through the following linear model relationship 

 

   y=Xβ+u      (EQ.1) 

 

where X is the TxK known matrix of explanatory variables and u is a Tx1 noise  (disturbance) 

vector.  

 

In order to be able to use Jaynes’ Maximum Entropy principle for the estimation of 

regression parameters, the parameters β must be written in terms of probabilities because of 

the fact that the arguments of the Shannon’s maximum entropy function
I
 are probabilities. 

Following Golan et al (1996), if we define M ≥ 2 equally distanced discrete support values, 
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zkm, as the possible realizations of βk with corresponding probabilities pkm, we can convert 

each parameter βk as follows: 

 

 
1

M

k km km

m

z pβ
=

=∑ , for k=1, 2, 3…,K, where M ≥ 2   (EQ.2) 

 

Let us define the M dimensional vector of equally distanced discrete points (support space) as 

′
kz =[zk1, zk2,…, zkM] and associated M dimensional vector of probabilities as pk=[pk1, pk2,…, 

pkM]′. Now, we can rewrite β in (EQ.1) as 

 

 β= Zp=

0 . 0

0 . .

. . . 0 .

0 . 0

′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦

1 1

2 2

K K

z p

z p

z p

     (EQ.3) 

 

where Z is a block diagonal KxKM matrix of support points with  

 

/
k kz p =

1

M

km km k

m

z p β
=

=∑  for k=1,2,…, K, m=1,2,…,M   (EQ.4) 

 

where pk is a M dimensional proper probability vector
II
  corresponding to a M dimensional 

vector of weights zk. Recall that the last vector, zk, defines the support space of βk. By this 

way, each parameter is converted from the real line into a well-behaved set of proper 

probabilities defined over the supports. 

 

As can be seen, the implementation of the maximum entropy formalism allowing for 

unconstrained parameters starts by choosing a set of discrete points by researcher based on 

his a priori information about the value of parameters to be estimated, where these set of 

discrete points are called the support space for all parameters. In most cases, where 

researchers are uninformed as to the sign and magnitude of the unknown βk, they should 

specify a support space that is uniformly symmetric around zero with end points of large 
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magnitude, say ′
kz =[-C, -C/2, 0, C/2, C] for M=5 and for some scalar C [Golan et al., 

1996:77]. 

 

Similarly, we can also transform the noises u as follows [Golan et al., 1996:87]: 

 

  
1

J

t tj tj

j

u v w
=

=∑ , for t=1, 2, …, T,   where  J ≥ 2  (EQ.5) 

 

Notice that by this conversation, Golan et al. (1996:121) propose a transformation of the 

possible outcomes for ut to the interval [0,1] by defining a set of discrete support points 

′
tv =[vt1, vt2,…, vtJ] which is distributed uniformly and evenly around zero (such that vt1=-vtJ 

for each t if we assume that the error distribution is symmetric and centered about 0)
III

 and a 

vector of corresponding unknown probabilities wt=[wt1, wt2,…, wtJ]′ where J≥2. Now, we can 

rewrite u in (EQ.1) as 

 

 u= Vw =

0 . 0

0 . .

. . . 0 .

0 . 0

′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦

1 1

2 2

T T

v w

v w

v w

     (EQ.6) 

with  

 

/
t tv w =

1

J

tj tj t

j

v w u
=

=∑   for t=1,2,…, T and j=1,2,…,J    (EQ.7) 

 

In (EQ.4) and (EQ.7) the support spaces zk and vt are chosen to span the relevant parameter 

spaces for each {βk} and {ut}, respectively. As for the determination of support bounds for 

disturbances, Golan et al (1996) recommend using the “three-sigma rule” of Pukelsheim 

(1994) to establish bounds on the error components: the lower bound is vL = -3σy and the 

upper bound is vU = 3σy, where σy is the (empirical) standard deviation of the sample y. For 

example if J= 5, then ′
tv =(-3σy, -1.5σy, 0, 1.5σy, 3σy) can be used. 
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Under this reparameterization, the inverse problem with noise given in (EQ.1) may be 

rewritten as 

 

   y=Xβ+u = XZp +Vw       (EQ.8) 

 

Jaynes (1957) demonstrates that entropy is additive for independent sources of uncertainty. 

