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Abstract

A model is presented to characterise the (optimal) demand for cash balances in dereg-
ulated markets. After the model of James Tobin, 1958, net balances are determined
in order to maximise the expected return of a certain portfolio combining risk and
capital. Unlike the model of Tobin, however, the price of the underlying exposures
are established in actuarial terms. Within this setting, the monetary equilibrium
determines the rate at which a unit of capital is exchange by a unit of exposure to
risk, or equivalently, it determines the market price of risk. In a Gaussian setting,
such a price is expressed as a mean-to-volatility ratio and can then be regarded as
an alternative measure to the Sharpe ratio. The effects of credit and monetary flows
on money and security markets can be precisely described on these grounds. An
alternative framework for the analysis of monetary policy is thus provided.

Key words: Liquidity-preference; Money demand; Monetary equilibrium; Mar-
ket price of risk; Sharpe ratio.
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1 Introduction

The primary role of money is to allow the exchange of goods and services in the economy.
The transactions motive for holding money is usually justified on these grounds, which
claims that the demand for money is in proportion to the volume of transactions, which in
turn is considered as proportional to the level of income. Individuals that hold portfolios
containing assets and liabilities with different maturities are obliged to maintain some
stock of cash in order to fulfil their outstanding balances. They are accordingly said to
demand money for precautionary motives. Finally, the presence of unknown capital profits
and losses (P&L) in the balance sheets of the pursuers of investment projects produc-
ing random outcomes causes them to additionally demand cash balances for speculative
motives.
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A a matter of fact, individuals that expect to obtain capital profits prefer to buy
securities instead of keeping cash provisions, for in this way they assure to themselves
a sure gain. Plenty of cheap credit is likely to be found in markets where such a mood
predominates. By contrast, credit is likely to become scarce and expensive in markets
where most of the public believe their assets will produce capital losses in the near future
— people prefer to reduce the exposition to risk in their portfolios and to raise their
stocks of reserves in this case, as a means of protection against unexpected shortfalls and
bankruptcy.

Within this context, the well-known Keynes’s liquidity preference proposition is enun-
ciated, according to which the demand for cash balances is positively affected by the
level of income and negatively affected by the return offered by a certain class of money
substitutes (see Keynes, 1937a and 1937b, and also Howells and Bain, 2005).

Two important models at the core of economic theory are connected to the liquidity-
preference proposition.

In the first place, the Capital Asset Pricing Model (CAPM), originally and indepen-
dently developed by William Sharpe (1964, 1966) and John Lintner (1965), establishes
the price at which some risky asset must be exchanged under conditions of equilibrium.
The derivation of the model depends on the assumption that the expected return and
the volatility of every efficient portfolio combining risk and cash must be related to each
other according to a linear schedule. The collection of such portfolios is known as the
capital market line. The optimal combination of risk and cash, which is determined at the
tangency point of intersection between the capital market line and the curve representing
the preferences of the decision-maker, ultimately determines the preference for liquidity.1

A more explicit role is played by the liquidity-preference function in macroeconomic
analysis. Recall that the monetary equilibrium of the economy is determined in such a way
that the total demand for cash holdings is equal to the total stock of money supplied by
the central bank. Within this context, the liquidity preference function, which explicitly
measures the proportion of nominal income that is spent on cash holdings, corresponds
to a property of the economy that determines the extent to which monetary interventions
affect economic and financial conditions — as described by the level of prices P , the real
output y and the interest rate r.

An alternative theoretical setting will be proposed in this paper for the characterisation
of the preference for liquidity of the economy. The main departures from the classical
setting is that in the alternative model national income is regarded as a random variable
and people are supposed to face restrictions when looking for funding in financial markets.

The alternative model is based on the approach of James Tobin, 1958. The money
demand is accordingly corresponded to the maximisation of the expected value of some
portfolio that contains cash holdings and a mutual fund delivering random payments.
The main bibliographical references supporting the model are, on the one hand, Tobin,
1958, and Sharpe, 1964, for the characterisation of liquidity-preference and the CAPM,

1The liquidity-preference function is first derived in this way by Tobin, 1958. See specially Sharpe,
1964, and also Section 4 in this paper.
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and Keynes, 1937a, and Friedman, 1970, for the description of the monetary equilibrium
and the monetary mechanism (also Tobin, 1947, can be considered in this respect).

2 Liquidity-Preference in the Monetary Equilibrium

The liquidity-preference proposition is commonly represented by the following functional
expression (see e.g. Equation (6) in Friedman, 1970):

L(r) = Y · λ(r) = P y · λ(r) with
dλ(r)

dr
< 0 (1)

where L(r) represents the aggregate cash balance demanded by the economy and the
liquidity-preference function λ(r) expresses the ratio between demanded cash balances and
nominal income. The inverse ratio v(r) = 1/λ(r) is known as the velocity of money. The
level of prices P establishes the connection between real and nominal incomes, respectively
denoted as y and Y , with Y = P · y. Recall that nominal magnitudes represent flows
expressed in monetary units, while real quantities are expressed in terms of the goods
and services that money can purchase (see e.g. Romer, 1996, and Blanchard, 2005).

The aggregate money supply, on the other hand, refers to the total amount or stock
of money held by the public in the economy. It is traditionally related to a class of
narrow money denoted as M1, which mostly contains currency held by non-banking
institutions and householders. Other monetary aggregates have been proposed as well,
such as M2, which includes small-denomination time deposits and retail mutual funds,
and M3, which adds mutual funds, repurchase agreements and large-denomination time
deposits (see Edwards and Sinzdak, 1997, and also Howells and Bain, 2005).

Letting M denote the total stock of money supplied by the monetary authority, we
obtain from Equation 1 that at equilibrium the following equation must necessarily hold:

M = Y · λ(r) = P y · λ(r) with
dλ(r)

dr
< 0 (2)

Within this context, any change in the nominal quantity of money M induces a variation
in any of the variables determining the money demand, P , y or r, in order to reestablish
the monetary equilibrium. Since the level of real income y is expressed in terms of goods
and services, it is normally assumed to depend on economic fundamentals and hence, it
is normally regarded as a stable variable in the short-run. Short-term fluctuations are
then expected to mostly affect the level of prices and interest rates.

On these grounds, if the level of prices and real output were pegged to some determined
paths of variation (respectively corresponded to some determined rates of inflation and
growth), the monetary authority would be able to provide, in principle, the amount of
money that is consistent (in the sense that Equation 2 is satisfied) with some target level
of the interest rate. The efficacy of this mechanism depends, however, on how much of
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the response of the economy is performed through adjustments in the level of prices P ,
and how much is performed by modifying the demand for balances.

Indeed, assuming that the demand for money is perfectly elastic, i.e. assuming that
|λ(r)| → ∞, implies that the amount of money can vary while both the levels of nominal
income and interest rates remain unchanged. Under such circumstances, expansions
and contractions of the money supply must be respectively followed by increments and
reductions of the same magnitude in the stock of cash, in such a way that the monetary
mechanism proves to be useless for dealing with short-run fluctuations. The preference
for liquidity is said to be absolute in this situation.2

By contrast, if liquidity-preference is non-absolute, i.e. if |λ(r)| < ∞, every change in
the money stock affects (at least partially) the level of nominal income — in such a way
that every monetary expansion and every monetary contraction respectively stimulates
and contracts the level of nominal output in the short-run.3

3 Why should We Stop Relying on Linear Specifications of

the Money Demand?

The main difficulty faced by monetary authorities when applying the monetary mecha-
nism in practice is the lack of a well established functional expression characterising the
preference for liquidity of the economy.

In this respect, a large majority of scholars and central bankers assume the demand for
cash balances varies constantly with respect to the interest rate. Accordingly, log-log and
semi-log functions are normally used in empirical investigations of the money demand —
such that λ(r) = A · r−η and λ(r) = B · e−ǫ·r respectively, where A and B are constants.4

Although these specifications lead to a satisfactory description of the money demand
for the most of the recorded paths of monetary aggregates and interest rates, there are
times when their predictions have failed to anticipate the actual liquidity needs of the
economy. Multiple revisions of the model have intended to explain these results, but
there is still no agreement on the subject, and there is still no alternative theoretical
setting that can simultaneously incorporate all the scenarios observed during the last

2Keynes (1936, 1937a) and his disciples claim that firmly convinced investors will necessarily absorb
any increment or reduction of the stock of money without changing their perceptions about the level of
interest rates. Thus if individuals share expectations about the level of the interest rate, variations in
the amount of money must be totally transmitted to the demand for balances, or in other words, the
aggregate money demand must be perfectly elastic (see also Tobin, 1947).

3Any monetary expansion then leads to a new equilibrium involving higher prices for the same quantity,
the higher this response the more inelastic the money demand. In short-terms, production is encouraged
until prices are reestablished to their original levels. In the long-run, new producers enter the market and
existing plants are expanded. Throughout the process, it may take time for output to adjust, but no time
for prices to do so. See Friedman, 1968, 1970.

