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Abstract

This paper examines the performance of prediction intervals based on bootstrap for

threshold autoregressive models. We consider four bootstrap methods to account for

the variability of estimates, correct the small-sample bias of autoregressive coefficients

and allow for heterogeneous errors. Simulation shows that (1) accounting for the sam-

pling variability of estimated threshold values is necessary despite super-consistency,

(2) bias-correction leads to better prediction intervals under certain circumstances,

and (3) two-sample bootstrap can improve long term forecast when errors are regime-

dependent.
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Introduction

Constructing prediction intervals is an important topic in forecasting time series. One can

construct classical prediction intervals (CPI) for an autoregression (AR) using the Box-

Jenkins method, see Granger and Newbold (1986) for instance. In practice two factors may

worsen the finite-sample performance of CPI. First, the distribution of prediction errors

may be non-normal. Second, CPI may fail to take into account the sampling variability of

estimated autoregressive coefficients. The second factor directly causes the under-nominal

coverage of CPI found in previous studies such as Thombs and Schucany (1990) and Kim

(2001).

The non-normal prediction error plays a more important role for the threshold autore-

gressive (TAR) model developed by Tong (1983). All estimated autoregressive coefficients

in TAR models are functions of the estimated threshold value, which is well known to follow

a nonstandard distribution. Therefore prediction errors of TAR models (calculated as the

difference between true future values and predicted values) follow nonstandard distributions

by construction.

Given these limitations of CPI, bootstrap prediction intervals (BPI) for TAR models are

widely used by practitioners, though the performance of BPI has not been systematically

investigated. This paper is intended to fill the gap. In particular, four methods of construct-

ing BPI are considered. The first issue is unique to TAR models, and is concerned with

the estimated threshold value. Chan (1993) proves that the threshold value estimated by

grid-searching is super-consistent. That means for some problems of statistical inference we

can treat the estimated threshold value as the true value and ignores its sampling variability.

In this paper we investigate whether it is worthwhile to account for that sampling variability

when constructing BPI. The second issue is related to the small-sample bias of estimated

autoregressive coefficients. Following Kilian (1998) and Kim (2001) we adopt the bootstrap-

after-bootstrap method and compute BPI based on bias-corrected autoregressive coefficients.
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The last issue is unique to TAR models with regime-dependent errors, for which construct-

ing BPI belongs to the “two-sample problem” in the terminology of Efron and Tibshirani

(1993). Existing literature typically downplays this problem. But we propose a method

of bootstrapping separately the residuals in each regime (called two-sample bootstrap here-

after), instead of bootstrapping the pooled residuals. In this paper we do not consider the

percentile-t method since it is theoretically difficult to compute the asymptotic standard

error and its bootstrap counterpart (σ̂c
k(h) and σ̂∗

k(h) in Kim (2001)) for TAR models.

BPI for linear autoregressive models is studied by several authors. Among others, Thombs

and Schucany (1990) generate bootstrap replicates based on backward AR models. Kim

(2001) and Kim (2002) apply the bootstrap-after-bootstrap method of Kilian (1998) to cor-

rect the bias of autoregressive coefficients. Masarotto (1990) and Grigoletto (1998) build

BPI based on forward AR models. Kim (1999) and Kim (2004) consider BPI for vector

autoregressions.

In this paper, the performance of four BPIs for the nonlinear TAR model is compared

by extensive simulation. Special attention is paid to scrutinizing the effects of (I) magnitude

of varying coefficients across regimes, (II) the number of observations subject to regime-

switching, (III) the degree of heterogeneity in errors and (IV) the possible non-stationarity.

(I) (II) and (III) have not been discussed in above papers since they are irrelevant to linear

models.

The remainder of the paper is organized as follows. Section 2 specifies the TAR model.

A simple simulation is used to highlight the nonstandard distribution of predicted values

of TAR models. Three methods of constructing BPI for TAR models with regime-invariant

errors are provided in Section 3. Section 4 constructs BPI for TAR models with regime-

varying errors. Simulation is conducted in Section 5, and Section 6 concludes. Without

further explanation the nominal coverage rate is 0.95 throughout the paper.
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TAR Models

The observed data are (y1, . . . , yn), with initial conditions (y0, y−1, . . . , y−p+1). A two-regime

self-exciting threshold autoregressive (SETAR) model of order p is specified as

yt =

(

β10 +

p
∑

j=1

β1jyt−j

)

1(yt−1 > γ) +

(

β20 +

p
∑

j=1

β2jyt−j

)

1(yt−1 ≤ γ) + et, (1)

where et is the error with a common distribution function Fe. We do not assume a specific

parametric form of Fe. However, we do assume et ∼ iid(0, σ2) to facilitate the residual

bootstrap. The lag order p can be chosen based on information criteria such as AIC and

BIC. After fitting (1) one may check whether residuals are serially uncorrelated to ensure

bootstrap works properly.

