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Third, the behavioral responses to tolls need to be understood in

light of the “critical issues” for the trucking industry as enumerated in

Top Industry Issues (5). With the significant rise in different compo-

nents of operating costs (such as fuel and insurance), the demand for

toll roads ought to be reexamined to obtain reliable revenue estimates.

BACKGROUND AND RESEARCH OBJECTIVES

At the strategic level of planning, project evaluation is a crucial first

step. Better decision making involves some key issues from the per-

spective of bondholders, practitioners, and researchers. For instance,

in regard to a proposed toll facility one should have reliable infor-

mation on expected toll revenue and costs over a specified planning

horizon. At the initial stage of planning, however, not all of this infor-

mation is available. That leads to a considerable amount of uncer-

tainty in regard to decision making. Existing models of revenue

and traffic forecast try to incorporate uncertainty through conserva-

tive assumptions on model inputs and varying them one at a time (4).

From a practical standpoint, it is better to obtain probabilistic forecasts

by including risk explicitly into the model. Obtaining simulated

distributions is a methodological advancement over sensitivity analy-

sis, whereby it is possible to consider numerous “what if” scenarios

to examine the impact of uncertainty on the variables of interest.

Although the superiority of simulation has been pointed out in the lit-

erature (4), actual applications of simulation with respect to truck toll

studies have been rare. One exception is Kawamura (6), who applies

stochastic simulation in calculating dollar benefits accrued by trucks

from congestion pricing. However, even simulated distributions

require some objective criterion to compare the risk associated with

different alternatives. Stochastic dominance is one such approach,

whereby simulated distributions can be ranked objectively in regard

to the underlying risk.

Economic and financial feasibility analysis on toll lanes, as done in

the literature, typically involves estimation of agency costs and user

benefits in regard to travel time and vehicle operating costs savings

[see, for instance, Veras et al. (7)]. Although analyses of these kinds

are conducted at the aggregate level, it is worthwhile to investigate the

issue of optimism bias by considering it as a demand-side prob-

lem because demand uncertainty is transmitted to both revenue and

traffic forecasts (4). This, in turn, requires careful attention to user

heterogeneity. For a highly fragmented industry of this kind, the

predictive capability of any study would depend on recognizing the

underlying demand characteristics and industry segmentation. It is

therefore useful to control for the demand-side variation in regard to

operational and financial characteristics (8). The existing literature

does reflect on the importance of user heterogeneity. For instance,
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Optimism bias is a consistent feature associated with truck toll forecasts,

à la Standard & Poor’s and the NCHRP synthesis reports. Given the per-

sistent problem, two major sources of this bias are explored. In partic-

ular, the ignorance of operating cost as a demand-side factor and lack

of attention to user heterogeneity are found to contribute to this bias.

To address it, stochastic dominance analysis is used to assess the risk

associated with toll revenue forecasts. For a hypothetical corridor, it is

shown that ignorance of operating cost savings can lead to upward bias

in the threshold value of time distribution. Furthermore, dominance

analysis demonstrates that there is greater risk associated with the rev-

enue forecast when demand heterogeneity is factored in. The approach

presented is general and can be applied to all toll forecasts and is not

restricted to trucks.

Surface transportation involves complex interaction between key

players including direct users, such as the trucking industry, as well

as indirect user groups, including shippers and consumers. Feasi-

bility analyses of proposed policies (say, construction of a toll road)

therefore require a thorough understanding of how these different

stakeholders view them. In this paper the trucking industry is being

considered, given its importance to the overall supply chain. This

research is motivated by a few observations.

First, in the event of inadequate resources to fund surface trans-

portation, Texas and several other states are exploring alternative

avenues. Options such as funding highways through direct user fees

and particularly truck toll lanes are therefore gaining momentum.