4Such functional expressions can be justified on the grounds of a model of general equilibrium, where
people allocate their funds to cash holdings and consumption. The money demand is derived in this
framework by maximising the utility of a representative agent. See Lucas, 2000, and Holmstrom and
Tirole, 2000.
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forty years.5

In the theoretical setting that will be soon presented, it is assumed that the level of
income Y is a random variable and hence, that individuals do not know with certainty
the level that this variable will take in the future. However, they can observe the series
of percentage income returns and estimate its parameters with respect to some class of
probability distributions.

It is possible to prove, within this framework, that an optimal liquidity principle exists,
which explicitly depends on the riskiness of national income (see Sections 6 and 8). This
implies, in the first place, that the stock of money determined by the central bank is
not corresponded to a unique level of the interest rate (as stated in Section 9), and in
the second place, that the liquidity-preference is not necessarily a linear function of the
interest rate (as shown in Section 10). The consequences of these results to macroeconomic
analysis are presented in Section 12.

First in Section 4, the model of liquidity-preference of James Tobin will be presented,
which is taken as a reference (and a comparison basis) for the construction of the optimal
liquidity principle in Section 6. The basic idea is that the preference for liquidity is
determined by an optimal combination of a certain risky fund and some non-risky security.

4 Preference for Liquidity as Behaviour towards Risk and

the Capital Market Line

The theory of liquidity-preference, as stated by Tobin, 1958, is exclusively concerned with
the problem of building efficient portfolios combining two different kind of financial prod-
ucts: some risky aggregate exposure (delivering some random payment at the maturity
date) and a certain non-risky security (which provides some cash flow that is known with
certainty at any moment before the instrument expires).

Non-risky securities are related to a class of monetary assets, with no risk of default,
which offer some fixed return delivered at the maturity date of the instrument. Cash
holdings and non-risky bonds belong to this class. The class of risky assets, on the
other hand, contains individual securities as well as diversified portfolios and mutual
funds. Every portfolio is supposed to be efficient, in the sense that it maximises the
utility attained by its holder — in other words, every portfolio is built after the utility
maximisation approach of Harry Markowitz, 1952. In this setting, portfolio decisions are
taken before the level of cash reserves is decided.

Before formally establishing a problem leading to the optimal stock of cash, both the
notion of risk and the preferences of individuals are characterised in mathematical terms.

5The classic reference on this issue is Goldfeld, 1976, who examines the failures of the model of money
demand occurred during the 1970s. Duca, 2000, and also Teles and Zhou, 2005, investigate whether a
stable specification can be obtained if alternative monetary aggregates are considered. Choi and Oh,
2003, on the other hand, propose a model of utility maximisation that incorporates output uncertainty.
Calza and Sousa, 2003, examine the effects of additional variables, such as the degree of aggregation of
national income.
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Thus, in the first place, risks are uniquely corresponded to probability distributions.
More specifically, individuals are supposed to assess the riskiness of investments based on
the empirical frequencies of the price movements of the alternative securities. The series
of price returns are additionally supposed to follow Gaussian probability distributions.

Therefore, every risk is completely characterised by a unique pair of expected return
and volatility, in such a way that if the market participants share their expectations
about the future performance of securities, every portfolio is represented by a single pair
of expected return and volatility in the market. Under such conditions, it is possible to
prove that the mean return and the volatility of every hedged or insured portfolio (as we
will refer in the following to every portfolio that combines some risky asset with a certain
cash balance) must be related to each other according to a linear schedule.

Indeed, consider some portfolio that allocates a proportion λ of wealth to some non-
risky bond offering the return r0 per unit of investment, and the rest to a certain mutual
fund providing the aggregate percentage profit and loss X. Then the capital return of the
hedged or insured portfolio at maturity, per unit of wealth, is determined by the random
variable Z = (1 − λ) · X + λ · r0, whereas its expected return is given by:

µZ = E[Z] = (1 − λ) · µX + λ · r0 (3)

Besides, the volatility of the insured portfolio Z can be expressed in terms of the volatility
σX of the risky fund:

σZ =
√

E [(Z − µZ)2] = (1 − λ) · σX

Solving for λ in both equations, a linear relationship is established between the expected
return and the volatility of every insured portfolio:

µZ = r0 +
µX − r0

σX

· σZ (4)

This relationship determines the set of efficient portfolios, in the sense that for any
combination contained in the set of investment opportunities and outside the line, it is
always possible to build a new fund providing the same expected return and a lower
risk, or the same risk but a higher return. Accordingly, only increasing the borne risk is
possible to raise the expected return of the portfolio.6

The locus of portfolios satisfying Equation 4 in the plane (µZ , σZ) is known as the
capital market line (Sharpe, 1964). The slope of the curve is regarded as the market price
of risk, for it determines the rate at which a unit of expected return is exchanged by a
unit of risk in the market:

SX =
µX − r0

σX

(5)

6Tobin considers a class of pure cash instruments, with r0 = 0. See Equation (3.4) in the paper of
Tobin, 1958.

6



The coefficient SX is also known as the Sharpe ratio. Since the expected return and
the volatility of the price returns of securities are observable variables — which can be
estimated based on historical figures — the Sharpe ratio can be empirically determined
(Sharpe, 1966).

Regarding the preferences of decision-makers, in the model of Tobin they are repre-
sented by utility functions depending on the return of the portfolio Z, which satisfy the
axioms of Von Neumann and Morgenstern (1944).7 Therefore, given any level of expected
utility:

E[U(Z)] =

∫

U(z) dFZ(z) (6)

an indifference curve is determined in the plane (µZ , σZ), containing all the portfolios
that provide the expected utility E[U(Z)], characterised in such a way that for a certain
function ϕ:

ϕ(σZ , µZ) = E[U(Z)]

As long as risk-lover decision-makers are always willing to accept a lower expected return
if there is some chance of obtaining additional profits, their indifference curves must
show negative slopes. Averse-to-risk decision-makers, on the other hand, do not accept
to increase their exposure to risk unless they are compensated by a greater expected
return and consequently, their indifference curves have positive slopes. Besides, as long
as more is regarded as better, the indifference curves located to the upper left corner of
the plane are related to higher utilities. An implicit relationship is ultimately determined,
which expresses the expected return of every hedged portfolio in terms of its volatility,
i.e. µZ = µ(σZ).

Within this theoretical setting, every rational decision-maker must choose, among those
portfolios contained in the market capital line (Equation 4), the combination of risk
and cash that maximises her or his expected utility. Such combination is determined
at the point of tangency between the line of efficient portfolios (which represents the
frontier of the set of investment opportunities) and the indifference curve representing
the individual’s preferences (Sharpe, 1964).

In other words, the optimal portfolio Z is determined at the point where the slope of
the tangent to the indifference curve is equal to the slope of the capital market line:

dµ(σZ)

dσZ

=
µX − r0

σX

7This means, in particular, that the preferences of averse-to-risk individuals are represented by concave

utility functions (which satisfy d2U(z)/dz2 < 0, ∀z), whereas the preferences of risk-lovers are represented
by convex utility functions (which satisfy d2U(z)/dz2 > 0, ∀z). In this context, averse-to-risk individuals
must receive a greater expected return than risk-lovers in compensation for every additional unit of
risk. Moreover, imposing that more is always regarded as better, implies that the marginal utility must
by positive over the whole range (such that dU(z)/dz > 0, ∀z), both for averse-to-risk and risk-lover
individuals.
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In this way, an expression for the liquidity preference schedule in terms of the risk-free
interest rate, λ = λ(r0), can be obtained. However, a tangency point of intersection
between the capital market line and some indifference curve will only occur if the later
has a positive slope, i.e. if dµ(σZ)/dσZ > 0. As already stated, this is only true in the
case of averse-to-risk individuals, for risk-lovers are precisely characterised by indifference
curves with negative slopes.8 On these grounds, Tobin (1958) regards liquidity-preference
as behaviour towards risk.

5 Major Limitations of the Utility Maximisation Approach

As shown in the previous section, the utility maximisation approach provides a well
established theoretical setting to derive the demand for cash holdings as a function of
the interest rate.9 A model for the pricing of financial securities under conditions of
equilibrium is built on this basis, which is known as the Capital Asset Pricing Model in
the literature (abbreviated as CAPM, see Sharpe, 1964 and 1966, and also Lintner, 1965).

The utility maximisation approach requires, in the first place, that decision-makers
show aversion-to-risk, and secondly, that the transactions of cash and securities are car-
ried out under conditions of perfect competition.

Markets are said to run under conditions of perfect competition if the following condi-
tions are satisfied (see e.g. Sharpe, 1964). (PM1) The series of capital returns of the
security prices follow Gaussian probability distributions. Hence only two measures com-
pletely describe risks: the expected return and the volatility of the series of capital returns,
respectively corresponded to the mean return and the standard deviation of the underly-
ing series of capital profit and losses. (PM2) Lending and borrowing are allowed at any
moment for a common risk-free interest rate, at least up to some desired extent. (PM3)
At any point of time, investors share expectations concerning the future performance of
securities and thus portfolios.