The details of this property can be found in Kapur and Kesavan (1992:31-32).
 
Therefore, 

assuming the unknown weights on the parameter and the noise supports for the linear 

regression model are independent, we can jointly recover the unknown parameters and 

disturbances (noises or errors) by solving the constrained optimization problem of max 

H(p,w)=-p′lnp-w′lnw subject to y=XZp+Vw.  

 

Hence, given the reparameterization in (EQ.8) where {βk} and {ut} are transformed to have 

the properties of probabilities, in scalar notation the GME formulation for a noisy inverse 

problem may be stated as 

 

1 1 1 1

max ( , ) .ln .ln
K M T J

km km tj tj

k m t j

H p p w w
= = = =

= − −∑∑ ∑∑
p,w

p w    (EQ.9) 

 

subject to the constraints 

 

1 1 1

K M J

tk km km tj tj t

k m j

x z p w v y
= = =

+ =∑∑ ∑ ,  for t=1, 2,…,T.  (EQ.10)
IV

 

1

1
M

km

m

p
=

=∑ ,    for k=1, 2,…,K.  (EQ.11) 

1

1
J

tj

j

w
=

=∑ ,    for t=1, 2,…,T.  (EQ.12) 

 

where (EQ.10) is the data (or, consistency) constraint whereas (EQ.11) and (EQ.12) provide 

the required adding-up constraints for probability distributions of {pkm} and {wtj}, 

respectively. 

 

The solution for ˆ
kmp  is 
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1
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=
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∑  (EQ.13) 

The solution for ˆ
tjw  

 

1

ˆ

ˆ
ˆ

t tj

t tj

GME
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j
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v

e
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e

λ

λ
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−

−
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∑
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ˆ
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J
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j

e
λλ −

=

Ω =∑    (EQ.14) 

 

Notice that, in the expressions above, ˆ
tλ  represent the dual value of data constraint. 

Substituting the solutions of ˆ
kmp and ˆ

tjw  into (EQ.2) and (EQ.5) produces the GME estimates 

of βk and ut, as 

 

 
1

ˆ ˆ
M

GME

k km km

m

p zβ
=

=∑ , for k=1,2,…,K    (EQ.15) 

 and 

 
1

ˆ ˆ
J

GME

t tj tj

j

u w v
=

=∑ , for t=1,2,…,T    (EQ.16) 

 

As can be seen, the GME estimates depend on the optimal Lagrange multipliers ˆ
tλ for the 

model constraints. There is no closed-from solution for ˆ
tλ , and hence no closed form solution 

for p, w, β and u. Therefore numerical optimization techniques should be used to obtain the 

solutions and solutions must be found numerically. 

 

III. A MONTE CARLO STUDY WITH NON NORMAL DISTURBANCES 

 

In this section a Monte Carlo study is carried out to test the precision performance of GME 

estimators in the case of non normal distributed disturbances. For the sake of comparison, the 

simulation consists of three groups of data generation processes. First we generated a data set 

with normal disturbances. For this purpose, a normal distribution with zero mean and unit 

variance is used. Second, in order to represent a highly skewed error distribution, a chi-square 
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distribution with unit degrees of freedom [χ2
(1)] is used. Third, another chi square 

distribution but this time with 4 degrees of freedom [χ2
(4)] is generated in order to represent 

a distribution which is less skewed. 

 

For every generated data set, the model parameters are estimated with both GME and OLS 

and the whole procedure is repeated 1 000 times for each sample size. The sample sizes used 

are T=5, 10, 15, 20, 30, 40 and 50. The model estimated is a simple regression model with a 

constant term. The true value of the constant term is set to 0.5, while the true value of the 

slope parameter is set to 1.75. The econometric software Shazam 10.0 is used for the 

estimation of Monte Carlo trials. 

