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Abstract

We propose a new transaction-level bivariate log-price model, which yields fractional or standard

cointegration. The model provides a link between market microstructure and lower-frequency obser-

vations. The two ingredients of our model are a Long Memory Stochastic Duration process for the

waiting times {τk} between trades, and a pair of stationary noise processes ({ek} and {ηk}) which de-

termine the jump sizes in the pure-jump log-price process. Our model includes feedback between the

disturbances of the two log-price series at the transaction level, which induces standard or fractional

cointegration for any fixed sampling interval ∆t. We prove that the cointegrating parameter can be

consistently estimated by the ordinary least-squares estimator, and obtain a lower bound on the rate

of convergence. We propose transaction-level method-of-moments estimators of the other parameters

in our model and discuss the consistency of these estimators. We then use simulations to argue

that suitably-modified versions of our model are able to capture a variety of additional properties

and stylized facts, including leverage, and portfolio return autocorrelation due to nonsynchronous

trading. The ability of the model to capture these effects stems in most cases from the fact that the

model treats the (stochastic) intertrade durations in a fully endogenous way.
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I Introduction

In this paper, we propose a transaction-level, pure-jump model for a bivariate price series, in which the

intertrade durations are stochastic, and enter into the model in a fully endogenous way. The model

is flexible, and able to capture a variety of stylized facts, including standard or fractional cointegration,

persistence in durations, volatility clustering, leverage (i.e., a negative correlation between current returns

and future volatility), and nonsynchronous trading effects. In our model, all of these features observed at

equally-spaced intervals of time are derived from transaction-level properties. Thus, the model provides

a link between market microstructure and lower-frequency observations. This paper focuses on the

cointegration aspects of the model, presenting theoretical, simulation and empirical analysis.

Cointegration is a well-known phenomenon that has received considerable attention in Economics

and Econometrics. Under both standard and fractional cointegration, there is a contemporaneous linear

combination of two or more time series which is less persistent than the individual series. Under standard

cointegration, the memory parameter is reduced from 1 to 0, while under fractional cointegration the level

of reduction need not be an integer. Indeed, in the seminal paper of Engle and Granger (1987), both

standard and fractional cointegration were allowed for, although the literature has developed separately

for the two cases. Important contributions to the representation, estimation and testing of standard

cointegration models include Stock and Watson (1988), Johansen (1988, 1991), and Phillips (1991a).

Literature addressing the corresponding problems in fractional cointegration includes Dueker and Startz

(1998), Marinucci and Robinson (2001), Robinson and Marinucci (2001), Robinson and Yajima (2002),

Robinson and Hualde (2003), Velasco (2003), Velasco and Marmol (2004), Chen and Hurvich (2003a,

2003b, 2006).

A limitation of most existing models for cointegration is that they are based on a particular fixed

sampling interval ∆t, e.g., one day, one month, etc. and therefore do not reflect the dynamics at all levels

of aggregation. Indeed, Engle and Granger (1987) assumed a fixed sampling interval. It is also possible to

build models for cointegration using diffusion-type continuous-time models such as ordinary or fractional

Brownian motion (see Phillips 1991b, Comte 1998, Comte and Renault 1996, 1998), but such models
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would fail to capture the pure-jump nature of observed asset-price processes.

In this paper, we propose a pure-jump model for a bivariate log-price series such that any discretiza-

tion of the process to an equally-spaced sampling grid with sampling interval ∆t produces fractional or

standard cointegration, i.e., there exists a contemporaneous linear combination of the two log-price series

which has a smaller memory parameter than the two individual series. A key ingredient in our model is

a microstructure noise contribution {ηk} to the log prices. In the weak fractional cointegration case, this

noise series is assumed to have memory parameter dη ∈ (− 1
2 , 0), in the strong fractional cointegration

case dη ∈ (−1,− 1
2 ) while in the standard cointegration case dη = −1. In all three cases, the reduction

of the memory parameter is −dη. Due to the presence of the microstructure noise term, the discretized

log-price series are not Martingales, and the corresponding return series are not linear in either an i.i.d.

sequence, a Martingale-difference sequence, or a strong-mixing sequence. This is in sharp contrast to

existing discrete-time models for cointegration, most of which assume at least that the series has a linear

representation with respect to a strong-mixing sequence.

The discretely-sampled returns (i.e., the increments in the log-price series) in our model are not Mar-

tingale differences, due to the microstructure noise term. Instead, for small values of ∆t they may exhibit

noticeable autocorrelations, as observed also in actual returns over short time intervals. Nevertheless,

the returns behave asymptotically like Martingale differences as the sampling interval ∆t is increased, in

the sense that the lag-k autocorrelation tends to zero as ∆t tends to ∞ for any fixed k. Again, this is

consistent with the near-uncorrelatedness observed in actual returns measured over long time intervals.

The memory parameter of the log prices in our model is 1, in the sense that the variance of the

log price increases linearly in t, asymptotically as t → ∞. By contrast, the memory parameter of the

appropriate contemporaneous linear combination of the two log-price series is reduced to (1 + dη) < 1,

thereby establishing the existence of cointegration in our model.

In order to derive the results described above, we will make use of the general theory of point processes,

and we will also rely heavily on the theory developed in Deo, Hurvich, Soulier and Wang (2007) for the

counting process N(t) induced by a long-memory duration process.
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In Section II, we exhibit our pure-jump model for the bivariate log-price series. Since the two series

need not have all of their transactions at the same time points (due to nonsynchronous trading), it is not

possible to induce cointegration in the traditional way, i.e., by directly imposing in clock time (calendar

time) an additive common component for the two series, with a memory parameter equal to 1. Instead,

the common component is induced indirectly, and incompletely, by means of a feedback mechanism in

transaction time between current log-price disturbances of one asset and past log-price disturbances of

the other. This feedback mechanism also induces certain end-effect terms, which we explicitly display

and handle in our theoretical derivations using the theory of point processes. Subsection II A provides

economic justification of the model, as well as a transaction-level definition of the information share of

a market. The subsection also presents some preliminary data analysis results affirming the potential

usefulness of certain flexibilities in the model.

In Section III, we give conditions on the microstructure noise process for both fractional and standard

cointegration. These conditions are satisfied by a variety of standard time series models. In Section IV,

we present the properties of the log-price series implied by our model. In particular, we show that the

log price behaves asymptotically like a Martingale as t is increased, and the discretely-sampled returns

behave asymptotically like Martingale differences as the sampling interval ∆t is increased. In Section

V, we establish that our model possesses cointegration, by showing that the cointegrating error has

memory parameter (1 + dη). We present three separate theorems for the weak and strong fractional

cointegration and standard cointegration cases respectively. In Section VI, we show that the ordinary

least squares (OLS) estimator of the cointegrating parameter θ is consistent, and obtain a lower bound

on its rate of convergence. In Section VII, we propose an alternative cointegrating parameter estimator

based on the tick-level price series. In Section VIII, we propose a method-of-moments estimator for

the tick-level model parameters (except the cointegrating parameter θ). The method is based on the

observed tick-level returns. In Section IX, we propose a specification test for the transaction-level price

model. In Section X, we present simulation results on the OLS estimator of θ, the tick-level cointegrating

parameter estimator θ̃, the method of moments estimator and the proposed specification test. In Section

XI, we present a data analysis of buy and sell prices of a single stock (Tiffany, TIF), providing evidence
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of strong fractional cointegration. The cointegrating parameter is estimated by both OLS regression and

the alternative tick-level method proposed in Section VII. The proposed specification test is implemented

on the data. Interesting results are observed that are consistent with the existing literature about price

discovery process in a market-dealer market. We then consider the information content of buy trades

versus sell trades in different market environments. In Section XII, we demonstrate, largely through

simulations, that modified versions of our model can reproduce two additional important stylized facts:

leverage, and portfolio return autocorrelation due to nonsynchronous trading. We trace these clock-time

properties to their tick-time source. In Section XIII, we provide some remarks and discuss possible

further generalizations of our model and related future work. In Section XIV we present details on the

method-of-moments estimator, establish its consistency, and propose an alternative estimator. Section

XV presents proofs.

II A Pure-Jump Model For Log Prices

Before describing our model, we provide some background on transaction-level modeling. Currently, a

wealth of transaction-level price data is available, and for such data the (observed) price remains constant

between transactions. If there is a diffusion component underlying the price, it is not directly observable.

Pure-jump models for prices thus provide a potentially appealing alternative to diffusion-type models. The

compound Poisson process proposed in Press (1967) is a pure-jump model for the logarithmic price series,

under which innovations to the log price are i.i.d., and these innovations are introduced at random time

points, determined by a Poisson process. The model was generalized by Oomen (2006), who introduced

an additional innovation term to capture market microstructure.

An informative and directly-observable quantity in transaction-level data is the durations {τk} between

transactions. A seminal paper focusing on durations and, to some extent, on the induced price process,

is Engle and Russell (1998). They documented a key empirical fact, i.e., that durations are strongly

autocorrelated, quite unlike the i.i.d. exponential duration process implied by a Poisson transaction

process, and they proposed the Autoregressive Conditional Duration (ACD) model, which is closely
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related to the GARCH model of Bollerslev (1986). Deo, Hsieh and Hurvich (2006) presented empirical

evidence that durations, as well as transaction counts, squared returns and realized volatility have long

memory, and introduced the Long Memory Stochastic Duration (LMSD) model, which is closely related

to the Long Memory Stochastic Volatility model of Breidt, Crato and de Lima (1998) and Harvey (1998).

The LMSD model is τk = ehkǫk where {hk} is a Gaussian long-memory series with memory parameter

dτ ∈ (0, 1
2 ), the {ǫk} are i.i.d. positive random variables with mean 1, and {hk}, {ǫk} are mutually

independent.

It was shown in Deo, Hurvich, Soulier and Wang (2007) that long memory in durations propagates

to long memory in the counting process N(t), where N(t) counts the number of transactions in the time

interval (0, t]. In particular, if the durations are generated by an LMSD model with memory parameter

dτ ∈ (0, 1
2 ), then N(t) is long-range count dependent with the same memory parameter, in the sense

that varN(t) ∼ Ct2dτ+1 as t → ∞. This long-range count dependence then propagates to the realized

volatility, as studied in Deo, Hurvich, Soulier and Wang (2007).

We now describe the tick-time return interactions that yield cointegration in our model. Suppose that

there are two assets, 1 and 2, and that each log price is affected by two types of disturbances when a

transaction happens. These disturbances are the value shocks {ei,k} and the microstructure noise {ηi,k},

for Asset i = 1, 2. The subscript i, k pertains to the k’th transaction of asset i. The value shocks are iid

and represent permanent contributions to the intrinsic log value of the assets which, in the absence of

feedback effects, is a Martingale with respect to full information, both public and private (see Amihud

and Mendelson 1987, Glosten 1987). The microstructure shocks represent the remaining contributions

to the observed log prices, along similar lines as the noise process considered by Amihud and Mendelson

(1987), reflecting transitory price fluctuations due, for example, to liquidity impact of orders. We assume

that the m-th tick-time return of Asset 1 incorporates not only its own current disturbances e1,m and

η1,m, but also weighted versions of all intervening disturbances of Asset 2 that were originally introduced

between the (m− 1)-th and m-th transactions of Asset 1. The weight for the value shocks, denoted by θ,

may be different from the weight for the microstructure noise, denoted by g21 (the impact from Asset 2

to Asset 1). We similarly define the m-th tick-time return of Asset 2, but the weight for the value shocks
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from Asset 1 to Asset 2 is (1/θ) and the corresponding weight for the microstructure noise is denoted

by g12. The choice of the second impact coefficient (1/θ) is necessary for the two log-price series to be

cointegrated. In general, if the two series are not cointegrated, this constraint is not required.

Figure 1 illustrates the mechanism by which tick-time returns are generated in our model. All distur-

bances originating from Asset 1 are colored in blue while all disturbances originating from Asset 2 are

colored in red. When the first transaction of Asset 1 happens, a value shock e1,1 and a microstructure

disturbance η1,1 are introduced. The first transaction of Asset 2 follows in clock time and since the first

transaction of Asset 1 occurred before it, the return for this transaction is (e2,1 + η2,1 + 1
θ e1,1 + g12η1,1),

i.e., the sum of the first value shock of Asset 2, e2,1, the first microstructure disturbance of Asset 2, η2,1,

and a feedback term from the first transaction of Asset 1 whose disturbances are e1,1 and η1,1, weighted

by the corresponding feedback impact coefficients 1
θ and g12. In the figure, both log-price processes evolve

until time t. Notice that the third return of Asset 1 contains no feedback term from Asset 2 since there is

no intervening transaction of Asset 2. The second return of Asset 2 includes its own current disturbances

(e2,2, η2,2) as well as six weighted disturbances (e1,2, e1,3, e1,4, η1,2, η1,3 and η1,4) from Asset 1 since

there are three intervening transactions of Asset 1.

Figure 1: Changes in Log Prices
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At a given clock time t, most of the disturbances of Asset 1 are incorporated into the log price of

Asset 2 and vice-versa. However, there is an end effect. The problem can be easily seen in the figure:

since the fifth transaction of Asset 1 happened after the last transaction of Asset 2 before time t, the

most recent Asset 1 disturbances e1,5 and η1,5 are not incorporated in the log price of Asset 2 at time

t. Eventually, at the next transaction of Asset 2, which will happen after time t, these two disturbances

will be incorporated. But this end effect may be present at any given time t. We will handle this end

effect explicitly in all derivations in the paper.

Our model for the log prices is then given for all non-negative real t by

log P1,t =

N1(t)∑

k=1

(e1,k + η1,k) +

N2(t1,N1(t))∑

k=1

(θe2,k + g21η2,k) (1)

log P2,t =

N2(t)∑

k=1

(e2,k + η2,k) +

N1(t2,N2(t))∑

k=1

(
1

θ
e1,k + g12η1,k) ,

where ti,k is the clock time for the k-th transaction of Asset i, and Ni(t) (i = 1, 2) are counting processes

which count the total number of transactions of Asset i up to time t. Below, we will impose specific

conditions on {ei,k}, {ηi,k} and Ni(t). Note that (1) implies that log P1,0 = log P2,0 = 0, the same

standardization used in Stock and Watson (1988) and elsewhere. The quantity N2(t1,N1(t)) represents the

total number of transactions of Asset 2 occurring up to the time (t1,N1(t)) of the most recent transaction

of Asset 1. An analogous interpretation holds for the quantity N1(t2,N2(t)).

To exhibit the various components of our model, we rewrite (1) as

log P1,t =
( N1(t)∑

k=1

e1,k +

N2(t)∑

k=1

θe2,k

︸ ︷︷ ︸
common component

)
+

( N1(t)∑

k=1

η1,k +

N2(t)∑

k=1

g21η2,k

︸ ︷︷ ︸
microstructure component

)
−

N2(t)∑

k=N2(t1,N1(t))+1

(θe2,k + g21η2,k)

︸ ︷︷ ︸
end effect

(2)

log P2,t =
( N1(t)∑

k=1

1

θ
e1,k +

N2(t)∑

k=1

e2,k

︸ ︷︷ ︸
common component

)
+

( N1(t)∑

k=1

g12η1,k +

N2(t)∑

k=1

η2,k

︸ ︷︷ ︸
microstructure component

)
−

N1(t)∑

k=N1(t2,N2(t))+1

(
1

θ
e1,k + g12η1,k)

︸ ︷︷ ︸
end effect

.

The common component is a Martingale, and is therefore I(1). We will show that the microstructure

components are I(1 + dη), so these components are less persistent than the common component. The

end-effect terms are random sums over time periods that are Op(1) as t → ∞, (see (39) to (41)), and
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hence are negligible compared to all other terms. Since both log P1,t and log P2,t are I(1) (see Theorem

1) and the linear combination log P1,t − θ log P2,t is I(1+dη) as defined in Section III, the log-price series

are cointegrated. (See Theorems 3, 4 and 5.)

Frijns and Schotman (2006) considered a mechanism for generating quotes in tick time which is similar

to the mechanism we describe in Figure 1. However, they condition on durations, whereas we endogenize

them in our model (1). Furthermore, their model implies standard cointegration, with cointegrating

parameter that is known to be 1, and a single value shock component.

Throughout the paper, unless otherwise noted, we will make the following assumptions for our theo-

retical results. The duration processes {τi,k} of Asset i, (i = 1, 2), are assumed to possess long memory

with memory parameters dτ1 , dτ2 ∈ (0, 1
2 ), in order to reflect the empirically-observed persistence in dura-

tions and the resulting realized volatility. Specifically, the {τi,k} are assumed to satisfy the assumptions

in Theorem 1 of Deo, Hurvich, Soulier and Wang (2007), which are very general and would allow, for

example, the LMSD model of Deo, Hsieh and Hurvich (2006).

We assume that the {ei,k} are mutually independent i.i.d. processes with mean zero and variance σ2
i,e,

(i = 1, 2). We also assume the {ηi,k} to be mutually independent, with zero mean and memory parameter

dηi . For notational convenience, we set dη1 = dη2 = dη in our theoretical results. All theorems will

continue to hold, however, when dη1 and dη2 are distinct, simply by replacing dη with d∗η = max(dη1 , dη2).

For Theorem 6, which establishes the consistency of the OLS estimator of θ, we further assume {ei,k} to

be N(0, σ2
i,e).

We assume that {τ1,k} and {τ2,k} are independent of all disturbance series {e1,k}, {e2,k}, {η1,k}

and {η2,k}, which are themselves assumed to be mutually independent. We do not require, however,

that N1(·) and N2(·) be mutually independent, nor do we require that {τ1,k} and {τ2,k} be mutually

independent. This is in keeping with recent literature which suggests that there is feedback between

the counting processes. See, for example, Nijman, Spierdijk and Soest (2004), Bowsher (2007), and the

references therein.
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A Economic Justification for the Model

Here, we provide some economic rationale for the transaction-level return interactions leading to Model

(1). This supplements our earlier discussion, around Figure 1, on the formal mechanism for price for-

mation. After a brief data analysis affirming the potential usefulness of certain flexibilities of the model,

we compare and contrast the model with a clock-time model proposed by Hasbrouck (1995), and then

propose a transaction-level generalization of Hasbrouck’s definition of the information share of a market.

The model (1) is potentially economically appropriate for pairs of measured prices which are both

affected by the same information shocks (i.e., value shocks), possibly in different ways. Examples include:

buy prices and sell prices of a single stock; prices of two classified stocks (with different voting rights)

from a given company; prices of two different stocks within the same industry; stock and option prices of a

given company; option prices on a given stock with different degrees of maturity or moneyness; corporate

bond prices at different maturities for a given company; Treasury bond prices at different maturities.

The fundamental (value) prices at time t are an accumulation of information shocks. If we ignore

the end effects, these fundamental prices may be thought of as the common components in (2). More

precisely, the fundamental prices may be obtained by setting the microstructure shocks in (1) to zero.

For definiteness, consider the example of buy prices (Asset 1) and sell prices (Asset 2) of a single stock.

Information shocks may be generated on either the buy side or the sell side. According to the model,

each buy transaction generates its own information shock, as does each sell transaction. Furthermore,

these shocks spill over from the side of the market in which they originated to the other side. Clearly,

shocks originating from the sell side of the market cannot be impounded into the buy price until there

is a transaction on the buy side. Similarly, in the absence of information arrivals (transactions) on the

sell side, any string of intervening information shocks from the buy side will render the most recent sell

price stale, until the intervening buy-side shocks are actually impounded into the sell-side price at the

next sell transaction.

Shocks spilling over from the buy side to the sell side are weighted by 1/θ, while those spilling from
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the sell side to the buy side are weighted by θ. When θ = 1, shocks spill over from one side to the other

in an identical way, and there is just a single fundamental price, shared by both the buy side and sell

side. In general, as can be seen from (1), the fundamental (log) price for the buy side is an accumulation

of information shocks from both the buy side and the sell side, with the sell-side shocks weighted by θ.

Ignoring end effects, as can be seen from (2), the common component on the buy side is proportional to

the common component on the sell side, and the constant of proportionality is θ.

Analogous interactions take place on the microstructure shocks, such that a microstructure shock orig-

inating on the buy side spills over to the sell side with weight g12 and the opposite spillover occurs with

weight g21. Even in the absence of spillover of the microstructure shocks (g12 = g21 = 0), the difference

between the buy price and θ times the sell price is (except for end effects) an accumulation of microstruc-

ture shocks. It seems in accordance with the economic connotation of the term ”microstructure” that the

microstructure shocks be transitory, i.e., that the aggregate of microstructure shocks be stochastically of

smaller order than the aggregate of fundamental shocks, as t → ∞. This will happen if and only if the

microstructure shocks have a smaller memory parameter than the fundamental shocks (dη < 0), as we

assume. Cointegration arises as a consequence of the spillover of the fundamental shocks, together with

the assumption dη < 0. The spillover of the fundamental shocks induces the common component while

the assumption dη < 0 ensures that the cointegrating error, arising from microstructure, is less persistent

than the common component.

Two questions that might be raised in the context of Model (1) are whether there are situations

where the two prices are affected by information in different ways, so that the cointegrating parameter

is not equal to 1, and whether it is helpful in practice to allow for fractional cointegration, as opposed

to standard cointegration. To address these questions, we briefly present some results of a preliminary

data analysis. We considered clock-time option best-available-bid prices and underlying best-available-

bid prices for IBM on the NYSE at 390 one-minute intervals from 9:30 AM to 4PM on May 31, 2007.