Some consequences of the utility maximisation approach, however, are not fully con-
vincing economically speaking. For example, drastic state transitions are sometimes ob-
served in capital markets, manifested as drastic variations in the level of the interest rate
and the risk-parameters µ and σ, which ultimately induce adjustments in the market
prices of securities, as deduced from Equation 5. These transitions can be only the conse-
quence of sudden changes in the expectations of individuals, for these (apart from histor-
ical information) are the only determinants of their estimations of the risk-parameters.
But drastic expectations and price adjustments are difficult to explain on the grounds of
financial and economic theory.10

8Tobin actually distinguishes between two kind of averse-to-risk individuals: those characterised by
convex indifference curves, which satisfy d2µ(σZ)/dσ2

Z > 0, and plungers, who are characterised by concave

indifference curves, which satisfy d2µ(σZ)/dσ2
Z < 0. The former include both cash and risk in their hedged

portfolios, while the later maintain all their wealth in cash. See Figures 3.1, 3.2 and 3.3 in the paper of
Tobin, 1958.

9Some recent contributions where this approach is adopted are those of Holmstrom and Tirole (2000),
Lucas (2000) and Choi and Oh (2003).

10It is difficult to accept, in particular, that such adjustments reflect the behaviour of efficient markets,
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On these grounds, many researchers have questioned the hypothesis (PM1) of perfect
competition. They have pointed out instead that drastic state transitions do not necessar-
ily require of drastic adjustments in the underlying risk-parameters if the series of capital
returns are statistically modelled by means of heavy tailed probability distributions.

As a matter of fact, heavy tailed distributions assign greater probability to big price
movements than the Gaussian — whilst the Gaussian assigns greater probability to small
price movements. Hence, big price movements do not necessarily correspond to structural
adjustments when risks are modelled by heavy tailed probability distributions.11 Unfor-
tunately, such models have not been satisfactorily integrated with economic theory and
accordingly, the paradigm of perfect markets has predominated.

Finally, notice that the hypothesis (PM2) and (PM3) of perfect competition are crucial
to guaranteeing the existence of the market equilibrium in the CAPM.

Indeed, recall that every hedged portfolio Z is related to a single proportion of cash λ.
Hence assuming that every portfolio in the capital market line can be attained by per-
forming the appropriate transactions of securities and cash balances, necessarily implies
that such transactions can be performed at any moment and without restrictions in capi-
tal markets. Conversely, if hedging were only possible up to some extent, some portfolios
satisfying Equation 4 might require of lending or borrowing operations involving amounts
that are not available in the market.

The hypothesis (PM3), on the other hand, implies that individuals agree on the esti-
mations of the risk-parameters µ, σ and hence, on the market prices of securities. Only if
this hypothesis is satisfied the transactions of assets can be performed at a unique price
in the market, in such a way that the market is found at equilibrium (Sharpe, 1964).

The alternative model of equilibrium that will be presented in the following sections is
built on a framework of imperfect competition — where hypotheses (PM1), (PM2) and
(PM3) are not satisfied. Consequently, the set of risks will be corresponded to a general
class of probability distributions. It will be additionally assumed that the transactions in
the markets of assets and cash holdings are only possible if the quantities involved do not
surpass certain limits and that individuals do not necessarily agree on their expectations
about the future performance of securities.

Within this framework, the influence of liquidity restrictions in the funding strategies
followed by decision-makers can be described by considering that the only substitute to
borrowing in capital markets, apart from cash holdings, is deposit insurance. This ap-
proach is suggested by Robert Merton (1974, 1977) for the pricing of liability guarantees.
Merton, however, assumes that individuals can trade securities and cash balances at their
will — in other words, he assumes that investors can hedge continuously — concluding
that the price of every guarantee must be equal to the price of a put option on the value

as every market is assumed to be according to the efficient markets hypothesis (in the terms that is
formulated by Fama, 1970 and 1998).

11Mandelbrot (1963) is among those that first attempted to introduce heavy tailed distributions for the
statistical characterisation of the movements of stock prices. Merton (1976) and Cox and Ross (1976)
reformulate the Black and Scholes’ option pricing model, in order to consider stochastic processes with
jumps.
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of the underlying claim.

The Merton’s model of deposit insurance can be naturally extended if the price of the
guarantee is related to the actuarial price of the underlying residual exposure — equal to
the excess of loss over the level of reserves.12 As demonstrated later in Section 6, then an
optimal surplus exists, which ensures that the value of the hedged portfolio is maximised.
The optimal liquidity principle thus obtained can be naturally aggregated to account for
the preference for liquidity of markets, economic sectors and the economy as a whole, as
shown in Section 8. On these grounds, the monetary equilibrium of the economy can be
characterised, see Section 9.

As shown in Sections 10 and 11, an alternative to the CAPM’s characterisation of
market equilibrium is obtained applying this model to the particular case of Gaussian
risks and homogeneous expectations. The model also leads to an extended approach to
the monetary equilibrium (see Section 12). Market vulnerabilities, manifested as peaks
in the sensibility of the liquidity-preference function with respect to the interest rate,
are then consistent with some market scenarios, and can then be regarded as natural
transitions in markets where individuals face borrowing restrictions.

6 The Optimal Liquidity Principle

Let the parameter θ denote the state of information of some firm or individual investor
that holds a mutual fund whose percentage return is represented by the random variable
X = ∆Y/Y , where Y denotes the level of income of the fund. Because of the precautionary
motive, a guarantee L is maintained until maturity in order to avoid bankruptcy, whose
magnitude, on account of the transactions motive, is expressed as a proportion λ of the
level of income, i.e. L = Y · λ. In the following, this surplus will be treated as an
additional liability that induces the cost r0 · L.

The total payment per unit of investment delivered by the hedged or insured portfolio
(which combines the risky fund X and the guarantee L) at maturity is then equal to the
claim Z = X − λ − r0 · λ. Hence the expected return Y · µθ,Z of the insured portfolio is
given by:

Y · µθ,Z = Y · Eθ[Z] = (Y · µθ,X − L) − r0 · L = Y · [ (µθ,X − λ) − r0 · λ ]

Financing decisions are thereby affected by the percentage return on income:

µθ,Z = Eθ[Z] = (µθ,X − λ) − r0 · λ (7)

12It can be actually demonstrated that the expected value of the excess of loss satisfy a set of basic
mathematical properties and hence, that it can be regarded as a fair insurance price, see Goovaerts et
al., 1984. In Dhaene et al., 2003, and Goovaerts et al., 2005, this principle is used as a tool for allocating
capital inside financial institutions. In fact, a model of economic capital can be formally established on
this basis, which I present in details in Mierzejewski, 2006a, 2006b, 2008a and 2008b.
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Comparing Equations 3 and 7 we notice that the rules determining the insured portfolio
in the derivation of the CAPM in Section 4 are different from the prescription considered
in the alternative model.

Indeed, as established in Equation 3, in the former setting the proportion λ simulta-
neously determines the amount of funds allocated to risk and cash holdings. As long as
any combination of assets and cash balances can be attained in the market, any propor-
tion λ is corresponded to some portfolio that can be built by performing the appropriate
transactions.

In order to incorporate the possibility that some combinations cannot be attained due
to liquidity restrictions, in Equation 7 the exposition to risk is fixed, although individuals
can modify their cash holdings by borrowing or lending at the interest rate r0. Assuming
this setting makes sense if the portfolio X is regarded as a non-standarised fund that
cannot be continuously transacted in the market. The holders of such portfolios are
obliged to perform a complete reallocation of resources if they want to change their
exposition to risk — in other words, they are obliged to implement again the Markowitz’s
procedure to find a new optimal portfolio. Such adjustments are seen as structural changes
by creditors, which might lead to increments or reductions in the market price of the fund.
These price returns, in turn, might eventually lead to changes in the premiums (over the
risk-free interest rate) the holders of the fund have to pay to borrow in the markets of
cash balances.13

Maximising the expected return of the hedged portfolio as defined in Equation 7 ac-
tually leads to the trivial solution λ = 0, because in this case demanding cash holdings
only produces an additional loss. To obtain this result, the hypothesis is implicit that
individuals are indifferent between holding positive or negative balances.

However, if individuals face liquidity restrictions, transacting positive and negative
balances might induce to some net profit or loss.

In fact, the total returns obtained in each case can be explicitly measured in terms of the
expected values of the claims (X−λ)+ = max(0,X−λ) and (X +λ)− = −min(0,X +λ),
which respectively represent the surplus and the excess of loss with respect to the cash
stock. Then the expected return (per unit of income) of the insured portfolio should be
written as:

µθ,Z = Eθ [(X − λ)+] − Eθ [(X + λ)−] − r0 · λ = ∆(λ) − r0 · λ (8)

The term ∆(λ) := Eθ[(X −λ)+]−Eθ[(X +λ)−] represents the economic margin obtained
because of financial intermediation, while Eθ [(X + λ)−] accounts for the cost of assuming
bankruptcy, a role that can be adopted by the own investor, an insurance company or

13According to Billet and Garfinkel, 2004, such premiums depend explicitly on the difference between
the costs of internal and external financing, and thereby reflect the degree of financial flexibility of the
institution. Thus, institutions with greater flexibility have access to cheaper funding sources, have greater
market values and carry less cash holdings. Kashyap and Stein, 2000, analyse the effects of monetary
policy over financial decisions under such circumstances.
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some governmental division.14

From the actuarial point of view, the terms Eθ[(X − λ)+] and Eθ[(X + λ)−] represent
the fair or actuarial prices of the corresponding claims. This means that these terms
represent the prices at which the underlying exposures (X −λ)+ and (X +λ)− should be
transacted in some insurance market free of arbitrage (see Goovaerts et al., 1984, Venter,
1991, and Wang et al., 1997).