 

The performances of the OLS and GME estimators are evaluated using the measures of 

absolute bias (ABIAS) and root mean square error (RMSE). Absolute bias is calculated as the 

absolute value of the difference between average estimate and the true value of the parameter. 

Root mean square error is, as known, the square root of mean square error (MSE) which is 

given by the sum of the squared bias and the empirical variance. The sum of all RMSE is 

denoted by SRMSE, and the sum of all ABIAS is denoted by SABIAS.  

 

For each type of error distribution [N(0,1); χ2
(1) and χ2

(4)] the simulation results are 

presented by four figures. First figure represents the SRMSE and SABIAS of OLS estimator. 

Second figure shows the SRMSE and SABIAS of GME estimator. Third figure plots the 

SRMSE of both OLS and GME in one graph, whereas the fourth one plots the SABIAS of 

both OLS and GME in one graph.  

 

First, we will investigate the simulation results for the case of normally distributed 

disturbances. If we examine Figures 1A and 1B, we can see that sum of absolute bias 

(SABIAS) of GME decreases to near zero around sample size of fifteen (T=15), whereas that 

happens around sample size of ten (T=10) for the OLS estimator. Hence, we see that OLS 

estimator is much faster in the case of normal disturbances in terms of decrease in absolute 

bias. However, one should note that for a very small sample size such as five (T=5), the sum 

of absolute bias (SABIAS) of OLS is about three times and the root mean square error 

(SRMSE) is about one and a half times higher than that of GME. This is a remarkable result 

in favor of GME based on the criteria of absolute bias in the case of very low sample sizes 
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such as five (T=5). Another important point that Figures 1A and 1B reveal is the fact that the 

behaviors of OLS and GME estimators in terms of both sum of root mean square error 

(SRMSE) and absolute bias (SABIAS) follow very similar patterns, starting from a sample 

size of fifteen (T=15). A further important point that we can note from Figures 1A and 1B is 

that the SRMSE of both OLS and GME estimators’ decreases with increasing sample size, 

which is a behavior that indicates the consistency of estimators. Note that the consistency 

properties of data constrained GME estimator is first established by Mittelhammer and 

Cardell (1997) and later developed more by Mittelhammer, Cardell and Marsh (2002). Some 

more details can be found in Mittelhammer R., G. Judge, and D. Miller (2000). 

 

Recalling that the MSE is the sum of the squared bias and the empirical variance, Figure 1B 

shows that, while the bias represents only a small part of the RMSE, the standard errors of 

GME estimates constitutes the important part. For small sample sizes this could lead to poor 

estimates, however, this situation can be handled by including out of sample information that 

can be introduced into the GME estimator. In other words, the employment of some prior 

information would decrease the variance of estimators at small sample sizes without 

introducing a strong additional bias. An easy way to include such out of sample information 

is to use the priors on parameters or disturbance support spaces. Hence, in addition to the 

good performance of GME in terms of absolute bias and root mean square in small sample 

sizes, the root mean square error (SRMSE) can also be much more reduced by incorporating 

out of sample information using support spaces of parameters and disturbances. However, in 

this study we will not go into further details of this issue and leave it as an important topic for 

another study. Notice that, in this study we do not include any prior information using 

support spaces: support spaces are defined as zero centered symmetrically large intervals.  

 

In Figure 1C, the graph of sum of root mean square errors (SRMSE) of both OLS and GME 

is presented. It is clear that, until sample size of about thirty (T=30), the SRMSE of GME is 

always lower than that of OLS. Particularly for low sample sizes (lower than T=15), the 

SRMSE performance of GME is remarkable. With the beginning of relatively large sample 

sizes (T>30), the SRMSE of OLS appear to be lower than that of GME but at very small 

amounts.  
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The large differences in absolute bias (SABIAS) of OLS and GME in small sample sizes 

such as five (T=5) is notable, which is the case depicted in Figure 1D. If we compare Figure 