We originally analyzed 74 different options, but removed 5 from consideration since they had either at

least one zero bid price during the day or a constant bid price throughout the day. For the remaining 69

options, we regressed the log stock bid price on the log option bid price, and constructed a semiparametric
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GPH estimator (Geweke and Porter-Hudak, 1983) of the memory parameter of the residuals. The least-

squares regression slopes ranged from −0.21 to 0.39, with a mean of 0.04 and a standard deviation of

0.13. This suggests that information affected the two prices in different ways, for all 69 options. For the

GPH estimators, we used 3900.5 for the number of frequencies. This results in an approximate standard

error for the GPH estimator of 0.19. The GPH estimator for the log stock bid price was 1.02. The GPH

estimators for the residuals ranged from 0.05 to 1.14 with a mean of 0.55 and a standard deviation of

0.28. Of the 69 sets of residuals, 62 yielded a GPH estimator less than 1, 54 were less than 0.75, and

42 were less than 0.6. Furthermore, 18 were between 0.4 and 0.6. These results suggest the presence

of cointegration in most cases, and also that the cointegration in some of these cases may be fractional

instead of standard.

It is instructive to compare and contrast our model (1) with the clock-time model of Hasbrouck

(1995), in which a single security is traded on several markets and different market prices share an

identical random-walk component. Suppose, to facilitate comparisons with the bivariate model (1), that

there are two markets. Then for all non-negative integers j, the clock-time log stock prices at time j on

the two different markets are given by Hasbrouck’s model as

log P1,j = log P1,0 +

j∑

s=1

(ψ1ẽ1,s + ψ2ẽ2,s) + v1,j (3)

log P2,j = log P2,0 +

j∑

s=1

(ψ1ẽ1,s + ψ2ẽ2,s) + v2,j

where log P1,0 and log P2,0 are constants, (ẽ1,s, ẽ2,s)
′ is a zero-mean vector of serially uncorrelated dis-

turbances with covariance matrix Ω, ψ = (ψ1, ψ2) are the weights for ẽ1,s, ẽ2,s, and {(v1,j , v2,j)
′} is a

zero-mean stationary bivariate time series. The quantity ẽi,s, (i = 1, 2) may be regarded as the funda-

mental shock originating from the i-th market. Hasbrouck (1995) estimated the model on data using a

one-second sampling interval.

Both Models (1) and (3) induce a common component, and cointegration. Both have spillover of

the fundamental shocks from one market to the other. In Model (3) the spillover is the same in both

directions so the common components are identical and the cointegrating parameter is 1, in contrast to

Model (1) where the cointegrating parameter need not be equal to 1. In Model (3) the cointegrating error
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is I(0), while in Model (1) the cointegrating error is allowed to be I(1+dη) for any dη with −1 ≤ dη < 0.

In Model (3) the contemporaneous correlation between the fundamental shocks originating from the

two markets is allowed to be nonzero, (i.e., Ω is allowed to be non-diagonal), whereas in Model (1) the two

fundamental shock series are assumed to be independent. Note, however, that in the transaction-level

model (1), the kth transactions of the two assets will (almost surely) occur at different clock times, so any

correlation between the two fundamental shocks e1,k and e2,k would fail to be contemporaneous in clock

time. This provides one motivation for our assumption that {e1,k} and {e2,k} are mutually independent.

An economic motivation for this assumption stems from the following remarks of Hasbrouck (1995, p.

1183): ”In practice, market prices usually change sequentially: a new price is posted in one market, and

then the other markets respond. If the observation interval is so long that the sequencing cannot be

determined, however, the initial change and the response will appear to be contemporaneous. Therefore,

one obvious way of minimizing the correlation is to shorten the interval of observation.” Since Model (1)

is defined in continuous time, the interval of observation is effectively zero, so at least under the idealized

assumptions that there are no truly simultaneous transactions on the two markets and that the time

stamps for the transactions are exact, the assumption of mutual independence would be economically

reasonable.

In the remainder of this subsection, we discuss the information share, originally defined in Has-

brouck (1995) to measure how market information that drives stock prices is distributed across dif-

ferent exchanges. Hasbrouck (1995) defined the information share of market i based on Model (3) as

Si = (ψ2
i Ωii)/(ψΩψ′), which is the proportional contribution from market i to the total fundamental

innovation variance. Only the random-walk component is used in constructing the information share

since this is the only permanent component. As discussed in Hasbrouck (1995), the fact that Ω may not

be diagonal has the consequence that only a bound for the information share can be estimated. Below,

we propose a transaction-level generalization of the concept of information share based on Model (1),

which is directly estimable due to our assumption of mutual independence of the transaction-level funda-

mental disturbance series. The information share proposed in Hasbrouck (1995) measures how the price

discovery of one security is fulfilled across difference exchanges. Our information share instead measures
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how the price-driving information of a security is distributed between buy versus sell trades in a market.

The ideas are similar. Indeed, as mentioned in Hasbrouck (1995), his model can be extended to model

bid and ask prices dynamics. Nevertheless, as discussed above, our model ultimately is a tick-level model

which is different from existing clock-time models, including that in Hasbrouck (1995).

For Model (1), we define the information share as follows: for a given clock-time sampling interval

∆t, the information share of Asset i is given by

S1,C =
var

( ∑N1(j∆t)
k=N1((j−1)∆t)+1 e1,k

)

var
( ∑N1(j∆t)

k=N1((j−1)∆t)+1 e1,k + θ
∑N2(j∆t)

k=N2((j−1)∆t)+1 e2,k

) =
λ1σ

2
1,e

λ1σ2
1,e + θ2λ2σ2

2,e

(4)

S2,C =
θ2λ2σ

2
2,e

λ1σ2
1,e + θ2λ2σ2

2,e

,

where λi is the intensity of the counting process Ni(·) (see Daley and Vere-Jones 2003), and represents

the intensity of trading (level of market activity) of Asset i. The ultimate expressions for Si,C do not

depend on the sampling interval ∆t. Note that only the common component in (2) is used to evaluate the

information share, as was also done by Hasbrouck (1995). As λ1/λ2 → ∞, S1,C approaches one and S2,C

approaches zero. This is consistent with general intuition: an actively-traded security should reveal more

information than a thinly-traded one. Indeed, Hasbrouck (1995) found that, for the 30 Dow-Jones stocks,

the preponderance of the price discovery takes place at the NYSE and the majority of the transactions

occurred on the NYSE. The information share Si,C can be estimated using the transaction-level method

of moments as described in section VIII. We exhibit estimates of Si,C computed from transaction-level

data in Section XI.

III Conditions on the Microstructure Noise for Fractional and

Standard Cointegration

We consider three types of cointegration: weak fractional, strong fractional and standard cointegration.

In this section, we describe the conditions assumed for each of these three cases separately.
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The weak fractional cointegration case corresponds to dη ∈ (− 1
2 , 0). In this case, we will require the

following condition, stated for a generic process {ηk}.

Condition A For dη ∈ (− 1
2 , 0), {ηk} is a weakly stationary zero-mean process with memory parameter

dη in the sense that the spectral density f(λ) satisfies

f(λ) = σ̃2C∗λ−2dη (1 + O(λβ)) as λ → 0+

for some β with 0 < β ≤ 2, where σ̃2 > 0 and C∗ = (dη + 1
2 )Γ(2dη + 1) sin((dη + 1

2 )π)/π > 0.

Condition A, which was originally used in a semiparametric context by Robinson (1995), is very

general, since it only specifies the behavior of the spectral density in a neighborhood of zero frequency.

The condition is satisfied by all parametric long-memory models that we have seen in the literature,

including the ARFIMA(p, dη, q) model with p ≥ 0, q ≥ 0 and dη ∈ (− 1
2 , 0). In the ARFIMA case, β = 2.

Condition A also allows the possibility for seasonal long memory, i.e., poles or zeros of f(λ) at nonzero

frequencies.

The strong fractional cointegration case corresponds to dη ∈ (−1,− 1
2 ). For this case, we assume

Condition B For dη ∈ (−1,− 1
2 ), ηk = ϕk−ϕk−1, k = 1, 2, . . . where ϕ0 = 0 and {ϕk}∞k=1 is a zero-mean

weakly-stationary long-memory process with memory parameter dϕ = dη + 1 ∈ (0, 1
2 ) in the sense that its

autocovariances satisfy

cov(ϕk, ϕk+j) = Kj2dϕ−1 + O(j2dϕ−3) , j ≥ 1 (5)

where K > 0.

By Theorem 1 of Lieberman and Phillips (2006), any stationary, invertible ARFIMA(p, dϕ, q) process

with dϕ ∈ (0, 1
2 ) has autocovariances satisfying (5), with K = 2f∗(0)Γ(1 − 2dϕ) sin(πdϕ), where f∗(0) is

the spectral density of the ARMA component of the model at zero frequency.

The standard cointegration case corresponds to dη = −1. In this case we assume

Condition C If dη = −1, {ηk}∞k=1 is given by ηk = ξk − ξk−1 with ξ0 = 0. The process {ξk}∞k=1 is
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weakly stationary with zero mean and has autocovariance sequence {cξ,r}∞r=0 where cξ,r = E(ξk+rξk) with

exponential decay, |cξ,r| ≤ Aξe
−Kξr for all r ≥ 0, where Aξ and Kξ are positive constants.

The assumptions on {ξk} in Condition C above are satisfied by all stationary, invertible ARMA

models.

IV Long-Term Martingale-Type Properties of the Log Prices

In this section, we present the properties of the log-price series generated by Model (1). Define λi =

1/E0(τi,k), where E0 denotes expectation under the Palm distribution (See Deo, Hurvich, Soulier and

Wang 2007 for discussions about the Palm probability measure), i.e., the distribution under which the

{τi,k}, (i = 1, 2) are stationary. The following two theorems show that the log-price series in Model

(1) have asymptotic variances that scale like t as t → ∞, as would happen for a Martingale, and that

their discretized differences are asymptotically uncorrelated as the sampling interval increases, as would

happen for a Martingale difference series.

Theorem 1 For the log-price series in Model (1),

var(log Pi,t) ∼ Cit, i = 1, 2

as t → ∞, where C1 = (σ2
1,eλ1 + θ2σ2

2,eλ2) and C2 = (σ2
2,eλ2 + 1

θ2 σ2
1,eλ1).

For a given sampling interval (equally-spaced clock-time period) ∆t, the returns (changes in log price)

for Asset 1 and 2 corresponding to Model (1) are

r1,j =

N1(j∆t)∑

k=N1((j−1)∆t)+1

(e1,k + η1,k) +

N2(t1,N1(j∆t))∑

k=N2(t1,N1((j−1)∆t))+1

(θe2,k + g21η2,k) (6)

r2,j =

N2(j∆t)∑

k=N2((j−1)∆t)+1

(e2,k + η2,k) +

N1(t2,N2(j∆t))∑

k=N1(t2,N2((j−1)∆t))+1

(
1

θ
e1,k + g12η1,k) .
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Theorem 2 For any fixed integer k > 0, the lag-k autocorrelation of {ri,j}∞j=1, i = 1, 2, tends to 0 as

∆t → ∞.

V Properties of the Cointegrating Error

We show that Model (1) implies a cointegrating relationship between the two series, treating the weak

and strong fractional as well as standard cointegration cases separately.

Theorem 3 Under Model (1) with dη ∈ (− 1
2 , 0), the memory parameter of the linear combination

(log P1,t − θ log P2,t) is (1 + dη) ∈ ( 1
2 , 1), that is,

var(log P1,t − θ log P2,t) ∼ C t2dη+1

as t → ∞, where C > 0. In this sense, log P1,t and log P2,t are weakly fractionally cointegrated.

Next, we investigate the standard cointegration case. It is important to note that, unlike in Theorem

3, where we measure the strength of cointegration using the asymptotic behavior of the variance of the

cointegrating errors var(log P1,t − θ log P2,t), we need a different measure here since log P1,t − θ log P2,t

is stationary and its variance is constant for all t. Instead, we consider the asymptotic covariance of the

cointegrating errors

cov(log P1,t − θ log P2,t, log P1,t+j − θ log P2,t+j)

as j → ∞. We take t and j here to be positive integers, i.e., we sample the log-price series using ∆t = 1,

without loss of generality.

Theorem 4 Under Model (1) with dη ∈ (−1,− 1
2 ), the memory parameter of the cointegrating error

(log P1,t − θ log P2,t) is (1 + dη) ∈ (0, 1
2 ), that is, for any fixed t > 0,

cov
(

log P1,t − θ log P2,t, log P1,t+j − θ log P2,t+j

)
∼ j2(1+dη)−1 [C1Pr{N1(t) > 0} + C2Pr{N2(t) > 0}]

as j → ∞, where C1 > 0, C2 > 0. In this sense, log P1,t and log P2,t are strongly fractionally cointegrated.
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We say that a sequence {aj} has nearly-exponential decay if aj/j−α → 0 as j → ∞ for all α > 0. We

say that a time series has short memory if its autocovariances have nearly-exponential decay.

Theorem 5 Under Model (1), with dη = −1, the cointegrating error (log P1,t − θ log P2,t) has short

memory. In this sense, log P1,t and log P2,t are cointegrated.

VI Least-Squares Estimation of the Cointegrating Parameter

Assume that the log-price series are observed at integer multiples of ∆t. The proposed model (1) becomes

(with a minor abuse of notation)

log P1,j =

N1(j∆t)∑

k=1

(e1,k + η1,k) +

N2(t1,N1(j∆t))∑

k=1

(θe2,k + g21η2,k) (7)

log P2,j =

N2(j∆t)∑

k=1

(e2,k + η2,k) +

N1(t2,N2(j∆t))∑

k=1

(
1

θ
e1,k + g12η1,k) .

We show that the cointegrating parameter θ can be consistently estimated by OLS regression.

Theorem 6 For the discretely-sampled log-price series in (7) with normally distributed value shocks

{e1,k}, {e2,k}, the cointegrating parameter θ can be consistently estimated by θ̂, the ordinary least squares

estimator obtained by regressing {log P1,j}n
j=1 on {log P2,j}n

j=1 without intercept. For all δ > 0, as n → ∞,

we have

Case I: dη ∈ (− 1
2 , 0)

n−dη−δ(θ̂ − θ)
p−→ 0,

Case II: dη ∈ (−1,− 1
2 )

n
1
2−δ(θ̂ − θ)

p−→ 0,

Case III: dη = −1

n1−δ(θ̂ − θ)
p−→ 0,
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In the weak fractional cointegration case dη ∈ (− 1
2 , 0), the rate of convergence of θ̂ improves as dη

decreases. In the standard cointegration case where dη = −1, the rate is arbitrarily close to n. The

n-consistency (super-consistency) of the OLS estimator of the cointegrating parameter in the standard

cointegration case has been shown for time series in discrete clock time that are linear with respect to

a strong-mixing or i.i.d. sequence by Phillips and Durlauf (1986) and Stock (1987). We are currently

unable to derive the asymptotic distribution of the OLS estimator of the cointegrating parameter in the

standard cointegration case for our model, as we cannot rely on the strong-mixing condition on returns.

This condition would not be expected to hold in the case of LMSD durations, since these are not strong-

mixing in tick time. In the strong fractional cointegration case dη ∈ (−1,− 1
2 ), though we have established

a rate of n1/2−δ, simulations in Section X indicate that the actual rate is faster, at n−dη−δ, in keeping

with the rates obtained in the weak fractional and standard cointegration cases.

VII A Tick-level Cointegrating Parameter Estimator

We propose a transaction-level estimator, θ̃, for the cointegrating parameter θ in this section. It may be

argued that the OLS estimator θ̂ discussed in Section VI is not optimal since it is constructed based on

discretized log-prices, and therefore only uses partial information. Here we propose a tick-level estimator,

θ̃, that utilizes the full tick-level price series, log P1,t, log P2,t for t ∈ [0, T ].

Specifically, let N(T ) = N1(T )+N2(T ) be the pooled counting process of transactions for both Asset

1 and Asset 2 in the time interval (0, T ], and denote by {t⋆k}
N(T )
k=1 the transaction times for the pooled

process. The proposed estimator is

θ̃ =

∫ T

0
log P1,t · log P2,tdt
∫ T

0
log P 2

2,tdt
(8)

=

∑N(T )−1
j=1

[
log P1,N1(t⋆

j ) · log P2,N2(t⋆
j )

]
· (t⋆j+1 − t⋆j ) +

[
log P1,N1(T ) · log P2,N2(T )

]
· (T − t⋆N(T ))

∑N2(T )−1
j=1 log P 2

2,j · τ2,j+1 + log P 2
2,N2(T ) · (T − t2,N2(T ))

,

where the numerator is a summation over all transactions, adding up the product of the most recent

log prices of Asset 1 and Asset 2 weighted by the corresponding duration for the pooled process. The
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denominator of θ̃ has the same structure except that the product is now of Asset 2 log-prices with

themselves.

We do not derive asymptotic properties of the estimator θ̃. Nevertheless, the simulation study in

Section X indicates that the tick-level estimator θ̃ may outperform the OLS estimator θ̂, having smaller

bias, variance and Root-Mean-Squared-Error (RMSE), particularly if the sampling interval ∆t for θ̂ is

large.

VIII Method of Moments Parameter Estimation

In Section XIV, we will propose a transaction-level parameter estimation procedure for model (1) using

the method of moments, based on log P1,t, log P2,t for t ∈ [0, T ]. We will make specific assumptions for

the sake of definiteness, though most of these assumptions could be relaxed. Specifically, we will assume

Gaussian white noise for the value shocks, a Gaussian ARFIMA(1, dη, 0) process for the microstructure

noise when dη ∈ (− 1
2 , 0), while we will assume that the microstructure noise is the difference of a Gaussian

ARFIMA(1, dη + 1, 0) process with the initial value set to zero when dη ∈ (−1,− 1
2 ). In the standard

cointegration case dη = −1, we will assume that the microstructure noise is the difference of a Gaussian

AR(1) process with initial value set to zero.

The method-of-moments estimator Θ̂ = (σ̂2
1,e, σ̂

2
2,e, σ̂

2
1,η, σ̂2

2,η, ĝ21, ĝ12, d̂η1 , d̂η2 , α̂1, α̂2) is obtained as

the solution to a system of ten equations, as described in Section XIV, where we will also establish the

following theorem on consistency of the estimator.

Theorem 7 The method-of-moments estimator Θ̂ is consistent, i.e.

Θ̂
p→ Θ, as T → ∞

where Θ = (σ2
1,e, σ

2
2,e, σ

2
1,η, σ2

2,η, g21, g12, dη1 , dη2 , α1, α2).

Motivated by computational constraints that limit the size of the data set we will be analyzing, we
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propose an alternative ad hoc estimator Θ̃ in Section XIV. We evaluate the performance of Θ̃ in a

simulation study in Section X.

IX Model Specification Test

In this section, we propose a specification test for our model (1), based on Theorem 6. The idea is that,

according to Theorem 6, if the model (1) is correctly specified, then the OLS estimator is consistent for

any particular sampling interval ∆t. Suppose we choose two sampling intervals, ∆t1 and ∆t2, and denote

the corresponding OLS estimators by θ̂∆t1 and θ̂∆t2 . Since both estimators are consistent, their difference

must converge in probability to zero. Thus, we propose a specification test to test whether this difference

is significantly different from zero. The test is semiparametric, in that model (1) makes no parametric

assumptions on either the durations or the microstructure noise.

To implement the test, we divide the entire time span, say one year, into K nonoverlapping subperiods,

e.g., divide the data set into months. Within subperiod k, (k = 1, . . . ,K), we sample every ∆t1 to obtain

a bivariate log-price series {log P∆t1
1,j,k, log P∆t1

2,j,k}, where log P∆t1
1,j,k is the j-th sampled Asset 1 log-price in

the subperiod k using sampling interval ∆t1 and similarly for log P∆t1
2,j,k. Based on these, we obtain an OLS

cointegrating parameter estimate θ̂∆t1
k , and similarly we sample every ∆t2 to obtain {log P∆t2

1,j,k, log P∆t2
2,j,k}

and then obtain θ̂∆t2
k . Repeating the procedure through all K subperiods, we obtain sequences {θ̂∆t1

k }K
k=1

and {θ̂∆t2
k }K

k=1. The test statistic is proposed to be

δ̂12 =
sample mean of {δ̂12,k}√

1
K · sample variance of {δ̂12,k}

where δ̂12,k = θ̂∆t2
k − θ̂∆t1

k , (k = 1, . . . ,K). The distribution of the test statistic under the null hypothesis

that all model assumptions are correctly specified is unknown. However, the critical value for the test

as well as the corresponding distribution of the test statistic can be simulated under the null hypothesis,

based on the estimated parameter values.

The power of the proposed specification test is unknown, since the precise alternative hypothesis is not

21



specified. Similarly as discussed in Hausman (1978), one sufficient requirement is that the two estimators,

θ̂∆t1 and θ̂∆t2 , have different probability limits under the alternative, in order for the specification test

to be consistent.

In Section X, we first investigate the simulation-based distributions of the test statistics for empirically-

relevant parameter values, then compute critical values for the specification test on the empirical example,

Tiffany (TIF), which are later used in the data analysis in section XI.

X Simulations

A The Estimation of the Cointegrating Parameter: θ̂ and θ̃

We study the performance of θ̂ as well as θ̃ in a simulation study carried out as follows.

First, we simulate two mutually independent duration process {τi,k} for Asset i = 1, 2. Note that for

simplicity we take the two duration processes to be mutually independent, although this is not required

by our theoretical results. Each duration process follows the Long Memory Stochastic Duration (LMSD)

model,

τi,k = ehi,kǫi,k

where the {ǫi,k} are i.i.d. positive random variables with all moments finite, and the {hi,k} are a Gaussian

long-memory series with zero mean and common memory parameter dτ . Based on empirical work in

Deo, Hsieh and Hurvich (2006), we choose dτ1
= dτ2

= 0.45. Here, we assume that the {ǫi,k} follow an

exponential distribution with unit mean. We simulated the {hi,k} from a Gaussian ARFIMA(0, dτ , 0)

model, with innovation variances chosen so that the mean of the log durations matches those observed

in the Tiffany series used in Section XI. Using the simulated durations {τi,k}, i = 1, 2, we obtained the

corresponding counting processes {Ni(t)}, using ti,1 = Uniform[0, τi,1]. This ensures that the counting

processes are stationary.
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Next, we generate mutually independent disturbance series {e1,k}, {e2,k}, {η1,k} and {η1,k}. Here,

{ei,k}, i = 1, 2, are i.i.d. Gaussian with zero means. For simplicity, the memory parameters of the

microstructure noise series are assumed to be the same: dη1 = dη2 = dη. When dη ∈ (− 1
2 , 0), the

{ηi,k} are given by ARFIMA(1, dη, 0). When dη ∈ (−1,− 1
2 ), {ηi,k} are simulated as the differences of

ARFIMA(1, dη + 1, 0); and when dη = −1, {ηi,k} are simulated as the differences of two independent

zero-mean Gaussian AR(1) series {ξi,k}. The disturbance variances were var(ei,k) = 4 × 10−6 and

var(ηi,k) = 1 × 10−6 for i = 1, 2. Also, we set g21 = g12 = 1. We selected these particular values as they

are close to the corresponding parameter estimates based on several stocks that we analyzed empirically.