The threshold value is denoted by γ, and 1( .) denotes the indicator function that equals

one if the event inside the parentheses is true and zero otherwise. In regime one yt−1 is

greater than γ, and is less than or equal to γ in regime two. At a given lag j, model (1)

allows for different autoregressive coefficients across regimes. The threshold effect exists if

β1j 6= β2j for some j. A formal test for the threshold effect is developed in Chan (1990).

The unknown threshold value can be estimated by grid-searching as follows. For given

γ we define the indicator and fit model (1) by OLS. We do this for a range of γ ∈ [γl, γu],

where the lower and upper searching bounds are the τth and (100 − τ)th percentiles of the

empirical distribution of yt−1. In this paper τ = 15 is used throughout. The value of γ

minimizing the residual sum of squares (RSS) is the estimated threshold value:

γ̂ = argminγ∈[γl,γu]RSS(γ). (2)

Chan (1993) shows that the estimated threshold value (2) is super-consistent, thereby con-

verging to the true value very quickly. Model (1) can be generalized in several ways. For
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example, an exogenous variable can serve as the threshold variable entering the indicator.

A three-regime or band TAR model can be specified by defining 1(yt−1 > γ2) for regime 1,

1(γ1 ≤ yt−1 ≤ γ2) for regime 2 and 1(yt−1 < γ1) for regime 3. In addition, one can specify

the indicator as 1(yt−d > γ) with unknown d. Then grid-searching γ can be nested into the

search for the number of regimes and d. For expositional purpose, the following discussions

are based on the basic model (1) (so that TAR is synonymous with SETAR in this paper).

After estimating γ̂ by (2) and fitting model (1) with γ̂, compute residuals as

êt = yt −

(

β̂10 +

p
∑

j=1

β̂1jyt−j

)

1(yt−1 > γ̂) −

(

β̂20 +

p
∑

j=1

β̂2jyt−j

)

1(yt−1 ≤ γ̂), (3)

where β̂ij denotes the least squares estimate of the coefficient. By construction the residual

is centered at zero. We do not re-scale the residual since preliminary simulation shows little

effect of re-scaling. Let h ≥ 1 denote the forecast horizon. Then the h-step-ahead predicted

value conditional on the last p observations of yt can be computed as

ŷt+h =

(

β̂10 +

p
∑

j=1

β̂1j ŷt+h−j

)

1(ŷt+h−1 > γ̂) +

(

β̂20 +

p
∑

j=1

β̂2j ŷt+h−j

)

1(ŷt+h−1 ≤ γ̂), (4)

where ŷt = yt, (t = n, n − 1, . . . , n − p + 1).

The nonstandard distribution of estimated threshold value is established in Hansen

(2000). The predicted values of TAR models by construction are linear combinations of esti-

mated autoregressive coefficients, which are themselves functions of the estimated threshold

value. Thus, it is not surprising that the predicted values (and prediction errors) follow

nonstandard distributions. To see this, we generate 5000 1-step-ahead predicted values from

the TAR model: yt = 0.2yt−11(yt−1 > 0) + 0.8yt−11(yt−1 ≤ 0) + et, (t = 1, . . . , n), where

n = 60, et ∼ iidn(0, 1), y0 = 0. The standard normal error et is used to highlight the role of

nonstandard distribution of γ̂. After obtaining γ̂ (2), we compute ŷt+1 using (4). Figure 1
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displays the histogram of standardized ŷt+1 and corresponding statistics. First the significant

skewness and kurtosis cast doubt on normality. Then the Jarque-Bera test of Jarque and

Bera (1987) formally rejects normality for standardized ŷt+1 at 0.01 level. This simulation

demonstrates that the assumption of normal prediction errors is invalid for TAR models.