Second, it is important to quantify the sources of optimism bias,

which is a rather consistent feature of toll road forecasts, a la Standard

& Poor’s (1–3) and the NCHRP synthesis reports (4). One reason

behind optimism bias is overestimated truck usage. This bias could

result from a number of factors including, but not limited to, the diver-

gence between actual (ex post) and perceived level of benefits, the

differences in short- and long-term responses, industry constraints,

routing strategies adopted by the companies, and nonrecognition 

of user heterogeneity. It is worthwhile to examine these reasons

because the response of the trucking industry is a crucial factor behind

feasibility analysis of proposed toll roads.
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Yang et al. (9) examined the impact of user diversity on the prof-

itability and social welfare aspects of new toll roads. Kenneth (10)

and Kawamura (6) illustrated the importance of heterogeneity in the

value of time (VOT) in the context of value and congestion pricing.

Finally, Verhoef and Small (11) investigated the properties of vari-

ous types of public and private pricing, with user heterogeneity

represented by a continuum of VOT.

Although user heterogeneity is acknowledged as a crucial factor,

its link to the risk associated with revenue yield is not well docu-

mented. It is important to understand and incorporate the demand

uncertainty from various sources. The toll rate, travel time savings,

and user heterogeneity (usage patterns and within-group variation)

can each affect the demand for toll roads. Also, the importance of

operating cost in relation to the toll costs as a demand-side factor has

not received its due attention. This is particularly important when a

tolled route significantly affects generalized travel costs in addition

to time savings.

The principal objectives of this paper are thus threefold. First, the

demand-side effect of operating cost on VOT is demonstrated. Sec-

ond, the consequences of ignoring user heterogeneity (emanating

from operating cost differentials and demand structure) on the risk

associated with toll revenue forecasts are examined. Finally, a better

method of quantifying the risk associated with toll revenue forecasts

is presented. In doing so, stochastic dominance analysis is adopted

as a tool to aid decision making at the strategic level.

LITERATURE ON TRUCK DIVERSION

What is the evidence on responsiveness of the trucking industry to

changes in toll rates? In one of the earlier studies, McKnight et al.

(12) estimated toll elasticities for Triborough Bridge and Tunnel

Authority bridges and tunnels in New York and found elasticity of

demand varying between [−0.61, −0.29] for medium and [−0.93,

−0.27] for heavy trucks. One exception to this was the Verrazano

Narrows Bridge, in which case heavy trucks exhibited complete price

inelasticity as a result of the lack of “good substitute routes.”

For the Central Texas Turnpike System, probabilities of trucks

selecting the toll road were obtained by using market share–diversion

estimates using time–cost trade-off (13). The highly sensitive nature

of the trucking industry can be seen from the elasticities, which are

within the range of [−0.698,−0.681], depending on the time of day

considered. Likewise, the effect of toll rates on truck volumes is char-

acterized by an elasticity of −0.593 for the Ohio Turnpike (14). [The

elasticities have been computed from the traffic volumes reported in

URS Corporation and Vollmer Associates, L.L.P. (13) and Taft (14).]

Veras et al. (15), however, found that in the context of New York,

70% of the carriers did not exhibit any change in behavior after the

2001 Port Authority of New York and New Jersey toll increase.

“Customer requirements” is cited to be the underlying reason behind

this phenomenon. It is also attributable to the existing tolling culture,

whereby it is easier to pass toll increases on to the customers. This is

however not applicable for states like Texas, in which in the absence

of such a culture, contractual constraints are perceived to be more

severe.

At this point the state of the practice methodology to model diver-

sion will be reviewed. Taking utility maximization as the basic pos-

tulate, the propensity to adopt a tolled road is obtained as a function

of time–cost differentials between a tolled route and an alternative free

route. Typically estimated as a logit model, this leads to the so-called

S-shaped diversion curves [for instance NCHRP Synthesis 364 (4),

URS Corporation and Vollmer Associates (13), and Reebie Asso-

ciates (16)]. Several issues concerning this approach deserve atten-

tion. This method is often applied to obtain demand parameters 

at the aggregate level. The Central Texas Turnpike System Report,

for instance, obtains toll revenue forecasts by estimating a VOT

parameter for the entire trucking industry (13). Although toll rates

are varied by number of axles, heterogeneity in regard to willing-

ness to pay remains unheeded despite evidence from the literature

that responsiveness might vary across truck categories.