We then constructed the log-price series {log Pi,j}n
j=1, i = 1, 2 from (1), using a fixed sampling interval

∆t. We calculated the estimated cointegrating parameter θ̂ by regressing {log P1,j}n
j=1 on {log P2,j}n

j=1,

using ordinary least squares without intercept. The tick-level estimator, θ̃ is constructed according to (8)

using the entire tick-level price series.

In the study, we fixed the cointegrating parameter at θ = 1. We considered various values of the

parameters ∆t and the sample size n. We think of time as being measured in seconds, so that ∆t = 300

corresponds to observing the price series every 5 minutes, and in this case n = 390 would correspond

to one week of data. (Each day, there are 6.5 trading hours so sampling every 5 minutes yields 78

observations per day). For each parameter configuration, we generated 1000 realizations of the log-price

series. The results are summarized in Table 1.

As the sample size n increases, the bias, the standard deviation and the Root-Mean-Squared Error

(RMSE) of θ̂ decrease, as seen in Block A. This is consistent with Theorem 6. We only report results for

dη = −0.75, however we found similar patterns for dη = −0.25,−1.

In A2 together with Block B, we fix the total time span T = n∆t, while varying the sampling interval

∆t and n. For this specific set of empirically-relevant parameter values, the impact of increasing ∆t is

not obvious until ∆t = 9000, which corresponds to the commonly-used sampling frequency of one day.

Both the standard deviation and the RMSE deteriorate as ∆t grows. We found the same pattern for

dη = −0.25,−0.75,−1, although only results for dη = −0.75 were reported here. In addition, the bias of
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Table 1: Simulation Results on the Estimation of the Cointegrating Parameter

Block Case Simulation Parameters θ̂ θ̃

n∆t ∆t (sec) dη n Mean SD RMSE Mean SD RMSE

A A1 39,000 300 –0.75 130 0.9510 0.1192 0.1288 0.9511 0.1192 0.1288

A2 117,000 300 –0.75 390 0.9769 0.0576 0.0620 0.9768 0.0575 0.0620

A3 351,000 300 –0.75 1170 0.9875 0.0350 0.0371 0.9876 0.0349 0.0370

A4 1,053,000 300 –0.75 3510 0.9957 0.0142 0.0148 0.9957 0.0142 0.0148

B B1 117,000 10 –0.75 11,700 0.9768 0.0575 0.0620 0.9768 0.0575 0.0620

B2 117,000 60 –0.75 1,950 0.9768 0.0575 0.0620 0.9768 0.0575 0.0620

B3 117,000 1800 –0.75 65 0.9770 0.0592 0.0635 0.9768 0.0575 0.0620

B4 117,000 9000 –0.75 13 0.9780 0.0761 0.0792 0.9768 0.0575 0.0620

B5 117,000 23400 –0.75 5 0.9876 0.1148 0.1154 0.9768 0.0575 0.0620

θ̂ decreases as the sampling interval ∆t increases, possibly due to the fact that the end effect is not as

important when ∆t is large. Finally, in terms of RMSE, θ̃ performs no worse than θ̂, and performs much

better than θ̂ when ∆t is large.

We also performed simulations related to the convergence rate of θ̂. In Theorem 6, when dη ∈

(−1,− 1
2 ), the convergence rate is shown to be arbitrarily close to

√
n and does not depend on dη.

However, simulations indicate a faster rate in this strong fractional cointegration case. For example,

when dη = −0.75, we simulated the log price series in discrete clock-time using sample sizes n ranging

from 1,000 to 20,000 with an equally-spaced increment of 800. The variance of θ̂ for each value of n

was obtained based on 1,000 realizations. The estimated convergence rate of θ̂ is n0.78, obtained from

the estimated slope in a log-log plot of these simulated variances versus the corresponding sample sizes.

We ran similar simulations for other values of dη. Based on these, we conjecture that the actual rate

of convergence for θ̂ is n−dη−δ, in keeping with the rates obtained in the weak fractional and standard

cointegration cases.
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B The performance of Θ̃

We carried out a simulation study to evaluate the performance of the ad hoc estimator Θ̃ of Θ discussed

in Section XIV. The parameter values were dτ1 = dτ2 = 0.45, dη1 = dη2 = −0.25,−0.75,−1.00, θ = 1,

var(ei,k) = 4 × 10−6, (i = 1, 2), var(ηi,k) = 1 × 10−6, (i = 1, 2), g12 = g21 = 1, and α1 = α2 = −0.5. The

{hi,k} were simulated as in Section X.

We simulated log prices in model (1) for a clock-time span of n∆t, with n = 1716 and ∆t = 300

seconds (corresponding to a clock-time span of one month). The results, given in Table 2, are averages

based on the 1000 realizations, after excluding those realizations that give negative estimates for g̃2
21 or

g̃2
12 which happen about 15% of the time. The estimates for both σ2

i,e, (i = 1, 2) and σ2
i,η, (i = 1, 2) are

Table 2: Parameter Estimation using Θ̃

dη σ̃2
1,e (×10−6) [SD] σ̃2

2,e (×10−6) [SD] σ̃2
1,η (×10−6) [SD] σ̃2

2,η (×10−6) [SD] d̃η1 [SD] α̃1 [SD]

-0.25 4.01 [0.39] 3.98 [0.43] 0.98 [0.37] 1.00 [0.41] -0.26 [0.15] -0.47 [0.20]

-0.75 3.78 [0.47] 3.81 [0.42] 1.20 [0.47] 1.19 [0.42] -0.79 [0.15] -0.57 [0.19]

-1.00 3.56 [0.78] 3.56 [0.77] 1.44 [0.79] 1.43 [0.78] -0.85 [0.28] -0.69 [0.33]

dη g̃21 [SD] g̃12 [SD] |g̃21| [SD] |g̃12| [SD] %(g̃21 > 0) %(g̃12 > 0) d̃η2 [SD] α̃2 [SD]

-0.25 0.31 [1.05] 0.28 [1.05] 1.04 [0.36] 1.03 [0.36] 64.7% 64.2% -0.35 [0.15] -0.48 [0.21]

-0.75 0.38 [1.06] 0.34 [1.06] 1.06 [0.38] 1.05 [0.35] 67.7% 67.6% -0.66 [0.15] -0.58 [0.20]

-1.00 0.02 [1.23] 0.03 [1.12] 1.09 [0.56] 1.05 [0.40] 49.7% 51.4% -0.93 [0.29] -0.68 [0.34]

reasonably well-behaved. The magnitudes of g21 and g12 are also well estimated, but the signs are not.

This is due to the fact that these signs are determined based on certain five-trade sequences (instead of

certain three-trade sequences to estimate the magnitudes) that occur relatively infrequently in the data

(see Section XIV in the Appendix for details). Histograms of g̃21 or g̃12 show a bimodal distribution,

with peaks centered around +1 and -1, respectively.
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C Specification Test

We perform a simulation study on the specification test proposed in Section IX. Two sets of empirically-

relevant parameter values are used to investigate the simulation-based distribution of the test statistic

δ̂.

We choose empirically-relevant parameter values to investigate the simulation-based distribution of

the test statistic δ̂. Specifically, we selected four sampling intervals ∆t1 = 60, ∆t2 = 300, ∆t3 = 600 and

∆t4 = 1800 seconds, respectively. The entire time span is set to be 100 trading days, which is divided

into 25 subperiods with 4 trading days each. Other model parameter values are: dη = dη1 = dη2 =

−0.25,−0.75, dτ1 = dτ2 = 0.45. Results are based on 1000 realizations.

Six test-statistic distributions are generated for each pair of sampling intervals. For example, for the

pair ∆t1, ∆t2, we obtain a test statistic

δ̂12,m =
sample mean of {θ̂∆t2

k,m − θ̂∆t1
k,m}

√
1
25 · sample variance of {θ̂∆t2

k,m − θ̂∆t1
k,m}

for realization m based on {θ̂∆t1
k,m}25

k=1 and {θ̂∆t2
k,m}25

k=1. Overall, we have {δ̂12,m}1000
m=1, which form the

simulation-based empirical distribution of the test statistic δ̂12. This distribution can be used to generate

critical values or compute empirical p-values. In Table 3, we summarize the quantiles of these empir-

ical distributions, where Qq represents the q-th quantile. For each distribution, the null hypothesis of

normality is rejected at a nominal size of 1% based on the Kolmogorov-Smirnov Goodness-of-Fit Test.

XI Data Analysis

In this section, we focus on analyzing the buy prices {P1,t} and sell prices {P2,t} of a single stock. The

stock we consider is Tiffany Co. (ticker: TIF). The data were obtained from the TAQ database of WRDS.

We considered daily transactions between 9:30 AM and 4:00 PM. Overnight durations and returns are

ignored, as was also done, for example, by Hasbrouck (1995). The data span the period from January
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Table 3: Summary Statistics of the Simulation-based Empirical Distributions

Case Test-stat Q0.005 Q0.025 Q0.05 Q0.5 Q0.95 Q0.975 Q0.995 Skewness Excess Kurtosis

dη = −0.25 δ̂12 -2.32 -1.80 -1.55 -0.04 1.47 1.64 2.12 0.05 -0.50

δ̂13 -2.26 -1.83 -1.54 0.02 1.48 1.70 1.96 0.11 -0.52

δ̂14 -2.12 -1.80 -1.51 0.00 1.39 1.66 2.16 0.02 -0.45

δ̂23 -2.43 -1.82 -1.60 0.03 1.57 1.80 2.25 0.08 -0.54

δ̂24 -2.09 -1.80 -1.50 0.03 1.39 1.65 2.22 0.03 -0.51

δ̂34 -2.17 -1.81 -1.54 -0.02 1.41 1.74 2.38 0.04 -0.48

dη = −0.75 δ̂12 -2.05 -1.66 -1.41 0.00 1.42 1.66 2.10 0.01 -0.72

δ̂13 -2.45 -1.69 -1.55 -0.02 1.41 1.59 2.02 0.10 -0.51

δ̂14 -2.14 -1.67 -1.34 -0.05 1.36 1.64 2.06 0.01 -0.17

δ̂23 -2.47 -1.77 -1.59 -0.02 1.40 1.62 2.17 0.07 -0.63

δ̂24 -2.15 -1.64 -1.37 -0.03 1.39 1.72 2.06 0.01 -0.24

δ̂34 -2.17 -1.73 -1.44 -0.01 1.41 1.66 2.11 0.02 -0.35

Standard normal Z -2.58 -1.96 -1.64 0.00 1.64 1.96 2.58 0.00 0.00

25, 2000 to July 20, 2000, comprising 124 trading days.

We follow Lee and Ready (1991) to classify individual trades. If the transaction price is higher than

the prior bid-ask midpoint, the current trade is labeled as a buy order. If the transaction price is lower,

it is labeled as a sell order. If the transaction price is exactly the same as the prior bid-ask midpoint,

the tick test (described in Lee and Ready 1991) is used to decide whether it should be classified as a buy

or sell order. Lee and Ready (1991) found that the accuracy of their method is at least 85%. Using this

method, we found 26,103 buy trades and 32,812 sell trades during the period of study.

We first verify that a strong cointegrating relationship exists between buy and sell prices of TIF. The

results are given in Table 4. We estimated the memory parameters of the log buy prices and log sell

prices as 1 plus the GPH estimator (see Geweke and Porter-Hudak, 1983) of the memory parameter of

the differences. We estimated the memory parameter of the cointegrating error using a GPH estimator

based on the levels of the residuals from an OLS regression of {log P1,j} on {log P2,j} for various choices
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of ∆t. Note that the memory parameter of the cointegrating error is 1 + max(dη1 , dη2). The number of

frequencies used in the log periodogram regressions was n0.5 As expected, the estimated cointegrating

parameter is close to 1. Evidence of strong cointegration is observed. Furthermore, there is some evidence

that the cointegration is fractional, not standard.

Table 4: Buy and Sell Prices of TIF

∆t (sec) n estimate of θ d̂buy-price[SE] d̂sell-price[SE] d̂coint-error[SE]

1800 1612 θ̂ = 0.998040 1.0124 [0.0484] 1.0105 [0.0484] 0.2328 [0.0484]

600 4836 θ̂ = 0.998046 1.0223 [0.0330] 1.0208 [0.0330] 0.1312 [0.0330]

300 9672 θ̂ = 0.998042 0.9906 [0.0259] 0.9914 [0.0259] 0.1068 [0.0259]

− − θ̃ = 1.001678 − − −

Next, using the ad hoc estimator Θ̃, we estimated the model parameters for three clock-time subperi-

ods, as well as the entire period. Period one spans day 1 to day 25, during which the stock price declined

by roughly 25%. Period two spans day 41 to day 70, where the price was relatively stable. Period three

spans day 90 to day 124, during which the stock price raised by approximately 25%. The results are

given in Table 5. The tick-time stock prices are plotted in Figure 2.

Table 5: Method of Moments Parameter Estimates of TIF

Period Type # of trades σ̃2
i,e(×10−6) σ̃2

i,η(×10−6)

1: trading day 1 to 25 Buy 5,852 3.01 3.38

Sell 6,875 3.05 1.93

2: trading day 41 to 70 Buy 5,360 6.22 0.72

Sell 7,688 4.08 0.83

3: trading day 90 to 124 Buy 6,896 3.50 1.18

Sell 8,827 2.00 2.66

entire period Buy 26,103 4.67 1.26

Sell 32,812 3.35 1.66
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Figure 2: TIF Transaction-level Stock Price

Based on the results in Table 5, we report the following findings:

1) The microstructure noise variance estimates (σ̃2
i,η) are smaller for subperiod two (during which the

stock prices vary substantially but do not show a clear trend), than for subperiods one and three (during

which the price showed decreasing and increasing trends, respectively).

2) The value-shock variance estimates (σ̃2
i,e) show an opposite pattern, i.e., larger in subperiod two

but smaller in subperiods one and three.

3)Comparing σ̃2
i,e and σ̃2

i,η, the variability of the value shocks usually dominates exceeds that of the

microstructure shocks. Indeed, σ̃2
i,e is greater than σ̃2

i,η for both buy and sell trades in the entire period.

As for the microstructure noise feedback coefficient estimates, g̃21 and g̃12, their magnitudes are

generally around 1, but the signs vary in different subperiods. In some subperiods, the estimates of g̃2
21

or g̃2
12 are negative, thus we set the corresponding g̃21 or g̃12 to be zero. In general, no systematic pattern

is observed for g̃21 and g̃12 and their values are not reported in Table 5. We stress, however, that the

simulation study in Section X showed that g21 and g12 are harder to estimate than the other parameters.

The finding 1) is consistent with results from Amihud and Mendelson (1980, 1982), where a market-
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maker executes buy and sell orders that arrive randomly, with the arrival rate being determined by the

quoted bid and ask prices, so as to maximize his expected profit per unit time, under the constraint that

his inventory position will not exceed a long and a short positions – L and S respectively. (The analysis

applies to traders who act as market makers, that is, quote buying and selling prices and benefit from

trading at these prices, rather taking a long-run position in the stock, based on some information.) The

market maker sets the pair of bid-ask prices to adjust his inventory, and his policy results in having a

preferred inventory position towards which he reverts. The bid-ask spread is minimized at this preferred

position while it increases as the inventory diverges from the preferred level. This policy applies when

there is no change in information about the security’s value, in which case prices show no clear trend,

hovering within a range. Amihud and Mendelson (1982, pp. 56-58) analyze a situation of a change

in information about the security’s value, unknown to the market maker. At first, the market maker

maintains the schedule of bid and ask prices that applies to the old valuation, but given the value change,

his inventory will deviate from the preferred position and the bid-ask spread will widen. (For example,

if the value is lower, the market maker will accumulate a large long position, quoted prices will decline

and the bid-ask spread will widen.) After having realized that the value has changed, the market maker

shifts his schedule of quoted bid and ask prices and the bid-ask spread reverts to a normal, narrower

range. Applying this analysis to the data, subperiods 1 and 3 show a major shift in the security value,

reflected in the trend in price. By Amihud and Mendelson (1982), a period of shift in value is associated

with wider bid-ask spread. In subperiod 2, when prices vary but do not show a clear trend, the bid-ask

spread should be narrower.

A narrower bid-ask spread (a smaller spread magnitude) indicates a smaller microstructure noise

variance (see Amihud and Mendelson 1987, pp. 536, 547), i.e. smaller σ2
η,i in Model (1). Indeed, we

found that the estimated microstructure noise variances are smaller when price fluctuates without a clear

trend (subperiod 2) and larger otherwise (subperiods 1 and 3). Unfortunately, it is not possible to test

the significance of the change in microstructure noise variances across the three subperiods since the

estimates are not independent.

Another interesting question is the price discovery process, which is a popular topic in Finance.
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Specifically, here we focus on the price discovery of a single stock, e.g., TIF, during different market

environments. To estimate the information share, estimates for the trading intensities λ1, λ2, and the

value-shock variances σ2
1,e, σ2

2,e are required. To estimate λi, (i = 1, 2), we use the total number of

transactions divided by the total period of observation for asset i. We estimate σ2
1,e and σ2

2,e by the

method of moments as discussed in section VIII. We compute the information share estimates for each

of three clock-time subperiods based on results in Table 5. Results are summarized in Table 6.

Table 6: Information Shares (S) of Buy and Sell Price of TIF

Period S̃buy S̃sell (S̃buy − S̃sell)

1: Trading day 1 to 25 45.7% 54.3% -8.6%

2: Trading day 41 to 70 51.5% 48.5% 3.0%

3: Trading day 90 to 124 57.5% 42.3% 15.2%

Entire Period 52.6% 47.4% 5.2%

For period two, the information shares are approximately equally divided between buys and sells. For

period one when the stock price declines dramatically, the sell trades possess more information than buy

trades. By contrast, during period three when price is rising, the buy trades have more information.

Unfortunately, it is not possible to test the significance of the change in information share across the

three subperiods since the estimates are not independent.

As pointed out in Hasbrouck (1995), the information ratios are not related to the microstructure, e.g.

spreads, of the markets. This is clear since only the random-walk components of the price series are used

in the construction of the information ratios. Therefore, the various results we have presented so far in

this section reflect different aspects of the dynamics of the TIF price series.

Finally, we implement of the specification test described in Section IX to test whether model (1) is

misspecified. The entire 124 trading days are divided into K = 62 subperiods with 2 trading days in each

subperiod. We choose four sampling intervals ∆t1 = 1800, ∆t2 = 600, ∆t3 = 300 and ∆t4 = 60 seconds .
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First, we simulation the corresponding empirical distributions of δ̂’s, as in Section X. Results are

reported in Table 7.

Table 7: Summary Statistics of the Simulation-based Empirical Distributions for Stock Tiffany (TIF)

Case Test-stat Q0.005 Q0.025 Q0.05 Q0.5 Q0.95 Q0.975 Q0.995 Skewness Kurtosis

Tiffany (TIF) δ̂12 -2.05 -1.68 -1.41 -0.04 1.39 1.69 2.02 0.03 2.45

δ̂13 -1.98 -1.61 -1.41 -0.03 1.37 1.53 2.04 0.02 2.32

δ̂14 -2.07 -1.64 -1.43 -0.09 1.28 1.55 2.11 0.08 2.46

δ̂23 -2.00 -1.70 -1.47 0.00 1.45 1.73 2.27 0.07 2.38

δ̂24 -1.94 -1.61 -1.44 -0.10 1.34 1.65 2.12 0.13 2.41

δ̂34 -1.96 -1.68 -1.46 -0.12 1.38 1.69 2.08 0.13 2.39

Based on Table 7, the corresponding simulated test-statistic distributions are used to compute the

empirical p-values reported in Table 8 below. For two-sided hypothesis testing with nominal size of 5%,

Table 8: Specification Test for TIF

∆t pair under testing value of the test statistic [empirical p-value]

∆t1 vs. ∆t2 1.2356 [0.144]

∆t1 vs. ∆t3 0.0834 [0.920]

∆t1 vs. ∆t4 –0.0190 [0.936]

∆t2 vs. ∆t3 –0.7655 [0.474]

∆t2 vs. ∆t4 –0.3412 [0.806]

∆t3 vs. ∆t4 –0.0754 [0.958]

there is no significant evidence to indicate that model (1) is misspecified for the TIF data set, as the null

is not rejected in any of the six cases.
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XII Modifications of the Model to Capture More Stylized Facts

So far, we have seen that the model (1) yields cointegration, and also captures two stylized facts that

have been observed in actual data: volatility clustering, and persistence in durations. In this section,

we modify the basic model (1) to capture two additional key stylized facts: the leverage effect, and

portfolio autocorrelation due to nonsynchronous trading. Due to limitations in existing theory for point

processes, we are currently unable to develop explicit formulas for any of these effects in terms of the

model parameters, so we resort primarily to simulations based on the suitably-modified model.

A Portfolio Return Autocorrelation Due to Nonsynchronous Trading

The problem of nonsynchronous trading was first pointed out by Fisher (1966) and the issue has played

an important role in the subsequent finance literature. Nonsynchronous trading can adversely affect pa-

rameter estimation in the market model, (see, e.g., Scholes and Williams 1977), as well as the estimation

of the covariance matrix of the returns (Shanken 1987), and can partially explain the positive autocor-

relation of portfolio returns (see, e.g., Atchison, Butler and Simonds 1987, Lo and MacKinlay 1990 a,b,

Boudoukh, Richardson and Whitelaw 1994, Kadlec and Patterson 1999).