Within this context, the expected return µθ,Z represents the fair price of the portfolio Z
when capital and insurance markets are found at equilibrium (see Mierzejewski, 2008b).
Hence, as implied by Equation 8, the market value of the insured portfolio certainly
depends on the proportion of funds λ invested on cash reserves. We can thereby postulate
that rational decision-makers choose the proportion λ in order to maximise the expected
return µθ,Z — for in this way they maximise the market valorisation of their portfolios —
but the question then arises of under which conditions the existence of such an optimal
proportion can be assured.

In order to give an answer to this question, it is necessary, in the first place, to provide
an explicit expression for the distorted expectation operator Eθ[·]. For this purpose, let
us consider the proportional hazards transformation,15 introduced by Wang (1995) as an
insurance principle:

Eθ[X] =

∫

x dFθ,X(x) =

∫

Tθ,X(x) dx with Tθ,X(x) := TX(x)
1
θ ∀x (9)

The distorted cumulative and distorted tail probability distribution functions appear in
Equation 9, respectively defined as Fθ,X(x) = Pθ{X ≤ x} and Tθ,X(x) = Pθ{X > x}, with
Fθ,X(x) = 1 − Tθ,X(x), ∀x. Whenever θ > 1 the expected value of risk is overestimated,
and underestimated when θ < 1, in this way respectively accounting for the behaviour of
risk-averse and risk-lover investors.

Applying Lagrange optimisation, leads the optimal proportion λ∗, which maximises the
criterion of Equation 8, to be characterised by the first-order condition, determined at
the point where the derivative of µθ,Z with respect to λ is equal to zero:16

14Froot et al., 1993, propose a similar model to characterise the optimal demand for capital, which is
also based on the expected values of the positive part of the surpluses of the underlying portfolio. Unlike
the model presented in this paper, Froot et al. propose to add some random perturbation to the income
of the portfolio — and do not multiply, as suggested in this paper. Besides, they simultaneously maximise
over the level of capital and the level of investment. See also Froot and Stein, 1998, and Froot, 2007.

15So called since it is obtained by imposing a safety margin to the hazard rate hX(x) := dln TX(x)/dx
in a multiplicative fashion: hθ,X(x) = (1/θ) · hX(x), with θ > 0. Other distortions can be used instead.
In the general case, a distortion function is defined over the unit interval, and an axiomatic description
is provided for the distorted price (see Wang et al., 1997 and Wang & Young, 1998). Averse-to-risk and
risk-lover investors are then respectively characterised by concave and convex transformations. All the
analysis that follows is maintained in the same terms under this general setting (see also Mierzejewski,
2006b).

16Applying the Leibnitz’s rule:

d

dy

Z v(y)

u(y)

H(y, x)dx =

Z v(y)

u(y)

∂H(y, x)

∂y
dx + H (y, v(y)) ·

dv(y)

dy
− H (y, u(y)) ·

du(y)

dy
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dEθ [(X − λ∗)+]

dλ
− dEθ [(X + λ∗)−]

dλ
− r0 = −Tθ,X(λ∗) + Fθ,X(−λ∗) − r0 = 0

Since Fθ,X(−λ) = Pθ{X ≤ −λ} = Pθ{−X > λ} = Tθ,−X(λ), ∀λ, the following equivalent
characterisation is obtained:

Tθ,−X(λ∗) − Tθ,X(λ∗) = r0 (10)

The rational liquidity demand is thus determined in such a way that the marginal gain
minus the marginal loss on capital (i.e. the instantaneous benefit of liquidity) equals the
marginal return of the sure investment. Within this context, the optimal proportion of
cash is corresponded to an optimal exchange of a sure return and a flow of probability,
and it is the mass accumulated in the tails of the distribution what matters. No explicit
relationship is obtained for the cash demand, but some numerical procedure could be
implemented to find the solution.

The existence of some optimal proportion λ∗ can be mathematically assured as long
as, for any proportion level below the optimal, i.e. for any λ < λ∗, the expected income
per unit of investment, equal to the term ∆(λ) − r0 · λ, is an increasing and concave
function on the liquidity preference coefficient λ. This requirement actually corresponds
to the second-order condition of Lagrange optimisation (see Froot et al., 1993).

In other words, an optimal proportion of cash exists as long as the following inequalities
are simultaneously satisfied:

d∆(λ)

dλ
− r0 > 0 ⇔ Tθ,−X(λ) − Tθ,X(λ) > r0 ∀ λ < λ∗

d2∆(λ)

dλ2
< 0 ⇔ d Tθ,−X(λ)

dλ
− d Tθ,X(λ)

dλ
< 0 ∀ λ < λ∗

The first inequality implies that, for any given liquidity preference ratio λ lower than
the optimal level λ∗, the marginal loss due to financial intermediation is greater than the
total cost of the guaranty and accordingly, that there are incentives to maintain some cash
surplus. The second condition ensures concavity. In fact, recalling that Tθ,X = 1− Fθ,X ,
this condition can be written in terms of the density probability distribution fθ,X(x) :=
dFθ,X(x)/dx = Pθ{X = x}:

Pθ{X = λ} < Pθ{X = −λ} ∀ λ < λ∗

The second-order condition thereby implies that an optimal liquidity ratio λ∗ exists as long
as the probability of obtaining a certain capital gain is always lower than the probability
of obtaining a capital loss of the same magnitude.

the relationship is obtained by noticing that, from Equation 9, the following expressions are respectively
obtained for the expected surplus and the expected excess of loss: Eθ [(X − λ)+] =

R

∞

λ
(x − λ) dFθ,X(x)

and Eθ [(X + λ)−] = −
R

−λ

−∞
(x + λ) dFθ,X(x).
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7 The Optimal Liquidity Principle as the Optimal Insur-

ance Retention

One additional condition has to be satisfied, however, for the optimal cash balance to
be determined by Equation 10. Indeed, recall that for the market price of the hedged
portfolio to be characterised by the expected return µθ,Z defined in Equation 8, individuals
must be able to sell their surpluses at the price Eθ[(X − λ)+], in such a way that the
benefit they have to resign (in average) for holding the proportion of capital λ is equal
to:

rθ,X(λ) = Eθ[X+]−Eθ[(X−λ)+]
λ

⇔ Eθ [(X − λ)+] = Eθ[X+] − rθ,X(λ) · λ
(11)

Combining Equations 8 and 11:

µθ,Z = Eθ [X+] − Eθ [(X + λ)−] − (r0 + rθ,X(λ)) · λ (12)

In this context, the return rθ,X(λ) can be interpreted as an extra premium paid for keeping
the balance L = Y · λ as a cash stock, instead of investing it in the mutual fund X.

Equivalently, we can say that the total cost of capital for the holders of the hedged
portfolio is equal to:

r(λ) = r0 + rθ,X(λ) (13)

Since the risk-free interest rate r0 does not depend on the cash proportion λ, deriving
Equation 11 with respect to λ and rearranging terms, we obtain that the marginal change
of the cost of capital with respect to the proportion of cash can be explicitly calculated:

dr(λ)

dλ
= − 1

λ
·
(

rθ,X(λ) +
dEθ [(X − λ)+]

dλ

)

(14)

Under such circumstances, maximising the expressions of Equations 8 and 12 lead to the
same optimal cash balance. Therefore, only if the cost of capital is determined according
to Equations 13 and 14, the optimal cash balance is characterised in order to satisfy
Equation 10.

Notice that Equations 13 and 14 determine the cost of capital as perceived by the
holders of the hedged portfolio. But as we have assumed that individuals borrow the
cash balance L in some open market of capital, the cost of capital should rather reflect
the perceptions of lenders.

As a matter of fact, debt can be implemented by issuing a bond promising to pay
a certain interest rate r at maturity. As long as the market regards this deposit as
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riskier than the risk-free security, the issuers of the bond have to offer some return higher
than the risk-free interest rate in order to make it attractive to investors. Hence the
condition r > r0 must be satisfied. On the other hand, the bond issuers are not willing
to pay a premium greater than rθ,X(λ), for then the alternative of providing these founds
themselves (whose cost is measured by the premium rθ,X(λ)) would be cheaper. Hence,
also the condition r ≤ r0 + rθ,X(λ) must hold.

Provided that the previous conditions are satisfied, the cost of capital r must be deter-
mined by the credit quality of borrowers. Consequently, it can be only affected by events
that change the perception of investors about the willingness and capability to pay of the
bond issuers. It can then be assumed as constant in practice, as long as the issuers of
bonds do not drastically change their capital structures — i.e. as long as the proportion
of reserves λ is not drastically modified.

