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Abstract

This paper studies frequent monitoring in a simple in�nitely repeated game with imperfect

public information and discounting, where players observe the state of a continuous time Brownian

process at moments in time of length �. It shows that e¢cient strongly symmetric perfect public

equilibrium payo¤s can be achieved with imperfect public monitoring when players monitor each

other at the highest frequency, i.e. �! 0. The approach proposed places distinct initial conditions

on the process, which depend on the unknown action pro�le simultaneously and privately decided

by the players at the beginning of each period of the game. The strong decreasing e¤ect on

the expected immediate gains from deviation when the interval between actions shrinks, and the

associated increase precision of the public signals, make the result possible in the limit. The

existence of a positive monotonic relation between payo¤s and monitoring intensity is also found.

JEL: C73, D82.

KEYWORDS: Repeated Games, Frequent Monitoring, Imperfect Public Monitoring, Brownian

Motion, Moral Hazard.

�Financial support from Fundação para Ciência e Tecnologia grant SFRH/BD/17157/2004 is gratefully

acknowledged. I would like to thank Luis Corchón, Ramiro De Elejalde, Daniel García-González, Ángel

Hernando-Veciana, Kenneth Judd, David Levine, David Rahman, Juan Pablo Rincón-Zapatero, Andrzej

Skrzypacz and Galina Zudenkova, as well as the seminar participants at University Carlos III Madrid, 2008

University of Konstanz Workshop in Game Theory, and The 2008 Meetings of the International Society in

Dynamic Games, for helpful comments and discussions. All remaining errors are mine.
yDepartment of Economics, Universidad Carlos III de Madrid, Cn Madrid, 126, 28903-Getafe, Madrid,

Spain; E-mail: aosorio@eco.uc3m.es; Cellphone (+34) 666 71 40 69.

1



I. INTRODUCTION

In the general repeated games theory it is common to assume that the period length

between each repetition of the stage game has length one. When the monitoring is perfect,

letting the discount factor � ! 1 either by making the players more patient (a decrease

in r) or by shrinking the period length between actions (a decrease in �) are equivalent

exercises. The former approach has been preferred to prove many folk theorems and to

show the existence of e¢cient equilibria.

When monitoring is not perfect but public, by making players increasingly patient, Fuden-

berg, Levine and Maskin (1994) were able to prove a folk theorem under some informational

assumptions1. Incentives are sustained through transfers of value between the players. When

we turn our attention to strongly symmetric equilibria in problems with two-sided imperfect

public monitoring, the pairwise identi�ability assumptions typically fail, limiting to a great

extent the provision of incentives. Payo¤s are then bounded away from e¢ciency, even when

r ! 0. Destruction of value through punishments is the only way to provide incentives.

The question was then; if by letting �! 0 we could obtain e¢cient strongly symmetric

payo¤s. In their pioneer work in frequent monitoring, Abreu, Milgrom and Pearce (1991),

in a setting where the public information arrival is modelled with a Poisson process, have

shown that di¤erent but ine¢cient results arise depending on whether � ! 1 is due to r ! 0

or to �! 0. In the latter case, they found that equilibrium payo¤s above the static Nash,

but not e¢cient, can be sustained when the jumps in the process represent "bad new", which

are more likely to occur when some player has deviated2.

Recent work by Sannikov (2007)3 and Faingold and Sannikov (2007) on repeated games

modeled directly in continuous time, has renewed the interest in frequent monitoring. The

latter work, in a part which is relevant here, reports a degeneracy of the set of strongly

symmetric perfect public equilibrium (SSPPE henceforth) payo¤s in a game where a known

1 Their stronger assumption is called pairwise identi�ability, which means that a deviation from a given

player impacts on the distribution of the public signals di¤erently than any deviation from any other

player.
2 In an in�nitesimal time interval, the absence of realizations of the Poisson process is in�nitely more

likely than the occurrence of a realization. For that reason, the same result does not extend when the

information arrivals represent "good news".
3 This paper presents a characterization of the set of PPE payo¤s using continuous time methods.
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normal type long-run player faces a sequence of short run players. By degeneracy they mean

that payo¤s outside the convex hull of the Nash equilibria payo¤s set cannot by sustained

in continuous time, where the noisy public information is modeled through a Brownian

process. Also, more in the spirit of the present paper, i.e. by studying the limit of the

discrete time games, Fudenberg and Levine (2007) and Sannikov and Skrzypacz (2007a)

report the same degeneracy result. These results came as surprising, since Brownian motion

is an in�nitesimal variation process and we would expect payo¤s at least above the static

Nash payo¤s.

This paper explores frequent monitoring in a partnership game with imperfect public

monitoring and discounting, along the lines of the work of Radner, Myerson and Maskin

(1986)4. It analyses the limit of the sequence of the discrete time games indexed by �.

The public signal is the observed state of an arithmetic Brownian motion (ABM henceforth)

process, in intervals of length �. The observation is compared against a previously chosen

threshold, based on this decision rule; players adjust their actions for the following period.

It focus on the value of the best SSPPE and shows that in the limit5 e¢cient payo¤s can be

achieved, independently on how players discount the future and on the level of uncertainty.

Moreover, the value of the best SSPPE payo¤ improves monotonically when the monitoring

intensity increases. The characterization of the optimal decision rule for di¤erent values of

� is also novel.

The approach proposed places distinct initial conditions on the process, which depend on

the unknown action pro�le privately and simultaneously decided by the players at the be-

ginning of each period of the game. This modelling approach changes the results drastically.

This paper is the �rst to show e¢cient results when the time interval between observations

is taken to the limit without placing assumptions on the uncertainty parameter. The result

is possible because the information extracted from the public signals becomes increasingly

4 Other classical situations involving imperfect public monitoring about players actions are Green and Porter

(1984) and Porter (1983) where the market price is an imperfect signal of the quantities supplied by �rms.

See Fudenberg and Tirole (1991) and Mailath and Samuelson (2006) for complete surveys of the problems

and methods used to solve games with imperfect public information.
5 By "in the limit" we mean the length of time interval �! 0, sometimes also referred to as the "highest

monitoring intensity" or "continuous monitoring". During the paper we frequently mention "an increase

in the monitoring intensity" or "an increase in the monitoring frequency"; they refer to a decrease in �.
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precise as to players actions, increasing the payo¤s monotonically6. As a consequence, the

expected immediate gains associated with a deviation from the equilibrium path become

less attractive, not only because the periods between the actions becomes shorter, but also

because the expected number of periods during which a deviator can enjoy these gains

decreases.

Before going through the methodology presented in this paper in more detail, and in

order to better integrate it within the existent contributions, we will review the modelling

approach employed in the papers that are more closely related, with the goal to access the

source of their results.

Sannikov and Skrzypacz (2007a)7 studied extensively how monitoring intensity a¤ects the

equilibrium payo¤s of the repeated Cournot duopoly game. They report the impossibility

of achieving payo¤s higher than the static Nash payo¤s when the public information arrives

continuously and disturbed by a Brownian motion. Crucial for their results is the assumption

that the public signal observed by the players, at moments in time t = �; 2�; :::, is the state

of an ABM price process divided by the length of the time interval �. Such modelling

of the observed public signal becomes extremely noisy when observed at high frequency,

creating a degeneracy e¤ect on the payo¤s. The root of the problem lies in the fact that the

accumulated Brownian increments in a given time interval � are of a higher order than the

underlying time interval, making any inference about the drift of the process ine¢cient in

the limit, but not exclusively so.

Fudenberg and Levine (2007)8 study a repeated game with a �nite action space where a

long-run player of a known type faces a sequence of myopic short-run players. The public

6 These results share similarities with the ones obtained in Abreu, Milgrom and Pearce (1991). For the

"bad news" case, the most e¢cient equilibrium (however not fully e¢cient) is obtained in the limit, and

there is also a monotonic improvement on the payo¤ with the monitoring intensity. Here the most e¢cient

result is also obtained in the limit; it is however fully e¢cient. In the "good news" case, the degeneracy of

the best SSPPE is similar in shape to the results obtained by Fudenberg and Levine (2007) and Sannikov

and Skrzypacz (2007a), although clearly distinct in the mechanics behind it. This issue will be discussed

in more detail below.
7 See also, Sannikov and Skrzypacz (2007b) where they bound the set of equilibria when � ! 0 for Levy

processes by placing restrictions on how information from Brownian and Poisson components are used to

provide incentives in the most e¢cient way.
8 See also, Fudenberg and Levine (2008) where they consider di¤erent ways of passing to the continuous

time limit, i.e. binomial and trinomial approximations of the Brownian paths, linking monitoring intensity

with event frequency, by taking the limit of the former.
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signal is the observed state of an ABM process, which can be in�uenced by the actions of the

long-run player. The long-run player would like to sustain the equilibrium associated with

a particular action, in the case where the drift of the process decreases with �, but she may

also deviate to get a larger expected short run payo¤, in which case the drift of the process

increase with �. The results are driven by the assumption that the initial conditions on the

process are the same independently of the actions of the long-run player. When � becomes

small the distribution of the public signals cannot provide reliable information about the

long-run player actions, creating the degenerating e¤ect, which may also occur even before

the limit. However, they show that if a deviation by the long-run player increases the

uncertainty parameter; equilibria can be achieved that are arbitrary close to e¢ciency. This

is so far the most positive limit result obtained with frequent monitoring under Brownian

uncertainty.

