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Cutting a Pie Is Not a Piece of Cake 
Julius B. Barbanel, Steven J. Brams, and Walter Stromquist 

 
We dedicate this paper to the memory of David Gale. 

 
1. INTRODUCTION.  

 

The general problem of fair division and the specific problem of cutting a cake fairly 

have received much attention in recent years (for overviews, see [1], [2], [3], [5], [6], 

[10]). Cutting a pie into wedge-shaped sectors has received far less attention, though it 

would seem that the connection between cake-cutting and pie-cutting is close ([4], [14]).  

Roughly speaking, if a cake is represented by a line segment, then it becomes a pie when 

its endpoints are connected to form a circle.  Pie-cutting might be applied to the division 

of an island’s shoreline into connected lots, or of a daily cycle into “on-call” periods.   

 

Suppose each of n players attributes values to pieces of cake or to sectors of pie. We ask 

whether it is always possible to divide a cake into n connected pieces with parallel, 

vertical cuts, or a pie into n sectors with radial cuts from the center, and assign one piece 

or one sector to each player in a way that is “envy-free,” whereby each player thinks he 

or she receives at least a tied-for-largest portion and so does not envy any other player.  If 

so, can we arrange that the resulting envy-free allocation is “undominated,” meaning that 

there is no other allocation that is better for at least one player and not worse for the other 

players?  These questions were posed by David Gale ([8]) about fifteen years ago.  While 

he gave an affirmative answer for cakes (assuming a strong kind of continuity), he asked 

whether envy-free, undominated allocations are also possible for pies. 

 

We begin by discussing cake-cutting in Section 2, where we present Gale’s result and 

then show that when there are three or more players, an envy-free allocation of a cake 

may fail to be undominated unless this strong version of continuity is assumed.  (This 

assumption is implicit, but not explicit, in Gale’s result.)  Even with this assumption, 

however, we show in Section 3 (again for three or more players) that there may be no 

such allocation for a pie, which makes pie-cutting harder—not a piece of cake.  We 

extend our results for pie-cutting in Sections 4 and 5 and draw some conclusions in 

Section 6, ending with two open questions. 

 

To make the questions we pose precise, we introduce some mathematical formalism.   

We represent a cake by the half-open interval [0, 1), and we represent pieces of the cake 

by subintervals [α,β) with 0≤α≤β≤1.  Let’s deem a pie mathematically equivalent to the 

circle S
1
 = R / Z or, equivalently, to the interval [0,1] with its endpoints identified.  (It 

will sometimes be more convenient for us to consider the pie to be some other interval.)  

We wish to introduce notation for sectors of the pie.  For any α and β with 0≤α≤1 and 

α≤β≤α+1, we let [a,β) denote the sector from α to β, with the value of β being 

interpreted mod 1.  Thus, for example, [1/3,2/3) = {x∈S
1
: 1/3≤x<2/3} and [2/3,4/3) = 

{x∈S
1
: 2/3≤x<4/3} = {x∈S

1
: 2/3≤x<1}∪{x∈S

1
: 0≤x<1/3}.  We note that for any α, [α,α) 

denotes the empty sector and [α,α+1) denotes the entire pie, and the complement of the 
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sector [α,β) is the sector [β,α+1) if β≤1, and  [β-1,α) if β>1.  For ease of notation, we 

will always use [β,α+1) to denote the complement of [α,β), even if β>1. 

 

In order to assess the values of pieces of cake or sectors of pie, let’s assume that player i 

uses a finitely additive measure vi, so that vi(S) is the value of piece S to player i.  If 

S=[α,β), then we write vi(S)=vi(α,β).  We always assume that every measure vi is 

continuous as a function of α and β.  This corresponds to the intuitive notion that, as one 

endpoint of some sector moves continuously through the interval [0,1), each player views 

the value of that sector as changing continuously.  We also assume that every measure 

assigns value 1 to the whole cake or to the whole pie.  It is understood that different 

players may operate with different measures. 

 

We say that players’ measures are absolutely continuous with respect to one another if, 

whenever one player assigns value 0 to a particular piece of a cake or to a sector of a pie, 

all players do so.  We do not always make this assumption, but when we do, we might as 

well contract to a point each piece or sector to which all the players assign value 0, so 

there is no piece or sector of positive length to which any player assigns value 0.  

 

To state Gale’s question, let’s call an allocation of pieces of a cake or sectors of a pie 

among players 

 

• envy-free if no player prefers another piece or sector to his or her own; 

 

• undominated  if  no other allocation gives each player at least as much value 

according to his or her measure as he or she had in the original allocation, and 

gives one player strictly more value. 

 

If the players’ measures are absolutely continuous with respect to one another, then we 

can give a stronger definition of “undominated.”  An allocation is undominated if and 

only if no other allocation gives every player strictly more value according to his or her 

measure than he or she had in the original allocation.  (If one player receives strictly more 

value, the absolute continuity of the measures with respect to one another allows that 

player to “spread” some of its value to all the other players to make a new allocation that 

gives each player a slightly larger piece.)  Without assuming that the measures are 

absolutely continuous with respect to one another, this strengthening does not work. 

 

We emphasize that “undominated” here means “undominated with respect to other 

allocations into connected pieces (for cakes) or sectors (for pies), one per player,” which 

are the only types of allocations we consider in this paper. It is certainly possible that an 

allocation can be dominated by an allocation that assigns to some player disjoint pieces or 

sectors. 

 

Gale’s query ([8]) is simple: Does there always exist an envy-free and undominated 

allocation of a cake or pie? We answer this question for cakes in Section 2 and for pies in 

later sections. 

 

For two players, the answer to Gale’s question with respect to cake and with respect to 

pie is affirmative.  We prove this for cake in Section 2 and for pie in Section 4.  
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For three or more players, the answer to Gale’s question is: 

 

• affirmative for cake, if the players’ measures are absolutely continuous with 

respect to one another.  This result follows from Gale’s result, and we present 

it in Section 2. 

 

• negative for cake, if we do not require that the players’ measures be absolutely 

continuous with respect to one another.  We give examples in Section 2 for 

different cases with three or more players. 

 

• negative for pie, regardless of any assumption about the absolute continuity of 

the players’ measures with respect to one another.  We give examples in 

Section 3 for all cases with three or more players. 