Replacing the return r in the place of (r0 + rθ,X(λ)) in Equation 12, the following
expression is obtained for the expected percentage income:

µθ,Z = Eθ [X+] − Eθ [(X + λ)−] − r · λ (15)

Applying Lagrange optimisation, we obtain that individuals attract funds until the marginal
return on risk equals the total cost of holding capital:

−d Eθ [(X + λ∗)−]

dλ
− r = Tθ,−X(λ∗) − r = [ T−X(λ∗) ]

1
θ − r = 0

Equivalently, it can be said that investors stop demanding money at the level at which
the marginal expected gain in solvency equals its opportunity cost. The optimal liquidity
principle is thereby given by:

λθ,X(r) = T−1
θ,−X(r) = T−1

−X

(

rθ
)

(16)

From this expression, the optimal demand for cash balances always follows a non-increasing
and (as long as the underlying probability distribution is continuous) continuous path,
whatever the kind of risks and distortions, because the tail probability function, and
hence its inverse, are always non-increasing functions of their arguments. The minimum
and maximum levels of surplus are respectively demanded when r ≥ 1 and r ≤ 0. Be-
sides, averse-to-risk and risk-lover individuals (respectively characterised by θ > 1 and
θ < 1) systematically demand higher and lower amounts of cash holdings — for they
respectively under- and over-estimates the cost of capital.17

17Consequently, one of the main advantages of the actuarial-based liquidity principle defined in Equation

16 is its functionality. Such result crucially depends on the choice of the distorted probability insurance
principle of Equation 9. Indeed, if the expected utility operator (defined in Equation 6) were used instead
to evaluate the hedged portfolio’s return of Equation 15, then the first-order condition would lead to:

Z

−λ

−∞

u′(x + λ) dFX(x) − u(0) · fX(−λ) − r = 0

where u′ denotes the first derivative of the utility function. Then no explicit expression would be obtained
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8 The Aggregate Liquidity Principle

The aggregate liquidity-preference of some industry or economic sector will be now char-
acterised, where each firm can borrow at a single interest rate r. As stated in the previous
section, such rate depends on the credit quality of borrowers and is supposed to remain
unchanged as long as firms do not drastically alter their capital structures. In other
words, firms are supposed to remain in the same credit class (i.e. the return at which
firms can borrow in the market is supposed to remain the same) as long as the levels of
income and reserves in their portfolios are kept more or less invariant.

Let us additionally assume that firms hold securities and combinations of securi-
ties (or are involved in venture projects) producing capital returns represented by the
random variables X1, . . . ,Xn. The levels of income and the liquidity preference func-
tions corresponding to each of the funds will be respectively denoted as Y1, . . . , Yn and
λ1(r), . . . , λn(r). The total surplus accumulated in the industry must then be equal to:

Y · λ(r) =
n
∑

i=1

Yi · λi(r) with Y =
n
∑

i=1

Yi

where Y and λ(r) respectively denote the level of income and the preference for liquidity
accumulated in the industry. Dividing by Y we obtain that:

λ(r) =
n
∑

i=1

ωi · λi(r) with ωi =
Yi

Y
∀i and

n
∑

i=1

ωi = 1 (17)

Accordingly, at any level of the interest rate, the liquidity-preference of the industry
is equal to the sum of the liquidity-preferences of the different firms weighted by their
relative magnitudes in terms of the levels of income.

Notice that the level of aggregation plays no role in Equation 17. Indeed, the random
variables X1, · · · ,Xn could be assumed to represent the capital P&L of the totality of
firms belonging to the class, as well as the aggregates of some predetermined groups
or clusters. Then the liquidity-preferences of the different economic sectors could be
summed up in order to obtain the preference for liquidity of the economy as a whole.
Alternatively, the function λ(r) could be represented in terms of the incomes and the
cash balances demanded by each of the individuals participating in it, from householders
and small companies, to big holdings and rich private investors. Although the functional
specification and the evolution of λ(r) are certainly expected to depend on the level of ag-
gregation, there is no formal difference in applying any of the alternative representations.
They are all equivalent characterisations of the same property of the economy.

Actually, from the mathematical point of view, Equation 17 can be treated as an
invariance condition leading to a certain set of functional specifications. Imposing that
the different liquidity-preference functions λ1(r), · · · , λn(r) follow the same functional

for the optimal liquidity principle — except for some restricted class of utility functions.
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expression and that this expression is always preserved at different levels of aggregation
(whatever the number of components or the relative magnitudes of incomes), necessarily
leads to accept only a limited set of functions.

Let me illustrate the meaning of this claim by examining the case when individu-
als choose their balances according to the liquidity principle of Equation 16 and share
expectations about the probability distributions describing risks — i.e. they agree on
the informational type θ. Then the aggregate surplus must be equal to the sum of the
distorted quantiles of the individual exposures:

λ(r) =

n
∑

i=1

ωi · T−1
θ,−Xi

(r) with ωi =
Yi

Y
,

n
∑

i=1

ωi = 1

Now define:

λi = ωi · T−1
θ,−Xi

(r)

⇔ r = Tθ,−Xi

(

λi

ωi

)

= Pθ

{

−Xi > λi

ωi

}

= Pθ {−ωi · Xi > λi}

=⇒ λi = T−1
θ,−ωi·Xi

(r)

Hence the contributions of firms and individuals to the aggregate liquidity-preference can
be equivalently expressed as the optimal principles corresponded to the weighted capital
returns ω1 · X1, · · · , ωn · Xn:

λ(r) =

n
∑

i=1

T−1
θ,−ωi·Xi

(r)

Therefore, for the aggregate liquidity-preference to be expressed as the quantile of the
aggregate capital P&L, we must necessarily impose the sum of the quantiles of the
underlying risks to be equal to the quantile of the aggregate exposure.

In fact, as demonstrated by Dhaene et al. (2002), the property of the sum of the
quantiles mathematically characterises the comonotonic dependence structure. A random
vector (Xc

1, . . . ,X
c
n) is said to be comonotonic if a random variable ζ exists, as well as a

set of non-decreasing functions h1, . . . , hn, such that the realisation of any joint event is
entirely determined by ζ, i.e.:

(Xc
1, . . . ,X

c
n) = (h1(ζ), . . . , hn(ζ))

Hence the realisation of any joint event is uniquely related to some event contingent on
the single exposure ζ. Besides, since the functions h1, . . . , hn are all non-decreasing, all
the components of the random vector (Xc

1, . . . ,X
c
n) move in the same direction. On these
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grounds, it is said that comonotonicity characterises an extreme case of dependence, when
no benefit can be obtained from diversification.

Let (Xc
1, . . . ,X

c
n) denote the random vector described by the same marginal probability

distributions as (ω1 ·X1, . . . , ωn ·Xn) and let Xc = Xc
1 + . . .+Xc

n = ω1 ·X1 + . . .+ωn ·Xn

denote the comonotonic aggregate (or comonotonic sum) of the individual capital returns.
Then the quantile T−1

θ,−Xc of the comonotonic sum is equal to the sum of the quantiles
of the weighted exposures (ω1 · X1, . . . , ωn · Xn), in such a way that the preference for
liquidity of the economy can be written as:

λ(r) = T−1
θ,−Xc(r) =

n
∑

i=1

T−1
θ,−ωi·Xi

(r) with Xc =

n
∑

i=1

ωi · Xi (18)

The comonotonic aggregate Xc thereby characterises liquidity-preference in economies
where individuals rely on the optimal liquidity principle of Equation 16.

When differing expectations are allowed in the economy, the aggregate money demand
is given by:

λ(r) = T−1
θ1,...,θn,−Xc(r) =

n
∑

i=1

T−1
θi,−ωi·Xi

(r) =

n
∑

i=1

T−1
−ωi·Xi

(

rθi

)

(19)

where θ1, . . . , θn denote the different informational types and Tθ1,..., θn,−Xc = (
∑n

i=1

T−1
θi,−ωi·Xi

)−1
denotes the distribution function of the comonotonic sum when the marginal

distributions are given by Tθ1,−ω1·X1, . . . , Tθn,−ωn·Xn
.

Comparing Equations 18 and 19, we observe that there is no formal difference be-
tween assuming equal and different expectations: in both cases, the aggregate liquidity-
preference is determined by the quantile function of the probability distribution of the
sum of the underlying exposures. Moreover, as long as the proportions ω1, . . . , ωn and the
riskiness of the capital returns X1, . . . ,Xn remain constant, the instability of both func-
tional expressions depends alone on the instability of the expectations firmly maintained
by individuals, and not on whether individuals agree or not on these expectations. Hence
the difference between the homogeneous and the non-homogeneous expectations settings
is not relevant in explaining the instability of the money demand of the economy.18

Endowed with an expression for the aggregate liquidity-preference of the economy, we
can now proceed to characterise the monetary equilibrium when individuals determine
their cash holdings according to the optimal liquidity principle defined in Equation 16.