There are three main approaches to handling nonsynchronous trading in the literature. Scholes

and Williams (1977) assumed that, for a given set of equally-spaced time intervals, each asset trades

at least once within each time interval. Unfortunately, it is not possible to impose this assumption

endogenously, since trading is stochastic. Subsequently, Lo and MacKinlay (1990 a,b) allowed for the

possibility of time intervals with no trades, but assumed that the indicator variables for non-trading are

serially independent. However, as pointed out by Boudoukh, Whitelaw and Richardson (1994), this is also

an unrealistic assumption since the existence of very long durations should be expected to induce positive

dependence in the non-trading indicator. In spite of this, Boudoukh, Whitelaw and Richardson (1994)

reverted to the even stronger assumption of Scholes and Williams (1977) that there is no nontrading.

Nevertheless, in one important respect, the assumptions of Boudoukh, Whitelaw and Richardson (1994)
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are general, since they allow for cross-sectional dependence of the returns, unlike Lo and MacKinlay

(1990 a,b). Recently, Kadlec and Patterson (1999) used a simulation-based approach to assess portfolio

autocorrelation due to nonsynchronous trading, in which they use the event times as observed in actual

data. Still, Kadlec and Patterson (1999) do not fully endogenize the event times, since if one wanted to

run another simulation in their framework, they would have to use the same set of event times.

Up to now, the nontrading mechanism has not been modeled truly endogenously. In this paper, we

model the duration process of the price directly, thus endogenize the nontrading mechanism in the price

process.

To gain a better picture of the nonsynchronous trading effect implied by our model, we ignore tem-

porarily the microstructure noise. Also, since stock prices may not be cointegrated in general, we change

the value shock feedback coefficients in Model (1), 1/θ and θ, to θ12 and θ21, respectively. The resulting

return series become

r1,j =

N1(j∆t)∑

k=N1((j−1)∆t)+1

e1,k +

N2(t1,N1(j∆t))∑

k=N2(t1,N1((j−1)∆t))+1

θ21e2,k (9)

r2,j =

N2(j∆t)∑

k=N2((j−1)∆t)+1

e2,k +

N1(t2,N2(j∆t))∑

k=N1(t2,N2((j−1)∆t))+1

θ12e1,k.

Lemma 0: Consider a portfolio consisting of s1 shares of Asset 1 and s2 shares of Asset 2, where

the returns on the two assets are given by (9). Suppose that θ12 > 0 and θ21 > 0. Then the lag-1

autocorrelation of the portfolio return is O(∆t−1) as ∆t → ∞, and is positive for all values of ∆t.

Table 9 presents simulated averages of the lag-1 autocorrelations of returns of Asset 1, Asset 2 and

a portfolio consisting of one share of each asset, i.e., s1 = s2 = 1, based on 5000 realizations. We also

present the minimum and maximum portfolio autocorrelations. The LMSD model implemented here is

τi,k = 10ehi,kǫi,k, (i = 1, 2). We used n = 500, θ12 = θ21 = 1, dτ1 = dτ2 = 0.45 but vary the sampling

interval ∆t. Other parameter values are the same as described before, unless otherwise listed in the table.

Individual asset returns do not show strong autocorrelation. Nevertheless, the portfolio return has
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Table 9: Simulated Lag-1 Autocorrelations to Show Nonsynchronous Trading Effects

∆t 10 50 200

Asset 1 mean –0.0018 –0.0014∗ –0.0017∗

Asset 2 mean –0.0010 –0.0017∗ –0.0014∗

Portfolio mean 0.1077∗∗∗ 0.0894∗∗∗ 0.0376∗∗∗

maximum 0.3039 0.3354 0.2369

minimum –0.0668 –0.1321 –0.1288
∗, ∗∗ and ∗∗∗ indicate two-tailed significance at level 5%, 1% and 0.1%, respectively.

significant positive autocorrelation for all sampling intervals ∆t considered. The mean autocorrelations

range from 0.0376 to 0.1077. The maximum portfolio autocorrelation can be as high as 0.3354. As ∆t

increases, the portfolio autocorrelation decreases, consistent with the theory described above.

In this paper, we only have two assets. With more assets, it may be possible to obtain far more

spurious autocorrelation in the portfolio due to nonsynchronous trading. Empirically, as discussed in

Perry (1985), the portfolio lag-1 autocorrelation increases as the number of securities in the portfolio

increases. The generalization of our model to the case of N ≥ 3 assets is beyond the scope of the current

paper, but will be the subject of future research.

B The Leverage Effect

The leverage effect is a negative correlation between the current return and future volatility (say, absolute

return). We obtain a leverage effect in clock time by introducing a positive lagged cross-correlation

between the current value shock ek and the next-transaction innovation (νk+1) to the log duration.

The moving average representation of the long-memory component hi,k of τi,k in the LMSD model for

durations can be written as hi,k =
∑∞

j=0 ψjνi,k−j where {ψj} are constants with
∑∞

j=0 ψ2
j < ∞ and

{νi,k} is an i.i.d. Gaussian series with mean zero and variance σ2
νi

. We will show using simulation that

a positive correlation between νi,k+1 and ei,k in transaction time induces a clock-time leverage effect for

the Asset i return.
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Specifically, we assume that ei,k = σi,e(φiνi,k+1 + wi,k)/
√

φ2
i σ

2
νi

+ 1, where ψi (i = 1, 2) are con-

stants, and the {wi,k} are i.i.d. standard normal, independent of {νi,k}. Thus, corr(ei,k, νi,k+1) =

φiσνi/
√

φ2
i σ

2
νi

+ 1. We assume here that the Asset i durations {τi,k} follow an LMSD model, τi,k =

ehi,kǫi,k, where {hi,k} follow an ARFIMA(0, dτi
, 0) model and {ǫi,k}, independent of {hi,k}, are i.i.d.

exponential with unit mean. A simple calculation yields

corr(ei,k, τi,k+1) =
φiσ

2
νi√

φ2
i σ

2
νi

+ 1
· 1√

2 e
σ2

νi

Γ(1−2dτi
)

Γ2(1−dτi
) − 1

.

The intuition for why this should produce a leverage effect is that if the current return shock is

negative, this induces a below-average shock νk+1 to the log duration, which then persists in the duration

series to yield a sequence of below-average durations, i.e., frequent trading in clock time, and above-

average volatility.

We verify using simulations that the correlation introduced above yields a leverage effect. For sim-

plicity, we set the microstructure noise to zero. The resulting two-asset return model is given by (9).

We simulated n = 500 clock-time returns {ri,j}n
j=1 for each asset, i = 1, 2, observed at sampling interval

∆t. Sample correlations ˆcorr(ri,j , ri,j+1), ˆcorr(|ri,j |, ri,j+1) and ˆcorr(|ri,j |, ri,j−1) are calculated for each

realization, and the results are averaged, as also done in Andersen, Bollerslev, Frederiksen and Nielsen

(2006). We also compared the portfolio return autocorrelations to those simulated under independence

of ei,k and νi,k+1.

Note that corr(ri,j , ri,j+1) is the return lag-1 autocorrelation for Asset i = 1, 2, while corr(|ri,j |, ri,j+1)

and corr(|ri,j |, ri,j−1) measure the risk-premium effect (RP) and leverage effect (Lev), respectively. Other

parameter values used in the simulation are θ = 1, dτ1 = dτ2 = 0.45, σi,e = 1, var(νi,k) = Γ2(1−dτ )
Γ(1−2dτ ) so

that var(hi,k) = 1 for i = 1, 2. Results are based on 5000 realizations, and reported in Table 10.

A positive correlation between {ei,k} and {νi,k+1} induces a significant leverage effect (with the

predicted negative sign) for all values of ∆t. The magnitude of the leverage effect can be as large as

10%. On the other hand, the magnitude of the simulated risk-premium effect is always much smaller

than that of the leverage effect: the corresponding ratio is no larger than 7%. Andersen, et. al. (2006)
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Table 10: Risk Premium, Leverage, and Portfolio Autocorrelation from Simulations

Asset 1 Asset 2 Portfolio

∆t φi corr(ei,k, τi,k+1) RP Lev RP Lev Lag-1 Autocorr

10 0 0 –0.0006 0.0008 –0.0005 –0.0002 0.1077∗∗∗

5 0.23 –0.0059∗∗∗ –0.0924∗∗∗ –0.0062∗∗∗ –0.0916∗∗∗ 0.1279∗∗∗

50 0 0 –0.0005 0.0002 0.0002 –0.0004 0.0894∗∗∗

5 0.23 0.0018∗∗ –0.1178∗∗∗ 0.0011 –0.1169∗∗∗ 0.1038∗∗∗

200 0 0 –0.0008 0.0000 –0.0002 –0.0008 0.0376∗∗∗

5 0.23 0.0047∗∗∗ –0.1097∗∗∗ 0.0043∗∗∗ –0.1105∗∗∗ 0.0432∗∗∗

∗, ∗∗ and ∗∗∗ indicate two-tailed significance at level 5%, 1% and 0.1%, respectively.

concluded from an analysis of 30 blue-chip stocks, there is evidence of a leverage effect, but no convincing

evidence of a risk premium effect, so our model is consistent with their findings. The risk premium effect

produced by our model, though small, has the interesting property that it is negative for short horizons,

but becomes positive for long horizons.

The leverage effect has an impact on the portfolio return autocorrelation, for all sampling frequencies.

In each case, the two-sample t-test of equal means for the lag-1 return autocorrelation with and without

the leverage effect leads to rejection of the null hypothesis at the 0.1% level. The leverage effect can

increase the portfolio return autocorrelation by as much as 2%, as found for ∆ = 10. In the Finance

literature, it has been concluded that nonsynchronous trading can explain at most part of the portfolio

return autocorrelation; see, for example, Lo and MacKinlay (1990 a,b). We feel that this question merits

re-investigation, in the light of the model we have proposed in which durations are fully endogenized, and

in the light of our current finding of interactions between the leverage effect and nonsynchronous trading

effects.
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XIII Conclusions

Remark: There is an important caveat regarding the Martingale property in the special case of model

(1) in which the microstructure noise components {η1,k} and {η2,k} are absent. For each series, as long

as the conditioning set involves only returns of the given series up to time t, the log price series (observed

at discrete, equally spaced time intervals) is a Martingale. The Martingale property is lost, however,

if the conditioning set is augmented to include returns on both assets up to time t. Because of the

feedback effect in the model, and the nonsynchronous trading, recent information about Asset 1 can help

to predict the Asset 2 return, even though the Asset 2 return is unpredictable based on its own past.

Such a situation can occur in actual markets. For example, to predict the (real) return on the sale of a

given home, it helps to know the returns on sales of similar homes that have taken place recently, though

it may not help at all to know the past returns on sales of the given home, especially if it has not been

sold for a long time.

Next, we list a few possibilities for future work stemming from the current project.

It might be interesting to investigate the interplay between cointegration and option pricing, hedging,

asset allocation, pairs trading and index tracking in the current pure-jump context. So far, work has

been done for option pricing based on pure-jump processes (Prigent, 2001) and dynamic asset allocation

based on jump-diffusion processes (Liu, Longstaff and Pan, 2003), but these papers do not allow for

cointegration. Another strand of literature has shown that, in a diffusion context, cointegration may

have an impact on option pricing (Duan and Pliska, 2004), and on index tracking (Dunis and Ho, 2005;

Alexander and Dimitriu, 2005), but these papers do not allow for a pure-jump process.

Other estimators of the cointegrating parameter could be considered, besides OLS. Though many

such estimators have been proposed for both standard and fractional cointegration, none have yet been

justified under a transaction-level model such as (1). Semiparametric estimators could be considered,

since by the remark above the results of this paper do not require a parametric model for durations.
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A possible generalization of Model (1) to the case of W ≥ 2 price series P1,t, · · · , PW,t is

log P1,t =

N1(t)∑

k=1

(e1,k + η1,k) +

W∑

i=2

{ Ni(t1,N1(t))∑

k=1

(θi1ei,k + gi1ηi,k)
}

(10)

log P2,t =

N2(t)∑

k=1

(e2,k + η2,k) +

W∑

i=1,i 6=2

{ Ni(t2,N2(t))∑

k=1

(θi2ei,k + gi2ηi,k)
}

...

log PW,t =

NW (t)∑

k=1

(eW,k + ηW,k) +

W−1∑

i=1

{ Ni(tW,NW (t))∑

k=1

(θiW ei,k + giW ηi,k)
}

where for i = 1, · · · ,W the {ei,k} are mutually independent zero-mean iid value shock series, the {ηi,k}

are mutually independent microstructure shock series satisfying either Condition A, B or C with memory

parameters dηi
∈ [−1, 0), and for i 6= j the parameters θij and ηij represent the impact of the value and

microstructure shocks from series i on series j.

In the bivariate case W = 2, there are two feedback coefficients for the value shocks, θ21 and θ12. When

cointegration exists, one coefficient is constrained to be the reciprocal of the other, as in Model (1) where

θ21 = θ and θ12 = 1/θ. In the multivariate model (10) there are W (W − 1) such feedback coefficients,

and there are at most (W − 1) cointegrating vectors, though we do not present here the constraints

on the coefficients θij that would imply a specific cointegrating rank. It would also be of interest to

derive a common-components representation for (10) as was obtained for clock-time multivariate models

under standard cointegration by Stock and Watson (1998). Such a representation would generalize the

representation (2) to the multivariate case, and would presumably facilitate inference on the cointegrating

rank as it did in Stock and Watson (1998). Finally, it would be of interest to derive properties for the

OLS and other estimators of the cointegrating vectors in (10), as considered for example for OLS in

clock-time multivariate models under standard cointegration by Stock (1987).
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XIV Appendix: Details on the Method of Moments

A The Method of Moments Estimator Θ̂

Consider an example of a pooled sequence of twelve transactions (ordered according to the occurrence in

time):

1 1 1 2 1 2 2 2 1 2 1 1

where ”1” denotes an Asset 1 transaction and ”2” denotes an Asset 2 transaction. We recognize and

utilize eight patterns in the pooled transaction sequence in the method of moments.

Pattern 1 is a doublet of Asset 1 transactions: ”1 1”, which occurs at the first-second, second-third

and eleventh-twelfth positions in the example pooled transaction sequence. The return of the second

”1” in the doublet has a simple structure, consisting of only the sum of the current Asset 1 value and

microstructure disturbances, since there was no intervening Asset 2 transaction between itself and its

previous Asset 1 transaction. In addition, the covariance of the returns of such a doublet is equal to the

lag-1 autocovariance of the microstructure noise series {η1,k}. This is because we assume {e1,k} to be

i.i.d., independent of series {η1,k}, and all disturbances of Asset 1 to be independent of those of Asset

2. Similarly, we define Pattern 2 as a doublet of Asset 2 transactions: ”2 2”. In the pooled transaction

sequence, the sixth-seventh and seventh-eighth doublets are of this type.

Pattern 3 is defined as a triplet of Asset 1 transactions: ”1 1 1” (see the first-second-third positions

in the pooled transaction sequence as an example). As discussed for Pattern 1, the covariance of the

returns of the first and the third transactions in such a triplet is equal to the lag-2 autocovariance of

the microstructure noise series {η1,k}. Similarly, we define Pattern 4 as a triplet of Asset 2 transactions:

”2 2 2”, which can be used to compute the lag-2 autocovariance of the microstructure noise series {η2,k}.
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An example is the sixth-seventh-eighth positions in the pooled transaction sequence.

Next, we define Pattern 5. Consider the triplet ”1 2 1” as the third-fourth-fifth positions in the pooled

transaction sequence example. The last ”1” in the triplet contains exactly four disturbances: two value

shocks and two microstructure disturbances because there is exactly one intervening Asset 2 transaction.

Similarly, Pattern 6 is defined as a triplet of ”2 1 2”, which occurs, for instance, at the forth-fifth-sixth

positions in the pooled transaction sequence.

Finally, we define Pattern 7 as a five-transaction sequence of ”1 2 1 2 2” and Pattern 8 as ”2 1 2 1 1”.

Examples of such patterns in the pooled transactions sequence start from the third and the eighth

positions, respectively. Consider the third and the fifth transactions in the ”1 2 1 2 2” sequence. We

call them a g21 pair since the returns in a g21 pair have covariance equal to the product of g21 and the

lag-2 autocovariance of the microstructure noise series {η2,k}. Similarly, we define a g12 pair as a pair of

transactions as the third and the fifth transactions in a ”2 1 2 1 1” sequence.

In summary, we have defined eight sequence patterns as listed in the following table.

Pattern Transaction Sequence

1 1 1

2 2 2

3 1 1 1

4 2 2 2

5 1 2 1

6 2 1 2

7 1 2 1 2 2

8 2 1 2 1 1

Denote dηi and αi as the memory parameter and the AR coefficient of the ARFIMA(1, d, 0) process

for the microstructure noise of Asset i = 1, 2. The method-of-moments estimates

Θ̂ = (σ̂2
1,e, σ̂

2
2,e, σ̂

2
1,η, σ̂2

2,η, ĝ21, ĝ12, d̂η1 , d̂η2 , α̂1, α̂2) are given as the solutions to the following system, con-

sisting of ten equations as in (11). Note that we use the tick-level cointegrating parameter estimator θ̃
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in the equations and treat it as if it is the true parameter θ.

v̂ar(second transaction of Pattern 1) = σ̂2
1,e + σ̂2

1,η (11)

v̂ar(second transaction of Pattern 2) = σ̂2
2,e + σ̂2

2,η

ĉov(first and second transactions of Pattern 1) = σ̂2
1,ηρ̂1,1

ĉov(first and second transactions of Pattern 2) = σ̂2
2,ηρ̂2,1

ĉov(first and third transactions of Pattern 3) = σ̂2
1,ηρ̂1,2

ĉov(first and third transactions of Pattern 4) = σ̂2
2,ηρ̂2,2

v̂ar(third transaction of Pattern 5) = σ̂2
1,e + σ̂2

1,η + θ̃2σ̂2
2,e + ĝ2

21σ̂
2
2,η

v̂ar(third transaction of Pattern 6) = σ̂2
2,e + σ̂2

2,η +
1

θ̃2
σ̂2

1,e + ĝ2
12σ̂

2
1,η

ĉov(g21 pairs in Pattern 7) = ĝ21σ̂
2
2,ηρ̂2,2

ĉov(g12 pairs in Pattern 8) = ĝ12σ̂
2
1,ηρ̂1,2

where v̂ar and ĉov are the sample variance and covariance, ρi,j is the lag-j autocorrelation of the mi-

crostructure disturbances {ηi,k} for Asset i = 1, 2, and ρ̂i,j is the resulting estimate of ρi,j .

To solve the ten-equation system (11), we start by taking the ratio of the fourth and the ninth

equations which gives ĝ21. Then using ĝ21 together with the first, the second and the seventh equations,

we solve for σ̂2
2,e and σ̂2

2,η. Next, we obtain ρ̂2,1 and ρ̂2,2 from the fourth and sixth equations given σ̂2
2,η,

both of which are functions of d̂η2 and α̂2. Finally, we solve for d̂η2 and α̂2 (if necessary) using for instance

nonlinear minimization method. All other parameters can be solved similarly starting from ĝ12.

B Proof of Theorem 7 on the Consistency of Θ̂

Let {Rj} and {Aj} be the pooled return series and the pooled asset label series (”1” for Asset 1 and

”2” for Asset 2), respectively. Note that, to construct {Rj}, we first compute transaction-by-transaction

returns of Asset 1 and 2 separately, then pool them together according to the order of occurrence in time.
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We define eight groups of transactions, satisfying the following conditions,

G1 : Aj = Aj+1 = 1

G2 : Aj = Aj+1 = 2

G3 : Aj = Aj+1 = Aj+2 = 1

G4 : Aj = Aj+1 = Aj+2 = 2

G5 : Aj = 1, Aj+1 = 2, Aj+2 = 1

G6 : Aj = 2, Aj+1 = 1, Aj+2 = 2

G7 : Aj = 1, Aj+1 = 2, Aj+2 = 1, Aj+3 = Aj+4 = 2

G8 : Aj = 2, Aj+1 = 1, Aj+2 = 2, Aj+3 = Aj+4 = 1

with Li, (i = 1, . . . , 8) the number of values of j satisfying the condition for group i. Then we have ten

moment conditions mi, (i = 1, . . . , 10) based on G1 to G8, corresponding to the ten equations in (11),

m1 =
1

L1

∑

j1∈G1

[
R2

j1+1 − (σ2
1,e + σ2

1,η)
]

m2 =
1

L2

∑

j2∈G2

[
R2

j2+1 − (σ2
2,e + σ2

2,η)
]

m3 =
1

L1

∑

j1∈G1

[
Rj1Rj1+1 − σ2

1,ηρ1,1

]

m4 =
1

L2

∑

j2∈G2

[
Rj2Rj2+1 − σ2

2,ηρ2,1

]

m5 =
1

L3

∑

j3∈G3

[
Rj3Rj3+2 − σ2

1,ηρ1,2

]

m6 =
1

L4

∑

j4∈G4

[
Rj4Rj4+2 − σ2

2,ηρ2,2

]

m7 =
1

L5

∑

j5∈G5

[
R2

j5+2 − (σ2
1,e + σ2

1,η + θ2σ2
2,e + g2

21σ
2
2,η)

]

m8 =
1

L6

∑

j6∈G6

[
R2

j6+2 − (σ2
2,e + σ2

2,η +
1

θ2
σ2

1,e + g2
12σ

2
1,η)

]

m9 =
1

L7

∑

j7∈G7

[
Rj7+2Rj7+4 − g21σ

2
2,ηρ2,2

]

m10 =
1

L8

∑

j8∈G8

[
Rj8+2Rj8+4 − g12σ

2
1,ηρ1,2

]
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To prove the consistency of GMM estimator Θ̂, it is enough to show that all the moment equations

(m1, . . . ,m10) converge in probability to zero hence sample moments are consistent estimators of the

corresponding moments. To demonstrate, let us consider the first moment equation

m1 =
1

L1

∑

j1∈G1

[
R2

j1+1 − (σ2
1,e + σ2

1,η)
]

and show that m1
p→ 0 as the total time span T → ∞.