Another qualification that merits attention is the issue of bounded

rationality (17), as a result of which a user would tend to stay on the

same route unless the alternative is a great deal better. Although most

of the economic models assume rationality on the part of decision

makers [for instance Reebie Associates (16), Yalcin et al. (18), and

Knorring et al. (19)], that might not be an innocuous assumption. Users

could be bounded rational for various reasons such as complex and

unpredictable toll structures (20) or even irrational bias (14, 21). Con-

sequently, they might adopt second-best instantaneous decisions.

Bounded rationality can also lead to lags in behavioral adaptation (22),

leading to short- and long-term variation in responses. All of these

factors might give rise to additional demand-side risk, especially for

greenfield projects. Another important implication of bounded ratio-

nality is that it forces stated choice experiments to incorporate a lim-

ited set of variables, typically time savings and toll costs. Models

derived from these surveys presume perfect knowledge and short-

term preferences of the decision maker (4). This, in turn, could affect

the route diversion estimates and revenue forecasts. Bounded ratio-

nality, combined with the evidence on response variability across user

groups, does suggest that it is important to recognize which user

groups comprise the gross truck volumes for a candidate toll road.

METHODOLOGY

A methodological framework is developed here for decision making

at the strategic and planning level. This involves three distinct steps.

First, a simple model is presented to incorporate the effect of vehicle

operating cost savings on the demand side along the lines of Adkins

et al. (23). Next, simulated distributions of the uncertain variables

(VOT and toll revenue) are obtained. Finally, stochastic dominance

analysis is used to assess the risk associated with these variables. The

simulation study is based on a hypothetical corridor, much in line with

Veras et al. (7).

Cost–benefit analysis is taken to be the basic behavioral postulate

for the decision maker. In regard to benefits for the trucking industry,

the economic significance of toll lanes includes productivity gains

through time saved and potential changes in operating costs in addi-

tion to improved safety and reliability. Carriers therefore need to con-

sider vehicle operating costs in addition to time savings when making

route choices (1, 4). To help fix ideas, consider a hypothetical tolled

route (of length D mi) that saves time (Δt) as well as operating cost

(Δci) for the ith user group, however at a toll cost equal to τ. It is

assumed that cost savings include only the distance-dependent por-

tion. Thus user i, characterized by value of time vi, would be willing

to take the tolled route only when the following condition holds good:

In equilibrium, when this holds with equality, the threshold value

point for user i is given by Equation 2. [Equality is taken as a work-

ing assumption to obtain an analytical form of the threshold value.

v t c D Di i
i i iΔ Δ+ ≥ τ ( )1



Also, this threshold value is needed for evaluating the integral in

Equation 3. Because for a continuous distribution, the probability at

a single point is zero, evaluating the integral from vthreshold or some

vthreshold + � would give the same probability.]

Thus, for a toll road that involves operating cost savings, the

threshold value of time and consequently demand for toll roads

would depend on the cost savings. It is worth taking a closer look at

Equation 2. It incorporates the difference between the state of the

practice and the proposed method in imputing VOT. Going by tradi-

tion, if operating cost changes are ignored, VOT is simply a ratio of

toll cost and time savings. Therefore ignorance of operating costs and

cost heterogeneity can lead to biased estimates of VOT. To the extent

that the tolled route leads to operational cost savings (dis-savings), this

bias will be in the upward (downward) direction. This leads to the first

proposition of the paper: Proposition 1. Ignorance of operating cost

savings of the user group would lead to an upward bias in the implied

(boundary) value of time distribution. For a scenario in which oper-

ating costs are likely to be higher on the tolled route, this bias will be

in the downward direction.

The probability that value of time of a user sampled at random will

exceed a prespecified threshold level (v threshold
i ) is given by Equation 3,

which also captures the probability of diversion to the tolled route

(6, 8). The symbol ∼ is reflective of the fact that the underlying

variable is stochastic.