18This conclusion contradicts the Keynes’s argument, that the money demand of the economy must be
absolute (and so, that monetary policy is useless) in the case of homogeneous expectations (see Keynes,
1937a and 1937b). As explained later in Section 12, the preference for liquidity can indeed be absolute

under certain circumstances, but as a consequence of the riskiness of national income.
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9 The Monetary Equilibrium with the Optimal Liquidity

Principle

Replacing Equations 16 and 18 into Equation 2, we obtain that in the case of homogeneous
expectations the monetary equilibrium is determined by the following equation:

M = Y · λ(r) = Y · T−1
θ,−Xc(r) = Y · T−1

−Xc

(

rθ
)

(20)

where M denote the total stock of money in the economy. Hence both the riskiness of
national income (determined by the random variable Xc) and the market expectations
(characterised by the informational type θ) explicitly affect the monetary equilibrium.

This means, in particular, that the monetary policy choosen by the central bank (char-
acterised by the money supply M) is not corresponded to a unique level of the interest
rate, as obtained from Equation 2. In fact, given any money stock M , multiple interest
rates can satisfy Equation 20, depending on the probability distribution describing the
riskiness of national income and the informational type θ corresponded to the market
expectations.

The influence of expectations over the monetary equilibrium can be actually more
precisely described.

Indeed, notice, on the one hand, that since the cost of capital is under-estimated in
averse-to-risk economies (characterised by θ > 1), the interest rate attained at equilib-
rium in this case is always greater than the levels attained in risk neutral and risk-lover
economies (respectively characterised by θ = 1 and θ < 1) for the same money supply M
and the same aggregate exposure Xc.

On the other hand, the level of interest rates attained at equilibrium in risk-lover
economies is always lower than the levels attained in risk neutral and averse-to-risk
economies, because risk-lover individuals systematically over-estimate the cost of cap-
ital. As a consequence, in economies where both the riskiness of the percentage return of
national output and the monetary policy implemented by the central bank remain con-
stant, changes in expectations must be necessarily followed by adjustments in the rate of
interest.

When individuals maintain different expectations about risks, the equilibrium interest
rate depends on the particular combination of the informational parameters θ1, . . . , θn.

The other determinant of the monetary equilibrium in Equation 20 is the riskiness
of national income. In the particular case when some analytical expression is available
for the probability function describing the random variable Xc, such dependence can be
investigated in terms of the underlying risk-parameters.

A careful examination of the model under the different families of probability distri-
butions found in the statistical literature is out of the scope of this paper. Instead, the
case of the Gaussian distribution will be analysed in the following sections. In this way,
the classic theoretical framework supporting the CAMP and the classical analysis of the
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monetary equilibrium will be naturally extended.

Indeed, as established in Section 11, an extended version of the capital market line
is obtained when the Gaussian quantile function is replaced in Equation 20. Later in
Section 12, an extended theoretical framework for the conduction of monetary policy will
be presented, based on the fact that the slope of the money demand (or the semi-elasticity
of the preference for liquidity) explicitly depends on the mean return and the volatility
of the aggregate exposure Xc when the Gaussian liquidity principle is introduced.

10 The Gaussian Liquidity Principle

In the particular case when the aggregate percentage return X is represented by a Gaus-
sian probability distribution with mean return µ and volatility σ, the optimal liquidity
principle takes the form (see Equation 16):

λµ,σ(r) = σ · Φ−1
(

1 − rθ
)

− µ (21)

where Φ denotes the cumulative probability distribution of a standard Gaussian random
variable, whose mean and volatility are respectively equal to zero and one (see e.g. De
Finetti, 1975, and also Dhaene et al., 2002):

Φ(x) =
1√
2π

·
∫ x

−∞

exp

(−y2

2

)

dy ∀x

As depicted in Figures 1 and 2, the Gaussian liquidity principle always follows a decreasing
and continuous path, independently of the levels of the risk parameters µ and σ and the
informational type θ.

This implies that the derived demand for cash holdings L(r) = Y · λµ,σ(r) always
follows a decreasing and continuous path — for every fixed level of income Y — and
consequently, that the derived money demand L(r) is well defined.

As depicted in Figure 1, the dependence of the Gaussian liquidity principle on the
informational type θ follows indeed the patterns described in Section 6 for general prob-
ability distributions. Accordingly, given fixed levels of expected return and volatility,
and at any level of the interest rate, averse-to-risk individuals (characterised by θ > 1)
always demand higher cash balances than neutral or risk-lover individuals. By contrast,
risk-lovers individuals (characterised by θ < 1) always prefer to maintain lower surpluses
than neutral and averse-to-risk individuals. Besides, ceteris paribus, the size of the cash
stock always increases with the informational type θ.

Regarding the dependence of the Gaussian liquidity principle on income uncertainty,
notice in the first place, that given any fixed level of volatility, raising the mean return
always implies that the demand curve is moved to the left (see the upper graph of Figure
2). More specifically, when µ < 0 and when µ > 0 the cash requirement λµ,σ(r) per unit
of income respectively increases and decreases with the magnitude of the mean return.

20



Figure 1: The Gaussian Liquidity Principle with Different Distortions
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Consequently, the amount of reserves always rises with the magnitude of realised expected
losses (when µ < 0). By contrast, when positive returns are obtained (and µ > 0), at
least part of the losses are cancelled by realised profits, in such a way that the higher
the magnitude of the expected capital gain, the lower the required cash balance and vice
versa.

Secondly, as depicted in the lower graph of Figure 2, for every fixed level of expected
return, the slope of the Gaussian liquidity principle always increases with volatility, which
means that the higher the variability of the underlying series of percentage returns, the
more sensible are individuals to the interest rate and vice versa. This result makes eco-
nomic sense, as long as the parameter σ measures the variability (and hence the riskiness)
of income. Moreover, as a consequence of the symmetry of the Gaussian distribution, all
the demand curves intersect at the point r = 0.5 in the lower graph of Figure 2. At this
level, there is an equal chance of obtaining a capital gain or a capital loss, no matter the
level of volatility, and hence the same balance is demanded, equal to the expected value
of the fund.

In fact, the sensibility of the Gaussian liquidity principle with respect to the interest
rate can be explicitly measured by the semi-elasticity of the Gaussian liquidity-preference
function with respect to the interest rate, equal to the percentage variation in the pro-
portion of reserves with respect to the interest rate. From Equation 21, the following
expression is obtained for this coefficient:

η
(

r,
µ

σ

)

=
1

λµ,σ(r)
· dλµ,σ(r)

dr
=

−
√

2π · θ rθ−1

Φ−1(1 − rθ) − µ
σ

· exp

(

[Φ−1
(

1 − rθ
)

]2

2

)

(22)

The sign of the variation thereby depends on the interest rate and the risk parameters µ
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Figure 2: The Gaussian Liquidity Principle with Different Combinations of Mean Returns
and Volatilities
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and σ, in such a way that:

η
(

r, µ
σ

)

< 0 ⇔ Φ−1(1 − rθ) − µ
σ

> 0 ⇔ λµ,σ(r) > 0

η
(

r, µ
σ

)

> 0 ⇔ Φ−1(1 − rθ) − µ
σ

< 0 ⇔ λµ,σ(r) < 0

Therefore, a curve with negative slope (as every demand curve should look like, according
to classic economic analysis) is always obtained, no matter the risk and informational
parameters (as depicted indeed in Figures 1 and 2).

Regarding the magnitude of the semi-elasticity, it can be easily verified from Equation
22 that:
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|Φ−1(1 − rθ) − µ
σ
| ↑ +∞ and |Φ−1(1 − rθ)| < +∞ =⇒

∣

∣η
(

r, µ
σ

)∣

∣ ↓ 0

|Φ−1(1 − rθ) − µ
σ
| ↓ 0 or |Φ−1(1 − rθ)| ↑ +∞ =⇒

∣

∣η
(

r, µ
σ

)∣

∣ ↑ +∞
(23)

Hence the semi-elasticity of the Gaussian liquidity principle is actually undefined when
Φ−1(1 − rθ) = µ/σ, since it converges to magnitudes with opposite signs depending on
whether the term Φ−1(1 − rθ) − µ/σ approaches to zero from the right or from the left:

η
(

r, µ
σ

)

↓ −∞ when Φ−1(1 − rθ) − µ
σ

↓ 0

η
(

r, µ
σ

)

↑ +∞ when Φ−1(1 − rθ) − µ
σ

↑ 0

On these grounds, we can say that the condition Φ−1(1− rθ) = µ/σ determines a critical
point, since at this point the sign of the liquidity principle is undefined and its magnitude
converges to infinite. Liquidity-preference becomes absolute under such circumstances.

Let us finally verify whether the sum of income returns preserves the Gaussian liq-
uidity principle. Indeed, consider a series of Gaussian exposures X1, . . . ,Xn with means
µ1, . . . , µn and volatilities σ1, . . . , σn. Let the individual and aggregate income levels be
respectively denoted by Y1, . . . , Yn and Y , with Y = Y1 + · · · + Yn.