1D with figures 2D and 3D we can see that in the case of normal disturbances (Figure 1D) the 

absolute bias (SABIAS) of OLS is lower than that of GME, starting from a sample size of 

about ten (T=10). However, the same performance of OLS cannot be seen in the case of non 

normal disturbances (Figure 2D and Figure 3D). In these cases, the absolute bias (SABIAS) 

of GME is always lower than that of OLS, although this difference becomes very low after a 

sample size thirty (T=30). Another remarkable result form our simulation is that, with higher 

degrees of freedom (df=4), the absolute bias of GME is much more lower when compared to 

unit degrees of freedom (df=1) as depicted in Figure 2D. In addition, this behavior of the 

absolute bias for the GME is long lasting until a sample size of fifteen (T=15) with higher 

degrees of freedom when compared to unit degrees of freedom (df=1).  

 

Consulting to Figure 2A and 3A, one can observe that SRMSE and SABIAS of OLS becomes 

very close to each other particularly after the sample size of thirty (T=30), whereas the same 

pattern is seen for GME after a sample size of only twenty (T=20).  Finally, in figures 2C and 

3C, SRMSE performance of GME is compared with that of OLS. When these figures are 

examined, the first important point to note is the highly low SRMSE of GME estimator in 

small sample sizes (T<15) when compared with that of OLS. As stated before, contrary to 

normally distributed disturbances situation, in the case of non normal disturbances the 

SRMSE and SABIAS of GME estimator is always lower even in large sample sizes, although 

the gap is very low and closes faster for low sample sizes starting from fifteen (T=15).  

 

IV. CONCLUSION 

 

In first part of this article we have presented the general formulation of the newly developed 

GME estimator of Golan et al. (1996). In the second part of the paper, a Monte Carlo 

simulation study is performed to evaluate the precision performance of the GME compared 

with the performance of the OLS estimator. From the results that we have outlined briefly in 

the previous section, we can conclude that the performance of the GME estimator is 

remarkably good when compared to that of the OLS estimator, especially for small sample 

sizes. In addition, in case of non normal disturbances, this performance becomes prominently 

better. Of course, the findings in this paper are not analytical findings and the results are 
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based on the model framework of the Monte Carlo study. However, the findings are notably 

promising at least within the structure of our model of simulation. The findings in this paper 

give some clues for the use of GME estimators. First, in the case of small samples because of 

data unavailability, the GME estimator can give better results when compared with OLS. 

Second, even in the case of non normal distributed disturbances, performance of the GME 

estimator is good and in addition, our Monte Carlo studies show that its performance is better 

than normal disturbances case. 

  

Apart from the small sample sizes, there is another important feature of GME estimator that 

we have not dealt with in this study: we can use the GME approach even in the case of 

negative degrees of freedom, in other words, in the case of ill-posed problems. With all these 

advantages discussed, we think that this newly developed estimator is a good method 

particularly for the case of insufficient data and in the framework of non normal disturbances.  
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FIGURES 
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Figure 1C. 

 

Figure 1D 
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Figure 2A. 

 

Figure 2B 
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Figure 2C. 

 

Figure 2D 
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Figure 3A. 

 

Figure 3B 
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Figure 3C. 

 

Figure 3D 
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ENDNOTES 
 
I For properties of Shannon’ Entropy measure, see Kapur and Kesavan (1992:24). 

II A proper probability vector is characterized by two properties: pkm≥0, ∀ m=1,...,M and 
1

1

M

km

m

p
=

=∑  

III Note that J≥2 points may be used to express or recover additional information about ut (e.g. skewness or 

kurtosis). For example if we assume that the noise distribution is skewed such that ut∼χ2(4), then 

v=[ 2− , 2 2 ] can be used as support space for noise representing the skewness. 

 

IV One can easily show that 
1 1 1 1 1

K

tk k

k

K M K M

tk km km tk km km

k m k m

x x z p x z pβ
= = = = =

= =∑ ∑ ∑ ∑∑  
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