Thus, as pointed out by Hensher and Goodwin, the use of mean

VOT to approximate a skewed distribution would yield a biased

number of users adopting the tolled route (8). For this hypothetical

segment, the expected toll revenue (R) can now be expressed as

where Ni denotes the truck volumes in the ith user group. The scaled

revenue for a total of N (=ΣNi) trucks can thus be expressed as

Denoting the proportion of trucks in the ith group by θi, Equation 5

can be rewritten as

Given the pedagogical purpose of this paper, the number of

splits is restricted to private and for hire without any loss of gen-

erality. In principle, the splits would depend on the categorization

of corridor users, say, by number of axles and should also include

owner–operators. However, because of the dearth of VOT param-

eters for the latter, they are not being considered here. Thus for the

assumed splits, Equation 6 becomes
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This equation will be applied while simulating the (scaled) toll rev-

enue. In this formulation the revenue equation accommodates response

variability across user groups. [Equation 7 is directly comparable to

the general equation for estimating truck toll revenue, where

As a methodological advancement, this method directly incorpo-

rates the effect of (a) demand characteristics, (b) segmentation by

user groups, and (c) usage propensities. A periodwise treatment of

this equation could allow one to differentiate other factors such as

short- and longer-term variations in usage.]

In contrast, if user heterogeneity were ignored, then the expected

toll revenue from all trucks would be given by

Given these basic formulations in the background, a simulation-

based study is presented in the ensuing section.

SIMULATION AND STOCHASTIC 

DOMINANCE ANALYSIS

As noted earlier, the financial viability of a proposed toll road relies on

a host of factors. Although improved revenue forecasts do rely on bet-

ter data to capture user heterogeneity, this information may not be read-

ily available in early stages. Simulation becomes particularly useful in

this context. The risk associated with the simulated distributions of

uncertain variables can be further analyzed by using stochastic domi-

nance analysis. Typically, there are two criteria to choose from—first

and second order stochastic dominance (FSD and SSD, respectively).

Stated simply, when one distribution yields unambiguously higher

returns and realizations, then it is said to first order stochastically dom-

inate the other distribution. However, if a distribution is less risky, then

it is said to dominate the other distribution in a second order sense.

The policy implications of dominance analysis are noteworthy.

Although higher realizations are preferable to risk-averse decision

makers, they would also prefer a distribution that is less risky. It is this

ranking that can provide valuable insight while feasibility analysis is

conducted. For instance, it might be the case that even in the presence

of much uncertainty in the input variables, the risk associated with toll

revenue is within acceptable bounds to have it financed. Alternatively

a huge variability in toll revenue would indicate the possibility of

optimism bias. A priori, without making a quantitative assessment

of risk, the decision maker cannot foretell which one will occur. It

is in this sense that simulation provides analytically superior results

in comparison with simple ceteris paribus sensitivity analyses.

The two dominance criteria are used to rank the risk associated with

the state of practice vis-à-vis the proposed method outlined in this

paper. Specifically, two sets of exercises are taken up: Exercise 1—

VOT distributions are simulated from Equation 2 by incorporating

(a) only time savings and (b) both time and operating cost savings.
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The resultant simulated probability distributions are then ranked by

using the appropriate criterion (FSD or SSD) to assess the degree

of risk associated with the threshold VOT distributions. Exercise 2—

Probability distributions of toll revenue are simulated (a) with and

(b) without considering user heterogeneity by using Equations 7

and 8, respectively. In particular, the risk associated with toll revenue

is compared by assuming (a) a single VOT distribution for the entire

trucking industry and (b) separate VOT distributions for the assumed

splits (private and for hire). The basic steps for obtaining the simulated

distributions are enumerated below, followed by a detailed description

of the model inputs.

Step 1. Given that accurate prediction of toll revenue is an

extremely daunting task, the most important step is to isolate the

uncertain factors captured in Equation 2 (for threshold VOT) and

Equations 7 and 8 (for revenue).

Step 2. Workable assumptions are made with respect to each of the

uncertain variables. These are the key input variables of the model.

Step 3. Key output variables (KOV in the parlance of simulation)

are obtained as a function of the uncertain input variables.

Step 4. Simulation stage. The KOVs are simulated for a thousand

iterations, using the Latin hypercube sampling technique (by virtue of

using stratified random sampling, Latin hypercube ensures additional

accuracy at the tails in comparison with the Monte Carlo technique).

Step 5. Probability distributions of the KOVs are obtained. By

using the appropriate decision criterion (FSD or SSD), a ranking is

developed over these probability distributions.