Consider a new counting process N⋆(t) that counts only the events that belong to G1. Denote the

corresponding intensity by λ⋆. By the renewal theorem, L1

λ⋆T = N⋆(t)
λ⋆T

p→ 1 as T → ∞. Therefore, by

Slutsky’s Theorem, it is enough to show that

1

λ⋆T

∑

j1∈G1

[
R2

j1+1 − (σ2
1,e + σ2

1,η)
]

p→ 0.

Thus by Chebyschev’s inequality, it suffices to show that

var
{ ∑

j1∈G1

[
R2

j1+1 − (σ2
1,e + σ2

1,η)
]}

= o(T 2).

Denote

S1(j) =

j∑

k=1

I{Ak = 1}, S2(j) =

j∑

k=1

I{Ak = 2}

where I(·) is an indicator function. Note that for j1 ∈ G1, we have Rj1+1 = e1,S1(j1+1) + η1,S1(j1+1),

hence by the total variance formula,

var
{ ∑

j1∈G1

[
R2

j1+1 − (σ2
1,e + σ2

1,η)
]}

= var
{

E
{ ∑

j1∈G1

[
R2

j1+1 − (σ2
1,e + σ2

1,η)
]∣∣∣N⋆(·)

}

︸ ︷︷ ︸
0

}
+ E

{
var

{ ∑

j1∈G1

[
R2

j1+1 − (σ2
1,e + σ2

1,η)
]∣∣∣N⋆(·)

}}

= E
{

var
{ ∑

j1∈G1

[
R2

j1+1 − (σ2
1,e + σ2

1,η)
]∣∣∣N⋆(·)

}}
·
= E

{
var

( ∑

j1∈G1

R2
j1+1

∣∣∣N⋆(·)
)}

·

= E
{ ∑

j1∈G1

var(R2
j1+1)

∣∣∣N⋆(·)
}

+ E
{ ∑

j1∈G1

∑

j′

1∈G1,j′

1 6=j1

cov(R2
j1+1, R

2
j′

1+1)
∣∣∣N⋆(·)

}

= E(L1) · var(R2
j1+1)︸ ︷︷ ︸

=O(T )

+E
{ ∑

j1∈G1

∑

j′

1∈G1,j′

1 6=j1

cov
(
η2
1,S1(j1+1), η

2
1,S1(j′

1+1)

)∣∣∣N⋆(·)
}

= O(T ) + E
{ ∑

j1∈G1

∑

j′

1∈G1,j′

1 6=j1

[
cov

(
η1,S1(j1+1), η1,S1(j′

1+1)

)]2∣∣∣N⋆(·)
}
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where we use the independence of the series {e1,k} and the Isserlis (1918) formula for Gaussian {η1,k} in

the last step.

Consider E
{∑

j1∈G1

∑
j′

1∈G1,j′

1 6=j1

[
cov

(
η1,S1(j1+1), η1,S1(j′

1+1)

)]2∣∣∣N⋆(·)
}

, we have

E
{ ∑

j1∈G1

∑

j′

1∈G1,j′

1 6=j1

[
cov

(
η1,S1(j1+1), η1,S1(j′

1+1)

)]2∣∣∣N⋆(·)
}

≤ E
{

var(η1,k) ·
∑

j1∈G1

∑

j′

1∈G1,j′

1 6=j1

∣∣∣cov
(
η1,S1(j1+1), η1,S1(j′

1+1)

)∣∣∣
︸ ︷︷ ︸

summable since dη1 ∈ [−1,− 1
2 )

⋃
(− 1

2 , 0)

∣∣∣N⋆(·)
}

= O(T )

thus var
{∑

j1∈G1

[
R2

j1+1 − (σ2
1,e + σ2

1,η)
]}

= O(T ) = o(T 2) and m1
p→ 0 as T → ∞.

Similarly, it can be shown that

mi
p→ 0, (i = 1, . . . , 10),

and therefore Θ̂
p→ Θ as T → ∞.

C An Alternative Ad Hoc Estimator Θ̃

Although the method of moments estimator Θ̂ is consistent, simulations not shown here indicate that a

very large number of trades must be observed in order for Θ̂ to yield physically meaningful and accurate

estimates. The difficulty is mainly due to the final two equations in (11). They are based on subsequences

of five trades, which occur far less frequently than the two-trade or three-trade subsequences used in the

other equations. In practice, then, if the number of trades is not very large, g21 and g12 may be poorly

estimated by the method of moments, resulting in negative variance estimates in Θ̂. For the same set

of parameter values and time spans used in the simulation study in Section X, more than 90% of the

realizations lead to negative variance estimates in Θ̂. Furthermore, a dramatic increase in the time span

of the data set was not feasible for us due to computational constraints.

We therefore propose an alternative estimator Θ̃ which, in part, avoids using the final two equations

in (11). The method is ad hoc, but simulations reported in Section X indicate that it gives reasonable

estimates.
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We start by taking the ratio of the third and the fifth equation in (11), which gives us a numerical

estimate of ρ1,1/ρ1,2, which we denote by ρ̃1,1/ρ̃1,2. Then, on a grid of values of (d, α), we computed

the corresponding ratio ρ1,1/ρ1,2 for the ARFIMA(1, d, 0) model with parameters (d, α). We used the

algoritm of Bertelli and Caporin (2002) to compute ρ1,1 and ρ1,2, since there is no attractive closed form

for the autocovariances of an ARFIMA(1, d, 0) process. The supports of (d, α) are (−1,− 1
2 )∪ (− 1

2 , 0) and

(−1, 1), respectively. Next, we construct d̃η1 and α̃1 such that
∣∣∣ ρ̃1,1

ρ̃1,2
− ρ1,1

ρ1,2

∣∣∣ is minimized, i.e.

(d̃η1 , α̃1) = min
d,α

∣∣∣ ρ̃1,1

ρ̃1,2
− ρ1,1

ρ1,2

∣∣∣.

In addition, ρ̃1,1 and ρ̃1,2 are obtained. Similarly, we obtain (d̃η2 , α̃2), as well as ρ̃2,1 and ρ̃2,2. We then

obtain the remaining parameter estimates in Θ̃ from (11). Using ρ̃1,1 in the third equation of (11), we

get σ̃2
1,η which then is used in the first equation to get σ̃2

1,e. Similarly, we obtain σ̃2
2,η and σ̃2

2,e. Next,

we obtain g̃2
21 and g̃2

12 based on the seventh and the eighth equations in (11). At this point, we have

obtained g̃2
21 and g̃2

12 as well as all entries of Θ̃ except for g̃12 and g̃21 using only the first eight equations

of (11). Finally, we use the last two equations in (11) (which are inherently less accurate than the others

since they are based on five-trade sequences) to determine the signs of g̃21 and g̃12.

XV Appendix: Proofs

A Lemmas

From (2) it can be seen that the microstructure components of the log price are random sums of the

microstructure noise. Lemmas 1 and 3 below show for the weak and strong fractional cointegration

cases, respectively, that such random sums have memory parameter 1 + dη < 1, where dη is the memory

parameter of the microstructure noise.
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Lemma 1 Suppose that {ηk} has memory parameter dη ∈ (− 1
2 , 0), is independent of {τk}, and satisfies

Condition A. Then

var(

N(t)∑

k=1

ηk) ∼ (σ̃2λ2dη+1)t2dη+1

as t → ∞.

The following lemma is used for proving Lemma 1

Lemma 2 For dη ∈ (− 1
2 , 0), suppose that {ηk} satisfies Condition A. Then there exists a positive con-

stant C such that for all nonnegative integers s, var(
∑s

k=1 ηk) = σ̃2s2dη+1 + R(s), where |R(s)| ≤

Csmax(2dη+1−β,0).

Lemma 3 For dη ∈ (−1,− 1
2 ), suppose that {ηk} satisfies Condition B, and is independent of N(·). Then

for any fixed t > 0,

cov(

N(t)∑

k=1

ηk,

N(t+j)∑

k=1

ηk) ∼ Cj2dη+1Pr{N(t) > 0} (12)

as j → ∞ where C > 0 is a constant not depending on t.

The following two lemmas are used in the proofs of Theorems 3, 4 and 5.

Lemma 4 If the durations {τk} are generated by a Long Memory Stochastic Duration (LMSD) model

with memory parameter dτ ∈ (0, 1
2 ) and all moments of the durations {τk} are finite, then all moments

of the backward recurrence time (BRTt), as defined in (23), are also finite.

Lemma 5 For durations {τk} satisfying the assumptions in Lemma 4, E[N(s)m] ≤ Km(sm + 1) for all

s > 0, where Km < ∞, m = 1, 2, · · · .
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B Proofs of Lemmas

Proof of Lemma 1: Since N(·) is independent of {ηk}, conditioning on N(·), we obtain

var(

N(t)∑

k=1

ηk) = E(

N(t)∑

k=1

ηk)2 = E
[
E

(
(

N(t)∑

k=1

ηk)2|N(·)
)]

= E
[
var

( N(t)∑

k=1

ηk|N(·)
)]

= E{Ṽ [N(t)]},

where Ṽ (s) = var(
∑s

k=1 ηk). In Lemma 2, we show that there exists a positive constant C such that for

all nonnegative integers s, Ṽ (s) = σ̃2s2dη+1 + R(s), where |R(s)| ≤ Csmax(2dη+1−β,0). Thus,

var(

N(t)∑

k=1

ηk) = E{Ṽ [N(t)]} = σ̃2E
{

[N(t)]2dη+1
}

+ E[R(N(t))], (13)

where

|E[R(N(t))]| ≤ E|R(N(t))| ≤ CE
{

[N(t)]max(2dη+1−β,0)
}

. (14)

We evaluate E
{

[N(t)]2dη+1
}

in (13) as follows. Denote Z(t) = N(t)−λt

t
1
2
+dτ

. As shown by Deo, Hurvich,

Soulier and Wang (2007, in the proof of Theorem 1) using Iglehart and Whitt (1971, Theorem 1),

Z(t)
D→ CBdτ+ 1

2
(1) as t → ∞, where

D→ denotes converge in distribution and C is a positive constant.

Since dτ < 1
2 , as t → ∞,

N(t)

λt
= 1 +

1

λ
tdτ−

1
2 Z(t)

p→ 1

and thus
[

N(t)
λt

]2dη+1 p→ 1.

Next, we will prove that

E
[N(t)

λt

]2dη+1

→ 1 (15)

by showing that lim supt E
[

N(t)
λt

]2dη+1+δ

< ∞ for some positive δ. Since dη < 0, we choose δ = 3−2dη >

0. Using the fact that for all real x

(1 + x)4 = [(1 + x)2]2 ≤ (2 + 2x2)2 = 4(x4 + 2x2 + 1)

≤ 4[x4 + (x4 + 1) + 1] = 8(x4 + 1)

we obtain that, for t ≥ 1

[N(t)

λt

]2dη+1+δ

=
[
1 +

1

λ
tdτ−

1
2 Z(t)

]4

≤
[
1 +

∣∣∣ 1
λ

Z(t)
∣∣∣
]4

≤ 8 +
8

λ4
Z4(t) .
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By Lemma 2 in Deo, Hurvich, Soulier and Wang (2007), lim supt E[Z4(t)] < ∞. Therefore,

lim supt E
[

N(t)
λt

]2dη+1+δ

< ∞ and we obtain (15). Similarly,

E
[N(t)

λt

]max(2dη+1−β,0)

→ 1.

From (13) and (14), we obtain

var(
∑N(t)

k=1 ηk)

(λt)2dη+1
= σ̃2E

[N(t)

λt

]2dη+1

+ E
[ R(N(t))

(λt)2dη+1

]
→ σ̃2 > 0. ¤

Proof of Lemma 2: Without any loss of generality, we can approximate the behavior of the spectral

density of {ηk} around zero frequency by that of a fractional Gaussian noise with variance σ̃2, and

Hurst exponent dη + 1
2 . If {η∗

k} obeys this fully-parametric model (see Samorodnitsky and Taqqu 1994,

pp. 332–339), then var(
∑s

k=1 η∗
k) = σ̃2s2dη+1. Denoting the spectral density of {η∗

k} by fFGN (λ), then

f(λ)/fFGN (λ) → 1 as λ → 0+, and since λ−2dη/fFGN (λ) is twice-differentiable at zero, we can without

loss of generality write the spectral density of {ηk} as

f(λ) = fFGN (λ) + g(λ)

where g(λ) = O(λ−2dη+β) as λ → 0+ and
∫ π

−π
|g(λ)|dλ < ∞, the latter bound following from weak

stationarity of {ηk}. We therefore have, for all non-negative integers s,

var(

s∑

k=1

ηk) = 2πs

∫ π

−π

Fs(λ)f(λ)dλ = σ̃2s2dη+1 + R(s)

where R(0) = 0 and for s ≥ 1, R(s) =
∫ π

−π
Fs(λ)g(λ)dλ, with

Fs(λ) =
1

2πs

sin2(sλ/2)

sin2(λ/2)
.

There exist positive constants ǫ ∈ (0, π), C1 and C2 such that |g(λ)| ≤ C1|λ|−2dη+β for λ ∈ [0, ǫ] and

such that sFs(λ) ≤ C2 for λ ∈ [ǫ, π]. Thus,

|R(s)| ≤ 4πs

∫ ǫ

0

Fs(λ)|g(λ)|dλ + 4πs

∫ π

ǫ

Fs(λ)|g(λ)|dλ

≤ 4πsC1

∫ ǫ

0

Fs(λ)|λ|−2dη+βdλ + 4πC2

∫ π

ǫ

|g(λ)|dλ
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≤ 4πsC1

∫ π

0

Fs(λ)|λ|−2dη+βdλ + 4πC2

∫ π

0

|g(λ)|dλ.

The second term on the righthand side is a finite positive constant. The first term is C1var(
∑s

k=1 η̃k)

where {η̃k} is an I(dη − β/2) process. This variance is O(s2dη−β+1) if dη − β/2 ∈ (− 1
2 , 0), and is

O(1) if dη − β/2 ∈ (−3/2,− 1
2 ). Thus, overall, there exists a positive constant C such that |R(s)| ≤

Csmax(2dη+1−β,0). ¤

Proof of Lemma 3: For j, k ≥ 1, define K0 = var(ϕk), and write cov(ϕk, ϕk+j) = Kj2dϕ−1 + R(j),

where |R(j)| ≤ K1j
2dϕ−3, with K1 > 0. We have

cov(

N(t)∑

k=1

ηk,

N(t+j)∑

k=1

ηk) = E
[
E

{ N(t)∑

k=1

ηk

N(t+j)∑

k=1

ηk

∣∣∣N(·)
}]

= E
[
E

{
ϕN(t)ϕN(t+j)I{N(t) > 0}

∣∣∣N(·)
}]

= E
[(

K∆N
2dϕ−1
t,t+j · I{∆Nt,t+j > 0} + R(∆Nt,t+j) · I{∆Nt,t+j > 0} + K0 · I{∆Nt,t+j = 0}

)
I{N(t) > 0}

]

where ∆Nt,t+j = N(t + j) − N(t) and I is an indicator function.

As shown by (48), E[I{∆Nt,t+j = 0}] = P (∆Nt,t+j = 0) has nearly-exponential decay (defined just

before Theorem 5) as j → ∞. Furthermore, since

∣∣∣E
[
R(∆Nt,t+j) · I{∆Nt,t+j > 0} · I{N(t) > 0}

]∣∣∣ ≤ E
[
|R(∆Nt,t+j)| · I{∆Nt,t+j > 0}

]

≤ E
[
K1∆N

2dϕ−3
t,t+j · I{∆Nt,t+j > 0}

]
,

it is sufficient to show that

E
[
∆N

2dϕ−1
t,t+j · I{∆Nt,t+j > 0} · I{N(t) > 0}

]
∼ Cj2dϕ−1Pr{N(t) > 0} (16)

and

E
[
∆N

2dϕ−3
t,t+j · I{∆Nt,t+j > 0}

]
∼ Cj2dϕ−3 . (17)

First, we show (16). From the proof of Lemma 1, we know
∆Nt,t+j

λj

p→ 1 as j → ∞. Since P{∆Nt,t+j =

0} has nearly exponential decay, I{∆Nt,t+j > 0} p→ 1 as j → ∞. Hence,

(∆Nt,t+j

λj

)2dϕ−1

· I{∆Nt,t+j > 0} p→ 1, as j → ∞
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and (16) will follow from uniform integrability if it can be shown that

sup
j≥4

E
[(∆Nt,t+j

λj

)−α

· I{∆Nt,t+j > 0}
]

< ∞

where α = (1 − 2dϕ + δ) ∈ (0, 1) for some δ > 0, with the convention ∞ · 0 = 0. Since by Chung (1974)

Theorem 3.2.1, p. 42,

E
[(∆Nt,t+j

λj

)−α

· I{∆Nt,t+j > 0}
]
≤ 1 +

∞∑

s=1

P
[(∆Nt,t+j

λj

)−α

· I{∆Nt,t+j > 0} ≥ s
]

it suffices to show that

sup
j≥4

∞∑

s=1

P
[(∆Nt,t+j

λj

)−α

· I{∆Nt,t+j > 0} ≥ s
]

< ∞ · (18)

Next, we establish (18). As in the proof of Lemma 2 in Deo, Hurvich, Soulier and Wang (2007), we

set λ = 1 without loss of generality. Furthermore, in view of the stationarity of the counting process, we

replace the integer variable j by the continuous variable t, replace ∆Nt,t+j by N(t), and prove

sup
t≥4

∞∑

s=1

P
[(N(t)

t

)−α

· I{N(t) > 0} ≥ s
]

< ∞. (19)

Consider a fixed value of t ≥ 4. As s → ∞, s−1/α → 0. Thus the infinite sum on s reduces to a finite

sum, up to the greatest integer such that ts−1/α ≥ 1. Note that

[(N(t)

t

)−α

· I{N(t) > 0}
]
≥ s ⇐⇒ N(t)

t
≤ s−1/α and N(t) > 0 ·

Thus, (19) becomes

sup
t≥4

⌊tα⌋∑

s=1

P
[
N(t) ≤ ts−1/α and N(t) > 0

]
< ∞ ·

It suffices to show that

sup
t≥4

⌊tα⌋∑

s=1

P
[
N(t) < 2ts−1/α

]
< ∞ · (20)

To prove (20), we split the sum into two parts,

sup
t≥4

⌊tα⌋∑

s=1

P
[
N(t) < 2ts−1/α

]
≤ sup

t≥4

⌊s⋆⌋∑

s=1

P
[
N(t) < 2ts−1/α

]

︸ ︷︷ ︸
G1

+sup
t≥4

⌊tα⌋∑

s=⌊s⋆⌋+1

P
[
N(t) < 2ts−1/α

]

︸ ︷︷ ︸
G2
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where s⋆ = max
((

2t
t−1

)α
, 8α

)
. The term G1 is finite since

∑⌊s⋆⌋
s=1 P

[
N(t) < 2ts−1/α

]
≤ s⋆. Next, we

consider G2. Since for all real positive k, N(t) < k ⇐⇒
∑⌈k⌉

i=1 ui > t, we have

P
[
N(t) < 2ts−1/α

]
= P

[ ⌈2ts−
1
α ⌉∑

i=1

ui > t
]

= P
[ ⌈v(t,s)⌉∑

i=1

ui > t
]

where v(t, s) = 2ts−
1
α . For s in the range (⌊s⋆⌋+ 1) to ⌊tα⌋, (t− 2ts−1/α − 1) > 0, hence by Chebyshev’s

inequality,

P
[ ⌈v(t,s)⌉∑

i=1

ui > t
]

= P
(
W >

t − ⌈v(t, s)⌉
⌈v(t, s)⌉ 1

2+dτ

)
≤ P

(
|W | >

t − 2ts−1/α − 1

(2ts−1/α + 1)
1
2+dτ

)

≤ E(|W |2+ǫ) · (2ts−1/α + 1)(
1
2+dτ )(2+ǫ)

(t − 2ts−1/α − 1)(2+ǫ)

where ǫ > 0 is a positive constant, dτ ∈ (0, 1
2 ) is the memory parameter of the durations and

W =

∑⌈v(t,s)⌉
i=1 ui − ⌈v(t, s)⌉
⌈v(t, s)⌉ 1

2+dτ
·

For s in the range (⌊s⋆⌋ + 1) to ⌊tα⌋, the smallest value 2ts−1/α can achieve is min(t − 1, 2), thus

2ts−1/α > 1, and (1 − 4s−1/α) > 1
2 (since s ≥ 8α). We obtain

⌊tα⌋∑

s=⌊s⋆⌋+1

P
[ ⌈v(t,s)⌉∑

i=1

ui > t
]

≤
⌊tα⌋∑

s=⌊s⋆⌋+1

E(|W |2+ǫ) · (2ts−1/α + 1)(
1
2+dτ )(2+ǫ)

(t − 2ts−1/α − 1)(2+ǫ)

≤ E(|W |2+ǫ) ·
⌊tα⌋∑

s=⌊s⋆⌋+1

(4ts−1/α)(
1
2+dτ )(2+ǫ)

( 1
2 t − 2ts−1/α)(2+ǫ)

= CE(|W |2+ǫ) · t(2+ǫ)(− 1
2+dτ ) ·

⌊tα⌋∑

s=⌊s⋆⌋+1

s−
1
α ( 1

2+dτ )(2+ǫ)

(1 − 4s−1/α)(2+ǫ)

≤ CE(|W |2+ǫ) · t(2+ǫ)(− 1
2+dτ )

⌊tα⌋∑

s=⌊s⋆⌋+1

s−
1
α ( 1

2+dτ )(2+ǫ)

with

− 1

α
(
1

2
+ dτ )(2 + ǫ) < −1 (21)

and (2 + ǫ)(− 1
2 + dτ ) < 0. Thus,

⌊tα⌋∑

s=⌊s⋆⌋+1

P
[ ⌈v(t,s)⌉∑

i=1

ui > t
]
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is uniformly bounded for t ≥ 4, provided that supt≥4,s≥1 E(|W |2+ǫ) < ∞. But this condition is already

proved in equation (25) of Deo, Hurvich, Soulier and Wang (2007).