Replacing the liquidity principles λ1(r), . . . , λn(r) according to Equation 21, we obtain
that the optimal individual cash balances are given by:

Li(r) = Yi · λi(r) = Yi ·
[

σi Φ
(

1 − rθ
)

− µi

]

∀i = 1, . . . , n

and summing up the individual cash contributions, the following expression is obtained
for the aggregate cash balance:

L(r) =

n
∑

i=1

Li(r) = Y ·
n
∑

i=1

ωi · [ σi Φ
(

1 − rθ
)

− µi ] with ωi =
Yi

Y
∀i

Hence the aggregate Gaussian liquidity principle is equal to the optimal liquidity principle
related to a Gaussian exposure whose mean and volatility are respectively given by the
weighted average means and volatilities:

µ =

n
∑

i=1

ωi · µi and σ =

n
∑

i=1

ωi · σi (24)

Dhaene et al. (2002) actually demonstrate that the comonotonic sum of Gaussian random
variables is also a Gaussian random variable, whose mean and volatility are defined as
in Equation 24. Then the aggregation of the Gaussian liquidity principle according to
Equations 21 and 24 is consistent with the aggregation condition established in Equation
17.
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11 The Capital Market Line Extended

Let us consider some industry whose aggregate capital return is represented by a Gaussian
random variable X with mean return µ and volatility σ. As stated in Sections 8 and 10,
the optimal cash balance demanded at the aggregate level must then be given by:

Lµ,σ(r) = Y · λµ,σ(r)

where Y , r and λµ,σ respectively denote the level of income produced by the industry, the
cost of capital and the aggregate Gaussian liquidity principle (as determined by Equation
21).

Let us additionally assume that when covering their short-term imbalances firms and
investors rely on some secondary market of capital, and let M denote the total cash
balance supplied by lenders.19 Since the aggregate balance demanded by the industry
must be necessarily equal to the total money stock M , the level of the interest rate must
adjust at equilibrium in order to satisfy the condition M = Lµ,σ(r), i.e.:

M = Y · λµ,σ(r) ⇔ m :=
M

Y
= σ · Φ−1

(

1 − rθ
)

− µ

where m = M/Y denotes the relative money supply or the relative stock of cash in the
industry. Rearranging terms leads to the equation:

µ = −m + Φ−1
(

1 − rθ
)

· σ (25)

Therefore, the equilibrium in the market of cash balances implies that the mean return
and the volatility of the underlying fund must be related to each other according to a
linear schedule.

Recall that the balance Lµ,σ(r) has been defined as the sum of the surpluses preferred
by individuals who seek to maximise the expected return of their insured portfolios (as
determined by Equation 15). In other words, the demand function Lµ,σ(r) corresponds to
the sum of the stocks of reserves maintained by individuals that build efficient portfolios
— i.e. that choose efficient combinations of risk and cash holdings.

On these grounds, Equation 25 can be regarded as an alternative relationship to the
capital market line (abbreviated CML) presented in Equation 4. It will then be known
as the capital market line extended (abbreviated CML-extended) in the following. Some
important discrepancies regarding the interpretation of the variables and parameters that
appear in Equations 4 and 25 should be pointed out, however.

In fact, notice in the first place that while in Equation 4 the risk-parameters (µZ , σZ) of
the insured portfolio are related to each other, the risk-parameters (µ, σ) of the underlying

19Later in Section 12 the monetary equilibrium will be investigated, where Y represents the national
output, µ and σ respectively represents the mean return and the volatility of the series of capital returns
of Y , and M represents the stock of money determined by the central bank.
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fund, which in Equation 4 are denoted as (µX , σX), are related to each other in Equation
25. This fact reflects a fundamental disagreement between both theoretical frameworks.
Indeed, while the rate of interest and the risk-parameters of the underlying series of
capital returns are regarded as exogenous variables in the CML, which are supposed to
remain unchanged at least in short-terms, the same variables are endogenously determined
in the CML-extended, in order to equalise the incoming and outgoing cash flows. In
other words, the CML and the CML-extended are respectively corresponded to static and
dynamic approaches to the market equilibrium.

Secondly, recall that in the CML the cost of capital is corresponded to the return r0

offered by a class of risk-free securities, which is supposed to remain unaltered as long as
individuals are price takers and their preferences — as well as the market conditions in
general — are more or less stable. In the CML-extended, on the other hand, the cost of
capital is equal to the risk-free interest rate plus some liquidity premium, established by
creditors to compensate for the additional risk of default (see Equation 13).

Having explained the meaning of the variables involved in the CML and the CML-
extended, let us now analyse how the line is determined in both settings. We must then
analyse the slope of the line and its intercept with the mean return’s axis.

We already know that the intercept of the CML is equal to the risk-free interest rate
r0. This is consistent with the fact that in the CAMP individuals can always lend their
balances to some free-of-default counterpart to obtain the return r0, independently of the
size of the loan.

The intercept of the CML-extended with the mean return axis, on the other hand, is
equal to the additive inverse of the relative stock m. This result is connected to the
fact that in the extended model the level of the interest rate may actually be affected
when the amount of demanded balances surpasses certain levels. In this context, the
relative stock of money (equal to the level of reserves per unit of income) plays the role
of a compensation for the expected capital loss of the nominal income. In fact, in the
particular case when σ = 0, we obtain that:

µ + m = 0

This equation explicitly establishes a balance of expected return and cash reserves. It
reflects the fact that when µ < 0 the relative stock m can be used to pay back at least
some of the realised losses. When µ > 0, by contrast, a pressure exists to sell every
outstanding cash balance.

Regarding the slope of the line of efficient portfolios, recall that it determines the rate
at which a unit of volatility is exchanged by a unit of expected return in the market,
or equivalently, it determines the market price of risk. Besides, the slope of the CML is
equal to the Sharpe ratio (see Equations 4 and 5).

The slope of the CML-extended, on the other hand, is equal to the term R = Φ−1(1 −
rθ), which means that the market price of risk and the equilibrium interest rate are
simultaneously determined in the extended model:
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R = Φ−1
(

1 − rθ
)

⇔ rθ = 1 − Φ(R) (26)

On these grounds, every risk can be interpreted as a zero coupon or discount bond, which
promises a discounted payment at some maturity date. In this context, the level of
income Y represents the face or nominal value of the investment, while the interest rate
r represents the internal return earned by the holder of the instrument. As with zero
coupon bonds, the market price of risk and its internal return are inversely related to
each other (see Hull, 2000).

Additionally, from Equation 25 we obtain that at equilibrium the market price of risk
R must be simultaneously determined in terms of the risk-parameters of the underlying
portfolio and the relative stock m:

R =
µ + m

σ
=

µ + M/Y

σ
(27)

Comparing Equation 27 to Equation 5 we see that the coefficient R can be indeed regarded
as an extended measure of risk to the Sharpe ratio. However, while the Sharpe ratio is
expressed as a reward over the level of the risk-free interest rate r0, the discount factor
R is expressed as a reward over the relative stock m = M/Y .

These differences are consistent with the different roles that cash holdings play in both
models. Indeed, while in the CAPM individuals can always attract deposits if they offer
the interest rate r0 (no matter the size of the deposits), in the extended model the relative
stock represents a guarantee maintained in order to compensate for the average capital
return µ.

From Equations 26 and 27 we conclude that the market price of risk R is actually
determined by the equilibrium of two different markets.

Thus, on the one hand, as established in Equation 26, the market price of risk is related
to the return (r) at which short-term loans are offered to the firms in the class and the
expectations (θ) of lenders about the credit quality of borrowers. On the other hand, as
established in Equation 27, the market price of risk determines a reward (m) over the
level of expected return per unit of volatility. In other words, the market price of risk
(and hence the market interest rate) determines the exchange rate of capital for risk that
implies the markets of cash balances and securities to be at equilibrium.

Accordingly, if the market is found in a certain state of equilibrium, changing the
relative stock m necessarily implies that all or some of the variables θ, r, µ, and σ
must vary until a new equilibrium is attained. While changes in m and r respectively
correspond to quantity and price adjustments, changes in θ, µ and σ should be more
properly interpreted as structural adjustments, for they respectively involve changes in
the expectations of individuals and in the riskiness of the underlying portfolio X.

In conclusion, unlike the CML and the CAPM, the CML-extended (as defined by Equa-
tions 25, 26 and 27) provides a theoretical framework that is intimately connected to the
monetary equilibrium.
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In fact, since the total stock of money demanded by the economy is obtained in the
extended model by summing up the aggregate balances demanded by the different indus-
tries and economic sectors, Equation 25 can be used as well to characterise the monetary
equilibrium of the economy.

For this purpose, the involved variables should be defined accordingly: thus, the money
stock M should be corresponded to some monetary aggregate controlled by the central
bank; the level of income Y should be related to the output obtained at the national level,
and finally, the risk-parameters µ, σ should be related to the series of capital returns of
the national income. Such a model will be next analysed in Section 12.

12 Extended Macroeconomic Analysis

Consider some economy that produces the income percentage return X = ∆Y/Y , where
Y denotes the level of national income. Let us additionally assume that the return X is
distributed as a Gaussian random variable with mean µ and volatility σ. Since in this
case the function λµ,σ(r) (defined in Equation 21) determines the optimal aggregate cash
holding Lµ,σ(r) = Y · λµ,σ(r) demanded at the aggregate level,20 the level of the interest
rate r and the risk parameters µ, σ must be related to each other at equilibrium, in such
a way that the optimal aggregate cash balance is equal to the total stock of money M
supplied by the monetary authority:

M = Y · λµ,σ(r) = P y ·
[

σ Φ−1
(

1 − rθ
)

− µ
]

(28)

where, as in Equation 2, the variables P and y respectively denote the level of prices
and the level of real income. Accordingly, variations in the amount of money M must be
followed by changes in any of the variables P , y, r, µ and σ in order to reestablish the
monetary equilibrium.