With these fundamental principles in the background, the focus

will now be on the variables that are relevant to truck diversion.

DESCRIPTION OF VARIABLES AND INPUT DATA

For the two sets of exercises outlined above, the working assumptions

with respect to the key input variables are consolidated in Tables 1

and 2, respectively. Following the literature, VOT is specified as

log normal (6, 24), given that it is nonnegative. Although it is best to

obtain localized VOT distributions for different segments of the truck-

ing industry, one might resort to “imported parameters” from other

comparable studies (1). This would entail, however, a source of opti-

mism bias. Nevertheless, for the exploratory purpose of this paper, the

parameters are obtained from Kawamura (6). In regard to demand

variation with respect to user group, the level of disaggregation

considered here involves two kinds of splits: for hire and private.

Travel time savings (TTS) are also subject to uncertainty. As shown

in Table 1, there are two different scenarios contingent on how TTS

are modeled. The variation can be captured by assuming simple uni-

form distribution (Scenario 1) or triangular distribution (Scenario 2).

The motivation behind using two different scenarios is to check the

robustness of the rankings, discussed at length in the following section.

[As an alternative, TTS was also modeled as a Gray, Richardson,

Klose, and Schumann (GRKS) distribution, which is a two-piece

normal distribution with 50% weight below and above the midvalue

and 2.5% less than the minimum and 2.5% above the maximum. This

distribution is potentially useful when the minimum as well as maxi-

mum values are uncertain (25). The qualitative results, and in partic-

ular the dominance rankings, were similar to those reported in the

paper and therefore are not repeated for the sake of brevity.]

The use of triangular distribution can be justified on the follow-

ing grounds. First, TTS typically follow finite range continuous dis-

tribution. Second, at the strategic level of planning, when limited

information and data are available, it is difficult to specify the true

underlying distribution of the travel time saved. The triangular dis-

tribution is intuitively appealing to the planner–analyst because it

requires just three pieces of information—the minimum, modal, and

maximum values—to derive an approximate distribution (26).

The heterogeneity in regard to vehicle operating cost can be cap-

tured from the existing literature (27–29). However, because these

documents provide data at levels, it remains an important task for

the analyst to make reasonable assumptions with respect to the cost

savings. Given the exploratory purpose of this paper, heterogeneity

is introduced by drawing random numbers from an assumed range

of 10 to 25 cents per mile (the authors thank one of the reviewers for

suggesting the range of variability).

Toll rates are assumed to follow a uniform distribution within the

range of parameters specific to the trucking industry (30). Finally,

the distance of the hypothetical corridor is taken to be 50 mi.

RESULTS

For the first set of exercises enumerated above, Equation 2 is used in

generating VOT. Both the state of the practice and the proposed

methodology (of incorporating time as well as operating cost savings)

are implemented. The cumulative distribution functions (CDFs) as

shown in Figure 1 provide a succinct way of depicting and compar-

ing the risk associated with these distributions. Figures 1a and 1b

correspond to the two different scenarios pertaining to TTS. From

the CDFs it can be seen that exclusion of operating cost leads to

higher realization of VOT at each probability.

Stoplight charts, as shown in Figure 2, are insightful in comparing

two risky distributions. [Two target values (lower and upper target)

need to be specified while obtaining the stoplight charts. For the sub-

jective thresholds, these charts give the probabilities of (a) exceed-

ing the upper target (green), (b) being less than the lower target (red),

TABLE 1 Key Input Variables to Simulate Value of Time Distribution

Variable Scenario 1 Scenario 2

Toll rate ($ per mile) Uniform (0.10, 0.50) Uniform (0.10, 0.50)

Travel time savings Uniform (5, 25) Triangle (5, 10, 25)
(minutes)

Operating cost savings Uniform (0.10, 0.25) Uniform (0.10, 0.25)
($ per mile)

Distance (miles) 50 50

TABLE 2 Key Input Variables to Simulate Toll Revenue Distribution

Variable Scenario 1 Scenario 2

Toll rate ($ per mile) Uniform (0.10, 0.50) Uniform (0.10, 0.50)

Travel time savings Uniform (5, 25) Triangle (5, 10, 25)
(minutes)