Overall, we obtain that G2 < ∞, so that (20) and (16) are proved.

To establish (17), we follow the same steps as above, but using α = (3 − 2dϕ + δ) ∈ (2, 3). The proof

goes through without change, except that for (21) to hold, we need to select ǫ > 4. ¤

Proof of Lemma 4: First, by exercise 3.4.1 on page 59 of Daley and Vere-Jones (2002),

BRTt
d≡ u1 (22)

where
d≡ denotes equivalence in distribution and u1 is the time of occurrence of the first transaction

following time zero. Since 0 < u1 ≤ τ1, and we have assumed that all moments of τ1 are finite,

E(BRTm
t ) = E(um

1 ) ≤ E(τm
1 ) = C < ∞ for all m > 0. ¤

Proof of Lemma 5: By Proposition 1 in Deo, Hurvich, Soulier and Wang (2007), and the fact that

for a > 0, b > 0 and positive integer m, (a + b)m ≤ 2m−1(am + bm) (which can be shown using Jensen’s

inequality and the convexity of the function xm, x > 0), we obtain that, for s > 0,

E[N(s)m] = E{[λs + Z(s)s
1
2+dτ ]m} ≤ E{[λs + |Z(s)|s 1

2+dτ ]m}

≤ 2m−1
[
λmsm + E|Z(s)|msm( 1

2+dτ )
]
≤ Km(sm + 1),

where Km is a finite constant, Z(s) = N(s)−λs

s
1
2
+dτ

and λ as defined before. ¤

C Proof of Theorem 1

We first consider the fractional cointegration case, dη ∈ (− 1
2 , 0). We focus on log P1,t, since the proof for

log P2,t follows along similar lines.

The log price of Asset 1 is

log P1,t =

N1(t)∑

k=1

(e1,k + η1,k) +

N2(t1,N1(t))∑

k=1

(θe2,k + g21η2,k) ·
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Note that the two terms on the righthand side are uncorrelated. By Lemma 1, since dη < 0, we obtain

var[

N1(t)∑

k=1

(e1,k + η1,k)] = σ2
1,eE[N1(t)] + var[

N1(t)∑

k=1

η1,k]

∼ (σ2
1,eλ1)t + (σ2

1,ηλ
2dη1+1
1 )t2dη1+1 = (σ2

1,eλ1)t + o(t).

Next, consider E{N1(t)−N1(t2,N2(t))}, which is the expected number of transactions of Asset 1 after

the most recent transaction of Asset 2 up to time t. Define the backward recurrence time for Asset 2 at

time t as

BRT2,t = inf{s > 0 : N2(t) − N2(t − s) > 0}. (23)

Clearly, BRT2,t = t−t2,N2(t). By stationarity of N2(·), and using (3.1.7), page 43 of Daley and Vere-Jones

(2003), we obtain E{N1(t) − N1(t2,N2(t))} = E[−N1(−BRT2,t)] = E[−N1(−BRT2,0)]. In the righthand

equality, we used the fact that, since N2(·) is a stationary point process, BRT2,t has the same distribution

as BRT2,0, which does not depend on t. (See Daley and Vere-Jones (2002), page 58–59 for a detailed

discussion.) Thus

E{N1(t) − N1(t2,N2(t))} = C̃1, (24)

a finite constant, independent of t. Similarly

E{N2(t) − N2(t1,N1(t))} = C̃2 (25)

is also a finite constant, independent of t as well.

Using (13),

var
[ N2(t1,N1(t))∑

k=1

(θe2,k + g21η2,k)
]

= θ2σ2
2,e E{N2(t1,N1(t))}︸ ︷︷ ︸

T1

+g2
21σ

2
2,η E

{
[N2(t1,N1(t))]

2dη+1

︸ ︷︷ ︸
T2

}

+g2
21σ

2
2,η E{R(N2(t1,N1(t)))}︸ ︷︷ ︸

T3

.

By (25), the first term equals

T1 = E{N2(t)} − C̃2 = λ2t − C̃2 ∼ λ2t,
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as t → ∞.

As for the second term, since when x > 0 and 0 < p = (2dη + 1) < 1, the function xp is concave, we

can apply Jensen’s inequality to obtain

T2 ≤
{

E[N2(t1,N1(t))]
}2dη+1

= (λ2t − C̃2)
2dη+1 = o(t)·

Using (14) and arguing as above, we obtain

|T3| ≤ CE
{

[N2(t1,N1(t))]
max(2dη+1−β,0)

}
= o(t).

Therefore,

var
[ N2(t1,N1(t))∑

k=1

(θe2,k + g21η2,k)
]
∼ (θ2σ2

2,eλ2)t

as t → ∞.

Overall,

var[log P1,t] ∼ (σ2
1,eλ1)t + (θ2σ2

2,eλ2)t = C1t

where C1 = (σ2
1,eλ1 + θ2σ2

2,eλ2).

Similarly,

var[log P2,t] ∼ (σ2
2,eλ2)t + (

1

θ2
σ2

1,eλ1)t = C2t

where C2 = (σ2
2,eλ2 + 1

θ2 σ2
1,eλ1).

Next, for both the strong fractional cointegration case (dη ∈ (−1,− 1
2 )) and the standard cointegration

case (dη = −1), the proof is identical to that for the weak fractional cointegration case, except that here

we have var(
∑Ni(t)

k=1 ηi,k), (i = 1, 2), equal to some finite constants, which does not increase with t. ¤

D Proof of Theorem 2

We first consider the fractional cointegration case, dη ∈ (− 1
2 , 0). We focus on the returns {r1,j} of Asset

1, which corresponds to the first equation in (6) since the proof for {r2,j} follows along similar lines.

60



Consider the lag-1 autocorrelation of

r1,j =

N1[j∆t]∑

k=N1[(j−1)∆t]+1

e1,k

︸ ︷︷ ︸
T1

+

N1[j∆t]∑

k=N1[(j−1)∆t]+1

η1,k

︸ ︷︷ ︸
T2

+

N2(t1,N1(j∆t))∑

k=N2(t1,N1((j−1)∆t))+1

θe2,k

︸ ︷︷ ︸
T3

+

N2(t1,N1(j∆t))∑

k=N2(t1,N1((j−1)∆t))+1

g21η2,k ·

︸ ︷︷ ︸
T4

Denote ∆N1,j = N1(j∆t) − N1((j − 1)∆t) and ∆N2,j = N2(j∆t) − N2((j − 1)∆t). We know that

E(∆N1,j) = λ1∆t and E(∆N2,j) = λ2∆t. Thus,

var(T1) = E
{[ N1(j∆t)∑

k=N1((j−1)∆t)+1

e1,k

]2}
= E

[
E

{[ N1(j∆t)∑

k=N1((j−1)∆t)+1

e1,k

]2∣∣∣N1(·)
}]

= σ2
1,eE{N1(j∆t) − N1((j − 1)∆t)}

= σ2
1,eE(∆N1,j) = σ2

1,eλ1∆t · (26)

By Lemma 2, we have

var(T2) = σ2
2,ηE[{∆N1,j}2dη+1] + σ2

2,ηE{R(∆N1,j)}.

Since the function xp is concave when x > 0 and 0 < p < 1, by Jensen’s inequality for dη ∈ (−0.5, 0),

the first part satisfies

σ2
2,ηE[{∆N1,j}2dη+1] ≤ σ2

2,η{E[∆N1,j ]}2dη+1 = σ2
2,η{λ1∆t}2dη+1 = o(∆t), (27)

as ∆t → ∞. As for the second part,

∣∣∣E{R(∆N1,j)}
∣∣∣ ≤ CE

{
(∆N1,j)

max(2dη+1−β,0)
}
≤ CE

{
(∆N1,j)

2dη+1
}

= o(∆t).

Hence, var(T2) = o(∆t) as ∆t → ∞.

Next, by Lemma 2 and equations (24) and (25),

var(T3) = θ2σ2
2,eE{N2(t1,N1(j∆t)) − N2(t1,N1((j−1)∆t))}

= θ2σ2
2,eE[N2(j∆t) − N2((j − 1)∆t)]

= θ2σ2
2,eE[∆N2,j ] = θ2σ2

2,eλ2∆t (28)
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and

var(T4) = g2
21σ

2
2,ηE

[
{N2(t1,N1(j∆t)) − N2(t1,N1((j−1)∆t))︸ ︷︷ ︸

J

}2dη+1
]

+ g2
21σ

2
2,ηE

{
R(J)

}

≤ g2
21σ

2
2,η

[
E{N2(t1,N1(j∆t)) − N2(t1,N1((j−1)∆t))}

]2dη+1

+ g2
21σ

2
2,ηE

{
R(J)

}

= g2
21σ

2
2,η

{
E[∆N2,j ]

}2dη+1

+ g2
21σ

2
2,ηE

{
R(J)

}

= g2
21σ

2
2,η(λ2∆t)2dη+1 + g2

21σ
2
2,ηE

{
R(J)

}
= o(∆t). (29)

since by Lemma 2, E
{

R(J)
}
≤ C

{
E[∆N2,j ]

}2dη+1

= o(∆t).

As for the covariance terms, by the Cauchy-Schwartz inequality and Equations (26) to (29),

|cov(T1, T2)| ≤
√

var(T1)var(T2) ≤
√

σ2
1,eσ

2
2,η(λ1∆t)2dη+2 = o(∆t) (30)

|cov(T1, T4)| ≤
√

var(T1)var(T4) ≤
√

g2
21σ

2
1,eσ

2
2,η(λ1∆t)(λ2∆t)2dη+1 = o(∆t) (31)

|cov(T2, T3)| ≤
√

var(T2)var(T3) ≤
√

θ2σ2
2,eσ

2
2,η(λ2∆t)(λ1∆t)2dη+1 = o(∆t) (32)

|cov(T2, T4)| ≤
√

var(T2)var(T4) ≤
√

g2
21σ

4
2(λ1∆t)2dη+1(λ2∆t)2dη+1 = o(∆t) (33)

|cov(T3, T4)| ≤
√

var(T3)var(T4) ≤
√

θ2g2
21σ

2
2,eσ

2
2,η(λ2∆t)2dη+2 = o(∆t) (34)

since dη < 0. Also,

cov(T1, T3) = 0 (35)

since {e1,k} and {e2,k} are mutually independent i.i.d. series.

Overall, by (26) to (35), we obtain var(r1,j) ∼ (σ2
1,eλ1 + θ2σ2

2,eλ2)∆t, as ∆t → ∞, i.e.

lim
∆t→∞

var(r1,j)

∆t
= (σ2

1,eλ1 + θ2σ2
2,eλ2).

Similarly, for

(r1,j + r1,j+1) =

N1((j+1)∆t)∑

k=N1((j−1)∆t)+1

(e1,k + η1,k) +

N2(t1,N1((j+1)∆t))∑

k=N2(t1,N1((j−1)∆t))+1

(θe2,k + g21η2,k)

we obtain

var(r1,j + r1,j+1) ∼ 2(σ2
1,eλ1 + θ2σ2

2,eλ2)∆t
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i.e.

lim
∆t→∞

var(r1,j + r1,j+1)

2∆t
= (σ2

1,eλ1 + θ2σ2
2,eλ2).

Therefore,

corr(r1,j , r1,j+1) =
cov(r1,j , r1,j+1)

var(r1,j)
=

1
2var(r1,j + r1,j+1) − var(r1,j)

var(r1,j)
=

1
2var(r1,j + r1,j+1)

var(r1,j)
− 1

=
var(r1,j+r1,j+1)

2∆t
var(r1,j)

∆t

− 1 → 0,

as ∆t → ∞.

The fact that the lag-2 autocorrelation also converges to zero can be shown by recognizing that

corr(r1,j , r1,j+2) =
1

2

[var(r1,j + r1,j+1 + r1,j+2)

var(r1,j)
− 3 − 4corr(r1,j , r1,j+1)

]

and using the lag-1 autocorrelation results proved above as well as

lim
∆t→∞

var(r1,j + r1,j+1 + r1,j+2)

3∆t
= (σ2

1,eλ1 + θ2σ2
2,eλ2).

The result follows for any fixed lag k by induction.

Next, for both the strong fractional cointegration case (dη ∈ (−1,− 1
2 )) and the standard cointegration

case (dη = −1), the proof is identical to that for the weak fractional cointegration case, except that here we

have var(
∑Ni(j∆t)

k=Ni((j−1)∆t)+1 ηi,k), (i = 1, 2) ( as well as other similar terms) equal to some finite constants,

which does not increase with ∆t. ¤
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E Proof of Theorem 3

Consider a linear combination of log P1,t and log P2,t using vector (1,−θ),

log P1,t − θ log P2,t

=

N1(t)∑

k=N1(t2,N2(t))+1

e1,k − θ

N2(t)∑

k=N2(t1,N1(t))+1

e2,k

+

N1(t)∑

k=1

η1,k − θg12

N1(t2,N2(t))∑

k=1

η1,k − θ

N2(t)∑

k=1

η2,k + g21

N2(t1,N1(t))∑

k=1

η2,k

=

N1(t)∑

k=N1(t2,N2(t))+1

e1,k

︸ ︷︷ ︸
T1

−θ

N2(t)∑

k=N2(t1,N1(t))+1

e2,k

︸ ︷︷ ︸
T2

+(1 − θg12)

N1(t)∑

k=1

η1,k

︸ ︷︷ ︸
T3

(36)

+θg12

N1(t)∑

k=N1(t2,N2(t))+1

η1,k

︸ ︷︷ ︸
T4

−(θ − g21)

N2(t)∑

k=1

η2,k

︸ ︷︷ ︸
T5

−g21

N2(t)∑

k=N2(t1,N1(t))+1

η2,k·

︸ ︷︷ ︸
T6

Since all shock series are mutually independent and also independent of the counting processes N1(t)

and N2(t), we obtain

var
[
log P1,t − θ log P2,t

]
= var(T1) + θ2var(T2) + (1 − θg12)

2var(T3) + θ2g2
12var(T4)

+2θg12(1 − θg12)cov(T3, T4) + (θ − g21)
2var(T5) + g2

21var(T6)

+2g21(θ − g21)cov(T5, T6)· (37)

First, by Lemma 1

var(T3) ∼ (σ2
1,ηλ

2dη+1
1 )t2dη+1

var(T5) ∼ (σ2
2,ηλ

2dη+1
2 )t2dη+1

· (38)
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Using (24) and Lemma 2, we obtain

var(T4) = σ2
1,ηE

[
{N1(t) − N1(t2,N2(t))}2dη+1

]
+ σ2

1,ηE
{

R
[
N1(t) − N1(t2,N2(t))

]}

≤ σ2
1,η

[
E{N1(t) − N1(t2,N2(t))}

]2dη+1

+ σ2
1,ηC

[
E{N1(t) − N1(t2,N2(t))}

]2dη+1

= (1 + C)σ2
1,ηC̃

2dη+1
1 (39)

where we apply Jensen’s inequality in the last inequality, noting that for x > 0 and 0 < p = (2dη +1) < 1,

the function xp is concave. Similarly,

var(T6) ≤ (1 + C)σ2
2,ηC̃

2dη+1
2 . (40)

Also, by (24) and (25)

var(T1) = var(e1,k)E{N1(t) − N1(t2,N2(t))} = σ2
1,eC̃1 (41)

var(T2) = var(e2,k)E{N2(t) − N2(t1,N1(t))} = σ2
2,eC̃2· (42)

Next, we consider the covariance terms in (37) using Cauchy-Schwartz inequality. By (38) and (39)

|cov(T3, T4)| ≤
√

var(T3)var(T4) ≤
√

(1 + C)σ2
1,ηC̃

2dη+1
1 var(T3) = o(t2dη+1) (43)

and similarly by (38) and (40)

|cov(T5, T6)| ≤
√

var(T5)var(T6) ≤
√

(1 + C)σ2
2,ηC̃

2dη+1
2 var(T5) = o(t2dη+1). (44)

Overall, using (38) to (44) for (37), we obtain

var
(

log P1,t − θ log P2,t

)
∼ Ct2dη+1 (45)

where C = (1 − θg12)
2(σ2

1,ηλ
2dη1+1
1 ) + (θ − g21)

2(σ2
2,ηλ

2dη2+1
2 ).

The cointegrating vector is (1,−θ) and the memory parameter decreases from 1 for both log prices to

1 + dη. ¤
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F Proof of Theorem 4

The proof follows along the same lines as the proof of Theorem 3, except that we now use Lemma 3 to

obtain the asymptotic behavior of the autocovariances of the partial sums of the microstructure noise.

As in the proof of Theorem 3 we have

log P1,t − θ log P2,t

=

N1(t)∑

k=N1(t2,N2(t))+1

e1,k − θ

N2(t)∑

k=N2(t1,N1(t))+1

e2,k

+

N1(t)∑

k=1

η1,k − θg12

N1(t2,N2(t))∑

k=1

η1,k − θ

N2(t)∑

k=1

η2,k + g21

N2(t1,N1(t))∑

k=1

η2,k

=

N1(t)∑

k=N1(t2,N2(t))+1

e1,k

︸ ︷︷ ︸
T1,t

−θ

N2(t)∑

k=N2(t1,N1(t))+1

e2,k

︸ ︷︷ ︸
T2,t

+(1 − θg12)

N1(t)∑

k=1

η1,k

︸ ︷︷ ︸
T3,t

(46)

+θg12

N1(t)∑

k=N1(t2,N2(t))+1

η1,k

︸ ︷︷ ︸
T4,t

−(θ − g21)

N2(t)∑

k=1

η2,k

︸ ︷︷ ︸
T5,t

−g21

N2(t)∑

k=N2(t1,N1(t))+1

η2,k·

︸ ︷︷ ︸
T6,t

The dominant term in cov(log P1,t − θ log P2,t, log P1,t+j − θ log P2,t+j), based on Lemma 3, is

(1 − θg12)
2cov(T3,t, T3,t+j) + (θ − g21)

2cov(T5,t, T5,t+j)

∼ Cj2dη+1[(1 − θg12)
2Pr{N1(t) > 0} + (θ − g21)

2Pr{N2(t) > 0}] .

It suffices to show that cov(TL,t, TM,t+j) = o(j2dη+1) for L,M ∈ 1, · · · , 6, with (L,M) 6= (3, 3) and

(L,M) 6= (5, 5). We will explicitly consider the cases with L ≤ M , as the proofs for the remaining cases

are similar.

It will be shown in the proof of Theorem 5 that cov(T1,t, T1,t+j) and cov(T2,t, T2,t+j) both have

nearly exponential decay. Independence assumptions made previously imply that cov(TL,t, TM,t+j) =

0 for (L,M) = (1,M) with M 6= 1, for (L, M) = (2,M) with M 6= 2, and also for (L,M) =

(3, 5), (3, 6), (4, 5), (4, 6).
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Let ∆̃t,t+j = N1(t2,N2(t+j)) − N1(t). Note that ∆̃t,t+j is a possibly negative integer. First, we show

that for fixed t, ∆̃t,t+j/j
p→ λ1 as j → ∞. We have

∆̃t,t+j

j

D
=

∆̃0,j

j
=

N1(t2,N2(j))

j
=

N1(t2,N2(j))

t2,N2(j)

t2,N2(j)

N2(j)

N2(j)

j

p→ λ1
1

λ2
λ2 = λ1

as j → ∞, since t2,N2(j) → ∞ and N2(t2,N2(j)) = N2(j).

We show next that Pr{∆̃Nt,t+j ≤ 0} has nearly exponential decay for fixed t as j → ∞. Define

Z1(j) = N1(j)−λ1j
j1/2+dτ

, and R(j) = N1(t2,N2(j)) − N1(j). It was shown in Deo, Hurvich, Soulier and Wang

(2007) that E|Z1(j)|m is bounded uniformly in j for all m. So is E|R(j)|m by Lemmas 4 and 5. (See also

the proof of Theorem 5, part 2.ii). Thus, so is E|R̃(j)|m where R̃(j) = R(j)/j1/2+dτ . By stationarity of

(N1(·), N2(·)),

Pr{∆̃Nt,t+j ≤ 0} = Pr{∆̃N0,j ≤ 0} = Pr{N1(t2,N2(j)) ≤ 0} = Pr{N1(j) + R(j) ≤ 0}

≤ P
[
|Z1(j) + R̃(j)| ≥ λ1j

1
2−dτ

]
≤ 2m−1E|Z1(j)|m + 2m−1E|R̃(j)|m

λm
1 jm( 1

2−dτ )
= O(jm(dτ−

1
2 )).

Consider cov(T4,t, T4,t+j). Note that

T4,t = ϕ1,N1(t) · I{N1(t) > 0} − ϕ1,N1(t2,N2(t)) · I{N1(t2,N2(t)) > 0}.