Hence the main difference between the classic and the alternative theoretical settings
describing the monetary equilibrium (respectively characterised by Equations 2 and 28)
is that national income is regarded as a random variable in the alternative setting. Then
the risk-parameters µ and σ (which describe the riskiness of the series of capital returns
of national income) explicitly affect the preference for liquidity of the economy and are
thereby determinants of the monetary equilibrium.

On these grounds, the alternative model of equilibrium can be regarded as an extended
model.

Let us now investigate how the monetary equilibrium is established in the short-run in
the extended model. More precisely, we would like to know how the level of the interest
rate r adjusts in the short-run in response to variations in the money stock M , assuming
that the risk-parameters µ, σ remain unchanged. Applying differences to Equation 28 we
actually obtain that:

20This must be the balance demanded by the economy if it efficiently allocates resources, for only in
this way the expected output of the economy, as defined in Equation 15, is maximised.
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∆M

M
= π + ξ +

∆λµ,σ(r)

λµ,σ(r)
with π :=

∆P

P
and ξ :=

∆y

y

where π denotes the rate of inflation, equal to the percentage variation in the level of
prices, and ξ denotes the growth rate of the economy, equal to the percentage variation in
the level of real output. The equation above can be equivalently expressed in terms of the
semi-elasticity η(r, µ/σ) of the Gaussian liquidity principle with respect to the interest
rate (see Equations 21 and 22):

∆M

M
− ξ = π + η

(

r,
µ

σ

)

· ∆r with η
(

r,
µ

σ

)

=
1

λµ,σ(r)
· dλµ,σ(r)

dr
(29)

Hence the monetary policy chosen by the central bank can be related to some monetary
trend that assures a certain path ξ of economic growth (consistent with the rate of growth
of productivity in the economy) together with some predetermined (and preferably low)
level of inflation π (see Friedman, 1968 and 1970, Romer, 1996, Edwards and Sinzdak,
1997, Blanchard, 2005, and also, Howells and Bain, 2005).

Within this context, the levels of inflation and interest rates are respectively corre-
sponded to the instrument and the target of monetary policy.

Accordingly, when inflation is above its target level, the central bank must react by
reducing the amount of money M . As long as η(r, µ/σ) < 0, such policy has the effect
of raising the level of interest rates and cooling the economy, which are conditions that
ultimately reduce inflation. Conversely, when inflation is below its target, the central
bank must take actions conducting to lowering interest rates, i.e. it must increase the
amount of money M . This usually has the effect of accelerating the economy and raising
inflation.

During the process, individuals are informed about what the central bank considers
the target inflation rate. In this way, the efficiency of the mechanism is increased —
eventually leading to increased economic stability.21

However (as already stated in Section 2), the efficacy of the mechanism depends on the
magnitude of the semi-elasticity η(r, µ/σ).

Indeed, notice from Equation 29 that the portion of the variation of the money supply
that is explained by inflation decreases with the magnitude of η(r, µ/σ). In other words,
given some fixed rate of economic growth ξ, the lower the term |η(r, µ/σ)|, the more
monetary interventions are transmitted to inflation — and hence the more effective is
monetary policy. In the limit when |η(r, µ/σ)| → 0 the whole effect is transmitted to the
level of prices:

21It should be emphasised that inflation targeting policies are based on the assumption that inflation
is a good estimator of the growth of money supply. Unfortunately, this is not always the case. The
most serious exception occurs when price increments are produced by external factors, such as oil and
commodity prices in general. Under such conditions, strictly adjusting interest rates may restrict economic
growth when it is not necessary to do so.
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∆M

M
− ξ = π with η

(

r,
µ

σ

)

= 0

Monetary policy performs at its best under such circumstances.

By contrast, the greater the term |η(r, µ/σ)| in Equation 29, the more the variations
in the money stock are explained by means of changes in the liquidity preference of
individuals and hence, the less effective is monetary policy to induce the desired inflation
rate. In the limit when |η(r, µ/σ)| → ∞, variations in the amount of money have no
effect on interest rates and hence, monetary policy is useless under such circumstances
— recall that liquidity preference is absolute in this case.

The magnitude of the semi-elasticity can be precisely determined in the case of the
Gaussian liquidity principle.

In fact, as stated in Section 10, when the series of income returns follows a Gaussian
probability distribution, low and high semi-elasticities are corresponded to specific states
of the market characterised by the level of the interest rate and the risk-parameters µ, σ.

Thus, on the one hand, as established in Equation 23, if |Φ−1(1 − rθ)| < +∞, i.e. if
rθ > 0 and rθ < 1, then:

∣

∣

∣
Φ−1

(

1 − rθ
)

− µ

σ

∣

∣

∣
→ +∞ =⇒

∣

∣

∣
η
(

r,
µ

σ

)∣

∣

∣
→ 0

Therefore, as long as 0 < rθ < 1, the magnitude of the semi-elasticity is diminished both
when the magnitude of the income’s expected return is increased (no matter the sign
of the expected return) and when the volatility of income is reduced. Accordingly, the
monetary mechanism is more effective in economies that produce higher expected returns
(both when positive and negatives returns are obtained) and show lower variability.

On the other hand, from Equation 22 we obtain that the magnitude of the semi-
elasticity converges to infinite when the level of the corrected interest rate converges to
zero or one:

rθ ↓ 0 or rθ ↑ 1 =⇒
∣

∣

∣
Φ−1

(

1 − rθ
)∣

∣

∣
→ +∞ =⇒

∣

∣

∣
η
(

r,
µ

σ

)∣

∣

∣
→ +∞

The same result is obtained when |Φ−1(1 − rθ) − (µ/σ)| → 0, i.e.:

Φ−1(1 − rθ) =
µ

σ
=⇒ rθ = 1 − Φ

(µ

σ

)

=⇒
∣

∣

∣
η
(

r,
µ

σ

)
∣

∣

∣
= ∞

Then the magnitude of the semi-elasticity is equal to infinite when the corrected interest
rate attains any of the values rθ = 0, rθ = 1 or rθ = 1−Φ(µ/σ). Consequently, in any of
these states the preference for liquidity of the economy is absolute and hence, monetary
policy is useless for dealing with price and output fluctuations. On these grounds, these
interest rates values are corresponded to critical states of the economy.
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Other complications may arise when implementing the monetary mechanism due to
the dependence of the cost of capital on the market expectations and the riskiness of
national output.

Indeed, recall that the market interest rate r must lie in the interval determined by
the risk-free interest rate r0 and the liquidity premium rθ,X (where the liquidity premium
depends on the benefit lost from maintaining cash holdings instead of investing on risk,
see Equations 11 and 13 and the related discussion in Section 6), in such a way that:

r0 ≤ r ≤ r0 + rθ,X

In this context, the returns r and r0+rθ,X denote the cost of capital as perceived by lenders
and borrowers respectively. Accordingly, individuals prefer to maintain cash holdings and
do not rely on capital markets to fit their balances when r > r0 + rθ,X , because in this
case the cost imposed by lenders is too expensive for them.

As a consequence, if the premium rθ,X is diminished (i.e. if the income surplus over the
level of reserves is reduced, see Equation 11) until the borrowers’ perceptions of the cost
of capital is under the lenders’ estimations of it (i.e. until r0 + rθ,X < r), people will be
induced to modify their funding strategies, moving from external to internal financing —
i.e. moving from debt to capital. By contrast, if the premium rθ,X is increased, then the
profit that is obtained from relying on capital markets instead of keeping cash holdings
(equal to r0 + rθ,X − r) will be augmented, and hence the incentives to replace capital by
debt will be incremented.

In other words, in the extended model the monetary equilibrium can be affected by
changes in the expectations of individuals and in the riskiness of national output, which
in the case of Gaussian risks are reflected in the risk-parameters µ, σ. Such adjustments
are manifested as fluctuations in the amount of funds demanded at the aggregate level.22

Finally, recall that in the extended model the riskiness of national income is expressed
in terms of the riskiness of the outputs produced by the portfolios held by individuals
at different aggregation levels (as stated in Equations 17, 18 and 19). Consequently,
the variability of income at the economic level might be induced by a single industry or
economic sector — in such a way that, in particular, the volatility and the mean return
of national income might be determined by a single industry or economic sector. Hence,
the possibility of contagion naturally arises in the model.23

22Recall that in the model creditors are regarded as price takers, who set the price of loans based on the
credit class the borrower belongs to according to the market, see Equation 15 and the related discussion.

23Some recent studies emphasise the role of aggregation in explaining macroeconomic and financial
stability. Thus, for example, Calza and Sousa (2003) postulate that considering aggregation effects it
is possible to explain why the money demand has been more stable in the euro are than in other large
economies. The fact that Germany has a large weight in the M3 aggregate for the euro area and that the
money demand has been historically stable in that country contributes to support such hypothesis. In
other words, the stability of the German economy is supposed to be shared by the rest of the economies
in the block, as a positive externality.
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