Operating cost savings Uniform (0.10, 0.25) Uniform (0.10, 0.25)
($ per mile)

Distance (miles) 50 50

For hire private split θprivate ∼ uniform (0, 1) θprivate ∼ uniform (0, 1)
θfor hire =1—θprivate θfor hire =1—θprivate

VOT For hire (vfor hire) ∼ log normal (−1.187, 0.924)
private (vprivate) ∼ log normal (−1.78, 1.053)
industry (v) ∼ log normal (−1.467, 1.027)

SOURCE: Kawamura (6).
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and (c) observing values between the targets (yellow). A detailed

description is available in Richardson (25).]

The two panels correspond to the two scenarios with respect to

TTS. From Figure 2a it can be seen that by incorporating the cost

savings, there is a 15% probability of exceeding a prespecified

upper threshold (1.5) and a 35% chance of being below the lower

threshold (0.5). In contrast, ignorance of operating cost savings

leads to a 25% probability of exceeding the higher threshold, and

a 14% chance of falling short of the lower threshold. Thus the

state of practice is likely to give higher probability to higher val-

ues and at the same time lower probability to lower values. In

other words, it yields a VOT distribution that tends to underesti-

mate the revenue risk. This result remains valid for Scenario 2,

which is depicted in Figure 2b.

Although cumulative distribution functions and stoplight charts

are useful graphical tools, for analytical purposes an objective cri-

terion should be used to choose between the two risky distributions.

Dominance analysis indicates that VOT distribution obtained by

ignoring operating cost differentials first order stochastically dom-

inates the distribution in which operating cost has been accounted

for. These findings lead to this paper’s second proposition, Propo-

sition 2: The value of time distribution obtained by ignoring oper-

ating cost would first order stochastically dominate the distribution

when operating cost savings are accounted for. In other words, the

state of the practice methodology would tend to underestimate the

true risk.

For the second exercise, Equations 7 and 8 are used to generate

the (scaled) probability distributions of toll revenue, which is the

KOV now. The underlying assumptions are summarized in Table 2.

In line with the previous exercise, revenue is first generated under

the distributional assumptions of the input variables. The resultant

probability distribution functions are shown in Figure 3, with the

two panels corresponding to the two scenarios for TTS. The hori-

zontal axes relate to scaled revenue, which can be multiplied by

actual traffic volume to obtain the aggregate revenue. The proba-

bility distribution and the ranking would however remain unaf-

fected by this rescaling. The stoplight charts associated with the

probability distributions are presented in Figure 4. Technically

speaking, the revenue distribution without user heterogeneity sec-

ond order stochastically dominates the distribution obtained by

incorporating user heterogeneity. Irrespective of the two scenarios

considered, the conclusion remains robust that ignorance of hetero-

geneity is tantamount to lowering of risk associated with expected

revenue distribution. This in turn, explains the other source of opti-

mism bias stemming from usage patterns. This leads to the third

and final proposition of this paper, Proposition 3: Ignorance of the

underlying heterogeneity of the potential user groups (in regard to

operating cost and value of time parameters) would lead to lower

risk associated with projected toll revenue. With value of time vary-

ing across different users, adopting a “single” value of time param-

eter for the entire industry would lead to optimism bias in truck toll

forecasts.
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FIGURE 1 Cumulative distribution functions of VOT: (a) Scenario 1, travel time
saved∼uniform distribution, and (b) Scenario 2, travel time saved∼triangular
distribution.
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FIGURE 2 Stoplight charts for simulated VOT distributions (using Lower 
Cutoff 0.5 and Upper Cutoff 1.5): (a) Scenario 1, travel time saved∼uniform
distribution, and (b) Scenario 2, travel time saved∼triangular distribution.
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FIGURE 3 Probability distribution functions of revenue: (a) Scenario 1, TTS∼uniform
distribution, and (b) Scenario 2, TTS∼triangular distribution.
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DISCUSSION OF RESULTS

There are several important messages that can be gleaned from this

paper. First, stochastic dominance analysis can be particularly insight-

ful in conducting feasibility studies associated with toll revenue fore-

casting. Consistent with the exploratory objectives of this paper, an

application of this method was demonstrated in assessing the risk asso-

ciated with truck toll forecasts. The approach outlined here could very

well be applied to a real-life scenario and might be expanded to include

other variables affecting demand for toll roads. For instance, several

parameters enumerated in Tables 1 and 2 can be taken as close approx-

imations of highly congested I-35 and its alternative tolled route

SH-130. Exhaustive analysis would however require localized param-

eters with respect to the splits, VOT, and operating cost savings of

the potential user groups. Using “industrywide averages” should be

avoided, as suggested by Hensher and Goodwin (8) and Kawamura (6).