Before proceeding, it is important to understand what information we can obtain from

statistical inference for Brownian type processes9. While the variance parameter can be

consistently estimated from the path of the process (ys; s 2 (t; t+ "]), for a small but mea-
surable ", the same does not happen with the drift of the process. Even if players are able to

observe the full path of the process realized from time t to time t+�, a relatively large � is

needed for the actions of the players to be statistically distinguishable. The �rst observation

is on the basis of Fudenberg and Levine�s (2007) almost e¢cient result. The second explains

why the set of equilibria payo¤s deteriorates when � decreases and equilibria above the

static Nash are not possible as reported in Fudenberg and Levine (2007), and Sannikov and

Skrzypacz (2007a).

The present paper models the public signal observed by the players at moments in time

t = �; 2�; :::, in a di¤erent way. Since players focus on the observed public signal, the

monitoring technology is in that sense similar to Fudenberg and Levine (2007). However,

when each player privately selects her action, the initial condition on the process will re�ect

the aggregate of these individual decisions. Two di¤erent actions of player i have associated

di¤erent initial conditions that can be statistically distinguished from each other for high

monitoring frequencies. There is a measurable distance between an initial condition associ-

ated with mutual cooperation and an initial condition associated with a pro�le of actions

9 See Prakasa Rao (1999) for a formal treatment of the statistical methods for di¤usion processes.
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where a unilateral deviation has occurred. When switching from cooperation to defection,

player i causes a movement in the process similar to a jump. When away from the limit,

such jump might be hard to separate from the aggregate of in�nitesimal realizations, but in

the limit such movement is almost surely caused by deviating behaviour. This is even more

evident when the action space is discrete.

Even though they present di¤erent results for the same problem, it is important to stress

that the modelling proposed in this paper, the Fudenberg and Levine (2007) and Sannikov

and Skrzypacz (2007a) are not competing approaches, but rather they complement each

other. The degeneracy e¤ect reported in the latter approaches seems suitable to model

situations where reliable information needs time to build-in, in such cases an early access to

this "not ready" information generates perverse e¤ects. These papers have in common the

fact that the informativeness of the public signals increases with the lack of monitoring. A

player that is actually cooperating needs some time for the associated output to be separated

in statistical terms from the situation from which she has deviated. Examples of situations

that �t into such a framework are a judge�s verdict or an investment report. Asking a judge

to read her sentence �ve minutes after the start of judgement might be premature. Probably

one week later she will be in better position to deliver a more quali�ed decision. The same

happens with the investment report.

However, in problems where the information contained in the public signals increases with

the monitoring intensity, the approach of the present paper is more appropriate; for example

when the variable that is the object of monitoring is the physical activity of a worker,

for which information is continuously available. When monitored with high frequency a

deviating worker will �nd it hard to justify a low observation of the process. If such a

low value of the process is observed, it is very likely that it has been caused by deviating

behaviour. On the other hand, when the time interval between monitoring activities is large,

a low observation can be justi�ed both as a result of nature as well as a result of deviating

behaviour. The monitor is then more likely to incur in either type I or type II errors10.

In problems of this type frequent monitoring may produce a disciplinary e¤ect among the

players11, but everything depends on what variable players are monitoring. In general terms,

10 We refer to a type I error as the event of punishing a non-deviator, and a type II error as the event of not

punishing a deviator.
11 The disciplinary e¤ect of monitoring seems to be easier to support. See, for example, the classical work
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the monitoring approach presented in this paper �ts in situations where e¤ort is modelled

as an action that has a more physical meaning as opposed to an intellectual one attached

to it.

In this sense, the present paper �lls a gap in the existing literature in frequent monitoring

in repeated games, by enlarging the spectrum of potential real life situations that can be

studied with this framework.

The paper is organized as follows. Section II presents the repeated game model and the

public information producing process. Section III explains in detail the approach of this

paper, in particular the connection between the initial conditions of the process and the

associated distributions. Section IV computes the bounds on the set of SSPPE payo¤s and

characterizes the optimal decision rule for varying�. Section V focuses on the limit case and

presents the main results of this paper. Section VI discusses extensions to the continuous

time case and to games with a continuous action space. Section VII concludes.

II. THE REPEATED GAME MODEL

To present the main arguments outlined in the previous section, we explore frequent

monitoring in a simple partnership game played between two long-run players. The history

of the game is the following. At moments in time t = 0;�; 2�; :::, two players can choose

from two di¤erent e¤ort levels ati = 1 or ati = 0. In the former case, player i is providing

e¤ort, in the latter case she is shirking. More formally, let Ati = f0; 1g denote player
i�s2 N = f1; 2g non-empty and compact action space with generic element ati representing
an action, and denote At = At1 � At2 as the set of action pro�les endowed with the product
topology of the individual action spaces, with generic element at = (at1; a

t
2) denoting a pro�le

of actions.

Independently of their private e¤ort decisions, players at moments in time t = �; 2�; :::,

observe and divide equally between themselves the total output generated during these

intervals of time of length �. Given a pro�le of actions at at time t, the total output and,

at same time, the publicly information observed at time t+�12, is driven by the following

of Alchian and Demsetz (1972) for an early defense of this perspective.
12 There is also the possibility that in the end of each period of length �, players observe the full path of the

process (ys; s 2 (t; t+�]) realized from t to t+�. This case provides more information to the monitor.
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ABM13,

yt+� = yt + �

Z t+�

t

dZs; with Zt = 0 and t = 0;�; 2�; :::; (2.1)

where yt � 2d (at1 + at2) is the initial condition of the process at a given time t, a function of
the unknown pro�le of actions.

All the uncertainty arises from the standard Brownian motion fZs; s � 0g. Observe

that information about the evolution of the total output is produced continuously every

in�nitesimal time interval a new realization of the process is available. The monitoring

frequency � and the frequency of signals are di¤eren; in some sense our goal is to equate

the monitoring frequency to the signal frequency.

All the relevant information relevant about players� actions is contained in the initial

condition of the process at each moment in time t = 0;�; 2�; :::. Since players cannot revise

their actions during the interval of length �, the process (2.1) has no drift. In this way, we

also eliminate any trend in the process that is irrelevant for the study of the problem in our

setting14. Implicitly, we are imposing that the public information producing process satis�es

the martingale property,

E (yt+�jyt;� � 0) = yt;

with respect to some �ltration. As a consequence, the transition density of the process places

equal mass above and below the initial condition, i.e. above and below its mean15.

Player i�s2 f1; 2g realized payo¤ (ex-post) from the partnership is given by,

ri
�
ati; yt+�

�
� yt+�=2� (d+ c) ati;

where d > c > 0 and yt+� is the realized output from the partnership16, which is divided

It can be shown, that when compared with the case where only the state of the process is observed, a

lower threshold is always required to sustain a particular equilibrium and as a consequence it always has

larger associated payo¤s. Note, however, that in the limit both cases are equivalent.
13 The ABM assumption simpli�es the analyses and the proofs of many of the results which will be presented

later. However, all results are valid for the geometric Brownian motion and Ornstein-Uhlenbeck process.
14 Using a public information producing process with drift leads to the same results. In that case, the

threshold would be some function preserving the distance to the initial condition. For example, for the

ABM process with drift, the threshold would be the function b + � (yt; t) t, where b is the threshold

associated with an ABM process without drift and � (yt; t) t is the drift of the process. Both approaches

lead to the same distribution of the public signals.
15 Examples of other processes with the proposed speci�cations are � (yt; t) = 0 for the geometric Brownian

motion, and � (yt; t) = � (y0 � yt) for the Ornstein-Uhlenbeck process.
16 We assume that public signal is not only an action dependent function but also represents the evolution
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equally between the players independently of the e¤ort that they have supplied. The second

term on the right-hand side (RHS) denotes the cost of providing e¤ort for player i in utility

terms. By the martingale property, the expected payo¤ (ex-ante) of player i 2 f1; 2g from
the partnership is then,

�i
�
at
�
� E

�
ri
�
ati; yt+�

�
jyt
�
= d

�
at1 + a

t
2

�
� (d+ c) ati:

Under the expected utility hypothesis, this is the expression that is relevant for studying

our problem.