 

While our main focus will be on the existence of allocations that are envy-free and 

undominated, we shall also consider the existence of allocations that are equitable:  an 

allocation is equitable if all players assign exactly the same value to the pieces or sectors 

they receive (and so no player envies another’s “degree of happiness”). 

 

Finding procedures, sometimes only approximate ([13]), for producing certain desirable 

allocations—as opposed to merely demonstrating that such allocations exist—is a central 

concern in the fair-division literature. In Section 5 we present two “moving-knife” 

procedures for pie-cutting. 

 

 

2  CAKE-CUTTING.   

 

In this section we cut cakes.  Our starting point is Gale's theorem [8] that when players’ 

measures are absolutely continuous with respect to one another, every envy-free 

allocation is also undominated.  This result, combined with well-known existence results 

for envy-freeness, tells us that if the players’ measures are absolutely continuous with 

respect to one another, then there exists an allocation that is both envy free and 

undominated.  

 

Theorem 2.1   

a. (Gale [8]).  Any envy-free allocation of a cake among two or more players whose 

measures are absolutely continuous with respect to one another is also 

undominated. 

b. For two or more players and any cake and corresponding measures, if the 

measures are absolutely continuous with respect to one another, then there exists 

an allocation that is envy-free and undominated. 

 

 

Proof.  For part a, let <S1,S2,…,Sn> be an envy-free allocation (where, for each 

i=1,2,…,n, player i receives piece Si), and let <T1,T2,…,Tn>  be any other allocation.  If 

<T1,T2,…,Tn>  consists of the same intervals as <S1,S2,…,Sn>  but allocated to different 

players, then it is impossible that vi(Ti)> vi(Si) for any i  (where vi denotes player i's 
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measure).  This is because Ti is identical to some Sj, and vi(Sj)≤ vi(Si) by envy-freeness.  

Therefore <T1,T2,…,Tn> does not dominate <S1,S2,…,Sn>. 

 

Now suppose that the intervals of <T1,T2,…,Tn> differ from the intervals of 

<S1,S2,…,Sn>.  In this case, some interval of <T1,T2,…,Tn> must be strictly contained in 

some interval of <S1,S2,…,Sn>.  (This statement is false for pies!)  Suppose that Tj⊆Si 

with Tj≠Si. Now vj(Tj)< vj(Si) by the absolute continuity of the measures with respect to 

one another, and vj(Si)≤vj(Sj) by envy-freeness.  It follows that vj(Tj)< vj(Sj), and hence the 

allocation <T1,T2,…,Tn> does not dominate the allocation <S1,S2,…,Sn>.            

 

Part b follows from part a and the well-known fact (see, for example [11], [13], and 

references therein) that, in this context, envy-free allocations always exist.   

 

 

The assumption that the players’ measures are absolutely continuous with respect to one 

another is necessary for Gale's theorem. Envy-free allocations exist in any case, but if the 

measures are not absolutely continuous with respect to one another, then they need not be 

undominated.  

 

Theorem 2.2.  For three or more players with measures that are not absolutely 

continuous with respect to one another, there may not exist an allocation that is envy-free 

and undominated. 

 

Proof.  First suppose that there are three players, and let the cake be the interval [0,1).  

Consider measures for players A, B, C as follows (where we observe that the 0 entry for 

player A shows that players’ measures are not absolutely continuous with respect to one 

another): 

 
 [0,1/6) [1/6,1/3) [1/3,1) 

Player A 
 

1

3
 0 

 

2

3
 

Player B 
 

1

6
 

 

1

6
 

 

2

3
 

Player C 
 

1

6
 

 

1

6
 

 

2

3
 

 

 

Each player's measure is uniform on each of the three segments shown.  For example, 

vA(0,1/12), vB(0,1/12), and vC(0,1/12) are 1/6, 1/12, and 1/12, respectively.  Note that B’s 

and C’s  measures are uniform on the entire cake, and that all of the measures are the 

same on [1/3,1) 

 

Consider an allocation <SA,SB,SC>. We will show that <SA,SB,SC> is not both envy-free 

and undominated.   

 

First note that for <SA,SB,SC> to be envy-free, we must have vi(Si)≥1/3 for each i =A,B,C.  

That is, each player must receive at least 1/3 according to its own measure. 

 

Now suppose that player A receives the leftmost piece: SA=[0,x) for some x .  If x>1/3, 

then there is not enough cake left over for B and C to have at least 1/3 each.  If x<1/3, 
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then B and C must divide the remainder of the cake equally in order that the allocation be 

envy-free; if, say, C receives the rightmost piece, then vA(SA)≤1/3, but vA(SC) = (1-x)/2 

>1/3, again violating envy-freeness.  If x=1/3, then the pieces are [0,1/3), [1/3,2/3), and 

[2/3,1).  This allocation is envy-free, but it is dominated by the allocation <TA,TB,TC> 

where TA=[0,1/6), TB=[1/6,7/12), and TC=[7/12,1), since vA(SA)=1/3, vB(SB)=1/3, and 

vC(SC)=1/3, but vA(TA)=1/3, vB(TB)=5/12, and vC(TC)=5/12. 

 

If some other player has the leftmost piece, then again envy-freeness requires that the 

pieces be [0,1/3), [1/3,2/3), and [2/3,1), and again the allocation is dominated by the one 

given above. 

 

If there are n players for some n>3, the same approach works, with the players’ measures 

given by the following table: 

 

 
 [0,1/2n) [1/2n,1/n) [1/n,1) 

Player A 
  

1

n
 0 

  

n!1

n
 

All other 

players   

1

2n
 

  

1

2n
 

  

n!1

n
 

 

 

The proof is analogous to that for three players.               

 

The case of two players is excluded from the preceding theorem, and indeed it is special.   

 

Theorem 2.3. For two players and any cake and corresponding measures,  

a. there exists an allocation that is both envy-free and undominated; 

b. there exists an allocation that is both envy-free and equitable; and 

c. if the measures are absolutely continuous with respect to one another, then 

there exists such an allocation that is envy-free, undominated, and equitable. 

 

Proof.  Choose x so that vA(0,x) = vB(x,1).  We can always find such an x, because when 

x=0, vA(0,x) < vB(x,1), and when x=1, the reverse inequality holds.  Continuity and the 

intermediate value theorem then guarantee that for some x, vA(0,x) = vB(x,1).  Giving one 

of these pieces to each player (and denoting player A’s piece by SA and player B’s piece 

by SB), we can assume that vA(SA) = vB(SB) ≥ 1/2, because if not we can simply exchange 

pieces to make this true.  This establishes part b.  Part c then follows from Theorem 2.1a. 