One-Sample Bootstrap Prediction Intervals for TAR Models

Given the nonstandard distribution of prediction errors, we consider bootstrap prediction

intervals for TAR models. The point is to use bootstrap to “automatically” account for the

variability of estimated parameters and non-normality of prediction errors. Four bootstrap

methods are proposed depending on whether accounting for the variability of estimated

threshold values, whether correcting for the bias of autoregressive coefficient and whether

generalizing model (1) by heterogeneous errors.

Chan (1993) shows that γ̂ in (2) is n-consistent. This super-consistency implies that it

is plausible to construct prediction intervals by ignoring the variability of γ̂. Method 1 uses

this idea and consists of the following steps.

Method 1

Step 1-1. Let Fê denote the empirical cdf of êt computed by (3). Then use γ̂, β̂ij, and

generate recursively the bootstrap replicate of yt (denoted by y∗

t ) as

y∗

t = yt, t = 1, . . . , p,

y∗

t =

(

β̂10 +

p
∑

j=1

β̂1jy
∗

t−j

)

1(y∗

t−1 > γ̂) +

(

β̂20 +

p
∑

j=1

β̂2jy
∗

t−j

)

1(y∗

t−1 ≤ γ̂) + e∗t , (t > p)

where e∗t is a random draw from Fê (ie., a draw from {êt}
n
t=p+1 with replacement).

Step 1-2. Re-estimate Model (1) using y∗

t and γ̂, and obtain bootstrap coefficients β̂∗

ij. Then
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compute a bootstrap h-step-ahead future value (denoted by ŷ∗

t+h):

ŷ∗

t = yt, t = n, n − 1, . . . , n − p + 1,

ŷ∗

t+h =

(

β̂∗

10 +

p
∑

j=1

β̂∗

1j ŷ
∗

t+h−j

)

1(ŷ∗

t+h−1 > γ̂) +

(

β̂∗

20 +

p
∑

j=1

β̂∗

2j ŷ
∗

t+h−j

)

1(ŷ∗

t+h−1 ≤ γ̂) + e∗t+h,

where e∗t+h is a random draw from Fê.

Step 1-3. Repeat Step 1-1 and 1-2 B times and obtain a series of bootstrap future values
{

ŷ∗

t+h(i)
}B

i=1
, where i indexes resampling. The Method-1 h-step-ahead BPI at 0.95

nominal level is given by

BPI1 = [ŷ.025
t+h , ŷ.975

t+h ] (5)

where ŷ.025
t+h and ŷ.975

t+h are the 2.5th and 97.5th percentiles of the empirical cdf of
{

ŷ∗

t+h(i)
}B

i=1
.

First notice that in Step 1-1 we generate the bootstrap replicate in the forward model. The

backward representation used by Thombs and Schucany (1990), Kim (2001) and others is

unavailable for TAR models since it is impossible to invert the lag polynomial augmented

with indicators. Second, following Efron and Tibshirani (1986) we use the first p observations

of observed series as initial values for bootstrap replicates. Alternatively one may use any

block of p observations of yt. In Step 1-2 we compute bootstrap forecasts always using the last

p observations of observed series. The importance of this conditionality on last p observations

is stressed in Maekawa (1987), Chatfield (1993) and Kim (2001). Note Method 1 accounts

for the sampling variability of β̂ij but ignores its small-sample bias shown by Shaman and

Stine (1988). That bias is corrected by Method 2 as follows.

Method 2

Step 2-1. The same as Step 1-1.
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Step 2-2. Re-estimate Model (1) using y∗

t and γ̂, and obtain bootstrap coefficients β̂∗

ij.

Repeat this process C times, and get a series of bootstrap coefficients
{

β̂∗

ij(k)
}C

k=1
,

where k indexes resampling. Compute the bias-corrected autoregressive coefficients as

β̂c
ij = 2β̂ij − C−1

C
∑

k=1

β̂∗

ij(k), (i = 1, 2, j = 0, 1, . . . , p). (6)

Step 2-3. Use β̂c
ij to generate the bias-corrected bootstrap replicate as yc∗

t = yt, t = 1, . . . , p,

and

yc∗
t =

(

β̂c
10 +

p
∑

j=1

β̂c
1jy

c∗
t−j

)

1(yc∗
t−1 > γ̂) +

(

β̂c
20 +

p
∑

j=1

β̂c
2jy

c∗
t−j

)

1(yc∗
t−1 ≤ γ̂) + e∗t .(t > p),

where e∗t is a random draw from Fê.