In summary, at each moment in time t = 0;�; 2�; :::, players repeatedly play the stage

game,

1 0

1 d� c; d� c �c; d
0 d;�c 0; 0

Providing no e¤ort is a dominate strategy for both players. The minimax value of the game

coincides with the stage game Nash payo¤s and equals 0 for both players. This game has

the same structure as a prisoners� dilemma, and can be treated as such.

I will focus on strongly symmetric public strategies, where after every public history17 the

same action is chosen by both players. A strategy is public if at any moment t it depends

only on the public histories and not on player i�s private history. Given a public history, a

pro�le of public strategies that induces a Nash equilibrium on the continuation game from

time t on, is called a perfect public equilibrium (PPE). Moreover, if the other player �i is
playing a public strategy, player i�s best reply can only be a public strategy.

Players discount the futures according to a common discount factor, assuming exponential

discounting � � e�r�, where r is the discount rate.
Player i�s2 f1; 2g payo¤s in the �-indexed in�nitely repeated game is the discounted

normalized sum of the stage-game expected payo¤s, (1� �)
1P

t=0;�;2�;:::

�t�i (a
t), induced by

the pro�le of actions at for every t = 0;�; 2�; :::.

of the aggregate output of the partnership. Other formulations of the public signal could have also been

considered, provided that they would depend on both players� actions. It is also important that ri (:) does

not depend on a�i explicitly.
17 A public history, a time t, is a sequence of realizations of the observed state of the process, denoted by

ht = (yt��; yt�2�; :::; y0) 2 Y t with h0 = Y 0 � ?. The sequence of player i�s private actions is player i�s
private history.
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III. THE INITIAL CONDITIONS AND THE DISTRIBUTION OF PUBLIC SIG-

NALS

As discussed in the introductory section, the proposed approach places distinct initial

conditions on the process, which depend on the unknown action pro�le simultaneously and

privately decided by the players in the beginning of each period of the game. Since this is a

critical issue, in this section we examine in more detail the monitoring technology employed

in this paper.

To keep the notation simple, from now on we will drop the t index, and simply denote with

a � index an end of period object, and without any index when it refers to the beginning

of the period.

Since the focus is on SSPPE, we are interested in sustaining the strongly symmetric pro�le

(1; 1) against potential unilateral deviations. The space of public signals is continuous;

players use a threshold decision rule18 to distinguish realizations suggesting cooperation

from realizations suggesting defection. The threshold value creates a partition of the signal

space; in signals suggesting cooperative behaviour fy� > bg, which we call "good" signals,
and signals suggesting defective behaviour fy� � bg, called "bad" signals.
In general, for a given initial condition y � 2d (a1 + a2), the probability that the state of

the public process (2.1) appears below b in the end of the period of length � is

Pr (y� � b) = �
�
b� 2d (a1 + a2)

�
p
�

�
;

where � (:) is the standard zero mean and unit variance Gaussian distribution.

We assume that the type of uncertainty they are facing is common knowledge among the

players. In particular, they know the value of parameter �19. This way they can compute

the above probability and the impact of a deviation on the distribution of the public signals.

Depending on the unknown pro�le of actions that arise from each player�s private e¤ort

18 Sannikov and Skrzypacz (2007a) show that a threshold decision rule is the best test to detect unilateral

deviations. Later, we will focus on the optimal threshold value for varying parameterizations of �. For

now we contend with an arbitrary threshold value, denoted as b, and we will abstain from referring its

dependence on � as well as other parameters of the model.
19 The assumption that players know the variance of the process is not as strong as it might seem. According

to the discussion in the introductory section, since the focus is on the limit case and this is equivalent to

full path observation, if players do not know the value of this parameter they can estimate it consistently

in a very small but measurable time interval ".
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decision ai2N , we have di¤erent initial conditions for the public process. In the partnership

game there are four possible pro�les of actions: the strongly symmetric pro�le a � (1; 1),

the unilateral deviation pro�les a0 � (0; 1) � (1; 0)20 and the Nash or punishment pro�le

aN � (0; 0). The latter pro�le is a Nash equilibrium, and for that reason it is trivially

self-enforcing. We will focus on the �rst two possibilities:

i) The strongly symmetric pro�le a has a initial condition 4d and a probability of pun-

ishment denoted as

F (b;�) � �
�
b� 4d
�
p
�

�
:

This is type I error probability; even though no player has deviated, punishment will be

exerted when a low realization of the process is observed.

ii) The unilateral deviation pro�le a0 has an initial condition 2d and a probability of

punishment denoted as

F 0 (b;�) � �
�
b� 2d
�
p
�

�
:

Analogously a type II error is given by 1� F 0 (b;�), see footnote 10 above.
Observe that the actions decided independently at the beginning of the period by each

of the players are clearly printed in the initial conditions of the process, as they should

be. At the end of the period of length �, the pro�le of actions chosen by the players

appears disturbed by some noise. Lowering �, we are decreasing the uncountable number of

in�nitesimal contributions to the noise, leading to a more likely observation of the process

around its initial condition. An observation of the process far away from the mutual e¤ort

initial condition is then a sign of a deviation.

If we want to generalize this methodology to other more complex environments, this

correspondence between actions taken and the associated expected public signal observed

in the end of the period always have to be present. More elaborated information structures

such as the pairwise full-rank condition of Fudenberg, Levine and Maskin (1994) are not

required.

Active Coordination

20 Fudenberg, Levine and Maskin (1994) pairwise full-rank condition typically fails for strongly symmetric

equilibria. There is no loss in generality when placing no distinction between the pro�les (1; 0) and (0; 1),

and denoting them as a0. Also note that to keep the notation standard, until now, a has denoted a general

action pro�le. With a slight abuse of notation, a now denotes the strongly symmetric e¤ort pro�le.
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When the game is a repeated partnership, it is natural to assume that the process is reset

at the end of each period, after players have observed and split the realized output, starting

again in the point associated with the new action pro�le decided simultaneously by both

players. However, the same assumption does not �t in some other contexts. For example in

the repeated Cournot game, it is not reasonable to assume that players can reset the process

every period, since it represents the market price. In this case, the new equilibrium actions

have to be adjusted to take into account the observed state of the process21. Although

di¤erent, these two possibilities can be studied within the same methodology. To illustrate

this point consider the following example.

In the Cournot duopoly game the public process observed at time � is the market price,

P� = P + �
R �
0
dZt, where P = (�� q1 � q2). Suppose that at time 0 the game starts with

both players supplying the monopoly quantities, i.e. qi = �=422. The expected market price

(and initial condition) is then P = �=2 and players select some threshold value b < �=2.

In period �, let the realization of the process be P� = P + �z�. If P� � b, players play

their punishment actions, with respect to the observed state of the process. For simplicity,

consider the Nash punishment; where in the following period each player will supply qi� =

(� + �z�) =3.

On the other hand, if P� > b, the next period 50/50 monopoly quantities will be chosen

also taking into account the state of the process, hence, requiring each player to supply

the quantities qi� = (� + �z�) =4 with a necessary adjustment in the decision rule, i.e.

b� = b+ �z�.

We will call this type of coordinated behaviour between players in a dynamic setting

Active Coordination, since it requires players to adjust their equilibrium path actions taking

into account the observed state of the process. Players do not reset the value of the process,

but rather they reset the uncertainty.

21 The martingale condition guarantees that such a procedure does not change the properties of the distri-

bution of the public signals.
22 In the Cournot duopoly game under imperfect public information, it is never e¢cient to produce exactly

the monopoly quantities, but rather an amount slightly larger (except in the limit). This issue and others

are discussed in more detail in section VIB. Take this example as an illustration.
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IV. THE BEST STRONGLY SYMMETRIC EQUILIBRIA

This section furnishes the reader with a set of general results that are independent of

the monitoring intensity, which will be particularly useful for the following section when

we focus on the limit case. It also presents a characterization of the optimal decision rule

associated with the value of the best SSPPE of the in�nitely repeated partnership game.

In some occasions, the results presented are standard in repeated games; a brief description

will be presented, su¢cient to keep the exposition self-contained.

Since the game is symmetric there is no loss in generality when studying a single player

incentives, hence we remove players indexes.