 

For part a, we note that if the allocation <SA,SB> above is not undominated, then Theorem 

2.1a implies that the players’ measures are not absolutely continuous with respect to one 

another.  In particular, if vA(SA) = vB(SB) > 1/2, then it must be possible to move x to the 

left or to the right some positive distance and have one player’s valuation of its piece 

increase while the other player’s valuation of its piece does not change.  If vA(SA) = 

vB(SB) = 1/2, then either the move just described is possible, or else it is possible after the 

players exchange pieces.  In either case (after exchanging pieces if necessary), if we 

move x from its original position so as to produce the greatest increase in one player’s 

valuation of its piece while not changing the other player’s valuation of its piece, then the 

resulting allocation will be envy-free and undominated.  This establishes part a.              
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For two players with measures that are not absolutely continuous with respect to one 

another, the methods used in the proof of Theorem 2.3 make it clear that 

• an envy-free and undominated allocation may fail to be equitable,  

• an envy-free and equitable allocation may fail to be undominated, and 

• there may be no allocation that is both undominated and equitable. 

 

 

3  PIE-CUTTING:  THREE OR MORE PLAYERS.   

 

In this section we show that when a pie is to be divided among three or more players, it 

may be impossible to find an allocation that is both envy-free and undominated, or one 

that is both envy-free and equitable.  But one that is both equitable and undominated 

always exists.  These results hold even if the players' measures are absolutely continuous 

with respect to one another. 

 

Theorem 3.1.  For three or more players, there exist a pie and corresponding measures 

for which no allocation is envy-free and undominated. 

 

Proof.  We give an example involving measures that are nearly uniform, but with very 

fine adjustments.  We show that with these measures, no envy-free, undominated 

allocation is possible.  

 

Since the measures are nearly uniform, it is easy to find allocations of the pie that are 

almost envy-free and almost undominated.  We don’t know whether it is possible to find 

examples in which the discrepancies are much larger.  Another example for the case of n 

= 3 is given in [12], but the measures are still nearly uniform and the discrepancies are 

still very small. 

 

Fix n ≥ 3 and label the players 1,2,…,n.  For this proof, we represent the pie as the 

interval  [0,n], with its endpoints identified.  We also relax the requirement that each 

player’s valuation of the entire pie be 1.  (The requirement could be restored, at the cost 

of complicating our calculations, by rescaling our valuations.)  We specify two constants 

for use throughout this section:  C = n
-8

,  and  ε = n
-16

.   

 

 

      0                                            1                                            2                                         …                                                                                    n 

 

Figure 1.  With these measures, no envy-free and undominated division is 

possible. 

 

 

1 

+C 
–ε 

 –C +C –C 
+ε 

  –C 
+ε 

+C –C  +C 
–ε 

                  

2 
                   +C           

3 
                         +C     

4 
 +C                             

5 
       +C                       
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Figure 1 illustrates the players’ measures.  For  i = 2, …, n,  define the  ith  player’s 

window to be the interval 
  

i ! 7

6
,i + 10

6
"# ) .  The endpoints are defined mod n, so the last two 

windows actually end at 4
6

 and 10

6
. Define the first player’s window to be  [0,2).  The 

windows are the white spaces in Figure 1. 

 

With certain exceptions, the value of a piece to a player is 

 

• 1 per unit length inside the player’s window, and 

• 1 – n
-4

  per unit length outside the player’s window. 

 

The exceptions are as follows:   

 

For i = 2,…,n, player i assigns an extra value of  C = n
-8

   to the 

segment
  
[i + 7

6
,i + 8

6
) , spread uniformly over that interval.  We call this interval the 

player’s bonus cell. 

 

Player 1 has several positive and negative adjustments: 

• +C-ε,, uniformly over 
 
[0, 1

6
)  

• –C, uniformly over 
 
[ 2

6
, 3

6
)  

• +C,  uniformly over 3

6
, 4
6

!" )  
• –C+ε, uniformly over 4

6
, 5
6

!" )  
• –C+ε, uniformly over 7

6
, 8
6

!" )  

• +C, uniformly over 8

6
, 9
6

!" )  

• –C, uniformly over 9

6
, 10
6

!" )  

• +C-ε,,  uniformly over 11

6
,2!" )  

 

The adjustments are in addition to the normal value of 1 per unit length.  For example, 

the actual value of the segment 0, 1
6

!" )  to player 1 is 1

6
+ C ! " , uniformly spread over the 

interval.  We note that the players’ measures are absolutely continuous with respect to 

one another. 

 

By way of contradiction, suppose we have found an allocation <S1,S2,…,Sn>  that is both 

envy-free and undominated.  As usual, Si is the piece assigned to the ith player, and vi(Si) 

is player i’s valuation of his or her own piece.  By the values vector we mean the vector 

<v1(S1), …, vn(Sn)>, and by the total value of an allocation we mean the sum 

v1(S1)+…+vn(Sn).  We write di  for the length of  Si. 

 

We first show that the pieces must have a certain form.  Each player’s piece must be 

(mostly) within the player’s window and have length (about) 1, and the pieces must be in 

order around the pie; that is, Si+1 is always immediately to the right of Si.  We make this 

precise in Lemmas 1 through 5. 
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Lemma 1.  Each piece has both value and length greater than 1-n
-4

.  That is, for each i, 

we have di > 1-n
-4

 and vi(Si) > 1-n
-4

.  It follows that the total length L of any k 

consecutive pieces must satisfy k-n
-3

 < L < k+n
-3

. 

 

Proof.  Player 1’s valuation of the entire pie is v1([0,n]) = n–(n–2)(n
-4

) = n-n
-3

+2n
-4

.  

Player 1’s piece must have value v1(S1) ≥
v1 [(0,n)]

n
= 1-n

-4
+2n

-5
, or else some other player’s 

piece would have greater value than S1 by player 1’s measure.  No piece can have value 

more than C=n
-8

 greater than its length, so both the value and the length must be greater 

than 1-n
-4

.  The same reasoning applies to players 2, …, n, whose valuations of the entire 

pie are slightly larger.                          

 

Lemma 2.  The total value satisfies v1(S1) + … + vn(Sn)  ≥  n. 