Step 2-4. Re-estimate Model (1) using yc∗
t and γ̂, and obtain coefficients β̂c∗

ij . Then compute

a bias-corrected bootstrap future value as ŷc∗
t = yt, t = n, n − 1, . . . , n − p + 1, and

ŷc∗
t+h =

(

β̂c∗
10 +

p
∑

j=1

β̂c∗
1j ŷ

∗

t+h−j

)

1(ŷc∗
t+h−1 > γ̂)+

(

β̂c∗
20 +

p
∑

j=1

β̂c∗
2j ŷ

c∗
t+h−j

)

1(ŷc∗
t+h−1 ≤ γ̂)+e∗t+h,

where e∗t+h is a random draw from Fê.

Step 2-5. Repeat Step 2-1, 2-2, 2-3 and 2-4 B times and obtain a series of bias-corrected

bootstrap future values
{

ŷc∗
t+h(i)

}B

i=1
. The Method-2 h-step-ahead BPI is given by

BPI2 = [ŷ.025c
t+h , ŷ.975c

t+h ] (7)

where ŷ.025c
t+h and ŷ.975c

t+h are the 2.5th and 97.5th percentiles of the empirical cdf of
{

ŷc∗
t+h(i)

}B

i=1
.
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Basically, Step 2-2 calculates the bias-corrected autoregressive coefficients following Kilian

(1998) and Kim (2001). Then Step 2-3 generates bootstrap replicates using the bias-corrected

coefficients. Notice that Steps 2-3 and 2-4 resample original residuals. Alternatively, one

may compute new residuals by (3) using bias-corrected coefficients (6), and redo Step 2-3

and 2-4 using random draws from new residuals.

Method 1 and Method 2 both ignore the variability of the estimated threshold value since

γ̂ is not re-estimated using bootstrap replicates. Method 3, on the other hand, explicitly

takes into account the variability of γ̂. The algorithm of Method 3 is as follows.

Method 3

Step 3-1. The same as Step 1-1.

Step 3-2. use y∗

t and estimate the bootstrap threshold value γ̂∗ from (2). Then re-estimate

Model (1) using y∗

t and γ̂∗, and obtain bootstrap coefficients β̂
γ∗
ij . Next compute a

bootstrap h-step-ahead future value ŷ
γ∗
t = yt, t = n, n − 1, . . . , n − p + 1, and

ŷ
γ∗
t+h =

(

β̂
γ∗
10 +

p
∑

j=1

β̂
γ∗
1j ŷ

γ∗
t+h−j

)

1(ŷγ∗
t+h−1 > γ̂∗)+

(

β̂
γ∗
20 +

p
∑

j=1

β̂
γ∗
2j ŷ

γ∗
t+h−j

)

1(ŷγ∗
t+h−1 ≤ γ̂∗)+e∗t+h,

where e∗t+h is a random draw from Fê.

Step 3-3. Repeat Step 3-1 and 3-2 B times and obtain a series of bootstrap future values
{

ŷ
γ∗
t+h(i)

}B

i=1
. The Method-3 h-step-ahead BPI is given by

BPI3 = [ŷ.025γ
t+h , ŷ

.975γ
t+h ] (8)

where ŷ
.025γ
t+h and ŷ

.975γ
t+h are the 2.5th and 97.5th percentiles of the empirical cdf of

{

ŷ
γ∗
t+h(i)

}B

i=1
.
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Note that the threshold value is re-estimated in Step 3-2. To ease computation Method 3

does not correct the bias of autoregressive coefficients, though it is straightforward to add the

bias-correcting procedure. Bias-correcting γ̂ is unnecessary because of its super consistency.

Two-Sample Bootstrap Prediction Intervals of TAR Models

Model (1) assumes a regime-invariant distribution function for et. Then bootstrapping model (1)

belongs to what is called “one-sample problems” in Efron and Tibshirani (1993). More gen-

erally, we can allow for regime-dependent errors and write the generalized model as

yt =

(

β10 +

p
∑

j=1

β1jyt−j + e1t

)

1(yt−1 > γ) +

(

β20 +

p
∑

j=1

β2jyt−j + e2t

)

1(yt−1 ≤ γ), (9)

where e1t ∼ iid(0, σ2
1) and e2t ∼ iid(0, σ2

2). Let Fe1 and Fe2 be the distribution functions

for e1t and e2t. Then Model (9) makes it possible Fe1 6= Fe2. Method 4 explicitly takes into

account this possible heterogeneity by bootstrapping separately two samples of residuals.