Recall from the previous section that the equilibrium pro�le we want to sustain is a �
(1; 1). A pro�le where a single player deviates is denoted as a0, and the Nash pro�le denoted

as aN . These pro�les have associated with them the stage game payo¤s, � � � (a) = d� c,
�0 � � (a0) = d and �N � �

�
aN
�
= 0, respectively. See the expected payo¤s table in section

II. The public information is produced continuously and is generated by the simple ABM

process given by (2.1), with initial conditions depending on the unknown action pro�le.

Since the public information process can virtually return any value in R, we can use

the Abreu, Pearce and Staccetti (1986, 1990) bang-bang result to compute the best SSPPE

payo¤.

Lemma 1 (Sannikov and Skrzypacz (2007a Lemma 3)) In a strongly symmetric

equilibria each player solves the problem,

max
v(y)2[v;v]

(1� �) � + �
Z 1

�1

v (y) f (y) dy

s.t. for all y 2 R,

(1� �) (�0 � �) � �
Z 1

�1

v (y) (f (y)� f 0 (y)) dy;

where v (:) � v denotes the continuation value of the game, and f (:) and f 0 (:) are the

Gaussian densities associated with the public process (2.1) for the initial conditions 4d and

2d respectively and common variance �2�. When a solution to this problem exists, it takes

the form

v (y) =

8
<

:
v if y > b

v if y � b
for b 2 (�1; 3d].
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Here v and v will denote respectively the upper and the lower bounds on the set of SSPPE

payo¤s23. The Lemma tell us that the continuation value v of the game is some non-trivial

combination between the expected value v when play starts with the observation of a good

signal and the expected value v when play starts with an observation of a bad signal. Such

continuation value must enforce the pro�le a.

Here punishments are not executed in terms of a deterministic number of time periods as

suggested by Porter (1983) and Green and Porter (1984) but rather in a probabilistic sense

as in Abreu, Pearce and Staccetti. In our partnership problem, as we shall see, since the

distribution of the public signals is not convex, optimality requires an in�nite punishment

length and both approaches do not di¤er. In some other problems, in particular when the

minmax value di¤ers from the Nash value, the di¤erences might be substantial.

Lemma 1 allows us to rewrite players� problem in a more tractable way, and to use simple

dynamic programming methods to search for expressions for the values of v and v that are

exclusively represented as functions of the parameters of the model. The value of the best

SSPPE is then written,

v = (1� �) � + � [(1� F (b;�)) v + F (b;�) v] : (4.1)

It can be interpreted as follows. While both players provide e¤ort, each receives the im-

mediate discounted normalized expected payo¤ associated with mutual e¤ort, as well as a

discounted expectation over the expected values associated with the two potential signals

that might be observed.

The value in expression (4.1) has to satisfy the usual set of constraints,

v � (1� �) �0 + � [(1� F 0 (b;�)) v + F 0 (b;�) v] ;

v � v � �N ;

b 2 (�1; 3d] :

The �rst constraint is the enforceability condition of Lemma 1; we will frequently use the

terminology incentive compatibility (IC henceforth) instead. It has a simple interpretation:

23 Since later we will allow players to correlate their actions on some public signal we are calling v and v

extreme points of the set of SSPPE payo¤s. This set is the collection of all payo¤s that can be achieved

with strongly symmetric public strategies, i.e. when both players choose the same action after every public

history. See also the discussion after Proposition 2.
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the expected value of the game associated with mutual e¤ort has to be at least as good as

the expected value of the game associated with a potential unilateral deviation, even if this

deviation just last one period. The second constraint requires both v and v to be feasible

and individually rational. The third condition is technical and comes from Lemma 1. It

restricts b to the interval where @F 0 (b;�) =@b � @F (b;�) =@b, i.e. the likelihood ratio is

larger than or equal to one. An alert of deviation is more likely to occur when somebody

has in fact deviated. The likelihood di¤erence F 0 (b;�)� F (b;�) is non-negative and is an
increasing function of b in the interval (�1; 3d]. In Appendix A we show that this condition
does not impose any particular restriction since it is always satis�ed.

When any of these conditions fails, no equilibria either the in�nite repetition of the static

Nash equilibrium can be sustained, i.e. v = �N . When this turns out to be the case, in

particular in the limit, we say that the set of SSPPE payo¤s degenerates24.

We can solve the system composed by expression (4.1) and the IC constraint (assuming

it holds with equality), for v and v, to obtain the solutions

v = � � F (b;�)

F 0 (b;�)� F (b;�) (�
0 � �) ; (4.2)

and

v = v � (1� �)
�

�0 � �
F 0 (b;�)� F (b;�) : (4.3)

Expression (4.2) and (4.3) characterize the value of the upper and lower bounds on a set

of SSPPE payo¤s respectively.

Appendix A shows that the constraint b 2 (�1; 3d] is always satis�ed. Additionally as
a necessary condition for optimality, we have imposed that the IC condition would have

to hold with equality. Now we are just left with the feasibility constraint to be concerned

about. The following result establishes conditions on the threshold b in order for the value

v to be optimal among all the SSPPE values that are feasible.

Proposition 2 In pure strategies and with public correlation, under (2.1) and given �,

any punishment strategy with associated expected value v 2
�
�N ; v

�
is feasible. Moreover,

the strategy pro�le that achieves the largest upper bound v� on the set of SSPPE payo¤s

24 The statement is not exactly correct. It might happen that condition b 2 (�1; 3d] is not satis�ed and we
are still able to achieve payo¤s that satisfy all the other conditions. However in such a case the value b

has not been chosen e¢ciently. The concept of e¢cient threshold is de�ned in Appendix A.
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requires perpetual punishment the �rst time the process is observed below b� (�). Where

b� (�) � b� is called the optimal threshold and is the solution to v = �N , i.e. b� solves

F 0 (b;�)
�
� � �N

�
� F (b;�)

�
�0 � �N

�
� (1� �) (�0 � �) =� = 0: (4.4)

Proof. See Appendix B.

The result tells us that among all the feasible punishment schemes, perpetual punishment

is the optimal one. Expression (4.4) gives an implicit function to compute b�.

For a given �, when a solution b� to (4.4) exists, the value in expression (4.2) returns the

largest SSPPE payo¤ v�. The optimal threshold b� is the lowest value of b that is feasible

and IC. It establishes the right balance between gains and losses associated with right and

wrong inference about players� actions.

Independently of �, the largest strongly symmetric payo¤ is attained using the most

severe punishment available25, which happens because the ABM is a Gaussian process and

the distribution of the public signals is not convex in all of its domain26.

Notice that the two point set
�
�N ; v�

	
associated with (4.4) in Proposition 2 is self-

generating using only pure strategies, since the continuation values �N and v� are elements

of the set. However we have added a public correlated signal and we have called the set of

SSPPE payo¤s
�
�N ; v�

�
. When we consider the set [v; v] with v > �N , a public correlated

signal is required in order for the set to be self-generating. The reason is that the continu-

ations associated with the value of the game that starts with cooperation, and the value of

the game that starts with punishment must be elements in the interval [v; v]. The important

point here is that such a generalization allows us to call the set of SSPPE an interval even

when v = �N and also because the result in Proposition 5 of Section V will be shown to

hold not only under optimal behaviour but also for more general sets [v; v] �
�
�N ; v�

�
.

However, not explicitly mentioned in order to keep the notation simple, the solution b�

depends on all the parameters in the model, i.e. d, c, r and �. Note also that since the

values of F (:) and F 0 (:) are endogenously determined by b�, expression (4.2) necessarily

depends on players impatience level.

25 Nonetheless, we will keep working with expression (4.2), which is more general and can harbour the

perpetual punishment case as a particular case.
26 For a discussion of this issue in the context of repeated games, see Porter (1983).

16



By proposition 2, if a solution to (4.4) exists, it is an optimal threshold b�. The following

result establishes that such a solution, indeed exists, and is unique and di¤erentiable on

some interval
�
0;�

�
. The value � depends on all the parameters of the model, and denotes

the maximum length of time between observations of the process in the in�nitely repeated

partnership that can support some nontrivial equilibria.

Proposition 3 There is a � > 0 such that for all � 2
�
0;�

�
, a solution b� (�) to (4.4)

exists, is unique and di¤erentiable.

Proof. See Appendix B.

Outside the interval
�
0;�

�
there is no value of b� that satis�es (4.4), and shirk becomes

a dominate strategy for both players.

The Optimal Threshold - Numerical

Proposition 2 shows that the largest value of v is obtained using the most severe punish-

ment. Such punishment has associated with it an optimal decision rule whose existence is

guaranteed by Proposition (3). Now we will attempt to provide the intuition behind some

properties of the resulting decision rule.