 

Proof:  This follows from the assumption that the allocation is undominated.  Suppose by 

way of contradiction that v1(S1)+…+vn(Sn) < n.  Define a new allocation <T1,…,Tn> by 

starting at 0 and making each piece Ti have length vi(Si): 

 

 T1 = [0, v1(S1) ) 

and 

 Ti = [v1(S1) + … + vi-1(Si-1),  v1(S1) + … + vi(Si) ) 

 

for each i, except that to avoid wasting any of the pie we extend Tn to 

 

 Tn = [v1(S1) + … + vn-1(Sn-1),  1 ). 

 

It follows from Lemma 1 that each Ti is within player i’s window and avoids bonus cells 

(except for player 1, whose adjustments add to 0).  So vi(Ti) is equal to the length of Ti, 

and in each case that means that  vi(Ti) = vi(Si), except that Tn is longer, so vn(Tn) > vn(Sn),  

and <T1,T2,…,Tn>  dominates <S1,S2,…,Sn>.                       

 

Lemma 3.  If any players’ pieces include parts outside of the players’ windows, then the 

total length of these parts cannot exceed n
-3

. 

 

Proof.  Define the excess value of each piece Si to be vi(Si) minus di, the length of Si.  

From Lemma 2, the sum of the excess values must be at least 0.  But no piece can 

contribute excess value greater than C = n
-8

.  Parts outside the players’ windows 

contribute an excess of –n
-4

 per unit length, so the total of all these lengths cannot exceed   

n
-3

.                             

 

Lemma 4.  The players’ pieces are in order, with Si+1 immediately to the right of Si  for 

each  i.   

 

Proof.  The ordering is forced by the arrangement of the windows.             

 

Lemma 5.  For each i = 2, …,n, player i’s  piece (i.e., Si) cannot include any part of 

player  i’s  bonus cell. 
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Proof.  Lemma 1 implies that the pieces have length about 1, and hence they have about 

the same relative position within the players’ windows.  If player i’s piece includes a 

bonus cell, then player 1’s piece is forced to extend too far outside player 1’s window.  

 

We are now ready to isolate the possibilities for <S1, …, Sn> and to eliminate them one 

by one.   We do this in Lemmas 6 through 9.  We recall that, by assumption, 

<S1,S2,…,Sn> is envy-free and undominated. 

 

Lemma 6.  S1 must have one of these forms: 

 

• [0, x), or 

• [y, 2), or 

• 
1

2
+ x, 3

2
+ y!" ) , where  |x| + |y| ≤ 

 

1

3
 n

-8
. 

 

Proof.  From Lemma 5 we know that no other player’s piece has value greater than its 

length.  From Lemma 2, the values must sum to at least n.  This means that v1(S1) must be 

at least equal to the length of S1.  Equivalently, the sum of the adjustments that influence 

v1(S1)  must be at least 0.  The cases listed are the only possibilities. 

 

In the third case, the piece 1

2
, 3
2

!" )  has excess value +2ε, and moving either boundary by 

an amount t reduces that excess by  6tC = 6tn
-8

.  Therefore, if the piece is to have excess 

at least 0, we must have  6tn
-8

 ≤ 2ε = 2n
-16

.  Therefore  t ≤ 
 

1

3  
n

-8
.             

 

Lemma 7.  S1 ≠ [0, 1) and S1 ≠ [1, 2). 

 

Proof.  If S1=[0,1) or S1=[1,2), then envy-freeness demands that each piece have length 1.  

Then, the values vector is  <v1(S1),…,vn(Sn)> = <1,1,…,1>, and the allocation is 

dominated by the allocation in which T1 = [1/2, 3/2) and all pieces have length 1, which 

has values vector <v1(T1),…,vn(Tn)> = < 1+2ε, 1, …, 1>.  This contradicts our assumption 

that <S1,S2,…,Sn> is undominated.              

 

Lemma 8.  S1 ≠ [0, x) for any x≠1 and S1 ≠ (y, 2] for any y≠1. 

 

Proof.  Let S1 = [0, x).  (The other case is symmetrical.)  As usual, let di denote the length 

of piece Si.  For each i = 2,…,n-1,  both  Si+1  and  Si  are within player i’s window, so the 

envy-freeness requirement vi(Si+1)  ≤  vi(Si)  forces  di+1 ≤ di.  The same reasoning for 

player n shows that d1 ≤ dn, so we have ultimately,  d1 ≤ dn ≤ … ≤ d2.  Since x≠1, the 

pieces are not all the same length, and hence we must have d1 < 1 < d2.   

 

We will show that v1(S2) > v1(S1), contradicting the envy-freeness of <S1,S2,…,Sn>.  It is 

easy to check that  v1(S1) = d1 < 1.  But it is not necessarily the case that v1(S2) = d2, since 

the right end of S2 might extend beyond player 1’s window, and even if it does not, the 

value v1(S2)  is affected by player 1’s adjustments.  We must therefore do some 

computing, using the fact that player 1’s value just to the left of 2 is  1+6(C-ε)  per unit 

length.  Therefore: 

 

  v1(S2) =   v1( d1, d1+d2 ) 
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    >   v1( d1, d1+1 ) 

   =    v1( 0, 2 ) – v1( 0, d1 ) – v1( d1+1, 2 ) 

   =    2 – d1 – (2 – (d1+1)) (1+6(C-ε)) 

   =    1 + (1–d1) (6(C-ε)) 

   >    1 

>    v1(S1).                

 

Lemma 9.  S1 ≠ 1

2
+ x, 3

2
+ y!" )  for any x and y with |x| + |y| ≤ 

 

1

3
 n

-8
. 

 

Proof.  Suppose S1 = 1

2
+ x, 3

2
+ y!" )  where |x| + |y| ≤ 

 

1

3
n

-8
.  For each  i = 2, …,n-1,  both  

Si+1  and  Si  are within player  i’s  window, and  Si+1  includes player  i’s  bonus cell.  

Envy-freeness forces 

 

  di+1 + C ≤ di 

 

for each such i, and the same reasoning for player  n  forces  d1+C ≤ dn.  We calculate: 

 

 d1 ≥ d1 

 dn  ≥   d1 + C 

 dn-1 ≥   d1 + 2C 

  … 

 d2 ≥   d1 + (n-1) C. 

 

The sum of the lengths is n, so adding these inequalities gives 

 

  
n ! nd

1
+

n(n"1)

2
#
$

%
&C ,  

or 

 

  
d

1
! 1"

(n"1)

2
C ! 1" C = 1" n

"8 . 