Method 4

Step 4-1. Estimate γ̂ by (2) and define regime 1 and 2 accordingly. Then fit Model (1)

using γ̂ and compute the residual êt by (3). Collect observations of {êt}
n
t=p+1 in regime

1 as the series of {ê1t}
n1
t=1, and in regime 2 {ê2t}

n2
t=1, where n1 + n2 = n − p.

Step 4-2. Let Fê1 and Fê2 denote the empirical cdfs of ê1t and ê2t computed in Step 4-1.

Then generate the bootstrap replicate of yt as yt∗
t = yt, t = 1, . . . , p, and

yt∗
t =

(

β̂10 +

p
∑

j=1

β̂1jy
t∗
t−j + e∗1t

)

1(yt∗
t−1 > γ̂)+

(

β̂20 +

p
∑

j=1

β̂2jy
t∗
t−j + e∗2t

)

1(yt∗
t−1 ≤ γ̂), (t > p)

where e∗1t and e∗2t are random draws from Fê1 and Fê2 respectively.

Step 4-3. Re-estimate Model (1) using yt∗
t and γ̂, and obtain bootstrap coefficients β̂t∗

ij . Then
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compute a bootstrap h-step-ahead future value: ŷt∗
t = yt, t = n, n − 1, . . . , n − p + 1,

ŷt∗
t+h =

(

β̂t∗
10 +

p
∑

j=1

β̂t∗
1j ŷ

t∗
t+h−j + e∗1t+h

)

1(ŷt∗
t+h−1 > γ̂)+

(

β̂t∗
20 +

p
∑

j=1

β̂t∗
2j ŷ

t∗
t+h−j + e∗2t+h

)

1(ŷt∗
t+h−1 ≤ γ̂),

where e∗1t+h and e∗2t+h are random draws from Fê1 and Fê2 respectively.

Step 4-4. Repeat Step 4-2 and 4-3 B times and obtain a series of bootstrap future values
{

ŷt∗
t+h(i)

}B

i=1
, where i indexes the number of resampling. The Method-4 h-step-ahead

BPI is given by

BPI4 = [ŷ.025two
t+h , ŷ.975two

t+h ] (10)

where ŷ.025two
t+h and ŷ.975two

t+h are the 2.5th and 97.5th percentiles of the empirical cdf of
{

ŷt∗
t+h(i)

}B

i=1
.

It is easy to modify Method 4 to account for the variability of γ̂ and correct the bias of

autoregressive coefficients.

Simulation

This section compares the performance of BPIs by Monte Carlo simulation. Following

Thombs and Schucany (1990), the criterion of comparison is the average coverage rate com-

puted as

m−1

m
∑

i=1

1 (yt+h ∈ PI) , (11)

where m = 100 for each replication and PI denotes BPI1 (5), BPI2 (7), BPI3 (8) and

BPI4 (10). The forecast horizon h ranges from 1 to 8 (no qualitative changes in simulation

results are found when h ranges from 1 to 12, or larger value). The number of Monte Carlo

simulations (replications) is set to 500. The number of resampling is B = 999 for Method 1,
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Method 3 and Method 4. For Method 2, the number of resampling is C = 200 for Step 2-2,

and B = 999 for Step 2-5. The nominal coverage rate is 0.95. The method that produces

prediction intervals with the average coverage rate closest to 0.95 is deemed the best method.

We first consider the data generating process with homogeneous (regime-invariant) errors:

yt = c1yt−11(yt−1 > γ) + c2yt−11(yt−1 ≤ γ) + et, (t = 1, . . . , n), (12)

where the threshold effect (or magnitude of regime-switching) is measured by coefficients c1

and c2. The number of observations subject to regime switching is controlled by γ. Figures 2,

3, 4, 5 plot the average coverage rates of BPI1, BPI2 and BPI3 against the forecast horizon

h (this is a “one-sample” problem so we ignore BPI4). A note about the key in those figures:

the number after the underlining sign indexes graphs. For example, in Figure 2 BPI1 1

denotes the coverage rate of BPI1 in the first graph, and BPI3 2 the coverage rate of BPI3

in the second graph, and etc.