Figure 1 shows the optimal threshold value as a function of �, for the partnership game,

and for di¤erent parameterizations of � and r, when d = 3 and c = 1.

It is clear from the �gure that independently of the values that � and r can take, in the

limit as �! 0, the value of b� converges to 2d, the expected signal that would arise if there

was a deviation. Such a result is formally shown in Proposition 6 in Section V27.

Notice that the value � increases either when players get more patient or the public

signal becomes less noisy, see Figure 1.

The more impatient the players are (larger r) the tighter the monitoring28 must be in

order to create incentives for cooperative behaviour. This can be seen in Figure 1 where for

the same parameterizations as above, we increase r from 0:1 to 0:2.

27 It can also be shown that @b�=@�! �1 when �! 0 and @b�=@�!1 when �! �
�
, however such

results are not particularly relevant.
28 By "tighter monitoring" as opposed to "relaxed monitoring", I mean a higher threshold value. The larger

the threshold the more likely players are to detect deviations, but they are also more likely to commit

type I errors.
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FIG. 1: The optimal threshold as a function of �.

When we consider the noise parameter of the public process �, it is not always true

that large uncertainty leads to a lower threshold. For high levels of monitoring intensity

this would be so, but when the monitoring frequency is low a tighter threshold might be

required even if the uncertainty level is higher, since the incentives for deviation increase

with �. This can be seen in Figure 1, for example when � = 6; for � around 2:3 we observe

that the associated threshold tight above the threshold associated with � = 3.

The convex shape of the threshold function in � 2
�
0;�

�
is caused by two e¤ects that

operate in the same direction. They are the increasing informativeness of the public signal

when the monitoring activity intensi�es, and the expected immediate gains from deviating

behaviour that also decrease when � becomes small. For in�nitesimal �, the public signal is

extremely informative and the expected immediate gains from deviation become negligible;

for that reason the optimal threshold approaches 2d. When the monitoring decreases in

intensity, the sum of in�nitesimal variations of the process is more likely to generate a

"bad signal". Wrong punishments in the equilibrium path become more likely, forcing
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the monitoring to relax, but in a decreasing way, because at the same time the expected

immediate gains from deviating behaviour are becoming more attractive. At a certain point,

when it reaches its minimum value, the optimal threshold value starts increasing with �,

creating the convex shape. This happens because the expected gains from deviation become

increasingly important and the monitoring has to become tighter in order to keep players

with incentives. Finally, for large values of � � �, there is no threshold value that can

sustain mutual e¤ort; shirk is a dominant strategy for both players.

V. MONITORING FREQUENCY AND LIMIT EFFICIENCY

In this section we look at the value v of the upper bound on the set of SSPPE of the

partnership game when the monitoring reaches its highest intensity, i.e. when � ! 0. We

will see that when such a value is feasible then is also e¢cient in the limit.

We will also look at the limit value of b� and we will show that under Brownian uncer-

tainty, monitoring intensity always has a positive e¤ect on the payo¤s. These results are

independent of how much players discount the future and of the uncertainty level.

A. Monotonicity of the Best SSPPE Payo¤

We start to present a result that establishes monotonicity between the value of the optimal

upper bound on the set of SSPPE payo¤ and monitoring intensity. The result holds for any

monitoring intensity � 2
�
0;�

�
.

Proposition 4 For all � 2
�
0;�

�
and b 2 (�1; 3d], the best SSPPE payo¤s v� increase

monotonically with the monitoring intensity, i.e. with a decrease in �.

Proof. See Appendix C.

The monotonicity of the best SSPPE payo¤ to the monitoring intensity, in our setting,

suggests that more monitoring always improves the payo¤s. More monitoring is then pre-

ferred to less monitoring. The result is a consequence of the increased precision of the public

signal when � becomes small. Kandori (1992) shows a similar result, where an exogenous

improvement of the public signals causes a necessarily expansion on the set of PPE.
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B. Limit E¢ciency of the SSPPE Payo¤s

We now turn our attention to the limit case, i.e. when �! 0. Observe that a threshold

that is slightly larger (more tight) than b� still satis�es the feasibility conditions but at the

expense of a lower SSPPE payo¤, while a lower value (more relaxed) than b� cannot satisfy

the feasibility constraint. The threshold b� gives us exactly the point that maximizes v

according to Proposition 2. As we will see, limit e¢ciency does not require an optimal value

for b, as in the limit, the same results hold with a larger threshold inside some region.

To obtain an e¢cient result in the limit we must see F (b;�)! 0 when�! 0, suggesting

that in the limit, the probability of a type I error converges to 0. It con�rms the comments

previously made, that under Brownian uncertainty when the monitoring intensity is taken

to the limit, the public signals become almost perfectly informative of players� actions. On

the other hand, in the case of a deviation, the probability of detection F 0 (b;�) must not

vanish in the limit, in order for an e¢cient result to be sustainable. We should not concern

ourselves too much with the exact limit value of this probability since it depends on the exact

form of b� (�) which is unknown to us. As well will see, these simple conditions are su¢cient

to keep players with incentives to provide e¤ort in the limit. Fudenberg and Levine (2007)

discuss the necessity of similar conditions for the existence of an e¢cient limit equilibrium.

Under the optimal punishment scheme of the previous section, we had the relation v� �
v� = �N for some � 2

�
0;�

�
, with � depending on the parameters of the model, and

v� = v� = �N in some interval
�
�;1

�
, i.e. the in�nite repetition of the static Nash payo¤.

These are in accordance with Proposition 2 and Proposition 3 of Section IV.We can, however,

set a lower bound on the set of SSPPE payo¤s, such that v > �N . The punishment stage is

not absorbing anymore; returning to the cooperative path is then possible. Such relaxation

on the expected value (a larger v) of a game that starts with an observation of a bad

signal impacts negatively on the value of the upper bound v, since it associates a lower

continuation value. Consequently, the following relations must hold v� � v � v � �N = v�

and b� � b � 3d.
We will now present the main result of the paper. The idea is to take a feasible interval

[v; v] �
�
�N ; v�

�
and show that the associated best SSPPE payo¤ is e¢cient in the limit.

Intuitively, if v ! � and since v � v�, then v� must converge to � as well.

Proposition 5 When the public signal follows (2.1) with distinct initial conditions for dif-
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ferent e¤ort pro�les, the upper bound on the set of SSPPE payo¤s of the in�nitely repeated

partnership game v ! � as �! 0 providing that r > 0 and � <1, for any b 2 [b�; 3d].

Proof. See Appendix C.

Proposition 5 tell us that when the initial conditions of the process re�ect di¤erent e¤ort

pro�les and the public signals are Brownian and continuously available, we can achieve

e¢cient SSPPE payo¤ by monitoring the process at the highest frequencies.

There is a large set of thresholds that make the result possible in the limit, which was

shown for any b 2 [b�; 3d]. Since the set of feasible and admissible decision rules is just a
subset [b�; b�] of [b�; 3d], we can restrict our result to this subset, see Appendix A.

The result is independently of how players discount the future and independently of the

magnitude of the noise parameter in the process. The lack of importance of the players�

patience in the limit is easy to reconcile. Even if players have a large discount rate, in the

limit � is a continuous function and potential gains from deviating behaviour are negligible.

The independence from � is more surprising. No matter how large this parameter is, any

realization of the process is still multiplied by
p
�, which goes to zero with �, explaining

its limit irrelevance.

It is important to understand that even though v ! �, punishment it still present. What

is happening is that once in the punishment state the probability of returning to the reward

state converges to one, implying that the continuation payo¤ associated with v converges to

the value v, becoming the dominant component. Punishments are expected to last no longer

than a few numbers of instantaneous periods, su¢cient to keep players with incentives.

Figure 2 shows how the value of the best SSPPE payo¤ v� associated with the thresholds

of Figure 1 converge to the most e¢cient outcome � = 2, for varying monitoring intensities.

Figure 2 clearly shows the strict monotonic improvement in the best SSPPE payo¤s towards

e¢ciency as the monitoring increases, in parallel with the statement of Proposition 4 and

Proposition 5.

The increased informativeness of the public signals for high levels of monitoring intensity

is the key aspect. It is due to the measurable distance between di¤erent initial conditions of

the process29. Such a distance in a process of in�nitesimal variation plays a crucial role and

makes destruction of value along the equilibrium path converging to zero with �. Another

29 In the context of the partnership game, by measurable distance, we are referring to 2d = j2d� 4dj.
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FIG. 2: The best strongly symmetric payo¤ as a function of �.

important e¤ect that occurs for small � is the decrease in the expected immediate gains

from a deviation. At the end of Section IV above, these two e¤ects were discussed in some

detail.