Second, from a planning perspective, because truck-related projects

are also subject to a high degree of optimism bias (1), this research

would imply that the candidate corridors be thoroughly examined for

various freight movement types (truckload–less than truckload),

ownership of users, and the distribution of owner operators. Also,

given that cargo can be a significant source of variation in route deci-

sion (15) and that operating costs do vary by cargo type (28), it is pru-

dent to include them in the analysis. The Reebie study, for instance,

found significant diversion for coal and indicated that extremely bulky

commodities with specific production–consumption locations would

tend to be relatively inelastic and exhibit “all or nothing” type diversion

(16). Note, however, that the propensity of diversion by commodity

type is an empirical question and requires further research. Currently,

the only known approaches to accomplish these goals are to obtain the

parameters from (a) nationally available data sources such as REEBIE

Transearch, FHWA Freight Analysis Framework, and Census Vehicle

Inventory and Use Survey, (b) commercial vehicle surveys, and

(c) local corridor studies. National data suffer from limitations in that

they can at best provide county-level, first-cut assessments of user het-

erogeneity for some aspects of freight movement. When possible,

localized truck origin–destination studies are superior alternatives.

Third, even though the simulations were conducted with a limited

number of user groups (driven by knowledge of VOT parameters),

the results could be generalized to accommodate more user groups

as long as enough information exists with respect to their willingness

to pay and other variables such as operating costs. The typical sce-

nario assumed for this paper is a case in which the existing roadway

is characterized by a mix of users.

Fourth, the bias in toll revenue emanating from the two factors

explored in this paper might get dampened under certain circum-

stances. Travel time reliability, for instance, sometimes becomes an

overriding factor behind route decision. This may or may not be cor-

related with VOT of the user (4). The methodology outlined in this

paper can accommodate this bias through a reduction in the variance

of TTS. Other empirical characteristics, such as a higher proportion

of trucks carrying time-sensitive goods, can also reduce the bias.
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FIGURE 4 Stoplight charts for simulated revenue distributions (using Lower
Cutoff 1 and Upper Cutoff 3): (a) Scenario 1, TTS∼uniform distribution, and 
(b) Scenario 2, TTS∼triangular distribution.



This only corroborates the point made earlier that understanding

usage patterns and traffic composition in regard to user groups can

go a long way in improving the forecasts.

CONCLUSIONS

This paper explores two crucial factors behind optimism bias asso-

ciated with truck toll forecasts. It is demonstrated that ignorance of

operating costs might lead to upward bias in the implied VOT distri-

bution. Also, by using stochastic dominance analysis, it is shown that

ignorance of heterogeneity among freight user groups can lead to a less

risky distribution associated with projected toll revenue. User hetero-

geneity is incorporated through (a) specific composition of users and

(b) variation in preferences–demand parameters. This research is there-

fore important for proper assessment of the uncertainty associated with

a proposed toll road. Although stochastic dominance is applied to

analyze the implications for threshold VOT and of heterogeneous

users on revenue risk given stochastic tolls, travel time, and costs, the

analysis is only illustrative of the opportunities it offers to accommo-

date all factors that could belong to the revenue equation and risk

in general. The particular strengths of this approach might be exactly

in those situations in which the key input variables are interdependent.

To strengthen and improve the analysis, further research is needed

along several avenues, which include but are not limited to (a) better

understanding of variations in preferences by cargo attributes and

(b) incorporation of decision makers’ risk preferences. Although

the approach has been applied to truck toll forecasts, the approach

discussed in this paper is general and can be applied to all toll forecasts.
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