First we let c1 = 0.2, c2 = 0.8, γ = 0.0, n = 60. Figure 2 shows the effect of various

distributions of et on the coverage rate. We simulate errors using the standard normal

distribution, the Student-T distribution with 5 degrees of freedom, and the chi-squared

distribution with 4 degree of freedom. The Student-T and chi-squared distributions are fat

tailed and skewed, respectively. Following Thombs and Schucany (1990) the non-normal

errors are standardized prior to simulation.

We have four findings from Figure 2. First we see no severe distortion in coverage rates:

the coverage rates of BPIs are bounded between 0.94 and 0.96 in most cases. This means

bootstrap prediction intervals work generally well with various error distributions. Second,

the coverage rate of BPI1 is always the lowest one among the three methods. This fact

comes as no surprise since BPI1 ignores the variability of estimated threshold value, γ̂. On

the other hand, the bias-corrected BPI2 has the highest coverage rate except when h = 1.
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The wide BPI2 is consistent with Efron and Tibshirani (1993), which point out that more

variability is introduced by bias-corrected statistics. In this case BPI2 is wider than BPI1

and BPI3 by using bias-corrected autoregressive coefficients. By accounting for variability

of γ̂ but without correcting the autoregressive bias, BPI3 yields the coverage in the middle.

For practitioners the lesson is that BPI2 and BPI3 may be more conservative than BPI1 in

terms of coverage rates. The third finding is, the skewed chi-squared distribution causes more

coverage-distortion (by shifting coverage lines up further) than the fat-tailed T distribution,

while the latter seems not to worsen BPIs very much. Finally, we find that as forecast horizon

h increases, the coverage rates of all BPIs increase as well. Again this result is intuitive since

long-term forecast intrinsically involves more uncertainty than short-term forecast.

Figure 3 shows how regime-varying autoregressive coefficients affect coverage rates with

c1 = 0.2, 0.8, 1.0 and c2 = 0.8, γ = 0.0, n = 60, et ∼ iidn(0, 1). The threshold effect is

present when c1 = 0.2 6= c2, and the results are basically the same as the left panel of

Figure 2. Threshold effect disappears (and a TAR model reduces to a linear AR model)

when c1 = c2 = 0.8. In this case, BPI1 and BPI3 suffer more under-nominal distortion than

BPI2. Hence it pays to apply the bias-correction procedure for the linear model, a result in

line with Kim (2001) and Kilian (1998). Something interesting happens when the data are

nonstationary in the regime with c1 = 1.0. Now BPI1 suffers severe under-nominal distortion,

with coverage rate declining monotonically with forecast horizon. BPI3 also has decreasing

coverage rate, though less severe than BPI1. The most stable (though slightly above nominal

level) coverage rate is produced by BPI2. Based on these findings, BPI2 is recommended

when the threshold effect is marginal or when data are possibly nonstationary.

Figure 4 illustrates how the frequency of regime-switching affects coverage rates with

varying γ and c1 = 0.2, c2 = 0.8, n = 60, et ∼ iidn(0, 1). As γ increases there is less and less

likelihood for regime-switching, and so more and more observations stay in one regime. In

the limit as γ → ∞ the threshold autoregression is reduced to a linear autoregression. The
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performance of BPIs reflects this fact. When γ = 0.0, regime-switching occurs frequently and

the graph looks almost the same as the left panel of Figure 2. When γ = 1.0 regime-switching

becomes less likely (and the model is more like a linear model) and so the performance of

BPI2 is the best (without obvious under-nominal distortion) among the three methods. The

key message is that using BPI2 is a good idea where there is a small number of observations

subject to regime-switching.

Figure 5 investigates the effect of sample sizes on coverage rates of BPIs, with n =

50, 100, 150 and c1 = 0.2, c2 = 0.8, γ = 0.0, et ∼ iidn(0, 1). The increasing sample size is

seen to improve the coverage rate of all BPIs in two ways. First, as n rises the coverage rate

gets closer to the nominal level 0.95. Meanwhile, in large sample (n = 150) as h increases

the coverage rate increases more slowly than in the small sample (n = 50). For instance, as

h rises, BPI2 increases from 0.940 to above 0.955 when n = 50, while only increases from

0.945 to 0.955 when n = 150.