Wrong inference about players equilibrium actions tends to vanish in the limit. Relevant

uncertainty arises only if players cannot observe the public process during some measurable

time interval. Then the accumulated sum of in�nitesimal normal events may be misleading,

which is even more likely the larger the time interval is, during which the process was left

unattended.

The mechanics of the repeated games plays a role in the result. That is, actions are

decided by players at the beginning of each period, at the end of the period the state of the

process is observed, uncertainty is reset30, new actions are taken for the following period

and so on. Under Brownian uncertainty, when we shrink the time interval of this cyclical

30 Uncertainty reset is equivalent to saying that either the value of the process is reset or players actively

coordinate. See the discussion on active coordination in Section III.
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process to the limit, what Fudenberg and Levine (2007) call "fast play", we get signals that

are "almost" perfectly informative of players actions. Almost in the sense that we still have

some in�nitesimal variation and also because we are still not able to determine the identity

of the deviator31. In Section VIA we discuss in more detail the meaning of the terminology

"almost" perfect monitoring.

We now present a last result, concerning the limit value of the optimal threshold b�.

Corollary 6 When � ! 0 the optimal threshold b� (�) converges to 2d, i.e. the expected

signal associated with the deviation with less impact on the distribution of the public signals.

Proof. See Appendix C.

For our particular game, the result simply states that b� ! 2d in the limit. The result is,

however, more general; b� must converge to the expected signal associated with the deviation

with less impact on the distribution of the public signals. This is true even if the game has

a continuous action space.

The focus here is on the limit of a sequence of discrete time games; however, the result

also suggests that the continuous time analogue to b� should be 2d. We will discuss these

issues in more detail in Section VIA.

A few comments before complete this section. As mentioned before, the true functional

form of b� is unknown, but clearly must depend on all the parameters of the model. It

is however nontrivial to verify the rate at which b� converges to 2d. A wide number of

numerical simulations suggest that this convergence must occur at a rate lower than or

equal to
p
�. Suppose that the optimal threshold function has the following structure:

b� (�) = 2d � ��k (:) where k (:) is some function of all the parameters in the model that

converges to some bounded value and � > 0. While choosing � � 1=2 we can show that

e¢cient and feasible results hold in the limit. On the other hand, when choosing a smaller �

than 1=2 we can bound b� from below in some interval, violating, however feasibility. These

results suggest that b� ! 2d at a rate of �0:499999(9). We will not develop this idea further,

since it is not required for any of the results. Nonetheless, the remark is left here.

31 Information about the identity of the deviator is on the basis of strong folk theorems under perfect

monitoring, see for example Fudenberg and Maskin (1986), as well as Fudenberg, Levine and Maskin

(1994) for a folk theorem under imperfect public monitoring.
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The results presented in this paper also hold if we consider other well known Gaussian

processes of in�nitesimal variation, as for example, the geometric Brownian motion or the

Ornstein-Uhlenbeck process. Finally, as discussed in section III, without any extra conditions

on the information structure, these results can be generalized to others settings with a �nite

number of players and many actions.

VI. POSSIBLE EXTENSIONS - SOME COMMENTS

In this section we brie�y discuss two important extensions associated with the method-

ology presented in this paper. The �rst, is how the results from a continuous time analogue

partnership game would di¤er from the discrete time version. Another important extension

would be to see how the approach of the present paper would perform if players have a con-

tinuum of actions available. This is important since the methodology exploits the jumping

e¤ect caused by a discrete deviation.

A. The Continuous Time

In this paper the emphasis has been placed on the limit of a discrete time repeated game.

It is also possible to employ the methods of this paper directly in continuous time.

It is important to interpret the limit of the time interval � as an approximation or an

abstraction for what would be an in�nitesimal time transition. In this way, the tails of the

distribution would not vanish. The limit degeneracy e¤ect observed on the distribution of

the public signals (see the proof of Proposition 5) would not occur directly in continuous

time.

Brownian paths are continuous but not di¤erentiable. The lack of smoothness of the paths

allows us to infer the existence of in�nitesimal variation. It is not clear that the limit of a

sequence of discrete time games as presented in this paper and the analogous model directly

in continuous times would exactly agree32. However, they should not di¤er signi�cantly.

32 There are some reasons for this: in particular Ito�s integral is de�ned in mean square sense and Brownian

motion is a construction based on in�nitesimal approximations. Because of that, it is di¢cult to trans-

late the meaning of in�nitesimal transition to discrete time. The distribution associated with a single

in�nitesimal transition is then not well de�ned, degenerating in the limit.
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The approach was based on building a sequence of thresholds for each monitoring fre-

quency that was shown to converge to the point 2d. When we take the limit of a discrete

time game, the rate of convergence to the limit point plays a role and we have to take it

into consideration. Directly in continuous time we do not have such a problem. This paper

suggests that the optimal threshold in continuous time is a value in the low neighbourhood

of 2d.

In the partnership game, if the equilibrium expected signal is 4d in continuous time,

the probability that in an instantaneous transition would touch the threshold 2d, does not

vanish, although it is a very unlikely event. Note, however, that in an in�nitely repeated

game played in continuous time, these events of almost zero probability are likely to happen

in�nitely often. Their destruction of value in the game is negligible however. The reason is

because the expected number of in�nitesimal periods of punishment needed to sustain the

equilibrium path will have zero measure. Thus we have an uncountable number of moments

where the path of the game is in the static Nash, but with total measure zero. In an intuitive

way, we can say that the path of the game is always in the cooperative equilibrium, with an

expected equilibrium payo¤ of �, except for an uncountable number of periods with total

measure zero.

This discussion explains in some way the use of the terminology "almost" perfect infor-

mation to describe the limit situation.

B. A Game with a Continuous Action Space

When the action space is discrete in the limit, deviations from the equilibrium path are

equivalent to jumps in the process. Since Brownian paths are continuous but not smooth,

such defective behaviour is almost surely detected. In this section we brie�y discuss the

in�nitely repeated Cournot game. This game is of interest since it has a continuum of

actions available for each player and so deviations can be in�nitesimal.

We apply the bang-bang result for the strongly symmetric equilibrium in the spirit of

Abreu, Pearce and Stacchetti (1986 and 1990)33.

In brief, the stage game expected payo¤s (ex-ante) are given by �i (q1; q2) = qiP (Q) where

33 I thank Andrzej Skrzypacz for providing me with the material needed to compute and understand the

mechanics of the best SSPPE payo¤s in the Cournot game.
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FIG. 3: The best strongly symmetric equilibrium in the Cournot game.

P (Q) is the inverse demand function and Q = q1+q2 is the aggregate supply. Firms, always

have the possibility of staying out of the market and producing nothing. For simplicity and

without loss generality, production costs are zero and �rms face no capacity constraints, i.e.

qi 2 [0;1).
The stage game best strongly symmetric equilibrium is achieved when each �rm supplies

half of the monopoly quantity. Denote this quantity as qMi .

The two �rms decide their supply quantities simultaneously and independently at mo-

ments in time t = 0;�; 2�::: and observe the market price (the public signal) at times

t = �; 2�:::. The public signal is given by (2.1)34. Where now yt+� is the observed market

price at a given moment in time t + �, and yt � P (Qt) is the inverse demand and the

initial condition of the process, it re�ects the individual private supply decisions taken by

each player at the beginning of the period t.

34 The observed state of the ABM price process may present a negative value. This undesirable feature of

the model is irrelevant for the issue we wish to study and there is no loss in generality when considering

such a process. A geometric Brownian motion process would be more adequate, but it also generates

other technical problems.
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FIG. 4: The expected public signal and the optimal threshold value.

For the case where P (Q) = 1 � q1 � q2 and � = r = 0:1, Figure 3 shows the value

of the best SSPPE for varying �. In particular when � becomes small the best SSPPE

payo¤ converges to the value 1=8, the perfect monitoring 50/50 monopoly split payo¤. The

numerical approximation suggests that the same e¢cient limit result, shown for the �nite

action space case (Proposition 5) also holds in the continuous action case. A monotonic

improvement in the payo¤s is clear when � becomes small, similar to the statement of

Proposition 4.

It is also interesting to contrast the evolution of the optimal threshold against the expected

signal of the process P (Q�) for varying �. In Figure 4 can be seen that as � gets small,

the threshold value becomes tighter, in a similar fashion to the discrete actions case. In

the limit converging to the expected signal associated with the most collusive equilibrium

P
�
QM

�
= 1=2, as can be seen in Figure 4, re�ecting the decreasing uncertainty when�! 0.