 

But 
  
1! n

!8
< 1! 1

3
n
!8
" d

1
, which implies that d1 < d1, a contradiction.            

 

 

We have eliminated all of the possibilities for <S1, …, Sn>, and the theorem follows.      
 

 

Theorem 3.2.  For three or more players, there exists a pie and corresponding measures 

for which no allocation is envy-free and equitable. 

 

Proof.  First suppose that there are three players, and let the pie be the interval [0,6], with 

its endpoints identified.  Consider measures for players A, B, and C as follows: 

 
 [0,1) [1,2) [2,3) [3,4) [4,5) [5,6) 

Player A 
 

1

6
 

 

1

6
 

 

1

6
 

 

1

6
 

 

1

6
 

 

1

6
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Player B 
 

7

36
 

 

1

36
 

 

7

36
 

 

7

36
 

 

7

36
 

 

7

36
 

Player C 

 

7

36
  

7

36
 

 

7

36
 

 

7

36
 

 

1

36
 

 

7

36
 

 

 

Each player's measure is uniform on each of the six segments shown.  Suppose, by way 

of contradiction, that <SA,SB,SC> is an allocation that is envy-free and equitable.   

 

It will be convenient to refer to the zones of players B and C as the connected segments 

of pie of length 5 to which that player assigns value 35/36.  Thus, for example, Player B’s 

zone is the segment [0,1)∪[2,6).  (This is a connected segment, since the points 0 and 6 

are identified.) 

 

Consider Player A’s piece, SA.  We claim that this piece cannot be a subset of the zone of 

one of the other players.  Suppose, for example, that SA is a subset of Player B’s zone.  

Then vB(SA) > vA(SA).  But equitability demands that vA(SA) = vB(SB).  Hence, vB(SA) > 

vB(SB).  This contradicts the envy-freeness of the allocation, and thus SA cannot be a 

subset of the zone of Player B or C.  We note that any segment of length at most 2 is a 

subset of the zone of Player B or C, so SA must have length greater than 2.   

 

Any segment of length greater than 2 must include a segment of length at least 2 within 

either Player B’s zone or Player C’s zone (or both).  Assume, without loss of generality, 

that SA includes a segment of length at least 2 within Player B’s zone.  Then vB(SA) ≥ 

(2)(7/36) = 7/18.  But envy-freeness implies that vB(SB) ≥ vB(SA), and hence vB(SB) ≥ 

7/18.  The equitability of the allocation tells us that vC(SC) ≥ 7/18. 

 

Finally, we observe that vB(SB) ≥ 7/18 implies that SB has length at least 2, and vC(SC) ≥ 

7/18 implies that SC has length at least 2.  We have already shown that SA has length 

greater than 2.  This is a contradiction, since the pie has length 6.  We conclude that there 

is no allocation of this pie that is envy-free and equitable. 

 

This result generalizes to more than three players in a natural way.  For n players, we let 

the pie be the interval [0,n(n-1)], and assign measures to the players in a manner entirely 

analogous to the above.  For four players, A, B, C, and D, the measures would be as 

follows: 

 
 [0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9) [9,10) [10,11) [11,12) 

Player A 
 

1

12
 

 

1

12
 

 

1

12
 

 

1

12
 

 

1

12
 

 

1

12
 

 

1

12
 

 

1

12
 

 

1

12
 

 

1

12
 

 

1

12
 

 

1

12
 

Player B 
 

13

144
 

 

1

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

Player C 

 

13

144
  

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

1

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

Player D 
 

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

13

144
 

 

1

144
 

 

13

144
 

 

13

144
 

 

We omit the details showing that there is no envy-free and equitable allocation of this pie, 

and the details of generalizing to more than four players.               

 

So far we have shown that for three or more players, there are pies for which there is no 
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allocation that is both (i) envy-free and undominated and (ii) envy-free and equitable.  

However, for the third pair of properties, (iii) equitable and undominated, the story is 

different: there always is such an allocation for pie (as well as for cake; see [3]), 

assuming that the measures are absolutely continuous with respect to one another.  It is 

not hard to see that there are many equitable allocations.  To show that one of these 

equitable allocations must also be undominated, one can use the continuity of the 

measures and the fact that the pie is a compact set to show that there is a “best” equitable 

allocation P (i.e., one in which the common value that players assign to their pieces in 

allocation P is at least as great as it is in any other equitable allocation). If some other 

allocation Q dominated P, then it would be possible (using the absolute continuity of the 

measures with respect to one another) to shift the boundaries in Q to find an equitable 

allocation that dominated P, thus obtaining an equitable allocation in which the common 

value to each player is bigger than in P, which is a contradiction. 

 

To illustrate an equitable and undominated allocation in the example used to prove 

Theorem 3.2 for three players (it is not unique), give Player C the first segment and 17/19 

of the second segment, Player A 2/19 of the second segment, the third and fourth 

segments, and 2/19 of the fifth segment, and Player B 17/19 of the fifth segment and the 

sixth segment.  Each player thereby obtains a value of 7/19, but this equitable allocation 

is not envy-free, because Players B and C think Player A has obtained 47/114 and so will 

envy Player A because they each perceive Player  A to  have (47/114) - (7/19) = 5/114 

more than they do.  By the same token, an envy-free and undominated allocation would 

be to give Player C the first two segments, Player A the next two, and Player B the last 

two (7/18 to A, 1/3 to B, 7/18 to C), but this allocation is obviously not equitable. 

 

 

4 PIE-CUTTING:  TWO PLAYERS.   

 

We next analyze pie-cutting for two players, for which there are more positive results 

than we found for pie-cutting when there are three or more players.  Consider two players 

A and B who receive pieces [α,β) and [β,α+1) and assign to them the values vA(α,β) and 

vB(β,α+1), respectively. The pair (vA(α,β),vB(β,α+1)) is a point in the closed unit square 

[0,1] x [0,1].  Let Ψ denote the set of points that arise this way.  Thus,  

 

 Ψ = {(vA(α,β),vB(β,α+1)) : 0≤α≤1 and α≤β≤α+1}. 