Thus, cov(T4,t, T4,t+j) will consist of four terms. We will consider two of these in detail. The first term is

E
[
E[ϕ1,N1(t) · I{N1(t) > 0}ϕ1,N1(t+j)

∣∣N1(·)]
]
∼ Cj2dη+1Pr{N1(t) > 0}

as j → ∞, where C is the constant on the righthand side of (16) in the proof of Lemma 3. The next

term is

−E
[
E[ϕ1,N1(t) · I{N1(t) > 0}ϕ1,N1(t2,N2(t+j)) · I{N1(t2,N2(t+j)) > 0}

∣∣N1(·), N2(·)]
]
. (47)

As in the proof of Lemma 3, the inside conditional mean in (47) is

(
K∆̃N

2dϕ−1
t,t+j · I{∆̃Nt,t+j > 0} + R(∆̃Nt,t+j) · I{∆̃Nt,t+j > 0}

)
I{N1(t) > 0}I{N1(t2,N2(t+j)) > 0}

+
(
K(−∆̃Nt,t+j)

2dϕ−1 · I{∆̃Nt,t+j < 0} + R(−∆̃Nt,t+j) · I{∆̃Nt,t+j < 0}
)

I{N1(t) > 0}I{N1(t2,N2(t+j)) > 0}
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+
(
K0 · I{∆̃Nt,t+j = 0}

)
I{N1(t) > 0}I{N1(t2,N2(t+j)) > 0}

Since Pr{∆̃Nt,t+j ≤ 0} has nearly exponential decay for fixed t as j → ∞, so do the expectations of the

second and third terms above. Arguing as in the proof of Lemma 3, we find that (47) is

−E
[
E[ϕ1,N1(t) · I{N1(t) > 0}ϕ1,N1(t2,N2(t+j)) · I{N1(t2,N2(t+j)) > 0}

∣∣N1(·), N2(·)]
]
∼ −Cj2dη+1Pr{N1(t) > 0}

with the same constant C as above, in view of the facts that I{∆̃Nt,t+j > 0} p→ 1 and I{N1(t2,N2(t+j)) >

0} p→ 1. By a similar argument, the other two terms in cov(T4,t, T4,t+j) also cancel each other, so that

overall, cov(T4,t, T4,t+j) = o(j2dη+1).

Similarly, cov(T6,t, T6,t+j) = o(j2dη+1).

Next, consider cov(T3,t, T4,t+j) =

cov
(
ϕ1,N1(t) · I{N1(t) > 0} , ϕ1,N1(t+j) · I{N1(t + j) > 0} − ϕ1,N1(t2,N2(t+j)) · I{N1(t2,N2(t+j)) > 0}

)
= o(j2dη+1)

due to the cancelation of the two previously considered contributions to cov(T4,t, T4,t+j).

Similarly, cov(T5,t, T6,t+j) = o(j2dη+1). ¤

G Proof of Theorem 5

As in the proof of Theorem 3, we denote

St = log P1,t − θ log P2,t =

N1(t)∑

k=N1(t2,N2(t))+1

e1,k

︸ ︷︷ ︸
S1,t

−θ

N2(t)∑

k=N2(t1,N1(t))+1

e2,k

︸ ︷︷ ︸
S2,t

+

N1(t)∑

k=1

η1,k

︸ ︷︷ ︸
S3,t

−θg12

N1(t2,N2(t))∑

k=1

η1,k

︸ ︷︷ ︸
S4,t

−θ

N2(t)∑

k=1

η2,k

︸ ︷︷ ︸
S5,t

+g21

N2(t1,N1(t))∑

k=1

η2,k

︸ ︷︷ ︸
S6,t

= S1,t − θS2,t + S3,t − θg12S4,t − θS5,t + g12S6,t ,

and evaluate the terms in cov(St, St+j).
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1) Consider cov(S1,t, S1,t+j) = E(S1,tS1,t+j). The term S1,t is a sum of shocks occurring in the time

interval between the last transaction of Asset 2 before time t and time t. Similarly, S1,t+j is a sum of shocks

occurring between the last transaction of Asset 2 before time t + j and time t + j. Clearly, if at least one

transaction of Asset 2 occurs in (t, t+j], we must have t2,N2(t+j) > t so that E[S1,tS1,t+j |N1(·), N2(·)] = 0

because {e1,k} is i.i.d.. Otherwise, t2,N2(t+j) = t2,N2(t) and E[S1,tS1,t+j |N1(·), N2(·)] = σ2
1,e[N1(t) −

N1(t2,N2(t))]. Therefore, by the Cauchy-Schwartz inequality,

cov(S1,t, S1,t+j) = E(S1,tS1,t+j) = E
{

E[S1,tS1,t+j |N1(·), N2(·)]
}

= E
{

σ2
1,e[N1(t) − N1(t2,N2(t))] · I{N2(t + j) − N2(t) = 0}

}

≤ σ2
1,e{E[N1(t) − N1(t2,N2(t))]

2} 1
2 · {P [N2(t + j) − N2(t) = 0]} 1

2 ·

By Lemma 5 and the stationarity of N1(·), we obtain

E{[N1(t) − N1(t2,N2(t))]
2} = E{[N1(t − t2,N2(t))]

2} = E{[N1(BRT2,t)]
2}

= E
(
E{[N1(BRT2,t)]

2
∣∣∣N1(·), N2(·)}

)

≤ E
[
K2(BRT 2

2,t + 1)
]

which is bounded uniformly in t using Lemma 4.

Next, since N2(·) is stationary, for any positive integer m, we obtain

P
[
N2(t + j) − N2(t) = 0

]
= P

[
N2(j) ≤ 0

]

≤ P
[
|Z2(j)| ≥ λ2j

1
2−dτ

]
≤ E|Z2(j)|m

λm
2 jm( 1

2−dτ )
= O(jm(dτ−

1
2 )), (48)

where Z2(j) = N2(j)−λ2j

j
1
2
+dτ

. This is true since it follows from the proof of Proposition 1 in Deo, Hurvich,

Soulier and Wang (2007) that E|Z2(j)|m is bounded uniformly in j for all m. Therefore, P
[
N2(t +

j) − N2(t) = 0
]

has nearly-exponential decay, because (48) holds for all m. Thus, cov(S1,t, S1,t+j) has

nearly-exponential decay.

Similarly, cov(S2,t, S2,t+j) has nearly-exponential decay.

2) Next, we consider cov(S3,t, S3,t+j), cov(S3,t, S4,t+j), cov(S4,t, S3,t+j) and cov(S4,t, S4,t+j).
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2.i) First, we have

∣∣∣cov(S3,t, S3,t+j)
∣∣∣ =

∣∣∣cov
(
ξ1,N1(t)I{N1(t) > 0} , ξ1,N1(t+j)I{N1(t + j) > 0}

)∣∣∣

≤ σ2
1,ξ

∞∑

r=0

|cξ1,r |P
[
N1(t + j) − N1(t) = r

]
. (49)

If Z1(j) = N1(j)−λ1j

j
1
2
+dτ

, since E|Z1(j)|m is bounded uniformly in j for all m, we get

∞∑

r=0

|cξ1,r |P
[
N1(t + j) − N1(t) = r

]
≤

∞∑

r=0

|cξ1,r |P
[
N1(j) ≤ r

]

≤
∞∑

r=0

|cξ1,r |P
[
|Z1(j) − rj−

1
2−dτ | ≥ λ1j

1
2−dτ

]

≤
∞∑

r=0

|cξ1,r |
E|Z1(j) − rj−

1
2−dτ |m

λm
1 jm( 1

2−dτ )

≤ jm(dτ−
1
2 )Cm

∞∑

r=0

e−Kξ1
r[1 + rmjm(− 1

2−dτ )] = O(jm(dτ−
1
2 )),

where Cm are finite positive constants. Note that Minkowski’s inequality is used in the last inequality.

2.ii) Next, we consider cov(S3,t, S4,t+j). We have

∣∣∣cov(S3,t, S4,t+j)
∣∣∣ =

∣∣∣cov
(
ξ1,N1(t)I{N1(t) > 0} , ξ1,N1(t2,N2(t+j))I{N1(t2,N2(t+j)) > 0}

)∣∣∣

≤ σ2
1,ξ

∞∑

r=0

|cξ1,r |P
[
N1(t2,N2(t+j)) − N1(t) = r

]

≤ σ2
1,ξ

∞∑

r=0

|cξ1,r |P
[
N1(t2,N2(t+j)) − N1(t) ≤ r

]

≤ σ2
1,ξ

∞∑

r=0

|cξ1,r |P
{

[N1(t + j) − N1(t)] − [N1(t + j) − N1(t2,N2(t+j))]︸ ︷︷ ︸
Xt,j

≤ r
}

= σ2
1,ξ

∞∑

r=0

|cξ1,r |P
{ [N1(t + j) − N1(t)] − λ1j

j
1
2+dτ

− Xt,j

j
1
2+dτ

− r

j
1
2+dτ

≤ −λ1j

j
1
2+dτ

}

≤ σ2
1,ξ

∞∑

r=0

|cξ1,r |P
{∣∣∣ [N1(t + j) − N1(t)] − λ1j

j
1
2+dτ

− Xt,j

j
1
2+dτ

− r

j
1
2+dτ

∣∣∣ ≥ λ1j
1
2−dτ

}

≤ σ2
1,ξ

∞∑

r=0

|cξ1,r |E
∣∣∣ [N1(t + j) − N1(t)] − λ1j

j
1
2+dτ

− Xt,j

j
1
2+dτ

− r

j
1
2+dτ

∣∣∣
m

λ−m
1 jm(dτ−

1
2 ) (50)

for any positive integer m. If we could show that both E
∣∣∣ [N1(t+j)−N1(t)]−λ1j

j
1
2
+dτ

∣∣∣
m

and E|Xt,j |m are uniformly

bounded, then by Minkowski’s inequality and the fact that |cξ1,r| ≤ Aξ1e
−Kξ1

r for all r ≥ 0, we could
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obtain
∑∞

r=0 |cξ1,r |E
∣∣∣ [N1(t+j)−N1(t)]−λ1j

j
1
2
+dτ

− Xt,j

j
1
2
+dτ

− r

j
1
2
+dτ

∣∣∣
m

summable in r, hence
∣∣∣cov(S3,t, S4,t+j)

∣∣∣ =

O(jm(dτ−
1
2 )) for any positive integer m, i.e., cov(S3,t, S4,t+j) has nearly-exponential decay.

Using the stationarity of N1(·),

E
∣∣∣ [N1(t + j) − N1(t)] − λ1j

j
1
2+dτ

∣∣∣
m

= E
∣∣∣N1(j) − λ1j

j
1
2+dτ

∣∣∣
m

= E|Z1(j)|m,

which is bounded uniformly in j, by the proof of Proposition 1 in Deo, Hurvich, Soulier and Wang (2007).

By Lemma 5, we obtain

E|Xt,j |m = E
{

E
[
|Xt,j |m

∣∣∣N2(·)
]}

= E
{

E
[(

N1(t + j) − N1(t2,N2(t+j))
)m∣∣∣N2(·)

]}

≤ KmE(BRTm
2,t+j + 1),

which is uniformly bounded in t and j by Lemma 4. Thus, cov(S3,t, S4,t+j) has nearly-exponential decay.

2.iii) Next, we consider cov(S4,t, S3,t+j). Since

∣∣∣cov(S4,t, S3,t+j)
∣∣∣ =

∣∣∣cov
(
ξ1,N1(t2,N2(t))I{N1(t2,N2(t)) > 0} , ξ1,N1(t+j)I{N1(t + j) > 0}

)∣∣∣

≤ σ2
1,ξ

∞∑

r=0

|cξ1,r
|P

[
N1(t + j) − N1(t2,N2(t)) = r

]

≤ σ2
1,ξ

∞∑

r=0

|cξ1,r |P
[
N1(t + j) − N1(t) = r

]

Thus, cov(S4,t, S3,t+j) has nearly-exponential decay, by the proof of (49).

Finally, since

∣∣∣cov(S4,t, S4,t+j)
∣∣∣ =

∣∣∣cov
(
ξ1,N1(t2,N2(t))I{N1(t2,N2(t)) > 0} , ξ1,N1(t2,N2(t+j))I{N1(t2,N2(t+j)) > 0}

)∣∣∣

≤ σ2
1,ξ

∞∑

r=0

|cξ1,r |P
[
N1(t2,N2(t+j)) − N1(t2,N2(t)) = r

]

≤ σ2
1,ξ

∞∑

r=0

|cξ1,r |P
[
N1(t2,N2(t+j)) − N1(t2,N2(t)) ≤ r

]

≤ σ2
1,ξ

∞∑

r=0

|cξ1,r |P
[
N1(t2,N2(t+j)) − N1(t) ≤ r

]
(51)

which as we have shown in (50) has nearly-exponential decay. The last inequality in (51) holds since

N1(t2,N2(t)) ≤ N1(t).
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2.iv) Similarly to the above proofs, we can show that cov(S5,t, S5,t+j), cov(S5,t, S6,t+j), cov(S6,t, S5,t+j)

and cov(S6,t, S6,t+j) have nearly-exponential decay.

3) So far, we have shown that the following terms have nearly-exponential decay as j → ∞: cov(S1,t, S1,t+j),

cov(S2,t, S2,t+j), cov(S3,t, S3,t+j), cov(S3,t, S4,t+j), cov(S4,t, S3,t+j), cov(S4,t, S4,t+j), cov(S5,t, S5,t+j),

cov(S5,t, S6,t+j), cov(S6,t, S5,t+j) and cov(S6,t, S6,t+j). Since {e1,k}, {e2,k}, {η1,k} and {η2,k} are mutu-

ally independent, the remaining covariances are all zero. ¤

H Proof of Theorem 6

We will treat the weak fractional cointegration case (Case 1), the standard cointegration case (Case 3)

and the strong fractional cointegration case (Case 2) separately.

Case 1: weak fractional cointegration, dη ∈ (− 1
2 , 0).

The log prices given by (7) can be written as

Aj ≡ log P1,j =

N1(j∆t)∑

k=1

(e1,k + η1,k) +

N2(t1,N1(j∆t))∑

k=1

(θe2,k + g21η2,k)

Bj ≡ log P2,j =

N2(j∆t)∑

k=1

(e2,k + η2,k) +

N1(t2,N2(j∆t))∑

k=1

(
1

θ
e1,k + g12η1,k)

=

N2(j∆t)∑

k=1

(e2,k + η2,k) +

N1(j∆t)∑

k=1

(
1

θ
e1,k + g12η1,k) −

N1(j∆t)∑

k=N1(t2,N2(j∆t))+1

(
1

θ
e1,k + g12η1,k)

=

N2(j∆t)∑

k=1

e2,k +
1

θ

N1(j∆t)∑

k=1

e1,k

︸ ︷︷ ︸
B1,j

+

N2(j∆t)∑

k=1

η2,k

︸ ︷︷ ︸
B2,j

+g12

N1(j∆t)∑

k=1

η1,k

︸ ︷︷ ︸
B3,j

− 1

θ

N1(j∆t)∑

k=N1(t2,N2(j∆t))+1

e1,k

︸ ︷︷ ︸
B4,j

−g12

N1(j∆t)∑

k=N1(t2,N2(j∆t))+1

η1,k

︸ ︷︷ ︸
B5,j
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and

Tj ≡ Aj − θBj =

N1(j∆t)∑

k=N1(t2,N2(j∆t))+1

e1,k

︸ ︷︷ ︸
T1,j=B4,j

−θ

N2(j∆t)∑

k=N2(t1,N1(j∆t))+1

e2,k

︸ ︷︷ ︸
T2,j

+(1 − θg12)

N1(j∆t)∑

k=1

η1,k

︸ ︷︷ ︸
T3,j=B3,j

+θg12

N1(j∆t)∑

k=N1(t2,N2(j∆t))+1

η1,k

︸ ︷︷ ︸
T4,j=B5,j

−(θ − g21)

N2(j∆t)∑

k=1

η2,k

︸ ︷︷ ︸
T5,j=B2,j

−g21

N2(j∆t)∑

k=N2(t1,N1(j∆t))+1

η2,k

︸ ︷︷ ︸
T6,j

·

The OLS slope estimator θ̂ obtained from regressing {log P1,j}n
j=1 on {log P2,j}n

j=1 is

θ̂ =

∑n
j=1 AjBj∑n

j=1 B2
j

=

∑n
j=1 (θBj + Tj)Bj∑n

j=1 B2
j

= θ +

∑n
j=1 TjBj∑n
j=1 B2

j
· (52)

First, we show that n−r
∑n

j=1 TjBj
p→ 0, where r = 2 + dη + δ for ∀ δ > 0. By the Cauchy-Schwartz

inequality,

1

nr

n∑

j=1

Ti,jBk,j ≤

√√√√(
1

n2r−2

n∑

j=1

T 2
i,j)(

1

n2

n∑

j=1

B2
k,j)

·

(53)

It is therefore sufficient to show that the righthand side of (53) converges in probability to zero, for

all i = 1, . . . , 6 and k = 1, . . . , 5.

By (24), (25), Lemma 1, Lemma 2 and Jensen’s inequality E(X2dη+1) ≤ (EX)2dη+1 for x ≥ 0,
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dη ∈ (− 1
2 , 0), we obtain that, for any ǫ > 0,

1

n2r−2
P (

n∑

j=1

T 2
1,j > ǫ) ≤

E(
∑n

j=1 T 2
1,j)

n2r−2ǫ
=

∑n
j=1 var(T1,j)

n2r−2ǫ
=

∑n
j=1 σ2

1,eC̃1

n2r−2ǫ
=

σ2
1,eC̃1

n2r−3ǫ
→ 0,

1

n2r−2
P (

n∑

j=1

T 2
2,j > ǫ) ≤

E(
∑n

j=1 T 2
2,j)

n2r−2ǫ
=

∑n
j=1 var(T2,j)

n2r−2ǫ
=

∑n
j=1 σ2

2,eC̃2

n2r−2ǫ
=

σ2
2,eC̃2

n2r−3ǫ
→ 0,

1

n2r−2
P (

n∑

j=1

T 2
3,j > ǫ) ≤

E(
∑n

j=1 T 2
3,j)

n2r−2ǫ
=

∑n
j=1 var(T3,j)

n2r−2ǫ

≤
∑n

j=1(1 + C)σ2
1,η{λ1j∆t}2dη+1

n2r−2ǫ
=

O(n2dη+2)

n2r−2ǫ
→ 0,

1

n2r−2
P (

n∑

j=1

T 2
4,j > ǫ) ≤

∑n
j=1 var(T4,j)

n2r−2ǫ
≤

∑n
j=1(1 + C)σ2

1,ηE{[N1(j∆t) − N1(t2,N2(j∆t))]
2dη+1}

n2r−2ǫ

≤
∑n

j=1(1 + C)σ2
1,η{E[N1(j∆t) − N1(t2,N2(j∆t))]}2dη+1

n2r−2ǫ

=

∑n
j=1(1 + C)σ2

1,η(C̃1)
2dη+1

n2r−2ǫ
→ 0,

1

n2r−2
P (

n∑

j=1

T 2
5,j > ǫ) → 0 (similar as for

1

n2r−2
P (

n∑

j=1

T 2
3,j > ǫ)),

1

n2r−2
P (

n∑

j=1

T 2
6,j > ǫ) → 0 (similar as for

1

n2r−2
P (

n∑

j=1

T 2
4,j > ǫ)),

as n → ∞, since dη ∈ (− 1
2 , 0), (2r − 2) = 2dη + 2 + δ and (2r − 3) > 1.

Therefore,

1

n2r−2

n∑

j=1

T 2
i,j

p→ 0 (54)

for i = 1, . . . , 6.

Next, since

P
[ 1

n2

n∑

j=1

B2
1,j > µ

]
≤

E(
∑n

j=1 B2
1,j)

n2µ
=

∑n
j=1(σ

2
2,eλ2j∆t + 1

θ2 σ2
1,eλ1j∆t)

n2µ

=
1

2
(σ2

2,eλ2∆t +
1

θ2
σ2

1,eλ1∆t)(1 +
1

n
)
1

µ

and for any ǫ > 0 and all n > 1, we can choose µ > 1
ǫ (σ2

2,eλ2∆t + 1
θ2 σ2

1,eλ1∆t), so that

P
[ 1

n2

n∑

j=1

B2
1,j > µ

]
< ǫ,
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we obtain

1

n2

n∑

j=1

B2
1,j = Op(1)· (55)

Since B2,j = T5,j , B3,j = T3,j , B4,j = T1,j and B5,j = T4,j , it follows from (54) that

1

n2

n∑

j=1

B2
i,j

p→ 0, (56)

for i = 2, . . . , 5.

Applying (54), (55), (56) in (53), we obtain

1

nr

n∑

j=1

TjBj
p→ 0, (57)

where r = 2 + dη + δ for any δ > 0.

Next, we show that 1
1

n2

∑ n
j=1 B2

j

is Op(1) by bounding it by a random variable that converges in

distribution.

Since n
∑n

j=1 a2
j ≥ (

∑n
j=1 aj)

2 for any sequence {aj}, we have,

1
1

n2

∑n
j=1 B2

j

≤ 1
1

n3 (
∑n

j=1 Bj)2 ·

Note that

1

n3
(

n∑

j=1

Bj)
2 =

1

n3
(

n∑

j=1

B1,j)
2 +

1

n3

5∑

i=2

(

n∑

j=1

Bi,j)
2 +

1

n3

5∑

i=1

5∑

s 6=i,s=1

[
(

n∑

j=1

Bi,j)(

n∑

j=1

Bs,j)
]
·

We will show that

1

n3/2

n∑

j=1

B1,j
d→

√
1

3
σ2

2,eλ2∆t +
1

3θ2
σ2

1,eλ1∆t Z , (58)

where Z is standard normal and

1

n3/2

n∑

j=1

Bi,j
p→ 0 (59)
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for i = 2, . . . , 5, so that

1
1

n3 (
∑n

j=1 Bj)2
d→

( 3θ2

θ2σ2
2,eλ2∆t + σ2

1,eλ1∆t

) 1

Z2
,

and

1
1

n2

∑n
j=1 B2

j

= Op(1)· (60)

To show (58), we write

1

n3/2

n∑

j=1

B1,j =
1

n3/2

n∑

j=1

N2(j∆t)∑

k=1

e2,k

︸ ︷︷ ︸
G1

+
1

n3/2

1

θ

n∑

j=1

N1(j∆t)∑

k=1

e1,k

︸ ︷︷ ︸
G2

,

where G1 and G2 are independent.