This result is just an extension of Corollary 6 for the continuous action space case. In the

limit the optimal threshold b� (�) must converge to the expected signal associated with the

deviation with less impact on the distribution of the public signals. In the continuous action

case, such a deviation is an in�nitesimal deviation.
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The discussion suggests that all the results presented in Section V also hold when we

consider games with a continuous action space. This is the main point highlighted by this

section.

VII. FINAL COMMENTS

In the simple setting of a repeated partnership game, this paper shows that e¢cient

SSPPE payo¤s can be achieved in the limit when the public signal observed by the players

is the state of an ABM and the initial conditions associated with di¤erent e¤ort pro�les are

distinct.

Another conclusion of this paper is that payo¤s improve monotonically with monitoring

intensity.

Under Brownian uncertainty a degeneracy of the equilibrium in the limit or the opposed

e¢cient scenario as shown here, depends crucially on the modelling adopted. Whereas the

former approach tends to �t better in problems where the precision of the signals increases

with the time interval between observation of the process, as shown in the work of Fudenberg

and Levine (2007) and Sannikov and Skrzypacz (2007a), the present approach is more ap-

propriate in situations where the informativeness of the signals improve with the monitoring

intensity.

Reality evolves continuously, however, in economics, and contrary to other sciences, it is

hard to think of situations where information is continuously available. An example could

be the listed price of very liquid stocks and certain commodities that are available at high

frequencies, but not continuously. Nevertheless, if such a possibility were available the most

e¢cient outcomes would be achieved by continuously monitoring the state of process.

The reason why a continuous monitoring of the available information is not seen in real

world economic problems is because it is often extremely costly and does not compensate

the potential bene�ts. In other situations the nature of the problem might recommend

monitoring at lower frequencies as suggested in the previously mentioned contributions.

Quoting Alchian and Demsetz (1972, p. 780), "If detecting such behavior were costless,

neither party would have an incentive to shirk, because neither could impose the cost of his

shirking on the other."

In practical applications when a partner continuously monitors the other, she probably
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cannot devote her time to other activities, such as providing e¤ort to the partnership. In

practice what we observe are agents monitoring at discrete moments in time. In many

occasions these monitoring events might be random, in the sense that an agent does not

know the exact moment in time when the monitor is going to observe the public signal.

Osório-Costa (2008) studies repeated games problems of this kind.

Even though the economic reality apparently �nds no place for continuous monitoring,

it is important to stress the importance of the results presented here. Although its focus

was in the limit, this paper connects monitoring and actions frequency with their associated

payo¤s and decision rules. Repeated games theory can now mix actions frequency and

players patience, creating a wide spectrum of potential applications and developments for

the theory itself. While the impatience level of the players has typically been presented as

an exogenous element in the repeated games theory, monitoring frequency has an enormous

appeal to be endogenously determined by the problem at hand. This allows repeated games

theory in discrete time to study problems in a richer fashion.

APPENDIX A: EFFICIENT DECISION RULES AND THE SMALLEST SET

OF SSPPE.

Lemma 1 has constrained b to be in (�1; 3d]. In what follows we will show that such a
constraint is always satis�ed when the decision rule is admissible. Now, we de�ne what is

meant by an admissible threshold in our setting, which is similar to the meaning given in

decision theory.

De�nition 7 Given a lower bound v on the set of SSPPE payo¤s, we say that a threshold

value b is admissible when it has associated with it the largest feasible upper bound v.

The function v is strictly concave in b, taking the maximum value v� � � for some

b� 2 (�1; 3d]. For that reason, the upper bound v might not be unique. For example, for
the same v 2

�
�N ; v�

�
, we might be able to obtain two di¤erent upper bounds v1 and v2

with v1 � v2 and associated thresholds b1 � b2 respectively. In this case, it is not admissible
to choose an decision rule other than the one associated with the largest upper bound, i.e.

b1 dominates b2.
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Proposition 8 Given a � 2
�
0;�

�
, the set of feasible and admissible thresholds for the

partnership game is the interval [b�; b�] � (�1; 3d], where

b� =

�
argmax

b2R

v s.t. v � �N
�
;

and b� is given by (4.4).

Given a � 2
�
0;�

�
, a threshold b is guaranteed to be admissible if it satis�es @v=@b � 0

and is said to be feasible if satis�es v � �N .
When a decision rule belongs to the interval (�1; 3d] the condition on b of Lemma 1 is

necessarily satis�ed. Moreover, associated with each bound b� and b� with b� � b� on the

set of SSPPE payo¤s we have respectively, the smallest [v�; v�] and the largest [v
�; v�] sets

of SSPPE payo¤s.

Proof. Note that v � �N for all � 2
�
0;�

�
. Then to �nd b� we just need to look at the

derivative of v. The @v=@b � 0 is equivalent to
1� �
�

� F 0 (b;�)Fb (b;�)� F (b;�)F 0b (b;�)
F 0b (b;�)� Fb (b;�)

; (A1)

where F 0b (b;�) and Fb (b;�) denote respectively the partial derivatives of F
0 (b;�) and

F (b;�) with respect to b. The LHS does not depend on b. Suppose that the RHS is

monotonic for b 2 (�1; 3d]. When b ! �1 the ratio on the RHS converges to 0, while

if b ! 3d the ratio on the RHS converges to 1. So a value b� must exist above which
the preceding inequality is reversed. So @v=@b � 0 for b 2 (�1; b�] and @v=@b < 0 for

b 2 (b�; 3d]. Then, by monotonicity, v is strictly concave, reaching the maximum value v�

when b = b� � 3d.
Since @v=@b � 0 for b 2 (�1; b�], following the same arguments for the optimality of v

as in Proposition 2, we lower the value of v until v = �N by decreasing b as well. Implying

that b� � b�, and we must also have @v=@b > 0 at b = b�. In summary we have v � v�

for b 2 (�1; b�] � (�1; 3d] and v � v� = �N for b 2 [b�; 3d] � (�1; 3d]. Putting

all of this together we obtain that an feasible and admissible threshold b must belong to

(�1; b�] \ [b�; 3d] = [b�; b�].
Note that the optimal decision rule b� of Proposition 2 is a boundary value for the set of

feasible and admissible decision rules.

Finally, it could have also been shown that: b� ! 3d when � ! 0, that b� is a strictly

convex function in � and that b� exists, and is unique and di¤erentiable inside the interval
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�
0;�

�
.

APPENDIX B:

Proof of Proposition 2. The best strongly symmetric equilibria is obtained by the value

b that maximizes (4.2) subject to be feasible, i.e.

�N � v = v � (1� �)
�

�0 � �
F 0 (b;�)� F (b;�) � v.

The equality establishes IC and the �rst and second inequalities establish feasibility.

The payo¤ we want to maximize v, increases monotonically when b decreases, i.e. @v=@b <

0 for any b 2 R since

F (b;�)F 0b (b;�)� F 0 (b;�)Fb (b;�) < 0;

for the Gaussian distribution. Where F 0b (b;�) and Fb (b;�) denote respectively the partial

derivatives of F 0 (b;�) and F (b;�) with respect to b. On the other hand, @v=@b � 0

only for b 2 (�1; b�] � (�1; 3d], where b� is the threshold value that solves (A1) with
equality. See Proposition 8 and the respective proof in Appendix A. Then, clearly for

b 2 (�1; b�] � (�1; 3d] the derivatives of v and v have opposite signs.
The maximum v is given by the lowest value of b that makes IC hold with equality and

pushing the value of v to the lower boundary of the feasible set, i.e. to �N . Then, the

optimal threshold value b� must satisfy,

�
�
aN
�
= v� = v� � (1� �)

�

�0 � �
F 0 (b�;�)� F (b�;�) : (B1)

Note that while v� � maxb2R v � v� = �N we must have b� � b�, otherwise the set of

SSPPE equilibria degenerates. See the proof of Proposition 8 in Appendix A for a more

precise meaning of v�.

Plug equality (B1) into expression (4.2) and rearrange it, to obtain, after some manipu-

lations

v� =
(1� �) � + �F (b�;�) �N
1� � + �F (b�;�) ;

which is the payo¤ associated with perpetual punishment. Plug this payo¤ back into the

binding IC constraint (B1), which after some rearrangement gives expression (4.4).
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Proof of Proposition 3. We extend the usual local implicit function theorem to hold in

some convex interval
�
0;�

�
. For now take as given the existence of an upper bound � on

the interval
�
0;�

�
. Denote the LHS of equality (4.4) by I (b;�), which I rewrite here,

I (b;�) � F 0
�
� � �N

�
� F

�
�0 � �N

�
� (1� �) (�0 � �) =�: (B2)

Where, to save on notation, we have denoted as F � F (b;�) and F 0 � F 0 (b;�), and

the partial derivatives with respect to b will be denoted respectively as Fb � @F (b;�) =@b
and F 0b � @F 0 (b;�) =@b. Since F , F 0 and � are continuous and di¤erentiable w.r.t. to its

own variables � 2
�
0;�

�
and b 2 (�1; 3d], so thus the mapping I (b;�) is continuous and

di¤erentiable.