Next we consider the following TAR model with regime-dependent errors to investigate

the performance of BPI4:

yt = (c1yt−1 + e1t)1(yt−1 > γ) + (c2yt−1 + e2t)1(yt−1 ≤ γ), (t = 1, . . . , n), (13)

where e1t ∼ iidn(0, 1) and e2t ∼ iidn(0, s2), (s = 0.5, 1.0, 2.0) are (possibly) heteroskedastic

normal errors. Figure 6 only compares BPI1 and BPI4 with c1 = 0.2, c2 = 0.8, n = 60, γ =

0.0. We do not consider BPI2 and BPI3 here in order to focus on the difference between

“one-sample bootstrap” and “two-sample bootstrap.” The readers are reminded again that

it is straightforward to modify BPI4 so that variability of γ̂ and autoregressive bias can be

taken care of.

First of all, Figure 6 shows that both coverage rates of BPI1 and BPI4 are below the

nominal level, which makes sense because both methods ignore the variability of γ̂. Second,
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it is shown that BPI4 has less under-nominal coverage distortion than BPI1 in most cases.

The exception is when s = 0.5, and when h is small. Nevertheless, it is constructive to

emphasize that BPI4 outperforms BPI1 when errors are homoskedastic (s = 1.0). So using

two-sample bootstrap loses nothing related to one-sample bootstrap when heteroskedasticity

is uncertain. In addition, by comparing the three panels of Figure 6, we see that the position

of the coverage line for BPI4 is relatively fixed, whereas the coverage line for BPI1 keeps

shifting down as s rises. In light of this, loosely speaking, BPI4 is “heteroskedasticity-robust”

while BPI1 is not.

Figure 6 simulates e2t using standard normal distributions. Figure 7 instead simulates

e2t using the standard normal distribution, the Student-T distribution with 5 degrees of

freedom, and the chi-squared distribution with 4 degree of freedom. Now e1t and e2t are

heterogeneous, not just heteroskedastic. The findings from Figure 7 are more favorable to

BPI4 than Figure 6. With normal errors, the graph looks the same as the middle panel of

Figure 6. The chi-squared distribution tends to shift BPI4 up further (and cause less under-

nominal distortion) than BPI1, so does the T distribution. Overall, BPI4 outperforms BPI1

with various distributions, and the gain of using two-sample bootstrap increases with the

forecast horizon. For short term forecast, BPI1 may do better than BPI4 thanks to its

relatively simple algorithm.

To summarize, the key findings of simulation are following: (1) BPIs perform gener-

ally well. (2) It is necessary to account for the sampling variability of estimated threshold

value in finite sample even if it is asymptotically super-consistent. (3) The bias-correction in

the bootstrap-after-bootstrap procedure can generate better prediction intervals when the

threshold effect is minimal, when data are possibly nonstationary, and when the number of

observations subject to regime-switching is small. (4) Two-sample bootstrap, which sepa-

rately resamples residuals in two regimes, are necessary especially when errors are regime-

dependent and when the focus is on long term forecast.
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Conclusion

This paper considers four methods of constructing bootstrap prediction intervals for TAR

models. The Method 1 is the simplest because it only accounts for the variability of estimated

autoregressive coefficients. Method 2 corrects the finite-sample bias of autoregressive coeffi-

cients. Method 3 takes into account the variability of estimated threshold values. Method

4 resamples residuals in separate regimes. The main finding of simulation is that boot-

strap prediction intervals perform generally well. Method 2 yields better prediction intervals

under certain circumstances. The two-sample bootstrap prediction intervals outperform one-

sample bootstrap prediction intervals when errors are regime-dependent and when forecast

horizon is long.
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Histogram of 1-Step-Ahead Predicted Value of TAR Models
Skewness=-0.69, Kurtosis=47.52, Jarque-Bera Test=64366.10
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Figure 1: Histogram of Standardized 1-Step-Ahead Predicted Value of TAR Models
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Error Distribution
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Figure 2: Average Coverage Rate of BPI for Different Error Distributions
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Threshold Effect

c1=0.2
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Figure 3: Average Coverage Rate of BPI for Different Autoregressive Coefficients
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Threshold Value

Gamma=0.0
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Figure 4: Average Coverage Rate of BPI for Different Threshold Values
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Sample Size

n=50
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Figure 5: Average Coverage Rate of BPI for Different Sample Sizes
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Heteroskedasticity
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Figure 6: Average Coverage Rate of BPI for Heteroskedastic Errors
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Heterogeneous Errors
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Figure 7: Average Coverage Rate of BPI for Heterogeneous Errors
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