Since {e2,k} is serially independent,

G1 =
1

n3/2

(
n

N2(∆t)∑

k=1

e2,k + (n − 1)

N2(2∆t)∑

k=N2(∆t)+1

e2,k + . . . +

N2(n∆t)∑

k=N2((n−1)∆t)+1

e2,k

)

d≡ σ2,e

n3/2

(
n
√

∆N2,1Z1 + (n − 1)
√

∆N2,2Z2 + . . . +
√

∆N2,nZn

)

d≡ σ2,e

n3/2

(√
n2∆N2,1 + (n − 1)2∆N2,2 . . . + ∆N2,n Z

)

= σ2,e

√√√√√√
1

n3

n∑

k=1

(n − k + 1)2∆N2,k

︸ ︷︷ ︸
D

Z (61)

where
d≡ denotes equivalence in distribution, ∆N2,j = N2(j∆t) − N2((j − 1)∆t), {Zk}n

k=1 are i.i.d.

standard normal and Z is a standard normal random variable.

Consider D defined in (61). Applying the summation by parts formula for two sequences {fk} and

{gk},
n∑

k=m

fk(gk+1 − gk) = (fn+1gn+1 − fmgm) −
n∑

k=m

gk+1(fk+1 − fk) ,
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we obtain

D =

n∑

k=1

(n − k + 1)2∆N2,k =

n∑

k=1

(n − k + 1)2
[
N2(k∆t) − N2((k − 1)∆t)

]

=

n−1∑

k=0

(n − k)2︸ ︷︷ ︸
fk

[
N2((k + 1)∆t)︸ ︷︷ ︸

gk+1

−N2(k∆t)︸ ︷︷ ︸
gk

]

= (fngn − f0g0) −
n−1∑

k=0

N2((k + 1)∆t)
[
(2n − 2k − 1)(−1)

]

=

n−1∑

k=0

(2n − 2k − 1)N2((k + 1)∆t) (since fn = 0 and g0 = 0)

=

n∑

k=1

(2n − 2k + 1)N2(k∆t)

thus

E(
1

n3
D) =

1

n3

n∑

k=1

(2n − 2k + 1)E[N2(k∆t)] =
λ2∆t

n3

n∑

k=1

(2n − 2k + 1)k

=
λ2∆t

n3

[
2n

n(n + 1)

2
− 2

n(n + 1)(2n + 1)

6
+

n(n + 1)

2

]
→ 1

3
λ2∆t, (62)

and

var(
1

n3
D) ≤ 1

n6

n∑

j=1

n∑

s=1

(2n − 2j + 1)(2n − 2s + 1)
∣∣∣cov(N2(j∆t), N2(s∆t))

∣∣∣

≤ 1

n6

n∑

j=1

n∑

s=1

(2n − 2j + 1)(2n − 2s + 1)
√

var(N2(j∆t))var(N2(s∆t))

≤ 4n2

n6

( n∑

j=1

√
var(N2(j∆t))

)( n∑

s=1

√
var(N2(s∆t))

)
= O(n2dτ−1) → 0 (63)

as n → ∞ since dτ ∈ (0, 1
2 ) and by Theorem 1 of Deo, Hurvich, Soulier and Wang (2007),

var(N2(n∆t)) ∼ C(n∆t)2dτ+1 as n → ∞·

By (62) and (63),
(

1
n3 D − 1

3λ2∆t
)

converges in mean-square to zero, which implies that

1

n3
D =

1

n3

n∑

k=1

(n − k + 1)2∆N2,k
p→ 1

3
λ2∆t · (64)

Using (64) in (61), by Slutsky’s theorem

G1
d→ σ2,e

√
1

3
λ2∆t Z1 (65)
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and similarly

G2
d→ σ1,e

θ

√
1

3
λ1∆t Z2 (66)

where Z1 and Z2 are independent standard normals.

Overall, by (65), (66) and the independence between G1 and G2, (58) is obtained.

To show (59), since for any ǫ > 0, and i = 2, . . . , 5, by Chebyshev’s inequality,

P
(∣∣∣ 1

n3/2

n∑

j=1

Bi,j

∣∣∣ > ǫ
)
≤

var(
∑n

j=1 Bi,j)

n3ǫ2

it is enough to show that,

var(
∑n

j=1 Bi,j)

n3
→ 0, i = 2, . . . , 5. (67)

Since

var(B2,j) = σ2
2,ηE[(N2(j∆t))2dη+1] + σ2

2,ηE{R(N2(j∆t))}

≤ (1 + C)σ2
2,η{E[N2(j∆t)]}2dη+1 = (1 + C)σ2

2,η(λ2j∆t)2dη+1

≤ (1 + C)σ2
2,η(λ2∆t)2dη+1n2dη+1 (since j ≤ n and 2dη + 1 > 0)

var(B3,j) ≤ σ2
1,η(λ1∆t)2dη+1n2dη+1 (similar as for var(

n∑

j=1

B2,j))

var(B4,j) = σ2
1,eC̃1

var(B5,j) = σ2
1,ηE

[
(N1(j∆t) − N1(t2,N2(j∆t)))

2dη+1
]

+ σ2
1,ηE

{
R

(
N1(j∆t) − N1(t2,N2(j∆t))

)}

≤ (1 + C)σ2
1,η

{
E

[
(N1(j∆t) − N1(t2,N2(j∆t))

]2dη+1}
= (1 + C)σ2

1,η(C̃1)
2dη+1 ,

we obtain

var(

n∑

j=1

B2,j) ≤
n∑

j=1

n∑

s=1

|cov(B2,j , B2,s)| ≤
n∑

j=1

n∑

s=1

(1 + C)σ2
2,η(λ2n∆t)2dη+1 = O(n2dη+3) (68)

var(

n∑

j=1

B3,j) ≤
n∑

j=1

n∑

s=1

|cov(B3,j , B3,s)| = O(n2dη+3) (similar as above)

var(

n∑

j=1

B4,j) ≤
n∑

j=1

n∑

s=1

|cov(B4,j , B4,s)| =

n∑

j=1

n∑

s=1

σ2
1,eC̃1 = O(n2)

var(

n∑

j=1

B5,j) ≤
n∑

j=1

n∑

s=1

|cov(B5,j , B5,s)| =

n∑

j=1

n∑

s=1

(1 + C)σ2
1,η(C̃1)

2dη+1 = O(n2) ·
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This implies (67) and (59), since dη < 0.

Overall, since (58), (59) are proved, we obtain (60). Thus, by (52), (57) and (60),

n2−r(θ̂ − θ) =
1

nr

∑n
j=1 TjBj

1
n2

∑n
j=1 B2

j

p→ 0·

Case 3: standard cointegration, dη = −1.

When dη = −1, η1,k = ξ1,k − ξ1,k−1 and η2,k = ξ2,k − ξ2,k−1. Denote

Bj ≡
N2(t1,N1(j∆t))∑

k=1

e2,k

︸ ︷︷ ︸
B∗

1,j

+

N2(j∆t)∑

N2(t1,N1(j∆t))+1

e2,k

︸ ︷︷ ︸
B∗

2,j

+
1

θ

N1(t2,N2(j∆t))∑

k=1

e1,k

︸ ︷︷ ︸
B∗

3,j

+ g12 · ξ1,N1(t2,N2(j∆t))I{N1(t2,N2(j∆t)) > 0}
︸ ︷︷ ︸

B∗

4,j

+ ξ2,N2(j∆t)I{N2(j∆t) > 0}
︸ ︷︷ ︸

B∗

5,j

and

Tj ≡ Aj − θBj =

N1(j∆t)∑

k=N1(t2,N2(j∆t))+1

e1,k

︸ ︷︷ ︸
T∗

1,j

−θ

N2(j∆t)∑

k=N2(t1,N1(j∆t))+1

e2,k

︸ ︷︷ ︸
T∗

2,j=B∗

2,j

+ ξ1,N1(j∆t)I{N1(j∆t) > 0}
︸ ︷︷ ︸

T∗

3,j

−θg12 · ξ1,N1(t2,N2(j∆t))I{N1(t2,N2(j∆t)) > 0}
︸ ︷︷ ︸

T∗

4,j=B∗

4,j

− θ · ξ2,N2(j∆t)I{N2(j∆t) > 0}
︸ ︷︷ ︸

T∗

5,j=B∗

5,j

+g21 · ξ2,N2(t1,N1(j∆t))I{N1(j∆t) > 0}
︸ ︷︷ ︸

T∗

6,j
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1) Consider
∑n

j=1 B∗
1,jT

∗
1,j . Since E(B∗

1,jT
∗
1,j) = E[E(B∗

1,jT
∗
1,j |N1(·), N2(·))] = 0, we obtain

var(

n∑

j=1

B∗
1,jT

∗
1,j)

= E
[ n∑

j=1

n∑

s=1

B∗
1,jB

∗
1,sT

∗
1,jT

∗
1,s

]
−

{
E(

n∑

j=1

B∗
1,jT

∗
1,j)

}2

=

n∑

j=1

E(B∗
1,j

2T ∗
1,j

2) + 2

n∑

j=1

n∑

s=j+1

E(B∗
1,jB

∗
1,sT

∗
1,jT

∗
1,s)

=

n∑

j=1

E[E(B∗
1,j

2T ∗
1,j

2|N1(·), N2(·))] + 2

n∑

j=1

n∑

s=j+1

E[E(B∗
1,jB

∗
1,sT

∗
1,jT

∗
1,s|N1(·), N2(·))]

=

n∑

j=1

E[E(B∗
1,j

2|N1(·), N2(·)) · E(T ∗
1,j

2|N1(·), N2(·))]

+ 2

n∑

j=1

n∑

s=j+1

E[E(B∗
1,jB

∗
1,s|N1(·), N2(·)) · E(T ∗

1,jT
∗
1,s|N1(·), N2(·))]

= σ2
1,eσ

2
2,e

n∑

j=1

E{N2(t1,N1(j∆t)) · [N1(j∆t) − N1(t2,N2(j∆t))]}
︸ ︷︷ ︸

O(n2), as shown in below

(69)

+ 2σ2
1,eσ

2
2,e

n∑

j=1

n∑

s=j+1

E
{

N2(t1,N1(j∆t)) · [N1(j∆t) − N1(t2,N2(j∆t))] · I{N2(s∆t) − N2(j∆t) = 0}
}

·

By the Cauchy-Schwartz inequality,

E{N2(t1,N1(j∆t)) · [N1(j∆t) − N1(t2,N2(j∆t))]}

≤
√

E{[N2(t1,N1(j∆t))]2} · E{[N1(j∆t) − N1(t2,N2(j∆t))]2} = O(j)

because by Lemma 4 and Lemma 5, E{[N1(j∆t) − N1(t2,N2(j∆t))]
2} is bounded uniformly in j and by

Theorem 1 in Deo, Hurvich, Soulier and Wang (2007),

E{[N2(t1,N1(j∆t))]
2} ≤ E{[N2(j∆t)]2 = {E[N2(j∆t)]}2 + var[N2(j∆t)] = (λ2j∆t)2 + O(j2dτ+1) = O(j2)

hence

σ2
1,eσ

2
2,e

n∑

j=1

E{N2(t1,N1(j∆t)) · [N1(j∆t) − N1(t2,N2(j∆t))]} = O(n2),

as indicated in (69).
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Similarly, since

n∑

j=1

n∑

s=j+1

E
{

N2(t1,N1(j∆t)) · [N1(j∆t) − N1(t2,N2(j∆t))] · I{N2(s∆t) − N2(j∆t) = 0}
}

≤
n∑

j=1

n∑

s=j+1

√
E{[N2(t1,N1(j∆t))]2} · {E[N1(j∆t) − N1(t2,N2(j∆t))]

4}1/4 · {P [N2(s∆t) − N2(j∆t) = 0]}1/4

≤
√

E{[N2(n∆t)]2}︸ ︷︷ ︸
O(n)

·
n∑

j=1

n∑

s=j+1

{E[N1(j∆t) − N1(t2,N2(j∆t))]
4

︸ ︷︷ ︸
bounded uniformly in j

}1/4 · {P [N2(s∆t) − N2(j∆t) = 0]︸ ︷︷ ︸
≤ K(s − j)m(dτ −

1
2
), ∀m ≥ 1

}1/4

and by Lemma 4 and Lemma 5, E{[N1(j∆t)−N1(t2,N2(j∆t))]
4} is bounded uniformly in j, while by (48),

P [N2(s∆t) − N2(j∆t) = 0] ≤ K(s − j)m(dτ−
1
2 ) for all m ≥ 1. We obtain that,

var(

n∑

j=1

B∗
1,jT

∗
1,j) ≤ O(n2) + Kn

n∑

j=1

n∑

s=j+1

(s − j)m(dτ−
1
2 )/4. (70)

Consider
∑n

j=1

∑n
s=j+1(s − j)m(dτ−

1
2 )/4. For any fixed integer 1 ≤ j ≤ n, we choose m > 8

1−2dτ
so

that
∑n

s=j+1(s− j)m(dτ−
1
2 )/4 is summable in s, hence

∑n
j=1

∑n
s=j+1(s− j)m(dτ−

1
2 )/4 = O(n). Therefore,

var(
∑n

j=1 B∗
1,jT

∗
1,j) = O(n2) and by Chebyshev’s inequality, we obtain that for any δ > 0,

1

n1+δ

n∑

j=1

B∗
1,jT

∗
1,j

p→ 0 ·

2) Next, we consider
∑n

j=1 B∗
1,jT

∗
2,j . Since E(B∗

1,jT
∗
2,j) = E[E(B∗

1,jT
∗
2,j |N1(·), N2(·))] = 0, we have

var(

n∑

j=1

B∗
1,jT

∗
2,j)

= E
[ n∑

j=1

n∑

s=1

B∗
1,jB

∗
1,sT

∗
2,jT

∗
2,s

]
−

{
E(

n∑

j=1

B∗
1,jT

∗
2,j)

}2

=

n∑

j=1

E(B∗
1,j

2T ∗
2,j

2) + 2

n∑

j=1

n∑

s=j+1

E(B∗
1,jB

∗
1,sT

∗
2,jT

∗
2,s)

=

n∑

j=1

E[E(B∗
1,j

2T ∗
2,j

2|N1(·), N2(·))] + 2

n∑

j=1

n∑

s=j+1

E[E(B∗
1,jB

∗
1,sT

∗
2,jT

∗
2,s|N1(·), N2(·))]

Since conditionally on N1(·) and N2(·), B∗
1,j , B

∗
1,s, T

∗
2,j and T ∗

2,j are zero-mean normals, using Isserlis’
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Formula (Isserlis, 1918), we obtain

var(

n∑

j=1

B∗
1,jT

∗
2,j)

=

n∑

j=1

E[E(B∗
1,j

2|N1(·), N2(·)) · E(T ∗
2,j

2|N1(·), N2(·))]

+ 2

n∑

j=1

n∑

s=j+1

E
[

E(B∗
1,jB

∗
1,s|N1(·), N2(·)) · E(T ∗

2,jT
∗
2,s|N1(·), N2(·))

+E(B∗
1,jT

∗
2,j |N1(·), N2(·))︸ ︷︷ ︸

0

·E(B∗
1,sT

∗
2,s|N1(·), N2(·)) + E(B∗

1,jT
∗
2,s|N1(·), N2(·))︸ ︷︷ ︸

0

·E(B∗
1,sT

∗
2,j |N1(·), N2(·))

]

=

n∑

j=1

E[E(B∗
1,j

2|N1(·), N2(·)) · E(T ∗
2,j

2|N1(·), N2(·))]

+ 2

n∑

j=1

n∑

s=j+1

E
[
E(B∗

1,jB
∗
1,s|N1(·), N2(·)) · E(T ∗

2,jT
∗
2,s|N1(·), N2(·))

]

= σ4
2,e

n∑

j=1

E{N2(t1,N1(j∆t)) · [N2(j∆t) − N2(t1,N1(j∆t))]}

+ 2σ4
2,e

n∑

j=1

n∑

s=j+1

E
{

N2(t1,N1(j∆t)) · [N2(j∆t) − N2(t1,N1(j∆t))] · I{N1(s∆t) − N1(j∆t) = 0}
}

·

which is similar to (69). Following along similar lines as for (69), we obtain

1

n1+δ

n∑

j=1

B∗
1,jT

∗
2,j

p→ 0, ∀ δ > 0

3) Similarly to 1), for
∑n

j=1 B∗
1,jT

∗
3,j =

∑n
j=1 B∗

1,jξ1,N1(j∆t)I{N1(j∆t) > 0}, we have

var(

n∑

j=1

B∗
1,jξ1,N1(j∆t)I{N1(j∆t) > 0})

≤ σ2
2,eσ

2
1,ξ

n∑

j=1

E[N2(t1,N1(j∆t))] + 2σ2
2,eσ

2
1,ξ

n∑

j=1

n∑

s=j+1

∞∑

r=0

E
[
N2(t1,N1(j∆t)) · I{N1(s∆t) − N1(j∆t) = r}

]
· |cξ1,r |

≤ σ2
2,eσ

2
1,ξ

n∑

j=1

E[N2(j∆t)] + 2σ2
2,eσ

2
1,ξ

n∑

j=1

n∑

s=j+1

∞∑

r=0

E
[
N2(j∆t) · I{N1(s∆t) − N1(j∆t) = r}

]
· |cξ1,r |

≤ σ2
2,eσ

2
1,ξλ2∆t

n(n + 1)

2
+ 2σ2

2,eσ
2
1,ξ

n∑

j=1

n∑

s=j+1

∞∑

r=0

√
E{[N2(j∆t)]2} · P [N1(s∆t) − N1(j∆t) = r] · |cξ1,r |

≤ σ2
2,eσ

2
1,ξλ2∆t

n(n + 1)

2
+ 2σ2

2,eσ
2
1,ξ

√
E{[N2(n∆t)]2}︸ ︷︷ ︸

O(n)

·
n∑

j=1

n∑

s=j+1

∞∑

r=0

√
P [N1(s∆t) − N1(j∆t) ≤ r] · |cξ1,r |·
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Since

∞∑

r=0

√
P [N1(s∆t) − N1(j∆t) ≤ r] · |cξ1,r |

≤
∞∑

r=0

|cξ1,r |
√

E|Z1(s − j) − r(s − j)−
1
2−dτ |m

λm
1 (s − j)m( 1

2−dτ )

≤ (s − j)
m
2 (dτ−

1
2 ) · Cm

∞∑

r=0

e−Kξ1
r
[
1 + r

m
2 (s − j)

m
2 (− 1

2−dτ )
]

= O
(
(s − j)

m
2 (dτ−

1
2 )

)

we can choose m sufficiently large so that
∑n

s=j+1

∑∞
r=0

√
P [N1(s∆t) − N1(j∆t) ≤ r] · |cξ1,r | is summable

in s. Hence

√
E{[N2(n∆t)]2}︸ ︷︷ ︸

O(n)

·
n∑

j=1

n∑

s=j+1

∞∑

r=0

√
P [N1(s∆t) − N1(j∆t) ≤ r]

︸ ︷︷ ︸
summable in s

·|cξ1,r | = O(n2) ·

Therefore, var(
∑n

j=1 B∗
1,jξ1,N1(j∆t)) = O(n2), and

1

n1+δ

n∑

j=1

B∗
1,jT

∗
3,j

p→ 0, ∀ δ > 0

using Chebyshev’s inequality.

By similar arguments for
∑n

j=1 B∗
1,jT

∗
3,j , we obtain that ∀ δ > 0

1

n1+δ

n∑

j=1

B∗
1,jTi,j

p→ 0, i = 4, 5, 6.

4) The proof for
∑n

j=1 B∗
3,jTi,j , (i = 1, . . . , 6) follows along similar lines as for

∑n
j=1 B∗

1,jTi,j , (i =

1, . . . , 6), since B∗
3,j and B∗

1,j are essentially the same since one is for Asset 1 and the other is for Asset

2. Thus, ∀ δ > 0

1

n1+δ

n∑

j=1

B∗
3,jT

∗
i,j

p→ 0, i = 1, . . . , 6.

5) The remaining terms
∑n

j=1 B∗
i,jT

∗
k,j , (i = 2, 4, 5) and (k = 1, . . . , 6) are all Op(n), as can easily be

shown by using the Cauchy-Schwartz inequality and Chebyshev’s inequality. For example:
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5.1) We have
n∑

j=1

B∗
2,jT

∗
1,j ≤

√√√√
n∑

j=1

B∗
2,j

2 ·
n∑

j=1

T ∗
1,j

2 = Op(n)

since by Chebyshev’s inequality, for any ǫ > 0, we can choose M >
σ2
2,eC̃2

ǫ , so that

P
( 1

n

n∑

j=1

B∗
2,j

2 > M
)
≤

E(
∑n

j=1 B∗
2,j

2)

nM
=

∑n
j=1 var(B∗

2,j)

nM
=

σ2
2,eC̃2

M
< ǫ

and similarly
∑n

j=1 T ∗
1,j

2 = Op(n).

5.2) We have
n∑

j=1

B∗
2,jT

∗
2,j =

n∑

j=1

B∗
2,j

2 = Op(n).

Therefore, ∀ δ > 0

1

n1+δ

n∑

j=1

B∗
i,jT

∗
k,j

p→ 0, i = 2, 4, 5 and k = 1, . . . , 6.

6) Overall, when dη = −1

1

n1+δ

n∑

j=1

BjTj
p→ 0 (71)

for any δ > 0.

Furthermore, the proof for (60) in the standard cointegration case is identical to that for the fractional

cointegration case, except that here we have var(
∑Ni(t)

k=1 ηi,k) ≤ 2σ2
i,ξ, (i = 1, 2), which does not increase

with t. (We still have the telescope sum even if ξi is not i.i.d. and the variance of the partial sum is still

some constant.) This, together with (71), gives that

n1−δ(θ̂ − θ)
p→ 0.

Case 2: strong fractional cointegration, dη ∈ (−1,− 1
2 ).

Following along the same lines as the proof of Case 1, we can show that, the convergence rate of θ̂ is

arbitrarily close to
√

n, using the fact that the variance of the partial sums of the microstructure noise is

a constant and not increasing with time. ¤
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