 

The points (1,0) and (0,1), for instance, are always points of Ψ.  Let 

 

 Φ = { [α,β) | 0 ≤ α ≤ 1 and α ≤ β ≤ α+1 } 

 

be the set of possible pieces for A; then Ψ  is the continuous image of Φ under the map  

[α,β)  a (vA(α,β), vB(β,α+1)).  Any point of Ψ lying on the main diagonal of the square 

corresponds to an equitable allocation, and any point in the upper-right closed quarter 

[1/2,1]×[1/2,1] corresponds to an envy-free allocation.  The construction of Ψ resembles 

the IPS construction in [1]. 
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To determine whether a point P of Ψ corresponds to an undominated allocation, draw 

horizontal and vertical axes centered at P and label the four (closed) quadrants
 
I

P
, 
 
II

P
, 

 
III

P
, and

 
IV

P
, as illustrated is Figure 2.  If the only point of Ψ contained in quadrant 

 
I

P
 

is P, then P corresponds to an undominated allocation. Our goal is to determine whether 

points with some, or all, of these properties exist. 

 

 
 

Figure 2.  Quadrants used to determine whether an allocation is undominated. 

 

The continuity of players’ measures shows that Ψ possesses four key features:  

 

Lemma 10.   

a. Ψ is closed. 

b. Ψ is path connected. 

c. Ψ is symmetric with respect to the point (1/2,1/2). 

d. If P and Q are two points of Ψ with the same x-coordinate or the same y-

coordinate, then line segment  PQ  lies in Ψ. 

 

Proof.  Parts a and b follow from the fact that Ψ is a continuous image of the compact, 

path connected set  Φ, and is therefore itself compact and path connected.  Part c follows 

from the fact that A and B can exchange pieces, and  ( vA(α,β), vB(β,α+1) ) = ( 1 – 

vA(β,α+1), 1 – vB(α,β) ). 

 

To prove d, without loss of generality, suppose P and Q have the same x-coordinate a.  

Let (a,b) be any point on the segment  PQ , and define U and V as follows: 

 

U = {α∈[0,1] : for some β with α≤β≤α+1, vA(α,β) = a and vB(β,α+1)≥b } 

V = {α∈[0,1] : for some β with α≤β≤α+1, vA(α,β) = a and vB(β,α+1)≤b} 

 

Then U and V are both closed.   
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For any α∈[0,1], vA(α,β) = a for some β with α≤β≤α+1, and thus either α∈U or α∈V.  It 

follows that U U V = [0,1]. 

 

Since P and Q are both in Ψ, we know that U≠∅ and V≠∅. The interval [0,1] cannot be 

expressed as the union of two disjoint closed sets, and hence U I V≠∅.  Choose any 

α∈U I V.  Then, for some β1, β2∈[0,1], vA(α,β1) = vA(α,β2) = a and 

vB(β1,α+1)≤b≤vB(β2,α+1).  If β1=β2, set β equal to this common value.  If β1≠β2, then the 

continuity of vB and the intermediate value theorem imply that for some β between β1 and 

β2, vB(β,α+1)=b.  In either case, we must have vA(α,β) = a.  Thus, (a,b)∈Ψ.  This 

establishes that line segment  PQ  lies in Ψ.                               

 

 

Parts b, c, and d of Lemma 10 imply that (1/2,1/2) is always a point of Ψ. It is also not 

difficult to see that (1,0) and (0,1) are the only points of Ψ that belong to the boundary of 

the unit square if, and only if, the measures of the two players are absolutely continuous 

with respect to one another. In this case, each horizontal and each vertical cross-section 

of Ψ away from (1,0) and (0,1) has endpoints in the interior of the unit square.  

 

Figure 3 illustrates four possibilities for the set Ψ.  If the players’ measures are equal, 

then Ψ consists only of the diagonal between (1,0) and (0,1), as shown in Figure 3a.  The 

Ψs in Figures 3a and 3b correspond to measures that are absolutely continuous with 

respect to one another, while the Ψs in Figures 3c and 3d correspond to measures that are 

not. 

 

 
 

Figure 3.  Some possibilities for the set Ψ. 

 

 

Curiously, for two players the result for pies is exactly the same as the result for cakes.  

(See Theorem 2.3.)  

 



 15 

 Theorem 4.1. For two players and any pie and corresponding measures,  

a. there exists an allocation that is both envy-free and undominated; 

b. there exists an allocation that is both envy-free and equitable; and 

c. if the measures are absolutely continuous with respect to one another, then 

there exists an allocation that is envy-free, undominated, and equitable. 

 

Proof. For part a, let Ψur
 denote the intersection of Ψ with the closed upper-right quarter 

of the unit square (i.e., [1/2,1]×[1/2,1]).  Then Ψur
 is a closed set.  The function 

   F : (x, y) a x + y  is a continuous function from Ψur
 to R. By the extreme value 

theorem, there exists a point P in Ψur
 for which F attains a maximal value.  Any 

allocation that corresponds to this point is envy-free and undominated.  

 

We have already shown that (1/2,1/2) is in Ψ.  This point corresponds to an allocation 

that is envy-free and equitable, and this establishes part b. 

 

Finally, for part c, assume that players’ measures are absolutely continuous with respect 

to one another, and let P be the rightmost point of Ψ on the main diagonal of the unit 

square.  Clearly, any allocation that corresponds to P is envy-free and equitable.  Our 

goal is to show that any such allocation is also undominated.  

 

Suppose, to the contrary, there is a point Q of Ψ different from P in quadrant IP.  This 

point does not lie on the main diagonal of the unit square. Assume, without loss of 

generality, that it lies above the main diagonal.  

 

Now Q = (vA(α,β),vB(β,α+1)) for some sector [α,β). Using continuity, and the fact that 

the measures are absolutely continuous with respect to one another, we can adjust the 

values of α and β to produce a second point lying in the interior of IP with x-coordinate 

larger than the x-coordinate of Q (and y-coordinate necessarily smaller). Thus, without 

loss of generality, we can assume Q has x-coordinate larger than P’s. 

  

Since Ψ is path connected, there is a path λ from (1/2,1/2) to (1,0) consisting of points 

from Ψ. As P is the rightmost point of Ψ on the diagonal, λ does not cross the main 

diagonal in IP. Consequently there is a point R on λ with the same x-coordinate as Q lying 

below the main diagonal.  That  QR  ⊆ Ψ provides a contradiction to the choice of P.  

This establishes part c and completes the proof of the theorem.              

 

It follows from the theorem that Gale’s question has an affirmative answer for pie-cutting 

involving two players, regardless of whether the measures are absolutely continuous with 

respect to one another. 