To simplify assume that the point (i) of Sandberg�s (1981, p. 146) global implicit function

theorem holds, that is, for some �0 2
�
0;�

�
there is exactly one b0 2 (�1; 3d] such that

I (b0;�0) = 0. Now we need to verify that I (b;�) is locally solvable in the neighborhood of

the point (b0;�0) and then by invoking continuity of b (�), Sandberg�s theorem must holds

for all � 2
�
0;�

�
. The condition for local solvability is @I (b0;�0) =@b 6= 0 implying that

I (b0;�0) = 0. Since @v=@b > 0 for b0 2 (�1; b�) � (�1; 3d], where b� is the threshold
value that solves (A1) with equality. (See Proposition 8 and the respective proof in Appendix

A) Then I (b0;�0) = 0 only when @I (b0;�0) =@b > 0, or equivalently

� � �N
�0 � �N >

Fb
F 0b
= e

4b0d�12d
2

2�0�
2 :

Since �0 > �, the ratio on the LHS is constant, with a value strictly larger than zero but less

than one. For any b0 2 (�1; b�), Fb=F 0b ! 0 when �0 ! 0 which is the lowest value it can

take. When �0 !1 we have Fb=F 0b ! 1, the largest value it can take for �0 > 0. The ratio

Fb=F
0
b is clearly continuous, then exist always some nonempty interval of the form

�
0;�

�

where the above inequality hold, where � is the lowest value in the pair (b0;�0) such that

the above inequality stops to hold. Then for each point inside the interval
�
0;�

�
there is a

unique continuous di¤erentiable function b (�) on an open ball around (b0;�0) that locally

satis�es I (b;�) = 0.

Now apply Sandberg�s implicit function theorem; by continuity of b (�), for each S 2 A
there is a T 2 B, where A and B are families of compact subsets of

�
0;�

�
and (�1; 3d) re-

spectively, b (S) is compact as well and belongs to T . Then, there is a unique and continuous

function b� (�) such that I (b�;�) = 0 for all � 2
�
0;�

�
.
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Intuitively, depending on the parameters of the model � might be larger or smaller. The

threshold b� (�) adjusts to keep (B2) holding with equality for a given �. For � 2
�
�;1

�

there is no b (�) that makes (B2) hold, in this case @I (b�;�) =@b = 0. While � 2
�
0;�

�

we can �nd b� (�) that makes (B2) hold.

APPENDIX C:

Proof of Proposition 4. Start by de�ning v� (�) = max
b
v (b;�) subject to (4.4), i.e.

I (b;�) = 0 and write the Lagrangian L (b;�) = v (b;�)��I (b;�). By Proposition (3) the
solution b� (�) is a continuous and di¤erentiable function of �; assume the same holds for

the Lagrangian multiplier �. Then by the envelope theorem for constrained maximization

problems we can write @v� (�) =@� = @L (b�;�) =@�. Our goal is then to show that

@v� (�)

@�
=
@v (b�;�)

@�
� �@I (b

�;�)

@�
< 0 (C1)

where � is obtained from solving @L (b;�) =@b = 0. Expression (C1) has the following three
components, which we develop to

@v (b�;�)

@�
= �F

0F� � FF 0�
(F 0 � F )2

(�0 � �) ;

@I (b�;�)

@�
= F 0�

�
� � �N

�
� F�

�
�0 � �N

�
� r
�
(�0 � �) ;

and � = �(F
0Fb � FF 0b) (�0 � �) = (F 0 � F )2
F 0b (� � �N)� Fb (�0 � �N)

:

Where, to save on notation, we have denoted F � F (b;�), F 0 � F 0 (b;�), F� �
@F (b;�) =@�, F 0� � @F 0 (b;�) =@�, Fb � @F (b;�) =@b and F 0b � @F 0 (b;�) =@b when

evaluated at b = b�. Replacing these expressions in (C1), and after some algebra we obtain

�
F 0
�
� � �N

�
� F

�
�0 � �N

��
(F 0bF� � FbF 0�) > �

r

�
(�0 � �) (F 0Fb � FF 0b) ;

using the expression (4.4), we can simplify further to get

(1� �) (F 0bF� � FbF 0�) > �r (F 0Fb � FF 0b) :

Notice that F� = � (b��4d)
2�

Fb and F 0� = � (b��2d)
2�

F 0b, then we are left with

(1� �)FbF 0bd=� > �r (F 0Fb � FF 0b) :
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The LHS is clearly always positive. Since for any � > 0 we have F 0Fb � FF 0b > 0 for the
Gaussian distribution, the RHS is always negative.

Proof of Proposition 5. Our goal is to show that it is possible to obtain lim
�!0

v = �

without violating the feasibility constraint. Denote b0 � lim
�!0

b (�) and focus on the values

of b0 2 (�1; 3d]. We will look at limit values of b 2 (�1; 3d] as required by Lemma (1).
It insures that we cover all the relevant limit cases, including some potentially not feasible

and inadmissible values of b, see Appendix A. Then, we obtained

F 0 (b;�)!

8
>>>>>>>><

>>>>>>>>:

0

0

� (:)

1

1

b0 2 (�1; 2d)
b (�)! 2d slower than

p
�

b (�)! 2d at
p
� rate

b (�)! 2d faster than
p
�

b0 2 (2d;1)

;

and F (b;�)! 0 when b 2 (�1; 4d). Notice that when b (�)! 2d we observe di¤erent limit

values for F 0 (b;�) depending on the rate of convergence. Note also that when b (�) ! 2d

at
p
� rate F 0 (b;�) ! � (:), where the value of 0 < � (:) < 1 is left unspeci�ed (this is

without loss in generality), it depends on the true functional form of b� which is unknown

for us. In the limit we have a degeneracy on the distribution of the public signals; it can only

take one of three possible values, 0; � (:) and 1 (keep in mind that taking the limit � ! 0

is just an abstraction for an in�nitesimal transition).

Since the IC condition has been imposed and b 2 (�1; 3d], we just need to verify
when feasibility condition v � v � �N holds in the limit. Consider the following relevant

possibilities about the limit value of b.

i) b0 2 (�1; 2d), we have F 0 (b;�)� F (b;�)! 0 implying that v ! �1, which is not
feasible in the limit.

ii) b0 = 2d with b (�) ! 2d slower than
p
�. In this case suppose b (�) = 2d ���k (:)

with 0 < � < 1=2. We have F 0 (b;�) ! 0 implying that v ! �1, which is not feasible in
the limit.

iii) b0 = 2d with b (�) ! 2d at least at the
p
� rate. Consider the extreme case

b (�) = 2d�
p
�k (:) � b� for all � 2

�
0;�

�
. Then F 0 (b;�) = � (�k (:) =�) > 0, implying

that v ! v and v ! �, which is feasible and approaches e¢ciency in the limit.

iv) b0 2 (2d; 3d], we also obtain feasibility and convergence to the e¢cient outcome in the
limit, i.e. v ! v and v ! �.
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In both cases iii) and iv) we observe v and v converging to �, but with v > v for all

in�nitesimal �. To see this observe that

lim
�!0

(v � v) = lim
�!0

(1� �)
�

�0 � �
F 0(b;�)� F (b;�) > 0;

which is equivalent to looking at lim
�!0

(1� �) (�0 � �) > 0. Di¤erentiating with respect to

�, even though both v and v converge to �, we obtain that if r > 0 we must have v < v for

small in�nitesimal �. The irrelevance of � is always present in the proof.

Proof of Corollary 6. We know that the lower the value of b the larger the value of v,

since @v=@b < 0 is always true for the Gaussian distribution, see Section IV. Our problem

is then to �nd the lowest feasible value of b that maximizes v. Using the results obtained in

the proof of Proposition 5, the lowest value of b such that F 0 (b;�)! � (:) > 0 and at same

time F (b;�) ! 0, is the value to which b must converge in the limit. So lim
�!0

b� (�) = 2d

is the lowest value which is feasible, and which achieves e¢ciency. Other limit values either

are not lower or do not satisfy the feasibility constraint.
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