 

The final three paragraphs of this proof can be readily modified to show that when the 

measures are absolutely continuous measures with respect to one another, the rightmost 

point along any horizontal cross-section of Ψ corresponds to an undominated allocation 

of sectors, as does the topmost point of any vertical cross-section. Loosely speaking, 

every point along the upper boundary of Ψ corresponds to an undominated allocation.  

(The upper boundary might be called the “efficient frontier.”) 
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The assumption that the measures are absolutely continuous with respect to one another 

is necessary for the proof of part c of Theorem 4.1.  Suppose, for example, that B’s 

measure is uniform (that is, vB(α,β) = β-α always) but that A’s measure is concentrated 

uniformly on the subset [0, 1/4] ∪ [1/2, 3/4] (that is, vA(α,β) is twice the length of the 

intersection of [α,β) with that set).  These measures produce the set Ψ shown in Figure 

3d, in which no point corresponds to an envy-free, equitable, and undominated allocation.  

In fact (again, precisely as is the case in two-player cake division), this example 

illustrates that, in general, if the measures are not absolutely continuous with respect to 

one another, then there need not be an allocation that is both undominated and equitable. 

 

We close this section by considering a special case of pie cutting for two players.  

Suppose we insist that the two players, A and B, are allowed to cut only along a diameter 

of the pie. Construct the subset Ψd of the closed unit square given as the set of all points 

of the form (vA(α,α+1/2), vB(α+1/2,α+1)) for α∈[0,1). Then Ψd is a (possibly self-

intersecting) loop within the closed unit square, symmetric about the center of the square. 

As before, one is guaranteed allocations that are envy-free and equitable, or envy-free 

and undominated, but not all three properties. Suppose, for example, that B’s measure is 

uniform but that A prefers the first half of the pie.  Specifically, A assigns a value of 3/2 

per unit length in the interval [0, 1/2), but only 1/2 per unit length in the interval [1/2, 1). 

In this case, Ψd is the horizontal line segment between (1/4,1/2) and (3/4,1/2), and no 

point of Ψd corresponds to an allocation that is simultaneously envy-free, equitable, and 

undominated.  Note, too, that these players’ measures are absolutely continuous with 

respect to one another.  

 

 

5 PIE-CUTTING: PROCEDURAL RESULTS.   

 

Establishing the existence of an allocation with certain properties is not the same as 

producing it.  In this section we consider procedures, or algorithms, for finding desirable 

allocations of a pie.  These procedures assume that players move knives continuously, 

whereas discrete procedures assume that players make choices at discrete times.  For 

examples of each type of procedure, see [5], [10]. 

 

Moving-knife procedures were first applied to dividing a cake among n players using n – 

1 parallel, vertical cuts (the minimal number). Two minimal-cut envy-free moving-knife 

procedures for three players have been found ([2], [10]), but no minimal-cut four-player 

envy-free procedure is known.  An envy-free procedure for four players that requires up 

to five cuts—two more than the minimal number of three— is known, but it may 

necessitate that players receive disconnected pieces [2]. 

 

For pie, as we have seen, there is always an envy-free, undominated allocation for two 

players, but for three players, we may have to settle for an envy-free allocation that is 

dominated.  Next we address how to find allocations that are envy-free, undominated, or 

equitable. 

 

We present two procedures, one for two players and one for three players. The two-player 

procedure will produce an allocation that is envy-free and undominated but need not be 
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equitable, and the three-player procedure will produce an allocation that is envy-free but 

need not be either undominated or equitable. 

 

 
Two-player procedure 

 

This procedure produces an envy-free and undominated allocation for two players.  First 

assume that their measures are absolutely continuous with respect to one another.  Call 

the two players player A and player B, whom we shall refer to as “she” and “he,” 

respectively.  Player A holds two radial knives above the pie in such a way that, in her 

view, the two sectors of pie determined by these knives each have value 1/2.  She then 

rotates these knives continuously, all the way around the pie, maintaining this 1/2 value 

of the sectors until the knives return to their original positions.  After observing this 

process, player B identifies the position that, in his view, gives the maximum value to one 

of the two sectors so determined. (Ties can be broken randomly.  The continuity of the 

players’ measures, along with the extreme value theorem, guarantees that there is such a 

maximum-value sector.)  Player B takes this sector, and player A receives the other 

sector.  Call this allocation P. 

 

We claim that P is envy-free and undominated.  To see that P is envy-free, we first 

observe that player A certainly believes that her sector has value exactly 1/2, and so she 

will not envy player B.  Player B does not envy player A since, if he does, then he must 

have picked the smaller sector, rather than the larger sector, at his chosen position.  Thus, 

P is envy-free. 

 

Suppose, by way of contradiction, that some allocation Q dominates P.  Then, both 

players receive at least as much pie in allocation Q as in allocation P (in each’s own 

view), and at least one player receives strictly more.  The absolute continuity of the 

measures with respect to one another allows us to alter Q, if necessary, so as to give 

player A less pie and player B more pie, and in this way to obtain an allocation R such 

that player A receives the same value of pie (in her view) in allocation R as in allocation 

P (i.e., value 1/2), and player B receives strictly more value of the pie (in his view) in 

allocation R than in allocation P.  Then the sector that player B obtains in allocation R is 

one of the sectors that he would have seen as player A rotated the knives around the pie.  

This contradicts the fact that player B chose the largest sector that he saw. 

 

This establishes that the allocation is envy-free and undominated.  It will be equitable if 

and only if any sector of pie that player A considers to be half of the pie is also 

considered to be half of the pie by player B.  In general, of course, this will not be the 

case. 

 

Without absolute continuity, the same procedure works, but more care must be taken.  

The problem is that the location of one of A’s knives may not determine the location of 

the other one, and the procedure may not reveal all of the relevant choices to B.  To 

remedy this, we must refine the procedure.  We imagine player A moving one of the 

knives slowly around the pie, and using the other knife to maintain the 1/2-1/2 values of 

the two sectors so determined, in her view.  If the second knife comes to a sector that 

player A values at 0, player A immediately (i.e., discontinuously) moves this second 

knife to the other end of this sector, and then she continues to move both knives as 
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before.  Thus, one position of the first knife can correspond to two positions of the second 

knife, and the sectors so determined by each of these positions are possibilities from 

which player B can choose.  If both of A’s knives reach zero-value sectors at the same 

time, A must reveal to B all four extreme possibilities before proceeding.   

 

What happens if one or both players are not truthful? For example, player A could rotate 

the knives in such a way as to maintain a 1/3-2/3 balance in her view and, if player B then 

chooses the 1/3 sector, player A ends up with what she thinks is 2/3 of the pie instead of 

1/2.  But, of course, player A could also end up with 1/3 of the pie instead of 1/2.  Thus, 

we see that players can do better, or worse, by not being truthful.  What is true, however, 

is that by being truthful, each player is guaranteed a sector of size at least 1/2 (in each’s 

own view) and, hence, will not envy the other player, regardless of whether or not the 

other player is truthful.  Players who are risk-averse will presumably like this procedure, 

because it maximizes the minimum-value sectors that players A and B can ensure for 

themselves. 

 

To relate this procedure to the set Ψ in Section 4, note that the procedure moves along the 

line segment that is the intersection of the line x = 1/2 and the set Ψ.  In picking his 

largest sector, player B is identifying an allocation that corresponds to the point on the 

line segment with greatest y coordinate.  (There is a largest such point, because Ψ is a 

closed set.) 

 

We do not know whether or not there is a moving-knife procedure to produce an 

allocation that is envy-free, undominated, and equitable, even if we insist that the 

measures be absolutely continuous with respect to one another, in which case such an 

allocation is known to exist (see Theorem 4.1c). 

 

 

Three-Player Procedure 

 

This procedure produces an envy-free allocation for three players.  We call the three 

players player A, player B, and player C and refer to them as “she,” “he,” and “it,” 

respectively.  We assume that the three players’ measures are absolutely continuous with 

respect to one another.   

 

Player A rotates three radial knives continuously around the pie, maintaining what she 

believes to be 1/3-1/3-1/3 sectors.  Player B calls “stop” when he thinks two of the 

sectors are tied for largest, which must occur for at least one set of positions in the 

rotation (see below).  The players then choose sectors in the order C first, B second, and 

A third.  

 

We must show that at some point player B will think that two of the sectors are tied for 

most-valued, and that the allocation produced by this procedure is envy-free. 

 

To show that there must be at least one set of knife positions in the rotation at which 

player B thinks there are two sectors that tie for most-valued, let us call the three sectors 

determined by the beginning positions of the knives sector i, sector ii, and sector iii.  

(These sectors will change as player A rotates the knives.)  Let player B specify his most-
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valued sector at the start of the rotation.  If there is a tie, then we are done.  If not, then 

player A begins rotating the three radial knives.  We assume, without loss of generality, 

that player B’s most-valued sector at the start of the rotation is sector i, and that player A 

rotates the three knives in such a way that sector i moves toward the original position of 

sector ii.  Because, in player A’s view, each of the three sectors is 1/3 of the pie, sector i 

will eventually occupy the position of the original sector ii, which we make a requirement 

of the procedure.  At this point, sector iii occupies the original position of sector i, which 

we also make a requirement, and hence player B must think that this new sector iii is the 

largest sector.  Because, in player B’s view, sector i starts out largest and another sector 

becomes largest as the rotation proceeds, it follows from the continuity of the players’ 

measures and the intermediate value theorem that there must be a position in the rotation 

when player B views two sectors as tied for largest. 

   

To see that the procedure gives an envy-free allocation, note that the first player to 

choose, player C, can take a most-valued sector, so it will not be envious.  If player C 

takes one of player B’s tied-for-most-valued sectors, player B can take the other one; 

otherwise, player B can choose either of his two tied-for-most-valued sectors.  Because 

player A values all three sectors equally, it does not matter which sector she gets.   

 

Finally, we make two observations. First, this procedure may fail to give an allocation 

that is either undominated or equitable, just as the two-player procedure may not give an 

allocation that is equitable.  Also, like the two-player procedure, the three-player 

procedure does not rely on the players’ being truthful. In other words, if any player 

misrepresents her or his or its valuations of sectors of pie (for example, if player A moves 

the knives in such a way that the sectors are not maintained at value 1/3-1/3-1/3 in her 

view, or if player B calls “stop” at some time other than when there is a tied-for-largest 

sector in his view), it is still the case that any player that is truthful will not envy any 

other player’s portion in the resulting allocation, regardless of the truthfulness of the 

other players. 

 

 

6 CONCLUSIONS.   

 

Our results are summarized in Table 1.  In the table, “General Existence” means for any 

measures (i.e., with no assumption that the measures be absolutely continuous with 

respect to one another), and “Existence with Absolute Continuity” means that we require 

the measures be absolutely continuous with respect to one another.  We note that this 

distinction is only needed for cake, not for pie. 

 

 

 Envy-Free and Undominated Allocation for 

 Cake Pie 

Number of 

Players 

General 

Existence 

Existence with 

Abs. Cont. 

Existence with or 

without Abs. Cont. 

Two Yes 

(Thm. 2.3a) 

Yes 

(Thm. 2.1b) 

Yes 

(Thm. 4.1a) 

Three or More No 

(Thm. 2.2) 

Yes 

(Thm. 2.1b) 

No 

(Thm. 3.1) 
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Table 1. Existence of Envy-Free and Undominated Allocations. 

 

 

We close by posing two pie-cutting questions we were not able to answer.  

Open Question 1.  For two players with measures that are absolutely continuous with 

respect to one another, is there a moving-knife procedure that produces an allocation 

that is envy-free, undominated, and equitable?   

If we allow a “procedure” in which the players submit their measures to a referee, the 

referee can determine the cuts that give such an allocation, as shown in [4].  But we know 

not even an approximate procedure by which two players can, by themselves, equalize 

their shares, in each’s eyes, so as to render an envy-free and undominated allocation also 

equitable.  

 

Finally, we recall that for any pie and any number of players with measures that are 

absolutely continuous with respect to each other, there is always an allocation that is 

equitable and undominated. (See the discussion following the proof of Theorem 3.2.)  

Must there be such an allocation that is also envy-free?  Theorem 3.2 tells us that the 

answer is “no” when there are three or more players.  On the other hand, there are 

examples where there is such an allocation.  (One trivial example is when the measures 

are all the same.)  So we close by asking the following question: 

 

Open Question 2.  For three or more players with measures that are absolutely 

continuous with respect to each other, are there necessary and sufficient conditions that 

distinguish pies for which there is an envy-free, equitable, and undominated allocation 

from those in which there is not?   
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